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Abstract

Record linkage, referred to also as entity resolution, is the process of identifying pairs

of records representing the same real world entity (e.g. a person) within a dataset or

across multiple datasets. In order to reduce the number of record comparisons, record

linkage frameworks initially perform a process referred to as blocking, which involves

splitting records into a set of blocks using a partition (or blocking) scheme. This re-

stricts comparisons among records that belong to the same block during the linkage

process. Existing blocking methods are often evaluated using different metrics and in-

dependently of the choice of the subsequent linkage method, which makes the choice of

an optimal approach very subjective. In this paper we demonstrate that existing eval-

uation metrics fail to provide strong evidence to support the selection of an optimal

blocking method. We conduct an extensive evaluation of different blocking methods

using multiple datasets and some commonly applied linkage techniques to show that

evaluation of a blocking method must take into consideration the subsequent linkage

phase. We propose a novel evaluation technique that takes into consideration multiple

factors including the end-to-end running time of the combined blocking and linkage

phases as well as the linkage technique used. We empirically demonstrate using mul-

tiple datasets that according to this novel evaluation technique some blocking methods

can be fairly considered superior to others, while some should be deemed incompara-

ble according to those factors. Finally, we propose a novel blocking method selection
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procedure that takes into consideration the linkage proficiency and end-to-end time of

different blocking methods combined with a given linkage technique. We show that

this technique is able to select the best or near best blocking method for unseen data.

Keywords: Record linkage, blocking, entity resolution

1. Introduction

Record Linkage (RL) is a process of identifying and linking pairs of records represent-

ing the same real world entity. An overview of a general RL process is demonstrated in

Figure 1. As the number of record pairs that require comparison during linkage grows

exponentially with dataset sizes, linkage often incurs great computational expense even

for moderately sized datasets. For this reason, a blocking phase is implemented prior

to linkage to reduce the otherwise high computational cost of exhaustively comparing

all record pairs.

Figure 1: General overview of record linkage process.

Blocking is a process of dividing records into groups (blocks) in such a way that records

within each group hold a high chance of being linked in the subsequent linkage process.

Following the blocking process, linkage is performed exclusively upon the record pairs

within each of the generated blocks.

During a blocking process a set of blocking keys is used to determine which records

should be placed in the same block. Consider a dataset of records R = r1, ..., rn, where
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each record comprises values it takes for attributes from a scheme A = a1, ..., am.

Accordingly, we can represent a record ri as [ri1, ..., rim], where rij is the value that

the ith record takes for the jth attribute. A blocking key is defined as follows.

Definition 1.1. (Blocking key) A blocking key is an 〈aj , h〉 combination where aj ∈ A

is an attribute and h is an indexing function. For each ri ∈ R, h takes rij as an input

and provides a set of values, referred to as blocking key values (BKVs), as an output.

For example, the blocking key 〈Name,Contain common tokens〉 applied to a record

containing ”Information Systems Journal” in the Name attribute field would generate

a BKV set containing three BKVs {”Information”, ”Systems”, ”Journal”}. BKVs de-

termine into which block(s) records are placed, with each unique BKV referring to a

specific block. Our example record would therefore be placed in three different blocks,

each associated with one of the three aforementioned BKVs.

A good blocking method places many matching record pairs and few non-matching

record pairs into the generated blocks thus allowing for an efficient subsequent link-

age phase. A number of different linkage methods exist which classify each record

pair within each block as either match or non-match based on the similarity between

them [12, 15, 16, 21, 24]. Due to the complexity of datasets (i.e. missing values, typo-

graphical errors, acronyms, initialisations, etc.) a single blocking key is rarely likely to

capture all matching record pairs efficiently, therefore multiple blocking keys may be

needed in the form of a blocking scheme.

Definition 1.2. (Blocking Schemes) Given a set of individual blocking keys, K =

k1, ..., kk′ , a blocking scheme is a combination of blocking keys, which can be dis-

junctive i.e. 〈ki〉 ∪ . . .∪ 〈kj〉, conjunctive i.e. 〈ki〉 ∩ . . .∩ 〈kj〉 or of disjunctive normal

form i.e.〈〈ki〉 ∩ . . . ∩ 〈kj〉〉 ∪ . . . ∪ 〈〈ki′ 〉 ∩ . . . ∩ 〈kj′ 〉〉

Blocking schemes may be created manually [13, 15] or automatically learned [2, 20,

27] using a blocking scheme learning algorithm and labelled data.

Blocking methods are commonly evaluated with labelled data (with known match-

ing status of each record pair) using evaluation metrics such as reduction ratio (RR),

pairs completeness (PC) and/or a harmonic mean FRR,PC of RR and PC [18].
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Definition 1.3. (Reduction Ratio) For two datasets, A and B, reduction ratio is defined

as:

RR = 1− N

|A| × |B|
, (1)

where |A| and |B| are the sizes of respective datasets and N ≤ (|A| × |B|) is the

number of record pairs formed by a blocking method.

RR indicates how much the comparison space is reduced after the blocking phase. For

example, if a potential comparison space of 1,000,000 record pairs was reduced by

blocking to 5,000 record pairs, that would equate to RR = 1− (5, 000/1, 000, 000) =

0.995.

Definition 1.4. (Pairs Completeness) Pairs completeness is defined as:

PC =
Nm

|M |
, (2)

with Nm ≤ |M | being the number of matching record pairs contained within the

reduced comparison space after blocking and |M | being the number of matches within

the entire dataset.

PC is the ratio of matching record pairs found within the formed blocks. One can notice

that there is a trade-off between RR and PC. Comparing all record pairs (placing all the

records in the same block) minimises RR but maximises PC, whereas performing no

comparisons at all (placing each record in an individual block) maximises RR and

minimises PC. Ideally one looks for a blocking scheme that maximises both RR and

PC. A commonly applied evaluation metric, which balances the trade-off between RR

and PC, is the harmonic mean of RR and PC.

Definition 1.5. (Harmonic mean of RR and PC) For a given RR and PC, the harmonic

mean is defined as:

FRR,PC =
2 ∗ RR ∗ PC

RR + PC
. (3)

In this paper we make the following contributions: (1) We compare existing block-

ing scheme learning methods using results from the respective papers to show that

current blocking evaluation metrics are insufficient when performed independently of
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a subsequent linkage phase. Analysis of these results show that no blocking method is

superior to the others in every instance, and that the choice highly depends on which

evaluation metric is prioritised. (2) We propose a novel technique that evaluates block-

ing methods as part of an RL framework (i.e. takes the quality and runtime of the

subsequent linkage into consideration) and visualises the results graphically. This al-

lows an optimal blocking method to be easily identified according to multiple factors,

including resources (in particular running time), datasets and linkage method. (3) We

propose a new selection technique that uses results obtain by blocking methods on

known labelled datasets to select an optimal blocking method for a new unlabelled

dataset for a given RL method. We perform a number of experiments using different

blocking methods and some of the commonly used RL methods. We compare the re-

sults of our selected methods against all others on multiple datasets to show that an

optimal or near optimal blocking method is selected in every case.

2. Relevant Work

Automatic blocking scheme learning approaches [2, 20, 27] commonly evaluate an

initial set of individual blocking keys against a set of labelled data. The best individ-

ual keys, according to a predetermined criterion, continue to iteratively form block-

ing schemes with remaining individual keys often re-ranked between iterations. These

schemes are then evaluated against labelled data using evaluation metrics. A block-

ing key or a blocking scheme is commonly evaluated with reduction ratio (RR), pairs

completeness (PC) and harmonic mean of RR and PC (FRR,PC), following the blocking

phase.

The supervised approach in [27] ranks individual keys with PC above a predeter-

mined threshold by RR. Each top key is extended by other keys as conjunctions so RR

improves while maintaining PC above the threshold. This continues until RR no longer

improves for each conjunction. The idea is that although each individual conjunction

may only cover a certain proportion of the matches, their disjunction will collectively

detect most if not all matches. The proficiency of learned blocking schemes against dif-

ferent datasets are presented using RR and PC. While this paper presents good results,
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they are presented independently of computational run-time.

Another supervised approach [2] ranks keys by their ratio of detected matches to

non-matches. Top keys are then iteratively applied to the labelled record pairs as a

disjunctive blocking scheme until a predetermined proportion of labelled positives are

detected. Disjunctive normal form schemes may also be learned by iteratively extend-

ing each top key by others so that the ratio is maximally improved. This continues until

a conjunction of desired length is generated. The individual keys are supplemented by

the conjunctions formed at each iteration. The supplemented set is then ranked and it-

eratively applied to the labelled record pairs as a disjunction of conjunctions blocking

scheme until a predetermined proportion of labelled positives are detected.

Learned schemes are applied to datasets with results presented using RR versus PC

curve graphs. This work mentions run-time by presenting the average blocking time

per approach against both datasets that were evaluated. The average blocking time is

measured at maximum achieved PC and defined as the total time taken to construct the

blocks and to generate the candidate pairs. The paper does not take into consideration

the time taken for a subsequent linkage phase.

With the previous two approaches, labelled training data is assumed to be available,

which usually requires considerable time and effort to produce. The blocking scheme

learning approach of [20] improves upon this by generating its own labels from the

target dataset. To achieve this they first group records according to shared common to-

kens, for example containing “Avenue” within their address attribute value. Within each

grouping, a window of predetermined size is slid over the contained records. Record

pairs within the window at any given time are then compared using the (log) Term

Frequency-Inverse Document Frequency (TF-IDF) measure (we discuss it further in

Eq.(8)). The top d pairs are labelled as positives and the bottom nd as negatives, where

d and nd are the two parameters of the method. Blocking keys are then individually

evaluated by their Fisher Score [14] of agreements/disagreements on the labelled data.

In addition to RR and PC, FRR,PC is also used to evaluate the performance of learned

schemes against three datasets. Running time is mentioned but only in terms of the

complexity for the labelled data generation phase.

The work presented in [2, 20, 27] detail automatic approaches for learning of stan-
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dard blocking schemes for homogeneously structured datasets. Although other block-

ing scheme learning approaches exist, they either necessitate a domain expert, incorpo-

rate non-standard blocking approaches, are specific to non-homogeneously structured

datasets, or focus on other aspects of the RL process such as improving the efficiency

of the linkage phase. One such alternative approach [19] to standard automatic block-

ing scheme learning algorithms maps entities to a multi-dimensional index dependent

upon the similarity metrics and blocking functions that are used. Nearby entities in

this multi-dimensional space are then compared to one another. In both evaluations the

proficiency of the proposed approach surpasses that of standard blocking with perfect

PC being achieved in less comparisons. However, the use of multi-dimensional indices

comes at a greater overhead cost than standard blocking, making the approach only

suitable for datasets of much lower dimension than is commonly seen in real-world

cases.

A recent clustering based approach [17] uses blocking keys to form blocks with

regulated size. Between each iteration a block quality and block size trade-off is used to

determine which overly small blocks should be merged and which overly large blocks

should be further partitioned. The authors state that although their blocking scheme

learning approach takes longer than that of the baselines, they achieve superior RR

because of the regulated blocks sizes. They also detail that in their evaluations they

manually determined the blocking keys and their order by which to further partition

overly large blocks. Automatic learning of blocking keys is left for future work.

A limitation of current RL evaluation techniques is identified in [5]. Since different

approaches are often evaluated using a variety of different metrics, a general compar-

ison and an overall conclusion are often impossible. They therefore advocate the use

of precision-recall curve graphs as the most informative RL evaluation methodology.

Precision (Prec), when referring to linkage, is the proportion of correctly classified

matching record pairs.

Precision =
|TP |

|TP |+ |FP |
. (4)

Recall (Rec), when referring to linkage, is the proportion of correctly classified matches
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out of all known matches in the dataset.

Recall =
|TP |

|TP |+ |FN |
. (5)

When referring to the linkage phase |TP | is the number of true positives (correctly

classified matches), |TN | is the number of true negatives (correctly classified non-

matches), |FP | is the number of false positives (non-matches classified as matches) and

|FN | is the number of false negatives (matches classified as non-matches). Precision-

recall curve graphs have been used in a number of papers [3, 6, 21, 26], but they are

only an indicator of RL proficiency post completion and do not take into account the

amount of resources (i.e. time) to achieve such results.

In [24] different RL frameworks incorporating manually defined blocking schemes

are compared using a variety of evaluation metrics. RR, PC, FRR,PC, Recall, Precision

and FPrec,Rec as well as time, Accuracy and Pairs Quality (referred to as PQ) are used.

Accuracy is the total proportion of record pairs that are either correctly blocked (in the

case of matches) or correctly not blocked (in the case of non-matches) out of all record

pairs. PQ is the proportion of correctly blocked record pairs out of all blocked record

pairs and is used as a surrogate for blocking precision.

PQ =
Total number of blocked matching record pairs

Total number of blocked record pairs
. (6)

Time resources are indicated for each method’s execution. However, these time val-

ues are used independently of the other metrics, making difficult any comparisons of

proficiency over a fixed time period.

A comprehensive empirical survey of 17 blocking methods upon 6 popular real

datasets and 7 synthetic datasets is carried out in [31]. The authors examine the robust-

ness of the internal configurations and relative balance between effectiveness and time

efficiency for each method upon each dataset. The effectiveness of the blocking meth-

ods are estimated using RR, PC and PQ. In their evaluations the subsequent linkage

process is also taken into consideration but only in terms of the computational runtime

required to perform all pairwise comparisons. For larger datasets this is estimated using

the average time required to perform 108 comparisons.
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A developing area of relevance is that of Meta-Blocking [28, 29, 30, 32]. Meta-

blocking aims to improve RL efficiency by only performing linkage upon the blocks

and/or record pairs within the blocks indicated as most likely to refer to matching

record pairs. In [28] the authors observe that a record paired with many other records

is unlikely to match with any during linkage. By constructing an entity index, which

monitors which records belong to which blocks and vice versa, they exploit this obser-

vation in order to prioritise blocks and/or record pairs for linkage. Rather than perform

all record pair comparisons of a block collection arbitrarily, as is done typically, linkage

is only performed until a cost/gain approximation indicates that finding further matches

is too costly.

More recently schema-agnostic blocking approaches have been improved using

meta-blocking. Unlike standard blocking, schema-agnostic blocking approaches do not

require any prior knowledge of a datasets schema (i.e. attribute columns) in order to be

implemented. Token-Blocking is one such example in which records are blocked ac-

cording to shared common token values regardless of where in each record the token

is present. As such token-blocking has high PC but low precision as common tokens

may be present in different attributes between records of different data sources. In [32]

attributes between different data sources are clustered so that only record pairs with a

common token between ”similar” attributes are considered. In their evaluations only

the blocking and meta-blocking stages are evaluated with PQ used as a surrogate for

precision alongside PC and FPQ,PC. PQ is greatly improved whilst maintaining high PC

with their approach performing better than other meta-blocking approaches and equally

well as standard blocking approaches.

An alternative linkage efficiency improvement [33] merges and distributes any

record pair classified as matching to all other blocks containing either record. This

improves PC due to the transitive relation of matching record pairs. It also improves

efficiency in a progressive convergent manner as the repeated merging, distribution

and replacement of individual records with merged records in earlier blocks saves the

overall processing time of all other blocks.
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3. Problem Formulation

An issue with existing comparisons of blocking methods for RL is that different met-

rics have been used for the evaluation of different approaches (RR - Reduction Ratio,

PC - Pairs Completeness, FRR,PC - Harmonic mean of RR and PC), rendering most con-

clusions subjective to a great degree [5]. A further issue is that a blocking method that

scores highly by one metric may not be suitable for all users. For example, a method

with especially high PC may also have poor RR. Such a method may be unusable by a

user under time constraints as the linkage phase may take longer than they can afford

(RR correlates with the time needed for the linkage). On the other hand, a blocking

method with high RR may produce blocks that are poor in terms of PC. Therefore,

many researchers adopt FRR,PC, which acts as an indicator of balance between RR and

PC. However, choosing a blocking method indicated as optimal by this metric may

still result in an execution run-time longer than some users can afford, and arguably an

approach which is allowed to run for a longer time should be expected to yield better

results, since it has more computational resources at its disposal. To better demon-

strate the aforementioned issue, Table 1 shows results collected from [2, 20, 27]. A

and A
′

refer to the method proposed in [2] with a disjunctive and disjunctive normal

form blocking scheme learned respectively. Likewise, B and B
′

stand for the method

introduced in [20] in the two cases. For [27] only disjunctive blocking schemes were

learned, C and C
′

in this case represent results for when 10% and 50% of labeled train-

ing data are used respectively. FRR,PC values were not given for A, A
′
, C or C

′
in their

respective works but are present in Table 1 as they were calculated from the RR and

PC values. We present interval values for A and A
′
, as opposed to precise values, since

RR and PC were estimated from graphs. Although other datasets were used, we focus

on results for datasets Restaurant, Cora and Census, since they are common to at least

two of the aforementioned papers.

From the results that we have compiled in Table 1, we see that often different block-

ing methods are selected if one employs a particular metric to analyse them. For ex-

ample, if prioritising by RR, then B
′

is selected for Restaurant, A
′

for Cora and C for

Census. FRR,PC is seen as an indicator of how good a balance between RR and PC is
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Algorithm from: [2] [2] [20] [20] [27] [27]

Dataset Metric A A
′

B B
′

C C
′

R
es

ta
ur

an
t PC 1.0000 1.0000 0.9554 0.9554 0.9348 0.9816

RR 0.9990 0.9990 0.9800 0.9993 0.9957 0.9926

FRR,PC 0.9995 0.9995 0.9675 0.9768 0.9643 0.9871

C
or

a

PC [0.995, 0.997] [0.997,0.998] 0.9443 0.9443 – –

RR [0.94, 0.96] [0.96,0.97] 0.9330 0.9330 – –

FRR,PC [0.965, 0.978] [0.978,0.984] 0.9386 0.9386 – –

C
en

su
s PC 1.0000 1.0000 1.0000 1.0000 0.9913 0.9985

RR 0.9916 0.9916 0.9916 0.9916 0.9950 0.9812

FRR,PC 0.9958 0.9958 0.9958 0.9958 0.9931 0.9898

Table 1: Reduction Ratio (RR), Pairs completeness (PC) and harmonic mean of RR and PC (FRR,PC )

over different datasets for a collection of approaches from the literature, as indicated in the first and second

rows. A and A
′

respectively refer to the disjunctive and disjunctive normal form variations of the blocking

scheme learning approach of [2]. This is also the case for B and B
′

and the approach of [20]. In [27] only

disjunctive blocking schemes were learned, C and C
′

in this case represent results for when 10% and 50% of

labeled training data are used respectively. Columns A and A
′

were obtained from the experiments presented

in [20], except for the intervals of the centre three rows, which are from [2] itself.

achieved. In [20], such a metric is preferred over RR and PC for blocking method eval-

uation. An issue here however is that two blocking methods with the same measure of

FRR,PC may have very different values for RR and PC. For example, for FRR,PC=0.788

we may have RR=0.700 and PC=0.900, or RR=0.900 and PC=0.700. These two cases

would result in very different linkage results for a large dataset, one being quicker

but potentially detecting less matches and the other slower but potentially detecting

a higher number of matches. This becomes especially evident in significantly large

datasets in which a difference in RR of 0.001 could equate to millions of record pair

comparisons.

Some related work presents the computational run-time of the subsequent linkage

phase in addition to the blocking evaluation metrics [23, 31]. In the latter the compu-
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tational runtime of the linkage phase is estimated for the larger datasets by using the

average runtime for 108 record pairs. This gives a more informed comparison between

blocking methods but fails to address another issue. Even with identical RR, PC and

consequently FRR,PC values, the quality of the end result (i.e. post-linkage) relies on

which record pairs were formed by the respective blocking method. One of the aims of

this paper is to show that although FRR,PC of blocking indicates the proficiency of RL,

it does not guarantee better linkage results than if another blocking method with lesser

FRR,PC was applied.

In summary, there are multiple blocking evaluation problems that need to be ad-

dressed. Firstly, no single existing evaluation metric can effectively indicate the opti-

mal blocking method for users with differing preferences (i.e. those with/without time

constraints). Secondly, no existing evaluation metric can effectively indicate the overall

quality of a blocking method considering multiple factors such as accuracy and time

resources. Thirdly, no evaluation metric can guarantee one blocking method will per-

form better than another post-linkage. To properly evaluate blocking methods one must

therefore take into account the quality of the post-linkage results, not just the blocking

evaluation metrics and the computational runtime of the subsequent linkage.

4. Proposed Approach

4.1. A New Technique for Evaluating Blocking Methods

We propose that the evaluation of blocking methods must take into consideration the

proficiency of a subsequent linkage phase, as the performance of the latter is intrinsi-

cally related to the former. This is not only because of the running time but also specific

blocking methods may be more suited to specific linkage approaches. We therefore pro-

pose to perform the evaluation of blocking methods as part of RL frameworks. For this

purpose we apply FPrec,Rec (F-measure calculated post-linkage), which is the harmonic

mean of Precision and Recall (Eq.(7)), in conjunction with the overall running time

(i.e. blocking and linkage) to evaluate the performance of different blocking methods

applied with a single linkage method. This contrasts with other work [2, 20, 27] where

blocking is allowed to run until completion and blocking quality results only are pre-
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sented, often as the optimal or average across multiple parameters, making it harder to

make objective conclusions.

FPrec,Rec =
2 ∗ Precision ∗ Recall

Precision + Recall
. (7)

In order to better indicate how well each blocking method performs with respect

to each other we plot the two metrics on a graph as shown in the exemplar Figures 2a

and 2b.
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Figure 2: A toy example of FPrec,Rec vs Time(sec) graph for two datasets. b01,...,b04 represent different

blocking methods, FPrec,Rec are the subsequent post-linkage proficiency results (Eq.(7)) of each blocking

method for each dataset (given a particular linkage technique) and Time(sec) are the end-to-end time values

of the combined blocking and linkage phases.

In each graph a point is plotted to represent the FPrec,Rec and Time(sec) results of

different combinations of blocking methods and linkage techniques upon a dataset. In

our exemplar figures points for 4 different blocking methods were deliberately placed

using fictitious results in order to demonstrate two typical cases that may occur. Look-

ing at these graphs one can identify which blocking methods outperform others. We

define an outperforming blocking method as follows.

Definition 4.1. (Pareto-outperforming blocking method) Blocking method bi Pareto-

outperforms blocking method bj for a given dataset and a given linkage method if bi

achieves higher FPrec,Rec value in less time than bj .
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In Figure 2a, method b01 can be clearly seen to Pareto-outperform all other methods

making it the obvious best blocking method. In some cases, however, we are not able

to make an unambiguous conclusion as to which blocking method is best as some

might have better FPrec,Rec than others but poorer overall running time. In Figure 2b

for example, a user may prefer either b02 or b04 as they Pareto-outperform b01, or else

b03 as it has the highest FPrec,Rec but also takes the longest. In such cases, it should

be a user’s decision about the optimal approach to use according to availability of time

and possible required accuracy i.e. choose the method with highest proficiency within

the time allowed. For our purposes we visually consider an optimal blocking method

for a dataset to be the blocking method in the top-most left corner of a respective

FPrec,Rec vs Time graph. This is because this blocking method achieves the best balance

of maximising FPrec,Rec and minimising Time in comparison to all other methods.

Using this idea, in Figure 2b we would therefore consider b02 to be an optimal blocking

method despite there existing other faster or more proficient blocking methods.

Definition 4.2. (Optimal blocking method) For a set of blocking methods b1...bn and a

FPrec,Rec vs Time graph, the optimal blocking method is defined as:

arg min
b1,...,bn

√
(0− bi(Time))2 + (1− bi(FPrec,Rec))2

4.2. A Technique for Selecting Optimal Blocking Methods for a New Dataset

In the previous section we detail a technique that takes the post-linkage results

and end-to-end time into consideration when comparing the performance of differ-

ent blocking methods for a dataset. This is only possible when a sufficient number

of labelled records from the dataset is available, which is inherently not the case for

real world users. We propose a blocking method selection technique that uses other

labelled datasets to select an optimal (or near-optimal) blocking method (for a given

linkage technique) for a new and unlabelled dataset. With the proposed approach we

model the relation among different blocking methods as a graph, which we refer to

from now on as a dominance graph.

Definition 4.3. (Dominance Graph) Given a set of different blocking methods B =

b1, ..., bm and a collection of different datasets D = d1, ..., dn, the dominance graph is
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a graph with m nodes where for each dataset d ∈ D there exists a directed edge from

node bi to bj if bj Pareto-outperforms bi on d.

With a dominance graph we can visualise the relations between different blocking

methods across multiple datasets. A very simple example of such a graph is presented

in Figure 3 where b1 to b4 are nodes representing different blocking methods and the

directed edges between them represent which methods Pareto-outperform others in at

least one of the multiple labelled datasets.

Figure 3: Example of a simple dominance graph where b1, ..., b4 are nodes representing different blocking

methods. Numbered edges between nodes indicate in how many of the evaluated datasets one node Pareto-

outperforms the other. Edges are directed towards the superior node.

Edges are directed from the outperformed node to the outperforming node and

may overlap in a dominance graph if the same relation occurs in multiple datasets. In

Figure 3 a number overlays each edge to indicate in how many of the datasets this

relation occurs. At the same time, there may be pairs of nodes that are not connected

by any edge. We further define a dominating node.

Definition 4.4. (Dominating Node) For a given dominance graph we say that method

(node) bi dominates method (node) bj if there is a directed path from bj to bi and there

is no directed path from bi to bj .

We define a non-dominated node as follows.
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Definition 4.5. (Non-Dominated node) We say that a method (node) bi is non-dominated

in a dominance graph if there does not exist a node in the graph that dominates bi.

In Figure 3 nodes b2, b3 and b4 are dominated and b1 is non-dominated. The ex-

istence of a non-dominated node is guaranteed within a dominance graph. A strongly

connected component (SCC) is a subset of nodes where each node forms a path with

every other node within the subset. In Figure 3 the subsets (b1) and (b2, b3, b4) each

form an SCC. A graph of SCCs forms a directed acyclic graph. Directed acyclic graph

theory states that there must exist at least one SCC that has no children SCCs (referred

to as leaves of the directed acyclic graph). In Figure 3 the SCC (b1) would therefore

be considered the only leaf of the directed acyclic graph. Looking at the leaf SCC, any

original node that has no children SCCs must therefore be non-dominated as the only

incoming edges to that node come from the other nodes within the SCC. In our case b1

is the guaranteed non-dominated node.

Our intuition is that non-dominated nodes from a dominance graph generated with

multiple datasets are likely to be good for other datasets as well. As there may be

multiple non-dominated nodes in a dominance graph an additional selection step is re-

quired. This consists of selecting the non-dominated node with the largest Incoming−

Outgoing number of edges value. In Figure 3 method b1 would therefore be selected.

4.2.1. Blocking Method Selection Process

The pseudo-code of the blocking method selection process is outlined in Algorithm 1.

Given n labelled datasets, m blocking methods and a particular linkage technique an

optimal blocking method for a given linkage method can be selected using the selection

technique as follows.

i. (Lines 2-4) Apply each blocking method to the n labelled datasets and perform

their respective subsequent linkage phases using the linkage technique. Record

the end-to-end time values of the combined blocking and linkage phases as well

as the post-linkage FPrec,Rec values.

ii. Using these results form a FPrec,Rec vs Time graph for each labelled dataset.
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Algorithm 1: Blocking Method Selection
Input: Set of labelled datasets, D = d1, ..., dn

Set of blocking methods, B = b1, ..., bm

Linkage technique, Link

Output: Optimal blocking method, bOptimal

1 Results = Ø

2 foreach di ∈ D do

3 foreach bj ∈ B do

4 Resultsi,j = Link(bi(dj))

5 Results = Results ∪Resultsi,j

6 foreach bj ∈ B do

7 Add node bj to the dominance graph

8 foreach di ∈ D do

9 if ∃bu ∈ B such that Resultsi,u outperforms Resultsi,j then

10 Add edge bu ← bi to the dominance graph

11 ND = Ø

12 foreach bi ∈ B do

13 if bi is non-dominated then

14 ND = ND ∪ bi

15 bOptimal =arg maxb∈B bIncoming−Outgoing

16 Return bOptimal
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iii. If a singular blocking method can be clearly seen to outperform (according to

Definition 4.2) every other blocking method in every graph, select that blocking

method to use with the linkage technique upon the unlabelled dataset. Otherwise

perform steps v to iix.

iv. (Lines 6-10) Using the FPrec,Rec vs Time graphs from step iii, form a domi-

nance graph as per Definition 4.3. For every connected pair of nodes (blocking

methods) within the dominance graph, indicate with an overlaying number in

how many of the datasets one method Pareto-outperforms the other.

v. (Lines 11-14) Select all non-dominated nodes according to Definition 4.5.

vi. (Line 15) If only one Non-Dominated node remains, select the respective block-

ing method of that node. If multiple Non-Dominated nodes remain select the

respective blocking method of the node with the largest Incoming−Outgoing

number of directed edges.

vii. Use the respective blocking method of the selected node along with the linkage

technique upon the unlabelled dataset.

5. Experimental Evaluation

All algorithms were coded using Java Eclipse Mars.1. Evaluations were ran using

a Dell Optiplex 9020 with 16G of RAM, an Intel(R) Core(TM) i7-4790 with 3.60GHz

and 64x Windows 7 Enterprise.

Blocking Methods

In our experiments we used the blocking algorithms which were described in detail in

section 3. With each of the three algorithms an initial set of blocking keys is applied

to a subset of labelled data. Blocking keys which pass a satisfaction criteria are then

combined to form longer conjunctions. This continues iteratively until conjunctions of

a maximum predetermined length are constructed. Keys and their conjunctions are then

ranked according to a criteria unique to each paper. The ranked blocking keys and their

conjunctions are then applied iteratively as a blocking scheme to the labelled data until

a predetermined proportion of labelled positives are detected. Each of the algorithms
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was implemented to our best understanding of the papers. [2] limited their generated

blocking methods to use conjunctions with a maximum length of up to 4 keys (see def-

inition 1.2). Longer conjunctions potentially lead to more efficient blocks but come at a

cost of greater runtime for their learning and evaluation. In our experiments, we apply

four different maximum conjunction lengths (i.e. 1 to 4 keys) for each algorithm. Con-

sequently, in total 12 variants of the blocking methods were evaluated for each dataset

(3 blocking scheme learning algorithms × 4 possible conjunction lengths). In the case

of [27] only disjunctive normal form blocking methods were previously generated and

evaluated. Therefore by having a variant in which there is a maximum conjunction

length of 1 we have now added the ability for disjunctive blocking methods to also be

generated by this particular approach.

Linkage Techniques

Three different linkage techniques have been combined with the blocking methods

to form distinct RL frameworks. First was a hypothetical instantaneous perfect linkage

technique where each record pair is perfectly classified and no time is incurred for com-

parison. The overall time values by this linkage technique therefore only represent the

blocking process as well as any pre-processing (e.g. standardisation). As classification

is perfect the FPrec,Rec (harmonic mean of precision and recall) values for this linkage

technique are therefore given using the recall value obtained by the blocking method

and precision equal to one. We use this hypothetical linkage technique to better demon-

strate the disparity of linkage quality and end-to-end time before and after application

of an actual linkage technique. As the second linkage technique we employ LibSVM

[8], a popular Support Vector Machine (SVM). SVMs are a supervised classification

model learning technique that form an optimal separating hyper-plane with maximal

margins between the positive and negative training comparison vectors. SVMs have

been used in many RL related works [1, 9, 10, 22, 32]. A particularly popular example

is that of the MARLIN (Multiply Adaptive Record Linkage with INduction) system

[4] which is often used as a baseline in RL related papers [7, 21, 25, 27]. For the third

linkage technique we adopt a rule based approach [16] which uses Log TF-IDF (Term

Frequency Inverse Document Frequency) for measuring similarity between records.

The Log TF-IDF measure [20] is formally defined as
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sim(t1, t2) =
∑

q∈t1∩t2

w(t1, q) · w(t1, q), (8)

where

w(t, q) =
w′(t, q)√∑

q∈t
w′(t, q)2

, (9)

and

w′(t, q) = log(tft,q + 1) · log(
|R|
dfq

+ 1) (10)

where (t1, t2) represents a record pair, w(t, q) is the normalised TF-IDF weight of a

term q in a record t, tft,q represents the term frequency of q in t, |R| is the total number

of records in the dataset R, dfq is the document frequency of the term q in the cohort,

that is, how many records in the dataset contain t. In order to classify record pairs

by this linkage technique a similarity threshold value is required. For each dataset an

optimal TF-IDF linkage threshold value was set.

Validation

We implement ten-fold cross-validation to evaluate each dataset by each framework.

The results presented in the respective tables are thus the accumulated average findings

across the respective ten folds. If for a fold, a blocking method was unable to learn a

blocking scheme under some given parameters, its result is deemed as zero and still

contributes to the average.

Indexing functions

Different sets of indexing functions (applied for constructing different blocking keys)

were used in [27] for each dataset when compared to [2] and [20]. For the purpose of a

fairer comparison, we use the same 25 indexing functions commonly used between [2]

and [20].

Datasets

The evaluation was performed using 2 of the datasets common to [2] and [20] (Restau-

rant and Cora) as well as additional larger datasets. The datasets used have varying

characteristics represented by their differing column values in Table 2. The column

Dedup/RL details whether a dataset is used for deduplication (within a single dataset)

or record linkage (across 2 datasets). Synth/Real signifies whether a dataset is a real
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publicly available labelled dataset commonly used in RL or a synthetic dataset that we

generated for our evaluations. To generate synthetic data we use a modified version

of the synthetic data generator from [11]. Clean/Dirty respectively signify whether a

record may only match with at most one other record or may match with multiple other

records. Hence a higher number of matches tend to be found among Dirty datasets.

Dataset name Deduplication/

Record Linkage

Real

/Synth

Clean

/Dirty

No. of

attributes

No. of

records

No. of

matches

Restaurant Deduplication Real Clean 5 864 112

Cora Deduplication Real Dirty 4 1,295 17,184

Clean-Synth Deduplication Synth Clean 10 10,000 2,000

Dirty-Synth Deduplication Synth Dirty 9 10,000 26,692

DBLP-ACM Record Linkage Real Clean 4 2,616+2,294 2,224

DBLP-Scholar Record Linkage Real Dirty 4 2,616+64,263 5,347

Table 2: Characteristics of datasets used in the empirical study.

Dominance Graphs

As there are 6 different datasets and 3 different linkage techniques there are 18 dom-

inance graphs to be generated. Each dominance graph contains 12 nodes each rep-

resenting one of the twelve variants of the blocking methods. The results from the

blocking evaluation technique (Figures 3→ 8) then determine which nodes have edges

between them, how many and in which direction. Each dominance graph is used to

select a blocking method for a dataset using a particular linkage technique. For exam-

ple, the dominance graph used to select a blocking method for Restaurant using SVM

linkage, would therefore contain all the edges for the other five datasets using SVM

linkage. The non-dominated nodes are identified and the method(s) with the largest

Incoming − Outgoing number of edges value is selected. The results table of the

evaluation technique can indicate how closely the selected methods perform in com-

parison to the optimal methods.
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6. Results and Discussion

In our experiments we evaluated three different blocking techniques Ai [2], Bi [20],

Ci [27], with i indicating the maximum key conjunction length used by each blocking

method, and two linkage approaches: SVM and TF-IDF. All of the blocking meth-

ods were evaluated with the proposed FPrec,Rec [Harmonic mean of precision and

recall] vs Time technique described in Section 4.1. In Tables 3 to 8 we present the

blocking quality results (Reduction Ratio [RR], Pairs Completeness [PC], Harmonic

mean of RR and PC [FRR,PC]) of each blocking method for each dataset along with the

post-linkage results (FPrec,Rec) of the applied linkage techniques. In Tables 9 to 14 we

present the respective end-to-end (i.e. blocking and linkage combined) run times for

each blocking method and subsequent linkage technique combination for each dataset.

Please note that because Perfect linkage is instantaneous, its time values equate to that

of blocking only. The respective SVM and TF-IDF time values therefore consist of

these blocking times plus any incurred linkage time by each linkage technique. In the

following section we provide in depth analysis of the obtained results.

6.1. Assessing Blocking Methods with the Proposed Evaluation Technique

As discussed in Section 4.1 we use graphs (Figures 4 to 21) depicting scatter plots

of FPrec,Rec versus overall end-to-end time to evaluate and compare different blocking

methods for each dataset. Since each blocking method is one of three blocking scheme

learning algorithms using conjunctions of specific lengths from 1 to 4 keys, there are

typically 12 points per graph. The blocking scheme learning algorithms of [2, 20, 27]

are represented using Ai, Bi and Ci respectively. The adjoining i=1→4 value indicates

the maximum conjunction length used by each blocking method. Methods with exces-

sively high running time in comparison to others are deliberately omitted, thus some

graphs contain fewer than 12 points.

From a quick glance at the results we can see that some blocking methods were

seen to perform quite well for some datasets but poorly in others. For example, B3 is

among the top performing for Clean-Synth in Figures 12 and 18 and for DBLP-ACM

in Figures 14 and 20, but is arguably the lowest performing for Restaurant in Figure 4.
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In Figures 4 to 21 the optimal blocking method only ever tends to be either B1, B2 or

C1. However, each of these blocking methods may not necessarily be a good method

for all cases. For example, C1 is the optimal blocking method in all 3 linkages cases

for Restaurant (Figures 4, 10 and 16) but is among the lowest performing in 2 of the

linkage cases for Clean-Synth (Figures 12 and 18), DBLP-ACM (Figures 14 and 20)

and DBLP-Scholar (Figures 15 and 21).

Blocking Linkage (FPrec,Rec)
Method RR PC FRR,PC Perfect SVM TF-IDF

A1 0.999 0.950 0.974 0.974 0.902 0.928
A2 0.999 0.955 0.976 0.977 0.920 0.942
A3 0.999 0.945 0.971 0.972 0.910 0.932
A4 0.999 0.938 0.967 0.968 0.908 0.927
B1 0.999 0.923 0.960 0.960 0.900 0.923
B2 1.000 0.926 0.961 0.962 0.904 0.926
B3 1.000 0.884 0.938 0.938 0.888 0.908
B4 1.000 0.893 0.943 0.943 0.893 0.915
C1 0.999 0.994 0.996 0.997 0.922 0.943
C2 0.999 0.967 0.983 0.983 0.922 0.937
C3 0.999 0.936 0.966 0.967 0.910 0.935
C4 1.000 0.955 0.977 0.977 0.918 0.932

Table 3: Numerical results for Restaurant where Ai, Bi and Ci are the blocking algorithms of [2, 20, 27]

respectively. i=1→4 are maximum key conjunction lengths. FRR,PC is the harmonic mean of Reduction Ratio

and Pairs Completeness and FPrec,Rec is the harmonic mean of Precision and Recall calculated post-linkage.
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Blocking Linkage (FPrec,Rec)
Method RR PC FRR,PC Perfect SVM TF-IDF

A1 0.969 0.912 0.939 0.954 0.814 0.835
A2 0.970 0.917 0.943 0.957 0.821 0.839
A3 0.970 0.917 0.943 0.957 0.821 0.839
A4 0.970 0.917 0.943 0.957 0.821 0.839
B1 0.937 0.936 0.937 0.967 0.824 0.842
B2 0.935 0.939 0.937 0.968 0.823 0.842
C1 0.914 0.935 0.925 0.966 0.822 0.841
C2 0.972 0.883 0.925 0.938 0.819 0.833
C3 0.916 0.937 0.926 0.968 0.823 0.841
C4 0.974 0.883 0.926 0.938 0.822 0.836

Table 4: Numerical results for Cora where Ai, Bi and Ci are the blocking algorithms of [2, 20, 27] respec-

tively. i=1→4 are maximum key conjunction lengths. FRR,PC is the harmonic mean of Reduction Ratio and

Pairs Completeness and FPrec,Rec is the harmonic mean of Precision and Recall calculated post-linkage.

Blocking Linkage (FPrec,Rec)
Method RR PC FRR,PC Perfect SVM TF-IDF

A1 0.999 0.999 0.999 0.999 0.350 0.352
A2 1.000 0.997 0.998 0.999 0.350 0.352
A3 1.000 0.999 0.999 1.000 0.350 0.352
A4 1.000 0.999 0.999 1.000 0.350 0.352
B1 1.000 0.998 0.999 0.999 0.350 0.352
B2 1.000 1.000 1.000 1.000 0.487 0.489
B3 1.000 0.997 0.999 0.999 0.487 0.489
C1 0.995 1.000 0.997 1.000 0.350 0.352
C2 0.999 0.999 0.999 1.000 0.354 0.356
C3 1.000 1.000 1.000 1.000 0.400 0.402

Table 5: Numerical results for Clean-Synth where Ai, Bi and Ci are the blocking algorithms of [2, 20, 27]

respectively. i=1→4 are maximum key conjunction lengths. FRR,PC is the harmonic mean of Reduction Ratio

and Pairs Completeness and FPrec,Rec is the harmonic mean of Precision and Recall calculated post-linkage.
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Blocking Linkage (FPrec,Rec)
Method RR PC FRR,PC Perfect SVM TF-IDF

A1 0.999 1.000 1.000 1.000 1.000 1.000
A2 0.999 1.000 1.000 1.000 1.000 1.000
A3 1.000 1.000 1.000 1.000 1.000 1.000
A4 1.000 1.000 1.000 1.000 1.000 1.000
B1 0.999 1.000 1.000 1.000 1.000 1.000
B2 1.000 1.000 1.000 1.000 1.000 1.000
B3 0.999 1.000 1.000 1.000 1.000 1.000
B4 1.000 1.000 1.000 1.000 1.000 1.000
C1 0.983 1.000 0.991 1.000 1.000 1.000
C2 0.997 1.000 0.998 1.000 1.000 1.000
C3 0.999 1.000 1.000 1.000 1.000 1.000

Table 6: Numerical results for Dirty-Synth where Ai, Bi and Ci are the blocking algorithms of [2, 20, 27]

respectively. i=1→4 are maximum key conjunction lengths. FRR,PC is the harmonic mean of Reduction Ratio

and Pairs Completeness and FPrec,Rec is the harmonic mean of Precision and Recall calculated post-linkage.

Blocking Linkage (FPrec,Rec)
Method RR PC FRR,PC Perfect SVM TF-IDF

A1 0.948 0.998 0.972 0.999 0.933 0.931
A2 0.949 0.998 0.973 0.999 0.935 0.932
A3 0.989 0.998 0.993 0.999 0.964 0.955
A4 0.989 0.998 0.993 0.999 0.964 0.955
B1 0.987 1.000 0.993 1.000 0.900 0.903
B2 0.998 0.998 0.998 0.999 0.964 0.956
B3 0.998 0.998 0.998 0.999 0.964 0.956
B4 0.998 0.998 0.998 0.999 0.964 0.956
C1 0.990 0.999 0.994 1.000 0.902 0.904
C2 0.997 0.998 0.998 0.999 0.909 0.908
C3 0.999 0.999 0.999 0.999 0.925 0.925
C4 0.998 0.998 0.998 0.999 0.927 0.925

Table 7: Numerical results for DBLP-ACM where Ai, Bi and Ci are the blocking algorithms of [2, 20, 27]

respectively. i=1→4 are maximum key conjunction lengths. FRR,PC is the harmonic mean of Reduction Ratio

and Pairs Completeness and FPrec,Rec is the harmonic mean of Precision and Recall calculated post-linkage.

25



Blocking Linkage (FPrec,Rec)
Method RR PC FRR,PC Perfect SVM TF-IDF

A1 0.989 0.997 0.993 0.999 0.496 0.801
A2 0.996 0.997 0.996 0.998 0.507 0.801
B1 0.998 0.993 0.996 0.997 0.553 0.804
B2 0.998 0.993 0.996 0.996 0.555 0.804
C1 0.990 0.999 0.994 0.999 0.459 0.800

Table 8: Numerical results for DBLP-Scholar where Ai, Bi and Ci are the blocking algorithms of [2, 20, 27]

respectively. i=1→4 are maximum key conjunction lengths. FRR,PC is the harmonic mean of Reduction Ratio

and Pairs Completeness and FPrec,Rec is the harmonic mean of Precision and Recall calculated post-linkage.

Time(seconds)
Method Blocking SVM TF-IDF

A1 2.8 3.0 3.0
A2 3.1 3.3 3.2
A3 3.3 3.5 3.4
A4 3.7 3.9 3.8
B1 2.6 2.8 2.8
B2 2.8 3.0 2.8
B3 4.0 4.2 4.1
B4 6.6 6.8 6.7
C1 2.7 2.9 2.8
C2 3.3 3.5 3.4
C3 11.1 11.3 11.3
C4 124.8 125.0 125.0

Table 9: Combined blocking and linkage times for

Restaurant where Ai, Bi and Ci are the blocking

scheme learning algorithms of [2, 20, 27] respectively

and i=1→4 are maximum key conjunction lengths.

Time(seconds)
Method Blocking SVM TF-IDF

A1 70.2 84.4 92.8
A2 73.1 86.4 93.8
A3 76.4 89.8 97.2
A4 80.7 94.2 101.6
B1 69.7 97.1 115.3
B2 71.0 99.5 116.8
C1 77.6 113.7 137.4
C2 79.7 91.9 99.2
C3 110.4 145.7 168.8
C4 432.3 444.1 451.1

Table 10: Combined blocking and linkage times for

Cora where Ai, Bi and Ci are the blocking scheme

learning algorithms of [2, 20, 27] respectively and

i=1→4 are maximum key conjunction lengths.
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Time(seconds)
Method Blocking SVM TF-IDF

A1 8.5 11.2 21.9
A2 9.3 10.9 17.3
A3 10.2 11.0 13.7
A4 11.9 12.6 15.4
B1 7.9 9.3 14.9
B2 8.5 9.1 11.2
B3 17.0 18.1 24.3
C1 8.3 23.1 83.6
C2 11.5 14.5 25.3
C3 65.6 67.1 72.0

Table 11: Combined blocking and linkage times for

Clean-Synth where Ai, Bi and Ci are the blocking

scheme learning algorithms of [2, 20, 27] respectively

and i=1→4 are maximum key conjunction lengths.

Time(seconds)
Method Blocking SVM TF-IDF

A1 12.2 14.5 23.9
A2 13.4 15.8 25.2
A3 16.0 17.7 24.1
A4 17.8 19.4 25.9
B1 11.2 13.2 21.3
B2 11.6 13.2 19.7
B3 32.2 25.3 34.5
B4 151.5 155.1 168.7
C1 14.0 62.8 229.5
C2 16.2 25.2 55.9
C3 48.0 51.7 65.3

Table 12: Combined blocking and linkage times for

Dirty-Synth where Ai, Bi and Ci are the blocking

scheme learning algorithms of [2, 20, 27] respectively

and i=1→4 are maximum key conjunction lengths.

Time(seconds)
Method Blocking SVM TF-IDF

A1 25.2 69.8 141.8
A2 26.0 69.2 139.3
A3 24.1 35.9 54.6
A4 24.3 36.1 54.8
B1 23.6 36.9 56.3
B2 23.4 25.6 28.2
B3 23.8 26.0 28.7
B4 26.1 28.3 31.1
C1 24.0 32.9 45.1
C2 28.3 31.3 36.1
C3 37.0 39.1 43.2
C4 76.6 78.4 84.2

Table 13: Combined blocking and linkage times for

DBLP-ACM where Ai, Bi and Ci are the blocking

scheme learning algorithms of [2, 20, 27] respectively

and i=1→4 are maximum key conjunction lengths.

Time(seconds)
Method Blocking SVM TF-IDF

A1 108.3 434.4 761.2
A2 195.6 328.6 470.7
B1 88.3 134.8 185.8
B2 197.0 244.3 296.3
C1 109.2 409.3 683.1

Table 14: Combined blocking and linkage times for

DBLP-Scholar where Ai, Bi and Ci are the blocking

scheme learning algorithms of [2, 20, 27] respectively

and i=1→4 are maximum key conjunction lengths.
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Figure 4: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for Restaurant when us-

ing Perfect instantaneous linkage. Where Ai, Bi and Ci repre-

sent the blocking scheme learning algorithms of [2, 20, 27] re-

spectively and i=1→4 are the maximum key conjunction lengths

used. If a method is considerably slower than the others it is not

competitive and therefore omitted.
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Figure 5: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for Cora when using Per-

fect instantaneous linkage. Where Ai, Bi and Ci represent the

blocking scheme learning algorithms of [2, 20, 27] respectively

and i=1→4 are the maximum key conjunction lengths used. If a

method is considerably slower than the others it is not competi-

tive and therefore omitted.
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Figure 6: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for Clean-Synth when us-

ing Perfect instantaneous linkage. Where Ai, Bi and Ci repre-

sent the blocking scheme learning algorithms of [2, 20, 27] re-

spectively and i=1→4 are the maximum key conjunction lengths

used. If a method is considerably slower than the others it is not

competitive and therefore omitted.
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Figure 7: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for Dirty-Synth when us-

ing Perfect instantaneous linkage. Where Ai, Bi and Ci repre-

sent the blocking scheme learning algorithms of [2, 20, 27] re-

spectively and i=1→4 are the maximum key conjunction lengths

used. If a method is considerably slower than the others it is not

competitive and therefore omitted.
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Figure 8: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for DBLP-ACM when

using Perfect instantaneous linkage. Where Ai, Bi and Ci rep-

resent the blocking scheme learning algorithms of [2, 20, 27] re-

spectively and i=1→4 are the maximum key conjunction lengths

used. If a method is considerably slower than the others it is not

competitive and therefore omitted.
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Figure 9: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for DBLP-Scholar when

using Perfect instantaneous linkage. Where Ai, Bi and Ci rep-

resent the blocking scheme learning algorithms of [2, 20, 27] re-

spectively and i=1→4 are the maximum key conjunction lengths

used. If a method is considerably slower than the others it is not

competitive and therefore omitted.
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Figure 10: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for Restaurant when us-

ing Support Vector Machine (SVM) linkage. Where Ai, Bi and

Ci represent the blocking scheme learning algorithms of [2, 20,

27] respectively and i=1→4 are the maximum key conjunction

lengths used. If a method is considerably slower than the others

it is not competitive and therefore omitted.
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Figure 11: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for Cora when using Sup-

port Vector Machine (SVM) linkage. Where Ai, Bi and Ci rep-

resent the blocking scheme learning algorithms of [2, 20, 27] re-

spectively and i=1→4 are the maximum key conjunction lengths

used. If a method is considerably slower than the others it is not

competitive and therefore omitted.
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Figure 12: FPrec,Rec (Harmonic mean of Precision and Re-

call calculated post-linkage) vs Time graph for Clean-Synth

when using Support Vector Machine (SVM) linkage. Where Ai,

Bi and Ci represent the blocking scheme learning algorithms

of [2, 20, 27] respectively and i=1→4 are the maximum key con-

junction lengths used. If a method is considerably slower than the

others it is not competitive and therefore omitted.
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Figure 13: FPrec,Rec (Harmonic mean of Precision and Re-

call calculated post-linkage) vs Time graph for Dirty-Synth

when using Support Vector Machine (SVM) linkage. Where Ai,

Bi and Ci represent the blocking scheme learning algorithms

of [2, 20, 27] respectively and i=1→4 are the maximum key con-

junction lengths used. If a method is considerably slower than the

others it is not competitive and therefore omitted.
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Figure 14: FPrec,Rec (Harmonic mean of Precision and Re-

call calculated post-linkage) vs Time graph for DBLP-ACM

when using Support Vector Machine (SVM) linkage. Where Ai,

Bi and Ci represent the blocking scheme learning algorithms

of [2, 20, 27] respectively and i=1→4 are the maximum key con-

junction lengths used. If a method is considerably slower than the

others it is not competitive and therefore omitted.
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Figure 15: FPrec,Rec (Harmonic mean of Precision and Re-

call calculated post-linkage) vs Time graph for DBLP-Scholar

when using Support Vector Machine (SVM) linkage. Where Ai,

Bi and Ci represent the blocking scheme learning algorithms

of [2, 20, 27] respectively and i=1→4 are the maximum key con-

junction lengths used. If a method is considerably slower than the

others it is not competitive and therefore omitted.
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Figure 16: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for Restaurant when using

Term Frequency-Inverse Document Frequency (TF-IDF) linkage.

Where Ai, Bi and Ci represent the blocking scheme learning al-

gorithms of [2, 20, 27] respectively and i=1→4 are the maximum

key conjunction lengths used. If a method is considerably slower

than the others it is not competitive and therefore omitted.
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Figure 17: FPrec,Rec (Harmonic mean of Precision and Re-

call calculated post-linkage) vs Time graph for Cora when using

Term Frequency-Inverse Document Frequency (TF-IDF) linkage.

Where Ai, Bi and Ci represent the blocking scheme learning al-

gorithms of [2, 20, 27] respectively and i=1→4 are the maximum

key conjunction lengths used. If a method is considerably slower

than the others it is not competitive and therefore omitted.

101 102

35

40

45

50

Time(sec)

1
0
0
·F

Pr
ec
,R

ec
al

l

A1

A2

A3

A4

B1

B2

B3

C1

C2

C3

Figure 18: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for Clean-Synth when

using Term Frequency-Inverse Document Frequency (TF-IDF)

linkage. Where Ai, Bi and Ci represent the blocking scheme

learning algorithms of [2, 20, 27] respectively and i=1→4 are

the maximum key conjunction lengths used. If a method is con-

siderably slower than the others it is not competitive and therefore

omitted.
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Figure 19: FPrec,Rec (Harmonic mean of Precision and Re-

call calculated post-linkage) vs Time graph for Dirty-Synth when

using Term Frequency-Inverse Document Frequency (TF-IDF)

linkage. Where Ai, Bi and Ci represent the blocking scheme

learning algorithms of [2, 20, 27] respectively and i=1→4 are

the maximum key conjunction lengths used. If a method is con-

siderably slower than the others it is not competitive and therefore

omitted.
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Figure 20: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for DBLP-ACM when

using Term Frequency-Inverse Document Frequency (TF-IDF)

linkage. Where Ai, Bi and Ci represent the blocking scheme

learning algorithms of [2, 20, 27] respectively and i=1→4 are

the maximum key conjunction lengths used. If a method is con-

siderably slower than the others it is not competitive and therefore

omitted.
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Figure 21: FPrec,Rec (Harmonic mean of Precision and Recall

calculated post-linkage) vs Time graph for DBLP-Scholar when

using Term Frequency-Inverse Document Frequency (TF-IDF)

linkage. Where Ai, Bi and Ci represent the blocking scheme

learning algorithms of [2, 20, 27] respectively and i=1→4 are

the maximum key conjunction lengths used. If a method is con-

siderably slower than the others it is not competitive and therefore

omitted.

6.1.1. Blocking Method vs Linkage Technique

It is often observed that an optimal blocking method (assuming perfect linkage -

a common assumption in the literature) is not necessarily an optimal method after an

actual linkage takes place. From the results for dataset DBLP-ACM in Figures 8, 14

and 20 we can see that blocking methods perform differently depending on the linkage

approach that is used later on. For example, in Figure 8 B1 and C1 are the optimal

methods for DBLP-ACM if we assume the perfect linkage technique. However, in Fig-

ures 14 and 20 they are clearly outperformed by many other blocking methods when

we apply either the SVM or TF-IDF linkage technique.
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Metric Perfect SVM TF-IDF

RR No No No

PC Yes Yes Yes

FRR,PC Yes Yes Yes

(a) Restaurant

Metric Perfect SVM TF-IDF

RR No No No

PC Yes No Yes

FRR,PC No No No

(b) Cora

Metric Perfect SVM TF-IDF

RR No No No

PC Yes No No

FRR,PC Yes No No

(c) Clean-Synth

Metric Perfect SVM TF-IDF

RR No No No

PC Yes Yes Yes

FRR,PC Yes Yes Yes

(d) Dirty-Synth

Metric Perfect SVM TF-IDF

RR No No No

PC Yes No No

FRR,PC No No No

(e) DBLP-ACM

Metric Perfect SVM TF-IDF

RR No No Yes

PC Yes No No

FRR,PC No No No

(f) DBLP-Scholar

Table 15: Indication of whether the optimal blocking method(s) by the blocking evaluation metrics RR, PC

or FRR,PC agree with the optimal method(s) by the linkage evaluation metric FPrec,Rec for each linkage

technique and for each dataset.

The dataset Clean-Synth was deliberately generated to contain a significant number

of similar but non-matching record pairs. This makes the task of classification espe-

cially challenging for all linkage techniques but the perfect linkage technique. This is

most evident in Figure 6 where C1 achieves an FPrec,Rec measure of 1 upon Clean-

Synth when assuming perfect instantaneous linkage, but is among the worse performing

when considering SVM or TF-IDF linkage in Figures 12 and 18 respectively.

Blocking methods indicated as best by either RR, PC or FRR,PC are very often

observed to be outperformed by others when evaluated as part of a RL framework

i.e. when the results of a linkage technique are also considered. For example, in Ta-
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ble 7 C3 is indicated as the best blocking method for DBLP-ACM by FRR,PC. However,

when linkage is considered both the SVM and TF-IDF versions of B2 achieve superior

FPrec,Rec results in less time than the respective versions of C3. In our experimental

evaluations many similar cases were found, often with quite significant differences in

FRR,PC pre-linkage. This also often applies if selecting the best blocking method by

RR or PC. In Table 15, we show when the method(s) indicated as best by RR, PC or

FRR,PC (pre-linkage) agree with the optimal method(s) by FPrec,Rec (post-linkage).

PC and FRR,PC are observed to be better indicators of optimal blocking methods than

RR but neither are correct every time. This confirms that blocking evaluation metrics

alone cannot confidently indicate the best blocking method for a dataset, and that one

must look to the post-linkage results as shown in Figures 4 to 21. Overall, these scatter

graphs allow us to identify the optimal blocking method while taking into consideration

both proficiency and resources (i.e. time). This is an important property when compar-

ing methods, since it is arguably unfair to compare methods only by proficiency (re-

gardless of which evaluation metric is used) if they are provided with different amount

of resources (i.e. time).

6.1.2. Comparison of Individual Blocking Methods

The optimal blocking method of a FPrec,Rec vs Time graph was earlier defined as

the point positioned in the top most left corner (Def 4.2). This is because it achieves the

best balance of maximising FPrec,Rec and minimising Time in comparison to all other

methods of the graph. In some cases one point may be clearly seen to achieve higher

FPrec,Rec values in a lower runtime than all other points (See Figure 2a). For clarity

we refer to such an optimal blocking method as a clear optimal blocking method. In our

experimental evaluations a number of clear optimal blocking methods where observed,

which provides a better picture about the optimal blocking methods available in the

literature. Blocking method B1 is the clear optimal blocking method in 3 of the 7 figures

in which it is an optimal method (Figures 7, 13 and 21). B2 is the clear optimal blocking

method in 6 of the 7 figures in which it is an optimal method (Figures 12, 13, 14, 18, 19

and 20. C1 is the clear optimal blocking method in 1 of the 5 figures in which it is an

optimal method (Figure 16). This suggests that B2 is more inclined than the other
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optimal blocking methods to be a clear optimal blocking method.

Blocking method C1 is indicated as the optimal blocking method for Restaurant

by our evaluation technique regardless of which linkage technique is considered. The

matching and non-matching record pair sets of Restaurant are the most highly sepa-

rated of the evaluated datasets with an average TF-IDF similarity of 0.873, and 0.017,

respectively. Furthermore, less than 0.0004% of the matching and non-matching record

pair sets overlap by TF-IDF similarity. High linkage precision can be expected under

these circumstances for all linkage techniques as classification is easy. In such cases a

blocking method indicated as best by blocking evaluation metrics is likely to remain

best post-linkage regardless of the choice of linkage technique. This suggestion is rein-

forced in Table 15a in which C1 is also indicated as the optimal method for Restaurant

by the blocking evaluation metrics PC and FRR,PC . Additionally, C1 is only 0.001

off the highest RR value achieved by any blocking method. We therefore observe that

according to our proposed evaluation technique C1 is indicated as the best choice of

blocking method for datasets in which the matches and non-matches are especially

highly separated.

Looking at Tables 9 to 14 the computational runtimes of blocking methods Ai, Bi

and Ci tend to increase as i=1→4 increases. This increase only tends to be marginal for

Ai and Bi in most datasets but is much more considerable for Ci. Despite this C1 and

C2 were among the best performing in a number of cases in Figures 4 to 21, with C1

often being the optimal blocking method. This suggests that Ci (where i is maximum

conjunction length) should be restricted to smaller values of i for large datasets of high

dimension. This is most evident for the largest dataset DBLP-Scholar in Figure 21,

where C2, C3 and C4 were omitted as their computational runtimes were considerably

slower than others but C1 was the optimal blocking method overall. In conclusion,

according to our proposed evaluation technique for relatively small and low dimension

datasets blocking methods B3 and B4 should be avoided. For relatively large and high

dimension datasets blocking methods Ai and Bi where i=1→2 as well as C1 seem to

be most appropriate.

For the larger datasets (Tables 11 to 14) we almost always see an initial decrease to

end-to-end runtime for all blocking methods as i increases, before end-to-end runtimes
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begin to increase again. This is because although increasing i results in longer blocking

runtimes, the linkage runtime typically reduces so dramatically that there is an overall

improvement to the end-to-end runtime. For example, in Table 14 A2 has a higher

blocking runtime, but lower end-to-end runtime, than A1 for DBLP-Scholar as it forms

∼1.2 Million fewer record pair comparisons. However, A3 and A4 are considerably

slower than both A1 and A2 and thus omitted from the results. For blocking method

Ai, the lowest end-to-end runtimes for the larger datasets are when i=2 or i=3 when

using either linkage technique. For blocking methods Bi and Ci the lowest end-to-

end runtimes are when i=2. This implies that although blocking method Ai may use

conjunctions of up to i=3 for larger datasets, Bi and Ci should be restricted to at most

i=2.

In summary, of the blocking methods evaluated using our proposed evaluation tech-

nique, analysis indicates that only B1, B2 or C1 are ever optimal (according to Def-

inition 4.2). Of these B2 is nearly always a clear optimal blocking method indicating

it as the strongest of the evaluated blocking methods. For datasets in which the sets of

matching and non-matching record pairs are well separated the blocking method C1

is indicated as most suitable. We can also conclude that for relatively small and low

dimension datasets the blocking methods B3 and B4 should be avoided. For relatively

large and high dimension datasets Ai and Bi where i=1→2 and C1 are considered as

the most appropriate.

6.2. Selecting an Optimal Blocking Method for a New Dataset

In this section we present the results obtained by using our proposed blocking

method selection technique based on the dominance graph described in Section 4.2.

In Table 16 the methods selected by the proposed approach (Algorithm 1) are com-

pared to the optimal blocking methods for each dataset using each linkage technique. It

can be observed that the proposed approach selects an optimal or near-optimal method

in every case. For the cases in which a non-optimal method is chosen, the FPrec,Rec

and overall time values are still relatively close to that of the optimal method. It is also

often the case when a non-optimal method is selected that although one of the values

may be inferior, the other is superior, somewhat balancing the difference. For example,
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when selecting a method for DBLP-Scholar and using Perfect linkage, B1 is selected

over the optimal method C1. However, although B1 has a lesser FPrec,Rec value than

C1, it is considerably faster.

Perfect SVM TF-IDF

Dataset Selected Optimal Selected Optimal Selected Optimal

Restaurant B1 0.960 2.6 C1 0.997 2.7 B2 0.904 3.0 C1 0.922 2.9 B2 0.926 2.8 C1 0.943 2.8

Cora B1 0.967 69.7 B2 0.968 71.0 B2 0.823 99.5 B1 0.824 97.1 B2 0.842 116.8 B1 0.842 115.3

Clean-Synth B1 0.999 7.9 C1 1.000 8.3 B2 0.487 9.1 B2 0.487 9.1 B2 0.489 11.2 B2 0.489 11.2

Dirty-Synth B1 1.000 11.2 B1 1.000 11.2 B2 1.000 13.2 B1/2 1.000 13.2 B2 1.000 19.7 B2 1.000 19.7

DBLP-ACM B1 1.000 23.6 B1 1.000 23.6 B2 0.964 25.6 B2 0.964 25.6 B2 0.956 28.2 B2 0.956 28.2

DBLP-Scholar B1 0.997 88.3 C1 0.999 109.2 B2 0.555 244.3 B1 0.553 134.8 B2 0.804 296.3 B1 0.804 185.8

Table 16: FPrec,Rec (Harmonic mean of Precision and Recall) and Time(seconds) values of the blocking

methods selected by our proposed selection technique versus those of the optimal methods found from Fig-

ures 4 to 21 for each dataset and using each linkage technique. Where Bi and Ci represent the blocking

scheme learning algorithms of [20, 27] respectively and i=1→2 are the maximum key conjunction lengths

used.

In Figures 22 to 24 we compare the FPrec,Rec values of the selected methods

against those of the optimal methods. As one can see, the selected methods are close to

the optimal methods by FPrec,Rec in every case. Even in the very worst case, Restau-

rant using perfect linkage, the FPrec,Rec values only differ by 0.037. Looking at Ta-

ble 16 we make a similar observation for the runtime values. In almost every case the

selected methods have a time value close to that of the optimal methods. On average

the selected methods are only ∼0.004% less proficient and ∼11.2 seconds slower than

the optimal methods. Experimental evaluations indicate that although this selection ap-

proach cannot guarantee selection of an optimal method, it is highly likely that either

an optimal or near optimal blocking method will be selected.
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Figure 22: Comparison of FPrec,Rec (Harmonic mean of Precision and Recall) values of selected and

optimal methods when using perfect linkage.
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Figure 23: Comparison of FPrec,Rec (Harmonic mean of Precision and Recall) values of selected and

optimal methods when using SVM (Support Vector Machine) linkage.
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Figure 24: Comparison of FPrec,Rec (Harmonic mean of Precision and Recall) values of selected and

optimal methods when using TF-IDF (Term Frequency-Inverse Document Frequency) linkage.

For all datasets, and considering all linkage techniques, the blocking methods Ai

(where i=1→4) are never selected using our proposed technique nor indicated as opti-

mal using our evaluation technique. Although this initially appears quite damning, by

looking at Figures 4 to 21 we see that although these blocking methods are never op-

timal they are also rarely ever among the worse performing. By contrast the blocking

methods Bi and Ci (where i=1→4) tend to achieve results in either extreme (i.e. among

the best performing for some datasets and among the worse performing in others). This

suggests that the blocking methods of Ai (where i=1→4) tend to be consistently ”safe”

choices in comparison to Bi and Ci (where i=1→4). This highlights the effectiveness

of the proposed selection technique being able to select an optimal or near-optimal

method in every case considering the extreme temperament of some blocking methods.

In summary, our proposed selection technique always selects an optimal or near-

optimal blocking method. In cases in which a near-optimal blocking method is selected

one of the values is often superior to that of the optimal method. Blocking methods Bi

and Ci (where i=1→4) tend to achieve either very good results or very poor results

for different cases. By contrast blocking method Ai (where i=1→4) tends towards the

centre of the cloud of points forming each FPrec,Rec vs Time graph, indicating it as a
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consistently safe choice.

7. Future Work and Conclusion

In this paper we present a complete comparison of different blocking methods.

The experimental evaluation demonstrates that evaluation of blocking methods is a

very challenging task. This is mainly due to the fact that different conclusions can be

reached depending on what evaluation metric we apply and which subsequent link-

age technique we use. We were able to present evidence to suggest that evaluation of

blocking methods needs to take into consideration the subsequent linkage phase. It was

shown that the optimal blocking method according to the currently used evaluation

metrics does not necessarily guarantee an optimal RL framework when combined with

different linkage methods. Evaluating blocking methods as part of RL frameworks with

respect to overall proficiency and running time allows for a fairer comparison between

approaches. We additionally observed when evaluating in this manner that the same

blocking method achieved best results for our most well separated dataset regardless of

which linkage technique was considered. In future work we would like to experiment

with datasets with varying degrees of ambiguity to see to what extent is this a factor and

if similar occurrences happen. Another observation when evaluating in this manner was

that the more computationally demanding TF-IDF linkage technique tended to provide

better post-linkage results (i.e. FPrec,Rec) than the less computationally demanding

SVM linkage technique in every dataset but one. Experimenting with a greater number

of linkage techniques of varying complexity would make for an interesting area of fu-

ture research. It would allow us to see how correlated the complexity and proficiency

of different linkage techniques are and whether characteristics of a dataset can indicate

a best linkage technique to use as part of a RL framework.

We also demonstrated the difficulty of selecting a good blocking method for previ-

ously unevaluated datasets using current blocking evaluation metrics. Multiple evalua-

tions of different blocking methods can be timely to execute, assumes labelled training

data to be available and does not take the subsequent linkage phase into considera-

tion. Many blocking methods that achieved excellent results for some datasets were
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shown to work poorly for others. Indicating an uncertainty in their use upon previously

unevaluated datasets. A blocking method selection approach was presented that over-

comes these issues by using a conglomerate of results from the proposed evaluation

technique on other datasets. This selection technique was shown to select an optimal

or near optimal blocking method in every case.

In the future, we want to extend these experiments to substantially larger and var-

ied datasets to verify whether the blocking method selection technique is further im-

proved. We additionally wish to expand upon evaluating blocking methods as part of

RL frameworks under time constraints, and use time constraints to automatically con-

trol the progress of the different phases of a RL framework. Time constraints could be

used to determine at which point the blocking scheme learning process should stop and

linkage should begin so that the entire RL process completes within a predefined time

limit and achieves the best proficiency possible given the available resources.
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