
Quality Metrics for Sustainability

The Operational Energy Use of Application Software

R. Spauwen

J.M. van der Werf

S. Brinkkemper

E. Jagroep

L. Blom

Technical Report UU-CS-2015-008

April 2015

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Utrecht University
Department of Information and Computer Science

Quality Metrics for Sustainability
The Operational Energy Use of Application Software

Technical Report

Ruvar Spauwen

Supervisors:
Jan Martijn van der Werf

Sjaak Brinkkemper
Erik Jagroep
Leen Blom

Utrecht, April 2015

Abstract

In recent years, Information Technology (IT) has grown into a sector that is both as vital and, or
possibly even more, resource consuming as Aviation. Combined with our ever-growing dependence
of IT, the resulting energy costs as well as the inevitable depletion of materials, such as fossil fuels
and rare earth materials, have driven the need for more sustainable solutions, both environment-
ally and economically. Consequently, the body of knowledge on IT Sustainability, or Green IT, is
steadily growing, which has mainly yielded solutions for making hardware less resource costly and
possibly more energy efficient. However, software can be seen as the true consumer of energy.

As the design of software greatly determines the specific utilization of hardware components,
during operation, software architects have the potential to influence the sustainability of software.
However, this potential is yet inaccessible due to the lack of architectural tactics that address
sustainability, let alone proper metrics to determine and validate the energy consumption of soft-
ware. Hence, this research attempts to develop metrics for the operational energy use of application
software and, subsequently, apply them to determine relations between software design decisions,
system workloads and impacts on the energy use of software products, independently of systems.

To achieve our primary objective, we measured the power consumption of different computer
systems during base, application and maximum workload intervals, while in the meantime we also
recorded the performance of the systems. The performance data was used afterwards to determine
whether a specific measurement was acceptably clean (e.g. minimal amount of noise). Then, after
collecting a sufficient amount of clean measurements, we applied a subtractive method to filter
out unrelated base power consumptions and determine the operational energy use of an application.

Two applications were used in this research to develop the metrics. First, we performed initial
experiments with a CPU-intensive stress test application, which has a relatively simple workload
and power usage profile. After this, we further evaluated the metrics by performing a case-study
with a document batch processing application, which has a more complex design and deployment.
To improve the reliability of the measurements, we remotely operated and monitored the test
systems and we performed multiple iterations, or runs, per specific measurement to minimize the
influence of noise. In addition, we considered different configurations, or versions, of the test ap-
plications to enable the analysis of architectural decisions, such as single vs. dual-core processing.

Based on our findings, we propose a set of metrics that can be used to determine more precisely
which portion of the system’s energy usage belongs to the execution of an application. Also, the
metrics show that, although the total amount of energy which different systems require to execute
an application may differ greatly, the operational energy use of the application can still be fairly
similar. Lastly, it shows that multi-core processing often requires more power yet less total energy.

Metrics for the Operational Energy Use of Application Software i

Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Objectives . 2
1.3 Research Questions . 3
1.4 Research Context . 4
1.5 Thesis Content . 6

2 Research Approach 7
2.1 Research Design . 7
2.2 Research Model . 8
2.3 Research Method . 9
2.4 Research Deliverables . 13
2.5 Research Questions linked to PDD Deliverables . 14

3 Towards Sustainable Software 15
3.1 Sustainability and IT . 15
3.2 Defining Green IT . 16
3.3 Realizing Green IT Principles . 17
3.4 Focusing on Green Software . 17
3.5 The Role of Software Architecture . 18

4 Current Practices 20
4.1 Literature on Software Sustainability . 20
4.2 Architects on Software Sustainability . 24
4.3 Synthesizing the Current Practices . 26

5 Building Metrics for Sustainability 29
5.1 Recap of the Research Context . 29
5.2 Measuring the Operational Energy Use . 30

6 Experimentation 35
6.1 Experimental Setup . 35
6.2 Experimentation Results . 40
6.3 Experimentation Analysis . 43
6.4 Additional considerations . 51

7 Validation 54
7.1 Validation Setup . 54
7.2 Validation Results . 56
7.3 Validation Analysis . 58

Metrics for the Operational Energy Use of Application Software ii

CONTENTS

8 Discussion 66
8.1 Findings & Research Contribution . 66
8.2 Research Limitations . 67

9 Conclusion 70
9.1 General Conclusion . 70
9.2 Thesis Results Linked to RQs . 70
9.3 Future Research . 71

Bibliography 76

List of Figures 78

List of Tables 79

Appendix A Data Collector Sets 80
A.1 Experimentation Phase . 80
A.2 Validation Phase . 82

Appendix B Scripts 83
B.1 PiBatch - Management System . 83
B.2 PiBatch - Application System . 85
B.3 Pressure - CPU Energy Use Profile . 86

Appendix C Structured Literature Review 87
C.1 Search Term String . 87
C.2 Remaining Articles . 87

Appendix D Figures & Tables 88
D.1 Workloads at Processes and CPUs during SA and SB 88
D.2 Process-Deliverable Diagram . 90

Metrics for the Operational Energy Use of Application Software iii

Chapter 1

Introduction

Sustainability has become an important topic in the ever-growing field of information technology
(IT), or the “digital economy”, due to its consumption of huge amounts of resources, which consists
of at least a tenth of the world’s electricity use according to [38]. The recent emergence of Green
IT has yielded many fruitful solutions in support of Sustainable Development (SD) in general
and, more specifically, in addressing the vast amounts of resources (e.g., energy and materials)
consumed by IT. In majority, the primary focus has been on achieving IT energy consumption
savings by means of more energy efficient hardware [31]. However, software can be seen as the
true consumer of energy, as it is software that often determines the use of the hardware, and thus
the required energy [55]. Consequently, to control the energy consumption of the hardware, the
software needs to become sustainable as well. Sustainable software is “software whose direct and
indirect negative impacts on economy, society, human being and the environment resulting from
development, deployment and usage of the software is minimal and/or has a positive effect on sus-
tainable development [42]. In other words, sustainability has become an important non-functional
requirement for software, and needs to be taken into account during the design of the software.

A software design depends highly on the mapping of requirements into its architecture, i.e.
the quality of the software is determined by the degree to which the architecture satisfies the
requirements [24]. According to [3], the term software architecture (SA) is defined as the discipline
of creating the “structures of the software, which comprises software elements, the externally visible
properties of those elements, and the relationships among them”. An important class of externally
visible properties are the non-functional requirements, which are often called quality attributes.
A quality attribute is “a measurable or testable property of a system that is used to indicate how
well the system satisfies the needs of its stakeholders” [3]. As sustainability becomes an important
aspect of the software architecture, it becomes a quality attribute of the software. Based on the
quality attributes software needs to satisfy, the architect makes design decisions, called tactics.
The effect of tactics (e.g. [47]) should be measurable. Thus, to test whether sustainability tactics
have an effect, one needs a set of metrics that allows for comparison between different architectures.

1.1 Problem Statement

As recent literature reviews on sustainability in software engineering and green IT show, hardly
any sustainability metrics touch the architectural aspects of software [5, 45]. As a consequence, ar-
chitects cannot beforehand assess whether their design meets the desired sustainability (business)
goals and requirements. Moreover, many of the results found tend to focus on the development
aspect of sustainability [10], and tend to neglect the deployment and usage of the software, as in
many software projects the main cost come from the development and maintenance [42]. Further-
more, there is yet no clear evidence as to whether the usage of software has a tangible impact
on the amount of energy consumed by the executing system, i.e. the operational energy use [10, 50].

Metrics for the Operational Energy Use of Application Software 1

CHAPTER 1. INTRODUCTION

We can distinct between different types of software: application software, system software (e.g.
the operating system, drivers, GUIs), and development software. These software types have dif-
ferent purposes and work on different layers. Although, for instance, the operating system is also
an topic of interest with regards to sustainability, this thesis focuses on the application software.
Application software is a set of one or more programs designed to carry out operations for a spe-
cific application. This type of software cannot run on itself and thus is dependent on the system
software. Within application software, we distinct between tailor-made software and product soft-
ware. Product software is “a packaged configuration of software components, or a software-based
service with auxiliary materials, which is released for and traded in a specific market” [66], i.e.,
it is deployed at many different sites. Therefore, improving the operational energy use of product
software has a high impact on its sustainability, not only for the organization that is developing
the software, but also for the client at which the software is deployed or hosted, and that uses it.

One way to come to an objective measure for sustainability is to measure the energy use of
the software itself; reducing the amount of energy the software consumes directly improves the
sustainability of the software. However, current metrics typically focus on the quality (cf. [4]) or
the method for measuring energy usages [2]. For instance, [33] proposes a subtractive method
for measuring the energy use of specific components in a single system. Moreover, [27] proposes
a generic metric to measure the energy-efficiency of software as well as a method to apply it in
a software engineering process. This metric, which seamlessly integrates into the GREENSOFT
Model (cf. [42, 28]), is used to compare different applications and tasks by looking at the “useful
work done”, a principal introduced by [59]. Furthermore, it uses so-called white box measure-
ments to be able to tell (more precisely) in which part of the software there is potential for energy
savings. However, their approach does not (yet) properly consider that modern computer systems
process multiple applications concurrently. Hence, it is not that straightforward to determine the
actual energy use solely related to a specific application, let alone independent of different systems.

In summary, product (application) software runs at different clients, i.e. hardware with differ-
ent energy consumption properties but also with different system workloads (e.g., due to client-
specific active processes). Furthermore, modern computers can execute multiple (application) pro-
cesses concurrently (and/or sequentially within the minimal granularity of the available measuring
instrumentation). Therefore, a metric is required that is both independent of the hardware
used and additional system workload to be able to cope with different environments as well
as limited instrumentations, but still allows for comparison on the level of the software architecture.

Based on the arguments above, the formal problem statement of this thesis project is as follows:

Software metrics play a key role in the measuring and, thus, realization of quality attributes.
However, there are no metrics for the operational energy use of application software.

1.2 Research Objectives

Driven by the goal of realizing a sustainability quality attribute, this research attempts to develop
metrics for the operational energy use of (product) application software, validating whether the en-
ergy required for executing an application can be determined independent of the executing system.

For this, the following objectives need to be met: construct practical and reliable methods for
(1) measuring the energy consumption of systems as well as the monitoring of their workloads,
(2) isolating the energy consumption solely related to the execution of the application from the
total energy consumption of the system, and (3) develop metrics, or quantitative measures, which
provide comparable insight into the energy consumption of applications between different systems.

Metrics for the Operational Energy Use of Application Software 2

CHAPTER 1. INTRODUCTION

1.3 Research Questions

Based on the problem statement and objectives, the main research question is defined as follows:

RQ. How can we determine the operational energy use of application software?

Several steps need to be performed before we can answer the main research question. Therefore,
the following sub-questions (SQs) have been formulated in support of performing these steps:

SQ. 0 What are the current practices, both theoretical and practical, with regards to software
architectural aspects for measuring and developing sustainable software?

In order to construct a solid knowledge base for this thesis, first a literature study as well as
a study into current practices at the research company is conducted. Subsequently, the results of
both studies will be combined and analyzed to determine a set of candidate architectural aspects,
metrics or guidelines, which can be implemented within the experimentation phase.

SQ. 1 How can we reliably measure the energy use of a computer system, execute an application
and concurrently monitor its workload, with minimal interference?

As stated below SQ. 0, our aim is to investigate the influence of one ore more architectural
aspects on the sustainability of an application (e.g. energy efficiency), by means of an experiment.
Yet, before we can do this, we need to be able to actually measure the energy use solely related to
the execution of an application. However, to achieve this, we first need to be able to: (1) reliably
measure the energy use of the executing system, (2) monitor the workload of the system so that we
can determine how much of the workload is related to the application, and (3) perform these things
without creating too much interference or noise during the measurements. Furthermore, we need
to find suitable test application(s) and systems which cooperate with the preceding statements.

SQ. 2 How can we isolate the energy use solely related to the execution of an application (e.g.,
perform a specific task) from the measured energy use of the underlying system(s)?

We plan to apply the subtractive method proposed by [33] to determine the energy use solely
related to the test application. This entails that we need to determine the total energy use of a
system during the execution of the test application, determine the average power use when the
system is idle, and assure that, during the execution of the application, the system is not occupied
by other significantly heavy processes (expect for the test application). Since most systems have
variable workload, which is difficult to control e.g. due to background process, we need to take
adequate measures to ensure the quality of the measurements and minimize noise.

SQ. 3 How can we use system specific properties to normalize the measured energy usages of
executions of a single application on different systems and make them comparable?

Given that there are many different types of computer systems and each system has a unique
(and varying) workload, it can very be difficult (or even impossible) to determine the expected
energy use of an application independent of the executing system. Nevertheless, we attempt to
investigate to what extend we can normalize the energy use values over different systems e.g. on
the basis of known system properties. If this proves to be feasible, we can work towards additional
metrics that enable the prediction of energy use values based on known system properties.

SQ. 4 How do the metrics behave in environments with other applications and/or systems?

Another important property of the metrics would be their external validity, e.g. whether the
metrics are applicable in a different environment than the experimentation’s. To test this, we plan
to perform additional measurements with a more complex application, which has been developed
by the research partner and which is deployed in a (more representative) client-server environment.

Metrics for the Operational Energy Use of Application Software 3

CHAPTER 1. INTRODUCTION

SQ. 5 To what extend can the resulting metrics be used to determine the influence of software
architectural aspects on the sustainability of software?

Although the main part of the thesis is focused on the actual method and metrics of measuring
of the operational energy use, we still aim to investigate the influence of an architectural aspect
on the sustainability of an application. Therefore, we design the experiments and validation in
such a way that we can include a candidate aspect, which follows from the current practices studies.

The presented research questions will be matched with the corresponding thesis findings within
the conclusion of this document (see Section 9.2), i.e. the final research implications of this thesis.

1.4 Research Context

This section describes the involved stakeholders, scope, and scientific relevance of this research.

1.4.1 Stakeholders

We can distinguish three main stakeholders that might have affected and/or can be affected by
the outcome of this thesis project:

Academics Both the scientific research fields of software architecture as well as Green IT (and
Software) have been receiving increasing attention. However, it appears that the develop-
ment of “greener” software by means of architectural design decisions is still underexposed.
Furthermore, the availability of proper metrics for measuring the operational energy use of
(application) software is still scarce, let alone that it can be done system independently.

Software companies The results of this research will support software companies, together with
their partners, in finding better solutions for their customers with regard to the sustainab-
ility of their software products. In addition, Centric (i.e. the research company) affects the
outcome of this research by providing access to their current practices. Furthermore, domain
experts (e.g. software architects working at Centric) have assisted us by means of particip-
ating in interviews and brainstorm sessions and providing support during the experiments.

Government & Society The higher purpose of this research is to support software companies
in more easily and effectively implementing sustainability related business goals, by means of
the software architecture. By doing so, these companies gain more possibilities for managing
and lowering the energy consumption of both their IT products and services. Subsequently,
these possibilities enable businesses to comply more easily with environmental standards and
regulations which are, or most likely will be, issued by their governments and/or societies.

1.4.2 Scope

As discussed previously, the quality (or satisfaction) of a software product and its requirements de-
pends heavily on the software architecture. Furthermore, the definition of “software architecture”
implies that the term can be used to denote three main concepts: (1) the high-level structures of
a software system, (2) the discipline of creating such high-level structures and (3) the documenta-
tion of these high-level structures. Subsequently, all of these concepts play important roles in the
process of designing a software architecture. Then, according to [22], the process of designing a
SA constitutes of four main activities, which are performed iteratively and at different stages of
the initial software development life-cycle. First, the architectural analysis serves to (1) define the
problems the architecture must solve and (2) to present them into a set of architecturally signi-
ficant requirements (ASR). Second, the architectural synthesis results in candidate architectural
solutions to the set of ASRs. Third, the architecture evaluation activity ensures that the architec-
tural decisions made are the right ones by measuring the candidate architectural solutions against
the ASRs. Finally, the fourth activity is the architecture evolution, which entails the process of

Metrics for the Operational Energy Use of Application Software 4

CHAPTER 1. INTRODUCTION

maintaining and adapting an existing SA to meet its requirements and environmental changes.

Initially, the scope of this research included two of the previously mentioned activities, namely:
architectural analysis and architecture evaluation. The first activity (e.g., “define the problems the
architecture must solve and present them as a set of ASRs”) related to our goal of investigating how
green software related business requirements could be translated into architectural aspects. Then,
the second activity (e.g., “being able to measure the candidate architectural solutions against the
ASRs”) relates to our goal of being able to measure and validate the resulting aspects, ultimately.
However, since the focus of the thesis has shifted primarily towards the operational energy use of
software, the architectural analysis activity has become less significant with respect to the scope.

Figure 1.1: Core activities in Software Architecture Design, according to [22]

Continuing with the “sustainability” focus of this thesis, we mentioned before that Green IT
includes both hardware, software and telecommunication. Moreover, Green IT can both be used
to realize sustainability and IT itself can be made more sustainable (e.g. with regards to develop-
ment, operations, maintenance). This thesis focuses on software and, more precisely, how itself can
be made less resource consuming during it operation, i.e. the operational energy use of software.

Combining these two research fields, we eventually want to have architectural tactics which can
be applied to realize sustainability requirements. However, we begin with metrics because we first
need to be able to measure and evaluate the sustainability, before we can influence it effectively.

1.4.3 Scientific relevance

The scientific trigger for this research relates mainly to the emerging gap between the relatively
mature research field of Software Architecture and the still evolving field of Green Software.

First, software architecture as a scientific research area has already been studied extensively
by individual researchers as well as institutions. Much of this research is focused on defining and
codifying the fundamental aspects of the discipline, such as architectural styles (e.g., patterns),
architecture description languages, architecture documentation and formal methods [16]. The ma-
turity of the research discipline has improved considerably in recent years with the introduction
of several international standards, such as ISO/IEC 42010 which has recently been revised to
ISO/IEC 42010:2011 [25]. This standard addresses the creation, analysis and sustainment of SAs
through architecture descriptions (e.g. a foundation for expressing, communicating, and reviewing
SAs). Also, it specifies the requirements that apply to architecture descriptions, frameworks and
ADLs. In addition, there is also the ISO quality standards for measuring architectures developed
by [32]. This research work in particular supports the current general insight that the architecture
of a software system is closely related to its quality attributes.

Then, considering Green IT, it is clear that achieving SD through energy efficient hardware has
much scientific relevance (e.g., the increasing number of research papers and conferences dedicated

Metrics for the Operational Energy Use of Application Software 5

CHAPTER 1. INTRODUCTION

to the topic). However, scientific research dedicated to achieving SD through solely the software is
still scarce and quantitative empirical research on a large scale is not yet available. Furthermore,
those few research endeavors that do focus on the development of Green Software, such as [34, 30],
have not sufficiently investigated the potential role of the SA. Then, [67] does consider the influ-
ence of the SA on the energy consumption of software e.g. by comparing different architecture
styles for concurrency. However, this work mainly focuses on comparing different SA implement-
ations and is therefore limited to a single system, without considering system independent metrics.

1.4.4 Social Relevance

The social trigger for this research relates to the increasing awareness regarding the “greenness” of
software products, which is caused by rising energy costs, new governmental policies, requirements
from customers, etc. The ultimate goal of this research is to contribute to solutions that support
businesses in reacting to these issues more effectively and earlier. Its results (e.g. sustainability
tactics and metrics) can support software companies with the realization of green business goals
and requirements. Eventually, these actions can lead to decreasing the operational energy use of
their products and, thus, lower energy costs. Other benefits can be: improving the quality of the
software product, a better corporate image and a higher satisfaction from customers and society.

1.5 Thesis Content

Now that the research problem, objectives, questions and context have been introduced, this
chapter concludes with an detailed overview of the remainder of this thesis document, i.e. the main
content in which the presented research questions will be systemically addressed and answered.

In Chapter 2, we present the applied research approach of this thesis, which includes its research
design, model and method, research deliverables, design principles, and the research evaluation.

Chapter 3 provides additional explanation on relevant theory, such as sustainability and ICT
in general, the origins of Green IT and Green Software, and the role of the software architecture.

Chapter 4 comprises our studies of current practices. This includes the design and results of a
structured literature review and brainstorm session, which was performed at the research company.
Further, we discuss how we used the study results to come to a candidate architectural aspect and
other considerations such as suitable test applications, systems, and reliable instrumentation.

In Chapter 5, we introduce the hypotheses that will be tested during the experimentation com-
bined with overviews of the important terms and representations of the different measurements.

Chapter 6 contains the experimentation, which is divided into (1) the experimental setup, (2)
results and (3) the analysis. Also, other experiment-related considerations are included at the end.

Then, in Chapter 7, the metrics resulting from Chapter 6 will be validated in an case-study,
which basically entails conducting additional measurements with a more complex applications.

Chapter 8 discusses the findings of this thesis, combined with its contributions and limitations.

Finally, Chapter 9 concludes this thesis by providing a general overview of the final research
results, how they match with the research questions, and our recommendation for future research.

The Appendices include, amongst others: the scripts for automating the experiment measure-
ments, used data collector sets, and the papers which (partially) resulted from this thesis project.

Metrics for the Operational Energy Use of Application Software 6

Chapter 2

Research Approach

This chapter discusses the design, model and method that form our research approach. Further, it
includes an overview of the main deliverables and how these are linked to the research questions.

2.1 Research Design

According to [21], most of the research in the Information System (IS) discipline has a relation
to at least one of the following paradigms: behavioral science and design science. The first
paradigm, behavioral science, addresses research through the development and justification of
theories that explain or predict human and organizational phenomena all through the phases of the
development and implementation of IT and IS. The latter paradigm, design science, seeks to extend
the boundaries of human and organizational capabilities through the creation and evaluation of
new and innovative IT artifacts [35]. In order to position and compare these paradigms, [21]
introduced a conceptual framework, which has been republished in [20]. To position the research
in this thesis, we constructed a custom version of this framework, which is depicted in Figure 2.1.

Relevance Rigor

People
- Software Architects
- Engineers/researchers
- Characteristics

Organiszations
- PS companies
- Company culture
- Existing processes

Technology
- Hardware/infrastruc.
- Application complex.
- Developm. capab.

Environement IS Research Knowledge Base

Foundations
- SA literature
- Brainstorming
- Energy consumption
instrumentation
- System Monitoring &
Workload tools

Methodologies
- Experimental and
Design research
- Quantitative data
analysis techniques
- Validation criteria

RefineAssess

Develop/Build
- Protocols
- Theories
- Methods
- Metrics

Justify/Evaluate
- Experimentation
- Case study

Business Needs
Applicable
Knowledge

Application in the

appropriate environment

Additions to the

knowledge base

Figure 2.1: Research Design: the IS Research Conceptual Framework by [21]

The overall design of the framework entails that the relevance of the IS research is determined
by business needs from the Environment and that applicable knowledge is required from the
Knowledge base to assure its rigor. In return, the developed and evaluated research results should
be applicable in the appropriate environment as well as provide additions to the knowledge base.

Metrics for the Operational Energy Use of Application Software 7

CHAPTER 2. RESEARCH APPROACH

The Environment consists of the following concepts: people, (business) organizations and their
existing or planned technology [52]. According to [53], the environment defines the problem space
in which the phenomena of interest resides. Furthermore, it includes the goals, tasks, problems and
opportunities that define business needs as they are perceived by people within the organization.
The organizations in which this research is conducted are primarily product software companies
and the people involved are software architects, engineers and researchers, which all have their
own set of characteristics. In addition, factors such as the company culture (e.g. sustainability-
mindedness) and existing processes influence the problem space. Finally, technology also plays
an important role in the environment of this research. It includes the arrangement of hardware
and infrastructure, but also the complexity of the existing applications and available development
capabilities. The research in this thesis is set up in such a way that it meets the business needs
that result from these concepts and, consequently, the relevance of the research can be assured.

The Knowledge Base “provides the raw materials from and through which IS research is ac-
complished” [21]. It is composed of the following two concepts: (1) foundations (e.g., theories,
frameworks, models, methods), and (2) methodologies (e.g., data analysis techniques, formalisms,
measures, validation criteria). The foundations can be used in the initial phase of the IS research,
i.e. the development of theories within behavioral science or the building of artifacts within design
science, respectively. Then, the methodologies can be used during the secondary phase, i.e. the
justification of the theory or the evaluation of the artifact (e.g., case study, experimentation).

According to [21], the goal of behavioral science research is “truth”, while the of goal of design
science is “utility”. Nevertheless, they argue that these goals are inseparable, since “truth informs
design and utility informs theory”. Hence, the research in this thesis is related to both paradigms.
However, the main objective of this research is to produce a new and innovative artifact with the
purpose of extending organizational and technological capabilities. For instance, a software metric
will be build and evaluated. Therefore, this research mostly leans on the design science paradigm.

2.2 Research Model

The purpose of building a research model is to gain a more structured overview of the research
approach. The model of this thesis, depicted in Figure 2.2, is based on the research model method
designed by [63] as well as guidelines provided by [21]. Consequently, the model complies with the
following rules: each component (i.e. rounded rectangle) represents a research object, the arrows
indicate interaction between research objects, and the main research objects can be distinguished
by their solid border. Furthermore, the model makes a distinction between the academic research
objects, which receive the most attention in this thesis, and the business research objects, which
are positioned at the far right side of the model. The academic research object are the following:

• A set of candidate metrics for sustainability is based on key findings from a comprehensive
study of available scientific literature combined with an investigation of the current practice
at Centric, the research company. The literature study includes the following topics: software
architecture, requirements & metrics, Green IT, and, more specifically, Green Software.

• An experimentation is conducted to investigate the hypotheses that are build upon the
study results. The initial experimentation includes multiple iterations of measurements, an
application with a relatively simple design, and multiple application systems for testing.

• Based on the results of the initial experimentation, a research paper is written. This paper
focuses on the metrics for the operational energy use of application software (See Appen. ??).

• A case-study is conducted during which the final set of metrics are tested in a different
environment (e.g. to test external validity). This includes performing additional measure-
ments with a more complex application. Consequently, we can validate whether the metrics

Metrics for the Operational Energy Use of Application Software 8

CHAPTER 2. RESEARCH APPROACH

work sufficiently with an application that has a more variable workload with respect to e.g.
a specific system component and/or the distribution over all its system components.

In addition, three business research objects have been determined. First, an assessment of the
current practices at the research company is provided (e.g., insight concerning to what extend,
currently, software architects deal with sustainability related requirements). Second, although the
metrics for the operational energy use of applications mostly lean towards the academic side of
this thesis, they can already be valuable to certain companies that want to apply the metrics and
guidelines to study their own products. Third, insight is provided into how software architectural
decisions may influence the energy usage of application software (e.g. sustainability as a QA).

Academic research objects Business
research
objectsLiterature & Company Study

Theory on
Software

Architecture

Insight into
influence of SA

decisions on
energy usage

Current
practice at

Centric

Theory on
requirements

& metrics

Theory on
Green IT &
Software

Candidate
metrics for
sustainable

software

Evaluation of
canidate metrics

Experiments
with simple
application

Simple app.
experiments
evaluation

Complex app.
experiments
evaluation

Sustainability
current practice

assesment

Metrics for
the operational
energy use of
applications

Experiments
with complex

application

Summary of key
study findings

Research
Paper

Figure 2.2: Research Model

2.3 Research Method

Figures 2.3 depicts the detailed research method of this thesis, which is in the form of a process-
deliverable diagram (PDD). The construction of a PDD is a meta-modeling technique that can be
used for modeling activities and artifacts of a certain process. Further, it includes the activities
that will be performed along with documents or research objects that will be delivered [62]. The
main layout of the PDD consist of two integrated diagrams. The left part, i.e. the meta-process
model, contains the various activities, or processes, related to the research as well as the sequence
of their execution. The right part of the PDD, i.e. meta-data model, consists of the resulting re-
search objects, or deliverables, and how they are related to each other. In addition, a PDD should
be supported by an Activity table and a Concept table. The Activity table contains descriptions
of the activities, sub-activities and their relations to the deliverables. The Concept table contains
descriptions for the concepts introduced at the right side of the PDD, i.e. the meta-data model.

The PDD of this thesis has been constructed according to the conventions determined by [62].
The main activities, or phases, are visualized by dark gray-colored frames and the sub-activities are
positioned within them. The main activities are to be executed in an sequential order by starting
at the top of the diagram. Then, with respect to the sub-activities, the order of execution can
be more varied. Certain sub-activities need to be performed in (semi-)concurrent order. This is
visualized by two adjacent tracks of sub-activities. Furthermore, certain sub-activities need to be
performed multiple number of times. This is visualized by an if-then-else-statement, in which the

Metrics for the Operational Energy Use of Application Software 9

CHAPTER 2. RESEARCH APPROACH

sub-activity will be repeated until the control-statement does not hold anymore. Finally, certain
complex sub-activities (e.g. containing other sub-activities) are highlighted with a black shadow.

As Figure 2.3 shows, the PDD includes five main activities. Its design is similar to the general
approach for design research developed by [58], which consists of the following five phases:

1. Awareness of the Problem

2. Suggestion

3. Development

4. Evaluation

5. Conclusion

The goal of the first phase, i.e. Awareness of the Problem, is to define the research trigger, or
problem, together with the appropriate research approach. Since these elements have already been
described in previous sections of this document, this phase has not been included in the PDD.
Then, the purpose of the second phase, i.e. Suggestion, is to find possible answers to the proposed
research questions. This phase correlates with the first activity in the PDD, i.e. the Literature &
Company Study. During the second phase, i.e. Development, we will synthesize both studies and
build our hypotheses (e.g. candidate metrics) upon them. These activities correlate partially with
the Development phase, i.e. attempt to develop and implement the research artifacts according to
the suggested solution, namely: the implementation of the candidate metrics. Consequently, the
remainder of the Experimentation activity combined with the Validation activity correlate with
the Evaluation phase, i.e. evaluate the resulting artifacts to confirm whether the solution solves
the problem (e.g. with/without a new set of problems). Finally, the PDD’s last main activity, i.e.
Conclusion, correlates with the Conclusion phase. Each main activity is explained in more detail
below. The related Activity and Concept tables have been included as appendices in Section D.2.

Literature & Company Study

This main activity contains two separate tracks, which are processed concurrently. The left track,
i.e. the literature study, contains the sub-activities related to conducting a structured literature
review. The right track, i.e. the company study, contains the sub-activities related to conducting
a brainstorm session with domain experts. By conducting a literature review and interviews with
domain experts, researchers are better able to identify key issues that are causing the specified
problem. Furthermore, these activities enable the extraction of valuable knowledge (e.g., solutions
from other areas, theories, ideas from stakeholders) which can be helpful for solving the problem.

Development

The Development activity consists of a single complex sub-activity, i.e. Synthesize studies &
build candidate metrics. This sub-activity consists of multiple other sub-activities, which are
explained in more detail in Section 4.3 and Chapter 5. The main deliverables of this activity are
(1) to improve the knowledge base by synthesizing the preceding studies and (2) to build a set of
hypotheses (e.g. the candidate metrics) that will be tested during the Experimentation activity.

Experimentation

This main activity contains the sub-activities for designing and conducting an experiment, which
is an orderly procedure carried out with the goal of verifying, refuting, or establishing the valid-
ity of the hypotheses. For instance, when the candidate metrics have been constructed and the
orientation prior to the experimentation is completed, the designed experiment should provide a
controlled environment in which the metrics can be implemented, measured, validated and, if pos-
sible, improved. This activity contains multiple control-statements, which enables us to visualize

Metrics for the Operational Energy Use of Application Software 10

CHAPTER 2. RESEARCH APPROACH

the presence of loops in the model. Subsequently, these loops are used to visualize the presence
of multiple measurement configurations during the experiment as well as checks with regards to
whether a measurement was successfully executed. Furthermore, the main activity contains two
complex activities, which consist of multiple sub-activities. Although other sub-activities also
consist multiple other sub-activities, these two activities are modeled as “complex” to emphasize
their magnitude (e.g. in required time and complexity) in comparison to the other activities.

During the first complex activity, i.e. Develop experimental setup & protocol(s), we will use the
experience gathered during the preceding orientation to come to a final experimental setup as well
as the experiment protocols, which will be followed during the experiments. The experimental
setup consist of, amongst others, the instrumentation (e.g. for measuring energy consumptions),
the computers systems, and the test application. We use multiple systems to gather measure-
ment data on different types of systems, which enables us to determine the quality of the metrics
and to compare results. Furthermore, we use a separate system, i.e. the Management System,
for remotely monitoring and operating the system on which the application is executed, i.e. the
Application System. In addition, different configurations, or versions, of the test application will
be included in the experiment to enrich our data collection and, eventually, to be able to compare
different design decisions. Due to the exploratory nature of this research, we will re-evaluate both
the experimental setup and protocols and improve them until both of them are satisfactory.

Measurement data will be gathered by performing the experiment protocol with different com-
binations of a system and an application version, i.e. an AppSys-configuration. Each time that
we perform a measurement with a certain AppSys-configuration, we will evaluate the results and
determine whether the measurement has completed successfully. If this is not the case, the meas-
urement will be performed again, with improvements if necessary and possible. Otherwise, we will
continue with the next uncompleted AppSys-configuration. When all the measurement data has
been collected, the second complex activity follows: Process measurement data & analyze results.
This is a complex activity, because a lot of measurement data will be produced and to process it
all into analyzable results might take considerable amount of time. When the data processing and
analysis is finished, a research paper will be written including the up until then achieved results.

Validation

In addition to the evaluations performed during the Experimentation activity, an additional eval-
uation is planned in the form of a case-study. This case-study takes place during the Validation
activity, which consists of two complex sub-activities, i.e. Perform measurements with DOCGEN
and Process measurement data & analyze results. The main differences between the measurements
is that we use a single Application System and more complex test application, i.e. DOCGEN ,
during the latter main activity. The application will be provided by the research company. It has
a client/server architecture and uses a remote database server. However, the main operations are
processed on a single test server and therefore we focus on the energy use of this system. Then, the
Process measurement data & analyze results activity is similar to the activity during the preceding
phase: the measurements will produce a large amount of data which needs to be processed. In ad-
dition, we can evaluate to what extend the previously created methods and tooling for processing
and analyzing the measurement data are applicable with the more complex application.

Conclusion

During the last main activity we will finalize the research results, which consist of the: the final
metric(s), experimental setup and protocols, the experimentations and validation results, and the
conclusions. Moreover, the final sub-activities include the reflection and discussion on the research
results, identification of possibilities for future research and finalization of the thesis document.

Metrics for the Operational Energy Use of Application Software 11

CHAPTER 2. RESEARCH APPROACH

Literature & Company Study

Prepare literature study

Create brainstorm protocol

Conduct brainstorm session

Collect session results

Summarize literature collection

Process candidate literature

Identify domain expert(s)

Experimentation

Development

Perform measurement with configuration

[Negative evalution result]

[else]

[Measurement incomplete]

Validation

Synthesize studies & build candidate metrics

Conclusion

Reflect on research results

Discuss research results

Identify possibilities for future research

Write thesis & present final results

LITERATURE STUDY

PROTOCOL

obtained using

BRAINSTORM

PROTOCOL

DOMAIN EXPERT

BRAINSTORM

RECORDING

BRAINSTORM

RESULT

1

1..*

1..*

Search additional literature

KNOWLEDGE BASE

1

1

based on

1

APPLICATION

VERSION

obtained by performing

VALIDATION

RESULTS

1

RESEARCH

RESULT

THESIS DOCUMENT

1
RESEARCH REFLECTION

RESEARCH DISCUSSION

FUTURE RESEARCH
1

1

1
based on

LITERATURE

SUMMARY

LITERATURE

1

EXPERIMENT

PROTOCOL

1..*

based on

1

1

1

Summarize brainstorm BRAINSTORM

SUMMARY

LITERATURE

COLLECTION

1
based on

1

1
based on

1..*

1

1..*

1..*

1

1..*

Search literature

Develop experimental setup & protocol(s)

Select & prepare an AppSys-configuration

[Configuration(s) remaining]

[else]

[else]

EXPERIMENTAL

SETUP

Process measurement data & analyze results

Write (& submit) paper on experiment results

Perform measurements with DOCGEN

Process measurement data & analyze results

SYSTEM

1..*

1..*

MEASUREMENT

INSTRUMENTATION

1..*

APP/SYS

CONFIGURATION

1

1

1..*

1..*

performed with

1..*

related to

MEASUREMENT

DATA created by

1 1..*

1

1..*
related to

1..*

1

EXPERIMENTATION

RESULTS

MEASUREMENTS

COLLECTION
1

1
based on

RESEARCH

PAPER

based on
1

1

1

1

VALIDATION

PROTOCOL

requires

1..*

1

1..*

VALIDATION

DATA COLLEC. 1based on

1..*

1

1

1

1..*

1..*1..*

based on

1

METRIC

Figure 2.3: Process-Deliverable Diagram

Metrics for the Operational Energy Use of Application Software 12

CHAPTER 2. RESEARCH APPROACH

2.4 Research Deliverables

Within this section, we present an overview and the descriptions of the main research deliverables:

Systematic literature review

A systematic literature review on the topic of software architectural metrics and aspects for sus-
tainable software form the theoretical foundation of this research. However, as Section 4.1 will
show, the applicability of the review results is limited due to the relative immaturity of the specific
topic. Nevertheless, the results are used as guidance during both the company study (e.g. the
method for developing a new quality attribute by [3]) and the construction of candidate metrics.

Set of candidate sustainability aspects

The brainstorm session with domain experts combined with the literature study results provide the
necessary input to design a set of candidate sustainability (architectural) aspects. These aspects
are analyzed to see which of them can be implemented in the experimentation phase. Only a
subset of these aspects will be suitable (e.g. realistic and/or valuable) for implementation within
in this thesis. Nevertheless, the complete set of candidate aspects, or a subset, can be a valuable
foundation for future research.

Advice for experimental setups & experiment protocols

The preparation for and conducting of the experiments provide additional insights into the meas-
uring of the energy use of both computer systems and application software. Furthermore, to
support future research, the experimental setups and experiment protocols are described in great
detail (including the many pitfalls someone most likely encounters when doing similar research).

Empirical data on the energy use and performance of systems and application software

Since there is only few research on the energy consumption of software (and even less is reliably
measured or documented sufficiently), the empirical data created in this thesis will automatically
be an important deliverable. Furthermore, through our extensive datasets, which is gathered with
reliable instrumentation, we aim to provide sufficient insight into the strengths and weaknesses of
our efforts (e.g. ensure their reliability), and to provide additional guidance for future research.

Metrics for the operational energy use of application software

The most important deliverable of this thesis will be the development and evaluation of a set of
software metrics for the operational energy use of application software. In Section 5.2.2, we will
introduce our hypotheses regarding this set of metrics. Then, during the Experimentation and
Validation chapters, they will be investigated and evaluated in practice

Case-study & architectural aspect results

The case-study during the Validation will be of value to the research company, since it provides
additional insight into the profile of their application. Furthermore, when future research is desired
(with/without the case-study application), they have a proper foundation to build further on. In
addition, the included architectural aspect results will provide an initial insight into the influence
of certain SA design decisions on the energy consumption of the considered applications.

Research Paper & thesis document

The textual deliverables include the main documents resulting from this thesis, i.e. a research
paper and thesis document. The paper will be submitted to a conference so that (if accepted) the
research conducted during this thesis (e.g. ideas, methods and results) will be shared with others.

Metrics for the Operational Energy Use of Application Software 13

CHAPTER 2. RESEARCH APPROACH

2.5 Research Questions linked to PDD Deliverables

Table 2.1 links the research questions introduced in Section 1.3 to the corresponding deliverables
within the research method. This table shows how each deliverable will contribute to the research.

Table 2.1: Research Questions linked to Activities

Research Question Description Contributing deliverables

SQ0: What are the current prac-
tices, both theoretical and prac-
tical, with regards to software ar-
chitectural aspects (e.g. develop-
ment and measuring) of sustain-
able software?

The specific current prac-
tices are determined by
synthesizing main findings
of a literature study and
a brainstorm session with
domain experts.

• LITERATURE SUMMARY

• BRAINSTORM SUMMARY

• KNOWLEDGE BASE

SQ1: How can we reliably meas-
ure the energy use of a com-
puter system, execute an applica-
tion and concurrently monitor its
workload, with minimal interfer-
ence?

This question will be ad-
dressed by means of the
experimental setup and
the experiment protocols,
which are build upon the
knowledge base.

• KNOWLEDGE BASE

• EXPERIMENTAL SETUP

• EXPERIMENT PROTOCOL

SQ2: How can we isolate the en-
ergy use solely related to the ex-
ecution of an application (e.g.,
perform a specific task) from the
measured energy use of the un-
derlying system(s)?

By applying the right in-
strumentation, we aim to
collect sufficient and reli-
able data, which enables
more detailed analysis.

• MEASUREMENT INSTRU-
MENTATION

• MEASUREMENT DATA

SQ3: How can we use system
specific properties to normalize
the measured energy usages of
executions of a single application
on different systems and make
them comparable?

We aim to use the in-
strumentation and data to
determine which system
specific properties can be
used to overcome differ-
ence between the systems

• MEASUREMENT INSTRU-
MENTATION

• MEASUREMENT DATA
COLLECTION

SQ4: How do the metrics behave
in environments with other ap-
plications and/or systems?

To further determine the
external validity of the
proposed metrics, we con-
duct additional measure-
ments within a second-
ary experimental setup in
which e.g. a more complex
application is applied.

• EXPERIMENTAL SETUP

• MEASUREMENT INSTRU-
MENTATION

• VALIDATION DATA COL-
LECTION

SQ5: To what extend can the
resulting metrics be used to de-
termine the influence of software
architectural aspects on the sus-
tainability of software?

During the experimenta-
tion as well as the valid-
ation, we aim to include
investigating the influence
of an architectural aspects

• EXPERIMENTATION RES-
ULTS

• VALIDATION RESULTS

Metrics for the Operational Energy Use of Application Software 14

Chapter 3

Towards Sustainable Software

This chapter elaborates on the concepts of sustainability and IT, Green IT, and, especially, Green
Software. Furthermore, it explains the concept of Software Architecture and why this concept, or
process, is expected to play a key role in the realization of more sustainable software. When the
reader is already familiar with one of these concepts, the corresponding section(s) can be skipped.

3.1 Sustainability and IT

Environmental sustainability has become an important topic in the ever-growing field of informa-
tion (and communications) technology. A reason for this is that IT already consumes vast amounts
of resources, such as energy, raw materials, and capital. For instance, it is estimated that the “di-
gital economy” (i.e., the economy that is based on digital technologies) already accounts for at
least a tenth of the world’s electric energy consumption and more than 2 percent of global carbon
emissions [38, 39]. Moreover, many begin to understand the importance of making IT more sus-
tainable due to a limited amount (and thus a depleting availability) of natural resources, such as
fossil fuels but also, for instance, computer component materials. This threat may lead to rising
IT costs while in the meantime, we have become undeniably dependent of IT. Outside (but also
partially inside) the field of IT, it is believed that sustainability can be achieved by balancing eco-
nomic, environmental and social factors in equal harmony. Figure 3.1 illustrates this relationship
by means of a Venn diagram in which the social, economic, and environmental factors overlap so
as to produce a system that is sustainable, i.e. that it is socially bearable, economically equitable,
and environmentally viable. Hence, in theory, true sustainability can be achieved by balancing all
three factors. However, it is more often the case that the social and/or environmental factors are
underexposed in comparison to the economic factor and, thus, no true sustainability is achieved [1].

 Environment Environment EconomicEconomic

SocialSocial

Bearable Equitable

Viable

Sustainable

Figure 3.1: Venn diagram of Sustainability factors

Metrics for the Operational Energy Use of Application Software 15

CHAPTER 3. TOWARDS SUSTAINABLE SOFTWARE

In essence, Sustainability can be seen as an abstract destination while Sustainable Development
(SD) is the pathway leading towards it. Although it still remains a vague concept for many, the
most often-quoted definition for SD was already defined in 1987 by the Brudtland Commission:
“development that meets the needs of the present without compromising the ability of future
generations to meet their own needs” [8]. This implies that we need to look after our planet,
our resources and our people to ensure that we can live in a sustainable manner and that we can
hand down our planet to our children, and their children, to live in true sustainability. Besides
sustainable development, businesses often use a Corporate Social Responsibility (CSR) business
model to address their sense of responsibility towards the community and environment [40]. The
term CSR became popular in the 1960s and one of its purposes is to exhort businesses to adopt non-
financial measures of success, such as the Triple Bottom Line, i.e. an accounting framework which
consists of 3 (already familiar) parts: social, environmental and economic [12]. These parts are
also known as the “3 P’s” (i.e., people, planet and profit), or the “three pillars of Sustainability”.

3.2 Defining Green IT

Sustainability (as well as SD) with respect to IT consists of multiple aspects. On the one hand, we
have the field of IT itself as the consumer of resources. But, on the other hand, IT can also be seen
as an enabler of sustainability in many different industries, such as education, health care, and
agriculture. These industries have both economical and environmental benefits from the use of IT
and, in fact, many of them have become dependent of it. In other words, the continuous growth
of the IT sector has impacted the environment negatively (in terms of resources consumption and
waste), but IT also enables and supports many activities in general as well as environmental sus-
tainability related ones. Due to this significance, sustainability in the field of IT has become an
important (and popular) concept and, consequently, multiple terms have emerged over the years,
including among others Green IT, Green ICT, Green Computing, and I(C)T Sustainability. The
most common of these terms, Green IT, has been defined as “the study and practice of designing,
manufacturing, using and disposing of computer hardware, software and communications systems
efficiently and effectively with no or minimal impact on the environment” [41].

During the last decade, there has been a growing number of organizations that have adapted
to the principles of Green IT as they are being triggered by the potential of lowering energy costs,
decreasing carbon footprints, and improving corporate images. In addition, organizations are also
being encouraged (and sometimes forced) to adapt to Green IT principles by means of govern-
mental standards and regulations with respect to Sustainability, such as subsidization, carbon
footprint taxes, and increasing waste disposal costs. Back in 2007, it was estimated by research
firm Gartner that by 2009 “more than one-third of IT organizations” would have “one or more
environmental criteria in their top-6 buying criteria for IT-related goods and services”, and that
by 2010 “50 percent of IT organizations” would have declared “an environmental imperative” [39].
These statements were re-affirmed in 2011, when Gartner estimated that “improving sustainability
would become a top-5 priority for 60 percent of major Western European and North American
CEOs by 2015” [46]. Moreover, in 2013, Gartner reported that most of the efforts are primarily
focused on energy and resource efficiency, compliance, and carbon reporting, with an additional
focus on overall sustainable performance measurement and sustainable product management.

Although the numbers presented above are just estimations, they underline that environmental
sustainability has become a major objective for an increasing number of organizations. Further-
more, it appears that (1) Green IT has begun to play an important role for achieving this objective
and (2) it is applicable for organization both inside and outside the IT industry. Nevertheless,
in the following subsection we limit our focus to IT organizations, such as computer hardware
manufactures and software companies, and explain how Green IT can be realized, among others.

Metrics for the Operational Energy Use of Application Software 16

CHAPTER 3. TOWARDS SUSTAINABLE SOFTWARE

3.3 Realizing Green IT Principles

According to [41], a holistic approach needs to be adopted in order to address the environmental
impacts of IT, comprehensively and effectively. Moreover, [41] states that such and approach
should be along the following 4 complementary paths: green design, green manufacturing, green
use, and green disposal. The combined goal of these paths, or fronts, is to achieve total environ-
mental sustainability from the IT side and make IT greener throughout its entire life cycle. Due
to the broadness of IT, many different approaches have emerged already for, or “in support of”,
the realization of Green IT principles. Examples of such approaches are, amongst others: terminal
servers combined with low power thin-clients, (better) recycling of computing equipment, and the
(fruitful) process of making large data centers more energy efficient. Especially the latter gained
a lot of attention due to the continuing growth of services provided through the WWW together
with the increasing demand for more and better data centers. This attention resulted in several
broad and effective measures for “greening” data centers, such as innovative Eco-friendly designs,
alternative methods for conserving energy (e.g., recycling heat), and virtualization of servers [41].

Further, most approaches concerning the realization of Green IT principles prefer to follow the
green use path, and, moreover, most of them have been directed on hardware-related aspects [7].
In addition, [41] states that “a key green objective in using computer systems and operating data
centers is to reduce their energy consumption, thereby minimizing the greenhouse gas emissions”
and we “can significantly reduce energy consumption by making small changes to the ways we use
computers”. For instance, we can enable (intelligent) power management features, more often turn
off a system when it is not in use, and/or use more energy-efficient systems. However, the impact
and practicality of these approaches can be limited and, moreover, sustainable features (e.g., built
into hardware) might be eliminated by inefficiently designed and/or programmed software [54].

3.4 Focusing on Green Software

The previous section argues that, in contrast to the increased interest for the use of “greener”
hardware, there are still hardly any (practical) approaches that aim to achieve SD solely through
the software (e.g., by incorporating it in its design). According to [42], this is partially caused by a
lack of models, descriptions, and realizations in the specific area. However, some positive changes
are noticeable as recently different research works have been devoted to methods for measuring
the energy consumption as well as the efficiency of software (e.g. [51, 67]) and models for making
the software engineering process more sustainable (e.g. [34, 42]). For instance, Figure 3.2 shows a
recent version of the GREENSOFT Model, which originates from [42]. This model can be used as
a conceptual reference model, which helps to organize and classify research results, actions, frame-
work, process models, etc. Furthermore, it includes a “cradle-to-grave product life cycle model
for software products, sustainability metrics and criteria for software, software engineering exten-
sions for sustainably sound software design and development, as well as appropriate guidance” [42].

In addition, [42] also introduced a definition for the concept of “Green Software”, i.e. “soft-
ware of which the direct and indirect negative impacts on economy, society, human being, and
the environment resulting from development, deployment, and usage of the software is minimal”.
Following this definition, [57] states that Green Software is required to fulfill the following three
abstract “green” factors: (1) how resource efficient is it to develop, maintain, and discontinue the
software, (2) how resource efficient is the software during its execution, and (3) to what extend
does it support sustainable development in general. Examples of resources required during the
development and execution of software are, amongst others, raw material, human resources, or
energy consumption. The latter resource is an important factor during the usage phase of software,
since current systems often need to run over long periods of time, process large amounts of data,
and/or have many users that execute the software. Subsequently, these aspects lead to more in-
tensive and longer use of computer hardware. This, in turn, increases the direct operational costs

Metrics for the Operational Energy Use of Application Software 17

CHAPTER 3. TOWARDS SUSTAINABLE SOFTWARE

Figure 3.2: The GREENSOFT model by [42]

of the system and, also, more energy is required for cooling the hardware since more heat is being
produced. Therefore, we can argue that in particular cases even small improvements with respect
to the energy efficiency of software during its execution can lead to a significant decrease of the
energy consumption of its related system. However, according to [29], making existing software
more energy efficient or designing new green and sustainable software can be complex tasks.

Requirement
Analysis

System
Design

Implementation

Testing

Deployment

Maintenance

Figure 3.3: Waterfall Model of the SDLC based on [48]

As Figure 3.3 illustrates, a Software Development Life Cycle (SDLC) consist of multiple phases,
i.e. requirements gathering and analysis, system design, implementation, testing, deployment, and
maintenance. Consequently, when a novel business goal is introduced (e.g. sustainability), it needs
to be taken into account during (most of) the SLDC in order to realize it properly. This includes,
amongst others, the determination of additional requirements, how these requirements might in-
fluence other (existing) requirements (e.g. trade-offs), how the requirements can be implemented
in the software design, and how the realization of these requirements eventually can be validated.
The next section will continue by explaining which types of software requirements exist and why we
should focus on the system design phase for the realization of sustainability related requirements.

3.5 The Role of Software Architecture

In general, requirements for software systems can be divided into two different types: functional
requirements, which define what a system is supposed to do, and non-functional requirements
(NFR), which specify criteria that judge how well a system performs its intended functions. In
addition, the NFR type can also be divided into (at least) two sub-types: constraints (e.g., design
decisions with zero degrees of freedom) and quality Attributes (QA), which are measurable or
testable properties of a system that are used to indicate how well the system satisfies the needs

Metrics for the Operational Energy Use of Application Software 18

CHAPTER 3. TOWARDS SUSTAINABLE SOFTWARE

of its stakeholders [3]. As we determined previously, sustainability has become an important non-
functional requirement for software and, therefore, it needs to be taken into account during the
design of the software, i.e. the system design phase in Figure 3.3. The reason for this is that,
according to [3], the satisfaction of a software system’s “qualitative” requirements heavily depends
on the design and quality of its software architecture (SA) and, in return, the quality of the soft-
ware design depends highly on the mapping of requirements into its architecture, i.e. the quality
of the software is determined by the degree to which the architecture satisfies the requirements [24].

The preceding paragraph argues that the non-functional requirements and SA (e.g. its quality
and design) are strongly related. There are many definitions for the concept of SA, but one of the
better known definitions entails the set of (high-level) structures needed to reason about a software
system, which comprise the software elements, the externally visible properties of those elements,
and the relationships among them [3]. One of the main purposes of designing a SA is to gain insight
in the qualities of a system (e.g. to what extend requirements are fulfilled) at the earliest possible
stage. Therefore, an important role of the software architect is to balance between different QAs
of a system so that they are best aligned and enable software with maximum quality. In support
of this role, different models as well as standards related to QAs have been introduced, such as
the ISO quality standards for measuring architectures by [32] or the Common Quality Attributes
by [37]. The latter is depicted in Figure 3.4 and includes QAs on functionality, reliability, usability,
efficiency, maintainability and portability. In addition, there are other research efforts which aim
to support the implementation of these standards, such as: the classification and comparison of SA
evaluation methods (e.g. [64]) and also the process of software architectures analysis (e.g. [11, 56]).

Figure 3.4: Quality model for internal and external quality by [37]

Currently, there is not yet a standardized QA for sustainability, as we can see in the model
depicted in Figure 3.4. However, in the case that someone wants to develop a new QA (e.g. for
sustainability), [3] includes the following procedure that can be applied. The first thing to do
is interview the stakeholder whose concerns have led to the need for the QA. By working with
them, either individually or as a group, a set of attribute characterizations can be build. Then,
based on the resulting set, scenarios can be developed that characterize what is meant by the
QA. According to [3], a QA scenario consists of the following parts: a stimulus (e.g. initiate x
transactions), stimulus source (e.g. users), response (e.g. process), response measure (e.g. within
y seconds), environment (e.g. normal operation), and an artifact (e.g. the system). After a set of
guiding QA scenarios is constructed, a set of design approaches needs to be assembled for dealing
with the scenarios. In support of this assembly, an architect can often make use of a collection of
primitive design techniques i.e. tactics, which focus on achieving a specific QA. Thus, by effectively
applying the right (set of) architectural tactic(s), a specific QA requirement is realized more easily.

Metrics for the Operational Energy Use of Application Software 19

Chapter 4

Current Practices

This chapter comprises the current practices with respect to software sustainability. The current
practices are determined by conducting a literature and a company study, i.e.: a systematic
literature review and a brainstorm session with domain experts, respectively. Consequently, this
chapter contains a separate section for each study, including descriptions of the design, results,
and analysis. The initial aim of both studies is to combine the concepts and theories introduced in
Chapter 3 by focusing on the potential role of software architecture in realizing greener software.

4.1 Literature on Software Sustainability

A systematic literature review (SLR) was conducted to identify, evaluate, and synthesize the
existing body of completed and recorded work produced by researchers, scholars, and practitioners
[43]. According to [19], conducting a SLR has multiple purposes in a graduate thesis: (1) it
synthesizes the understanding a student has on their particular subject matter, (2) it stands as a
testament to the student’s rigorous research dedication, (3) it justifies future research (including
the thesis itself), and (4) it welcomes the student into scholarly tradition and etiquette. To ensure
that we applied a “systematic, explicit, comprehensive, and reproducible method”, our approach
follows the eight-step guide of [43] for conducting a SLR of information science research.

4.1.1 Review purpose

The primary purpose of the SLR is to create a substantial theoretical foundation for the remainder
of this thesis. In this thesis we attempt to bridge the gap between two research fields, i.e., Software
Architecture and Green Software. Of these two research fields, the latter was found to be in an
emerging state and the former in a much more mature state. Initially, the SLR was targeted on
research that combines both these research fields, as showed in the following subsections. However,
it turned out that the combination of these two research fields is still rare. Therefore, the SLR was
extended by identifying available & significant research with respect to Green Software in general.

4.1.2 Systematic Literature Review Approach

In accordance with the guide proposed by [43], the approach of this SLR consists of 8 consecutive
steps that are divided into four categories: Planning, Selection, Extraction, and Execution. Fig-
ure 4.1 displays a graphical representation of the relations between these steps and categories.

As the previous subsection already comprises the first step, i.e. SLR Purpose, and the second
step, i.e. Protocol and Training, can be skipped since the SLR is executed by one reviewer (cf. [43]),
further explanation of the Planning category can be omitted. Consequently, we can continue with
the activities of the Selection category: searching for the literature and screening for inclusion.

Metrics for the Operational Energy Use of Application Software 20

CHAPTER 4. CURRENT PRACTICES

Planning

SLR Purpose

Protocol

Selection

Searching

Exclusion

Extraction

Writing

Inclusion

Synthesis

Extraction

Execution

Figure 4.1: Structured Literature Review Approach

4.1.3 Searching for the Literature

Multiple digital libraries were considered as sources for the SLR: ACM Digital Library, IEEE
Explore, Google Scholar, Microsoft Academic Search, SpringerLink, and ScienceDirect. We con-
sidered these libraries because they offer plenty of literature in the field of Information and Com-
puting Sciences and, also, the library of Utrecht University offers (proxy) access to most of their
material. However, when we began using their advanced search engines, we discovered that most of
these libraries did not provide sufficient support (given our combination of search terms, see next
subsection). For instance, Microsoft Academic Search has no clear syntax; IEEE Explore has a
maximum number of search terms and (on second thought) not many accessible documents; ACM
also has limited search options and SpringerLink has (or had) a broken search engine. Therefore,
we concluded that ScienceDirect was the only digital library good enough for our SLR (see [9]).

4.1.4 Screening for Inclusion

Digital libraries, such as ScienceDirect, offer large collections of studies. Unfortunately, the vast
majority of these studies are not relevant for a particular SLR. Thus, the next step in conducting
an SLR is the practical screen, which entails the decision process of which studies should be con-
sidered for the review. More precisely, the purpose of the practical screen is to exclude unrelated
studies based on (arbitrarily) chosen criteria so that the literature review remains practically man-
ageable [14]. Furthermore, being explicit about these criteria ensures that the resulting literature
is reproducible. Criteria that can be used to exclude studies are, among others, subject, content
(type), keywords, publication language, authors, settings (e.g. domains), and date of publication.

Given that there are not yet many books on Green Software, we decided to limit the SLR to
include only journals as content type. Other criteria were: no restrictions on the date of publica-
tion and authors, English as the publication language, and both the science domains of Computer
Science and Business, Management & Accounting were considered. Next, we determined a set
of search terms that would narrow the number of studies significantly. These terms are based
on the initial research questions and include “synonyms” of the following 4 terms: Green Soft-
ware, Software Architecture, Metric, and (Business) Goal. Figure 4.2 displays the resulting search
terms. These synonyms were used to cope with different naming conventions (e.g., emerging re-
search field) and to prevent that the search scope would also not become too limited. However,

Metrics for the Operational Energy Use of Application Software 21

CHAPTER 4. CURRENT PRACTICES

logical operators were used in such a manner to ensure that only combinations of the 4 initial
terms or one of their synonyms would be included. This was achieved as follows: the terms in
a single column, or group, are linked with each other by “OR” operators. This ensures that an
article must satisfy at least one term in a column. In addition, the 4 columns are linked with
each other by “AND” operators (e.g. the star symbol). This ensures that the satisfaction of at
least one term in a column must hold for every column. The complete search term string can be
found in Appendix C.1. Although this approach resulted in a long and complex search string, it
enabled us to produce all the results in a single search. This resulted in a significantly shorter
search and process time, because a fewer number of actions needed to be performed and fewer num-
bers of search records needed to be examined (i.e., far less duplicate search results were produced).

Software
Architecture

Application
Architecture

Macro-
architecture

High Level
design

Green Software

Green IT

Sustainable IT

Sustainable
Software

Metric

Measure

Evaluation

Method

Assessment

Analysis

Goal

Requirement

Decision

Aspect

Driver

Concern

Principle
ICT Sustainability

Figure 4.2: Structured Literature Review Search Terms

NB. Besides that ScienceDirect is the only digital library that supports such a complex search
term, it also provides the best method for bulk exporting of search results. To make the screening
process more manageable and reproducible, we settled with only 1 library, but at least a good one.

NB. By using a complex search term, our search resulted in 296 articles, which is a relat-
ively low number of articles. Reasons for this may be that research which combines Software
Architecture and Sustainability is still rare, or it can be that the the search term is too specific.

4.1.5 Exclusion Criteria

After we conducted the search and exported the result into a suitable format, the 296 articles
had to be scored for their quality, i.e. the process of screening for exclusion. This process was
performed in 3 consecutive steps, as shown in Figure 4.3. In the first step, the articles were judged
based on their titles. An article was discarded if (1) none of the terms were present in the title, (2)
the title implied a strong focus on Green IT (i.e., hardware, cloud computing), or (3) if the art-
icle mainly focused on a particular country or business domain (other than software development).

The result of the first step, or “filter”, was that only 35 of the 296 articles remained. Then,
in the second step, we read the complete abstracts of the articles and, subsequently, determined
which of the articles would be relevant. This resulted in that an additional 21 articles were dis-
carded and, thus, 14 remained. During the third step we read the content of these 14 articles and
concluded that only 6 articles were both relevant and of sufficient quality. An overview, including
detailed information of these articles, can be found in Appendix C.

Metrics for the Operational Energy Use of Application Software 22

CHAPTER 4. CURRENT PRACTICES

294
(initial search results)

35Filter[title]

14F.[abstract]

6
(Remaining articles)

F.[content]

Figure 4.3: Structured Literature Review Search Terms

4.1.6 Need for Additional Literature

As the results show, the conducted SLR did not provide a large collection of new and relevant
literature. In fact, 3 of the 6 articles were already discovered during preceding orientational lit-
erature searches. Therefore, we extended the collection of articles by including previous collected
articles and performing additional (less systematical) searches, at other digital libraries and with
other search terms. Furthermore, we applied techniques such as backward and forward reference
searching (e.g. “snowballing”) to retrieve significantly more articles. Eventually, this resulted in
at least 50 useful articles and, also, several books, collections and conference proceedings. With
respect to the latter, we saw a significant increase green software related conferences including,
amongst others, ICT for Sustainability, or “ICT4S”, and GREENS, as part of the ICSE conference.
However, still only a few of the articles dealt with both Software Architecture and Green Software.

4.1.7 SLR Conclusions

The conclusion of this SLR is similar to the studies performed by [45, 5]: the collection of lit-
erature, which combines the topics of software architecture, metrics or aspects, and green, or
sustainable, software, is small. However, the SLR was conducted more than a year ago, i.e. Janu-
ary 2014, and we have observed that the collection has grown since then. For instance, at the
beginning of March 2015, the same search string was applied on the search engine of ScienceDir-
ect. This resulted in an additional 169 articles, of which 50 were published in 2015 and 119 in
2014. Although the relevance of these additional articles has not been verified extensively, it does
appear that the size of the unfiltered search results has grown by more than 50% in a single year.
Furthermore, with respect to the quality of the search string, we realize that the extensive combin-
ation of search terms was most likely too specific and that its complexity also seriously limited the
number of digital libraries that we could use, because it was only supported by one of the libraries.

In addition, over the course of time, the scope of the research in this thesis has shifted from
a theoretical-level to a more pragmatic-level. Therefore, the role of, for instance, the software
architectural aspects play a less significant role than initially planned. Consequently, the role of
the conducted SLR itself has also become less significant within the thesis.

Conclusively, due to the small amount of articles, which resulted from this SLR, and the believe
that the collection of articles is not sufficiently representable (anymore), a separate section on the
SLR’s analysis and results is omitted. Nevertheless, we argue that conducting the SLR resulted in
useful insights and that, eventually, sufficient literature has been collected. In addition, we believe
that other researchers can benefit from the extensive description of the applied SLR approach.

Metrics for the Operational Energy Use of Application Software 23

CHAPTER 4. CURRENT PRACTICES

4.2 Architects on Software Sustainability

We concluded from the SLR, that the research field of software sustainability is still young and that
it is slowly gaining scientific substance. However, there are practically no methods available that
are designed for achieving more sustainable software by means of software architectural aspects.
Moreover, we assume that sustainability is yet far from being a software quality attribute for archi-
tects and developers, let alone that there is sufficient knowledge regarding energy consumption of
software. Given these conditions, we decided to conduct a brainstorm session to define the actual
problem (e.g., the unfamiliarity with sustainability of software, and how it can be influenced by the
SA), and find, through creative thinking, the best group decision for a plan of action to solve it [44].

This brainstorm session was organized as follows. A single session of 2 hours was held at the
research company, on March 19, 2014. Besides the presence of the 3 researchers EJ, LB, and RS,
there were 3 other participants, i.e. software architects from the research company: EH, KL, and
NV. The brainstorm session was led by the facilitator, i.e. LB. The role of the facilitator is to draw
out the suggestions from the participants; not to impose her or his own opinions, while still using
leadership skills to maintain the order and purpose of the session. Initially, we envisioned to follow
the procedure proposed by [3] to come to architectural tactics and scenario’s for a new quality
attribute. However, this idea soon turned out to be not implementable, due to the unfamiliar-
ity of the participants with the theoretical concepts. In addition, a more unstructured approach
appeared to be more effective at the current stage. The summary of the session is presented below.

Researcher LB started the session and introduced the following question: “How would you, as
an architect or designer of a software application, respond if you would get the additional (non-
functional) requirement that the specific application needs to be more energy efficient?”

First, Architect KL responded by mentioning previous research which concluded, amongst
others, that there is not a large difference in the energy use of a system between its low and
high workload states. Therefore, you should always attempt to minimize the number of different
systems that are used for an application. Moreover, by minimizing the amount of resources re-
quired for an application, you can increase the number of applications on a single system (e.g.,
the number of clients that a single server can process). However, this is only applicable if you
are allowed (and able) to execute multiple instances of one or more applications, on a single system.

Next, Architect EH explained that in general the functional requirements are leading during
the initial stages of development and that most often the non-functional requirements are imple-
mented after the realization of the functional requirements. Participant NV added that this order
makes it harder to realize certain non-functional requirements, because they are not sufficiently
taken into account during the initial design stage. Subsequently, EH mentioned several architec-
tural designs which are believed to have a energy efficient character, such as cloud-computing.
However, not much is yet known about their actual energy usage benefits.

In response to a statement of EH, i.e. “nothing is (yet) being measured with respect to soft-
ware sustainability”, EJ presented the following question: “what should we measure and how
can we achieve this?”. Subsequently, EH responded that, in analogy with software profiling, we
can execute an application both multiple times and over a longer period of time, while in the
meantime we measure the energy consumption. The benefit of this method is that, with the right
tooling (i.e., both suitable and reliable), we can collect sufficient stochastic data on which we can
perform statistical analyzes. In addition, the difference between white-box and black-box testing
is explained: within the context of software profiling, developers have the possibility to focus
on specific parts of software (i.e. a white or clear box), or a complete system (i.e., black-box),
which is the only feasible option with most energy consumption meters. Thus, how should we
cope with this lower granularity if we want to measure the energy consumption of an applica-
tion? In response to this obstacle, KL stated that at least within a Windows platform, we can

Metrics for the Operational Energy Use of Application Software 24

CHAPTER 4. CURRENT PRACTICES

use performance counters to determine the amount of systems resources an application requires,
such as the amount of processing time or committed memory bytes. Hence, the following idea
emerged: we can monitor these performance counters during an execution of the application and
determine the portion of system resources occupied by the application. Subsequently, we can use
this to deduct the portion of energy consumption related to the application from the total amount.

Now that a strategy was determined for how and what we would measure, the session continued
with the role of the software architecture: which architectural aspects could we investigate that
might have an influence (be it positive or negative) on the sustainability of software. A brief
discussion followed with examples from within and outside the context of the research company.
Eventually the discussion resulted in a categorized list of architectural aspects that potentially
have tangible influences on the energy consumption of software, i.e.,

• Software structure

– Complexity (e.g., multi-core processing, dependencies, caching, etc.)

– Pattern (e.g., Layered, MVC, C&C, SOA, etc.)

– Scheduling (e.g., events, calls, processing)

• Software deployment

– Multi-tier

– Multi-tenancy

• Software frameworks

– Interpreter (e.g., with or without)

– Libraries (e.g., dynamic vs. static linking)

Subsequently, the participants were asked to come up with ideas on how we could measure
the influence of at least one of the mentioned architectural aspects. With respect to the software
frameworks, one answer entailed comparing different frameworks with similar purposes. For in-
stance, KL mentioned that there are different methods for dependency injection, which is a
specific design pattern, but often developers do not know which method should be used within a
certain situation. To study this problem, we would need to build another (or adapt an existing
) application so that there are at least two different versions having separate frameworks, we can
determine whether the frameworks have different influences on the energy consumption. Another
idea was to compare different version of an application (e.g., an older vs. a newer version), and
determine which architectural aspects have been modified between the two versions. Then, de-
pending on the amount of modification or tactics, we could determine whether a (set of) tactic(s)
has a positive or negative influence on the energy consumption.

Lastly, Architect EH mentioned that he was part of the development of DOCGEN , an applic-
ation for document batch processing which supports multi-core processing. Since the software
of the research company is mostly data oriented and that it is believed that the performance
benefits are not significantly large within this category of software, multi-core processing is not
yet a standard capability of the research partner’s software. An important reason for this is that
the implementation of multi-core processing requires additional development resources. Therefore,
the benefits during the operation of the software should be significantly higher than the additional
development costs. Consequently, the idea was formed that it would be interesting to investigate
to what extend the amount of operational resources required by the multi-core version differs from
the single-core version, and how this might influence the energy consumption of the system.

The brainstorm session was concluded by briefly summarizing the things discussed during the
session, inform the participations of our plan of action and thanking them for their contributions.

Metrics for the Operational Energy Use of Application Software 25

CHAPTER 4. CURRENT PRACTICES

4.3 Synthesizing the Current Practices

By combining the results from both studies, we concluded that (1) the research field of software
architecture and green software is small, but increasing, and (2) the practical knowledge is even
more scarce. Nevertheless, the studies did produce a comprehensive overview of available literature
as well as multiple options to conduct experiments with. Consequently, before we will introduce
our final hypotheses (see Chapter 5), we discuss some of the preceding considerations in this section.

The first consideration concerned our approach for comparing different versions of an applic-
ation to be able to determine the influence of architectural aspects. Inspired by the method for
developing a new quality attribute by [3], we initially considered selecting two different versions
of a single application, of which the latter is a successor of the first. As is depicted in Figure 4.4,
we could then determine which tactics were applied in each version and, subsequently, measure
whether the tactic(s) implemented in the latter version resulted in a positive or negative influence
on the sustainability of the application. This way, we would not have to develop the software,
which would be a significant benefit due to a limited amount of time available, and we could still
determine whether a tactic has a negative or positive impact (e.g. through “reverse engineering”).
However, there were some limitations to this setup. First, it would only be possible if we could
find a suitable application (e.g. multiple versions with a clear overview of tactics per version).
Second, most applications contain multiple tactics per version and, therefore, it can be hard to
determine the exact influence of a single tactic. Third, if we could isolate the influence of a single
tactic, we would still need to validate its influence within a different environment. Since we did
not succeed in finding a suitable application, we eventually decided not to focus on comparing
incremental versions. Instead, we are considering “configurations” of an application as versions.

Tactic(s) Tactic(s)

Figure 4.4: Representation of Incremental Application Versions

The second consideration concerned the selection of a software architectural aspect from the
list of candidate aspects. The main two candidates considered were dependency injection (DI) and
multi-core-processing (MCP). The first was considered because one of the brainstorm participants
mentioned that, at the moment, many developers and architects have no clear preference for
a certain DI implementation, or container [15]. Furthermore, an extensive search for a useful
test application resulted in a complete environment in which we could easily select a different DI
container. In addition, this environment was also written in vb.net, a programming language which
is broadly applied at the research company. Finally, the main function of the test application was
to calculate Pi decimals as fast as possible. This is, of course, an intensive task that mostly uses
a system’s central processing unit (CPU) component. We quickly discovered that such a task, or
“benchmark”, would be best to focus on, because it appeared to produce the most clear workload
profile (e.g. single component and relatively constant). However, after analyzing the DI option
more in depth, we concluded that the differences between DI implementations (mostly) occur
during the compilation of the software and, therefore, we assumed that the (potential) differences
with respect to the operational energy use of the software would be insufficiently significant.

Metrics for the Operational Energy Use of Application Software 26

CHAPTER 4. CURRENT PRACTICES

Then, the second aspect, i.e. MCP, was considered because of the opportunity to experiment
with an application developed by the research company, namely DOCGEN . Since MCP is not often
implemented within the related type of software, it would be interesting to investigate whether its
potential sustainability benefits could have a significant influence on the decision making process.
However, before these benefits can be determined, we would first need to be able to measure the
energy use of different implementations. Since this would be relatively difficult with DOCGEN
(e.g. an application with a more complex design and deployment scheme than we preferred at that
stage), we decided to perform an initial experiment with a “simple” application before we would
consider DOCGEN . Therefore, we searched for an additional application that provided multiple
configurations with respect to MCP (e.g. to be able to compare different versions) and, also, one
that produces a clear workload profile (i.e. a system benchmark application). This search resulted
in the following candidates: primesieve and wPrime, which are both prime number generators,
and Hyper PI, which is a multi-threaded version of Super PI (e.g. one of the better known bench-
mark applications). However, these candidates were all rejected eventually because they did not
provide the option to operate the application with specific parameters from command-line. This
was necessary because we determined that we needed to configure and execute the applications
automatically and remotely by means of a batch script. Luckily, we eventually did find a suitable
application that supports all our requirements, namely Systester [60]. In Section 6.1, we will
describe additional details of this application including its various configuration options.

The third consideration concerned finding the right instrumentation that would be used during
the experimentation. First of all, we had to be able to measure the energy use of the application
and/or system. For this, we initially envisioned to use Joulemeter, an application for estimating
the power usage of systems that, in addition, has the option to isolate the energy use related to a
single application [18]. However, despite that it is one of the better so-called “energy profilers” cur-
rently available [26, 2], we eventually concluded that Joulemeter has too many limitations for our
experimentation. For instance, the power model used by the application can only be calibrated on
a laptop (e.g. through the discharging of the battery) or via an external WattsUP? power meter.
Furthermore, this application does not enable the measuring of energy use remotely and, also, the
reliability of Joulemeter did not appear to be sufficient for us during orientation measurements.
The previously mentioned WattsUP? power meter (WUP) did not have these limitations and,
luckily, we were able to obtain one (e.g. receiving the correct model was not a simple task).

Figure 4.5: Instrumentation: a WattsUP? PRO power meter

Metrics for the Operational Energy Use of Application Software 27

CHAPTER 4. CURRENT PRACTICES

In addition to the measuring of energy consumption, we also needed instrumentation for monit-
oring the workload of the system. For this we considered multiple options, mostly due to differences
in detail, reliability and ability to export per option and, also, the ability to remotely monitor
a system. For instance, we considered the Windows build-in Performance Monitor, or PerfMon,
and Xperf, which is part of the Microsoft Windows Performance Toolkit. We considered the latter
because it can produce significantly more detailed monitor logs, while still reaming a very low
overhead, and it also provides the option to record on a higher granularity than PerfMon, which
can only create 1 recording per second. However, Xperf does not provide the option to remotely
monitor a system and it is also more difficult to customize a data collector. Both these things are
included in PerfMon and therefore we preferred PerfMon over Xperf, despite that the connection
with a remote system can be troublesome and the recorded data is less reliable (due to the lower
granularity of the tool). In addition, we attempted to overcome the loss in the detail by imple-
menting the Intel Performance Counter Monitor (PCM), which can be used on itself or as a plug-in
for PerfMon [65]. By using PCM, we would be able to monitor the exact number of procedure
calls, or “clock ticks”, per second and, thus, we could attempt to relate the energy use to the actual
amount of work processed by the CPU. This would still be per second, since both the WUP meter
as PerfMon have a granularity of at most 1 recording per second, but the data would be more
detailed since PerfMon alone is not able to record the actual frequencies of the CPU(s) of a system.

Although the implementation of PCM within PerfMon provided multiple technical obstacles,
we were eventually able to use it from a remote system. However, it soon appeared that the com-
bination of remotely monitoring and using PCM as a plug-in in PerfMon resulted in recordings
with many gaps. In addition, PCM is supported by only a limited collection of Intel processors and
since one of the test system was not part of this collection, we eventually decided not to use PCM
and, thus, to settle with a standard version of PerfMon. However, by doing so, we would still need
to take an additional action to overcome the limitation of PerfMon with respect to not being able
to record the exact amount clock ticks per second. The reason for this, is that many systems have
varying CPU frequencies (e.g. to match the estimated workload and save energy), but for the ex-
periments we need to be able to keep the frequencies fixed, otherwise it would be more difficult to
compare measurements. Although locking the frequencies of a system’s CPU(s) can sometimes be
achieved trough its BIOS, this option was not supported by every test system. So, to standardize
our method among the systems, we used an application to overcome this, namely Throttlestop [17].

Finally, besides being to able to lock the CPU frequencies, we also needed to determine which
values would be best for the whole group of systems. During orientational measurements we ob-
served that the CPU frequency has a strong influence on the resulting power consumption of a
systems and the required time to execute an application. For instance, by locking the frequency
of one of the test systems to 800MHz, instead of 2300MHz, the execution time increased threefold
while the power consumption decreased by 50%. Consequently, the total amount of energy the sys-
tem required to execute the application at 800MHz was higher that at 2300MHz. Unfortunately,
despite that all of the included systems have an unlocked CPU multiplier, there were several things
that prohibited us from conducting such a comparison with each system. First, the ranges between
the minimum and maximum CPU frequency of the different systems did not overlap sufficiently,
e.g. the maximum of one system was the minimum of another system. Second, we realized that
it would be more valuable to use similar frequency values when comparing between the systems,
which was not possible due to the differences in ranges. Third, we observed during measurements
with systems performing at their maximum CPU frequency that the power consumptions resulted
were significantly less stable, due to a buildup of heat. Thus, given the available systems for
testing (see Section 6.1.2), we concluded that it would be better to select a single CPU frequency,
i.e. 2GHz, since this value is supported by each system and it does not result in a buildup of heat.

In summary, we have determined the following: (1) consider multi-core processing as a candid-
ate architectural aspect for sustainability, (2) conduct experiments with a simple and a complex
application, (3) use the WUP and PerfMon as instrumentation, and (4) lock the CPUs at 2GHz.

Metrics for the Operational Energy Use of Application Software 28

Chapter 5

Building Metrics for Sustainability

In this chapter we introduce the hypotheses that will be tested during the experimentation. But
first, we re-discuss the context of the research briefly so that we can “prepare” the main aspects.

5.1 Recap of the Research Context

Within the field of software architecture, non-functional requirements, or quality attributes, are
used to evaluate the quality of software [3]. Furthermore, a quality attribute should be objective
and quantifiable, which entails that there must be some measurable way to assess to what extend
the attribute has been realized. Consequently, to come to a quality attribute for the “sustain-
ability” of software, we need reliable metrics that are both objective and quantifiable. Further,
these metrics should allow for comparison between different applications or versions of applications.

Sustainability has a broad interpretation, ranging from the energy consumption by the hard-
ware during execution of the system, as well as organizational and the complete life-cycle of the
system, including development and maintenance. Consequently, deriving a complete and sound set
of metrics is difficult, if not impracticable. Furthermore, there are different types of software: this
research focuses on product application software [66]. As product software is typically installed at
many different clients, the main driver for sustainability is a product’s resource requirement dur-
ing execution instead of, for instance, during development. Hence, we solely focus on its operation.

Seen from an execution point of view, energy consumption is the most logical measure to come
to a reliable, i.e., objective and quantifiable, metric. Additionally, a software product might run on
many different systems (e.g. new/old, laptop/PC). Therefore, ultimately, such a metric should be
independent of the system, so that it is possible to predict the energy consumption of the software
product upfront. So, in analogy with the field of construction engineering, we further focus on the
operational energy use of applications, which entails the energy consumption during execution [50].

To come to a metric for the operational energy use of an application, which is thus independent
of the system it is executed on, we need to overcome many challenges. For instance, a first obstacle
would be limitations with regards to the instrumentation for measuring energy consumption, i.e.
the WUP meter (introduced in Section 4.3) can only measure the energy use of the complete
system on which an application is executed. Secondly, most computer systems have a variable
energy use, partially caused by changing workloads such as background processes inflicted by e.g.
the operating system. Thirdly, determining to what extend the system is processing the application
is not straightforward, e.g. considering other (background) processes and limited instrumentation.
Lastly, systems may have different energy consumption properties (e.g. ranging between idle and
full workload) In the next section, we will show how we take these challenges into consideration to
obtain a (more) reliable and independent measure for the operational energy use of applications.

Metrics for the Operational Energy Use of Application Software 29

CHAPTER 5. BUILDING METRICS FOR SUSTAINABILITY

5.2 Measuring the Operational Energy Use

Due to the presence of multiple challenges, we chose to conduct a staged experiment. In addition,
to test the independence of the metric, we performed measurements with multiple application
versions and different test systems. For each combinations of an application version and a system,
i.e. an AppSys-configuration, we performed multiple measurement runs to minimize the amount of
noise in the data (e.g. due to random background processes). Figure 5.1 depicts a representation
of the activities related to performing multiple measurements with a single AppSys-configuration,
i.e. a series. This representation shows that for each execution of the application, i.e. E1, E2...En,
the instrumentation produces the related measurement data, i.e. D1, D2...Dn. Subsequently, the
metric results, i.e. R1, R2...Rn, are calculated by applying a (set of) metric(s) on the measurement
data, which can be related to a single execution of A or a series (e.g. by averaging over the runs).

Application Aₓ
on System Sᵧ

Executions of A

E₁(Aₓ,Sᵧ) Eᵢ(Aₓ,Sᵧ)E₂(Aₓ,Sᵧ)

Metric M

Metric Results

R₁ = M(D₁) Rᵢ = M(Dᵢ)R₂ = M(D₂)

Instrumentation

Measurment Data

D₁{E₁(Aₓ,Sᵧ)} Dᵢ{Eᵢ(Aₓ,Sᵧ)}D₂{E₂(Aₓ,Sᵧ)}

Figure 5.1: Representation of measuring multiple executions of A

Metrics for the Operational Energy Use of Application Software 30

CHAPTER 5. BUILDING METRICS FOR SUSTAINABILITY

Then, Figure 5.1 depicts a representation of how we conducted measurements with the different
AppSys-configurations. This representation includes multiple configurations versions, i.e. V1, ...Vi,
as well as multiple (and different types of) executing systems, i.e. S1, S2, S3. Consequently, the
results per AppSys-configuration, i.e. R(V1, S1)...R(V1, S3), R(Vi, S1)...R(Vi, S3), are calculated by
applying a (set of) metric(s) on the measurement data that result from their related executions.

Configuration Versions

Version Vᵢ Version V₁

Application A

Executing Systems

S₁ S₂ S₃

Executing Systems

S₁ S₂ S₃

Metric M Metric M

Metric Results

R(V₁, S₁) R(V₁, S₃)R(V₁, S₂)

Metric Results

R(Vᵢ, S₁) R(Vᵢ, S₃)R(Vᵢ, S₂)

Figure 5.2: Representation of measuring with multiple AppSys-configurations

Given the representations depicted in Figure 5.1 and Figure 5.1, we aim to determine the
independence of the metric by means of the following steps. First, by averaging the data and
results over multiple measurements, we can neutralize the influence of noise that may occur during
measurements. Furthermore, by using a constant AppSys-configuration, we can test the reliability
of the metric in a single environment. Figure 5.3 gives an abstract representation of these two
initial steps. Second, by conducting measurements with a single application version executed on
different systems, we can further compare the metric results and determine to what extend there
are differences (or similarities) between the systems and, possibly, determine the causes of these
differences. Finally, by conducting measurements with different application versions executed on
a single system, we can also more safely compare the results between different versions (e.g. to
determine the influence of design decisions). The latter two steps, or comparisons, are illustrated
by Figure 5.4 and Figure 5.5, respectively. As a final step, we combine the last two comparisons and
determine whether differences between different versions remain constant over different systems.
Consequently, these steps enable us to properly validate the stability and reliability of the metrics.

Metrics for the Operational Energy Use of Application Software 31

CHAPTER 5. BUILDING METRICS FOR SUSTAINABILITY

App₁Sys₁

Run₁

Measurement Data₁

App₁Sys₁

Run₂

Measurement Data₂

App₁Sys₁

Runₓ

Measurement Dataₓ

Metric Results₁ Metric Results₂ Metric Resultsₓ

Figure 5.3: Comparing data (and results) from multiple runs with a single AppSys-configuration

App₁

Data (Runs)

Metric Results₁ Metric Results₂ Metric Resultsₓ

App₁

Data (Runs)

App₁

Data (Runs)

Figure 5.4: Comparing results between different systems with a single application version

App₁

Data (Runs)

Metric Results₁ Metric Results₂ Metric Resultsₓ

App₂

Data (Runs)

Appₓ

Data (Runs)

Figure 5.5: Comparing results between different application versions with a single system

Metrics for the Operational Energy Use of Application Software 32

CHAPTER 5. BUILDING METRICS FOR SUSTAINABILITY

5.2.1 Introduction of terms

As explained before, the WUP meter can only measure the total energy consumption of a system,
i.e. S. Nevertheless, we aim to determine the amount of energy solely related to the execution of an
application, i.e. A. Therefore, we study the ratio between the energy that is being consumed by S
in its base state, i.e., the system running without executing any significantly “heavy” applications,
and the energy consumed while solely executing A. We follow the SI standards for the notation of
power P (·), i.e. Joules per second or Watts (W), and energy E(·), in Joules. Consequently, P (SA)
and E(SA) refer to the average power and the total energy consumption of S during the execution
of A, i.e. SA, respectively. In addition, SB and SM refer to S while it is in its base state and
when it has a “maximum” system workload, respectively. Finally, besides the measuring of energy
use values, we also record the amount of time required for SA, which we denote by T (SA), and
the performance of a system (e.g. the active processes and workload at components) during SA.

5.2.2 Towards a Normalized Operational Energy Use

Based on the arguments presented above, we determined the following set of metrics. The first is
to inspect the average power consumption of system S during the execution of application A, i.e.

P (SA) =
E(SA)

T (SA)
(5.1)

However, this metric is not yet independent of the system it is executed on. To make the metric
more independent, we want to inspect the energy solely related to the execution of application A
on system S, i.e. AS , by subtracting the energy use of S related to its base state from E(SA), i.e.:

E(AS) = E(SA)− E(SB) (5.2)

However, as it is not possible to both measure E(SB) and perform SA concurrently, we assume
that the amount of energy use related to the system’s base state remains constant during SA, i.e.,

E(AS) = E(SA)− P (SB) · T (SA) (5.3)

Although this measure eliminates the energy consumption related to the base state of the
system, it does not allow us to compare the energy consumption on different systems, as the
produced results are absolute and there can be significant differences in the scales of system power
usages. For instance, let S1 be a laptop system, S2 be a standard personal computer, and S3 a
server. Then, the average power values of S1 in its base and maximum state can be 10 W and 42
W, respectively, while for S2 it can be 70 W and 90 W and for S3 260 W and 285 W, respectively.

0

50

100

150

200

250

S1 S2 S3

Po
w

er
 (W

at
ts

)

Base App Rem.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S1 S2 S3

Figure 5.6: Example of power distributions per system :: absolute P [left] and R(AS) [right]

Metrics for the Operational Energy Use of Application Software 33

CHAPTER 5. BUILDING METRICS FOR SUSTAINABILITY

To illustrate this example, we included Figure 5.6, which contains two separate graphs. The
left graph shows, besides the introduced base and (remaining) maximum power values, the amount
of power solely related to SA, which clearly illustrate the differences in scales between the systems.

One way to overcome these differences in scales, is to normalize the power consumptions. This
can be achieved by means of feature scaling, which entails in our case subtracting the base power
value of each system, i.e. P (SB), from both its base and maximum power values, of which the
latter occurs when a system has a full workload, i.e. SM . Subsequently, these new values give us
an interval, or range, in which we can relate the normalized power consumption during SA, i.e.
P (SA) − P (SB), to the rescaled minimal, i.e. 0, and maximal power consumptions, i.e. P (SR) =
P (SM) − P (SB). Then, if we assume a linear dependence between a system’s workload and the
resulting P (SR) values (e.g. 50% within a system’s workload range ≡ 50% within its power use
range), we can use the following metric that is less sensitive to different absolute power use scales:

R(AS) =
P (AS)

P (Sm)− P (SB)
(5.4)

This metric results in a ratio between zero and one, as is showed in Figure 5.6b, which contains
the results of Metric 5.4 applied on the example values. This ratio gives an indication of how much
SA increases the power consumption of S in comparison to its P (SB) and how much there is still
left until it reaches P (SM). For instance, an R(AS) value of 0,7 would indicate that on average
S requires 70% additional power during SA in comparison to its P (SB) value. Ultimately, the
R(AS) metric can support us in predicting the average power consumption of an application on
a specific system, provided that the R(AS) value is only strongly dependent of known system
characteristics, such as the number of CPU cores. Moreover, given that we can reliably determine
the P (SB) and P (SM) values of a specific system (e.g. to have a correct power use range), an
initial metric for predicting the average power consumption of S during SA would be as follows:

P (SA)∗ = R(AS) · (P (SM)− P (SB)) + P (SB) (5.5)

In addition, we can also consider predicting the required operational energy for SA by means
of the workload at the system or at a specific component, provided that there exists a significantly
strong correlation between the workload and the resulting power consumption of S related to SA.
We denote the workload at the system during SA by LS(SA) and, given that we aim to focus on
the CPU component (i.e. the main energy consumer [33, 13]), we would denote the workload at
this component by LCPU (SA). Then, if there exist a significantly strong correlation between the
workload at the system, or a specific component, and the resulting power consumption, we can
predict the latter by means of i.a. the former. However, if the correlation is significant but the
values are not exactly similar, we need to use a conversion factor, i.e. f , which has the value 1 in
the case that the values are exactly similar. The CPU focused version of this metric is as follows:

E(AS)∗ = LCPU (SA) · f · P (SB) · T (SA) (5.6)

One of the important assumptions, that requires validation, is whether the power related to the
base state of the system can be subtracted from its total power consumption. Therefore, we record
all the processes executed by the system’s CPU during SA to check whether no other processes
occupy a significant portion of the system’s processing time while executing the application. In
addition, we use this to determine the amount (and cause) of noise during the execution, and thus
to decide whether measurements are sufficiently clean. Finally, we need to investigate to what
extend the different variables are correlated, before we can actually make predictions of results.

Metrics for the Operational Energy Use of Application Software 34

Chapter 6

Experimentation

This chapter describes the experimentation that was performed during this thesis project. The
main purpose of this experimentation is to investigate the hypotheses, e.g. the metrics, introduced
in Section 5.2.2. To do so, Section 6.1 begins with the experimental setup, including the specific in-
strumentation, systems, test applications and experiment protocols. Further, the experimentation
results will be presented in Section 6.2, followed by the analysis of these results in Section 6.3, and,
finally, additional considerations with respect to the experimentation are discussed in Section 6.4.

6.1 Experimental Setup

As discussed before, the main goal of this research is to be able to determine the energy use solely
related to the execution of application software. To achieve this, we introduced a set of metrics
that will be tested by means of an experimentation. To ensure its quality and reproducibility, we
determined an experimental setup that is based on the following rules. For the production of suffi-
cient data, we executed and measured multiple AppSys instances, in a semi-controlled environment.
Since the measurement data often varies between different executions (e.g. due to noise), we also
executed each AppSys instance a multiple number of times. Further, we increased the quality of
the measurement data, i.e. minimizing the amount of noise, by sampling over multiple repetitions
and implementing control measures. With respect to the most optimal “number” and “duration”
of repetitions: we conducted several orientation measurements to determine the maximum feasible
values, which was a trade-off between quality and a limited amount of time available for measuring.

In addition, we only included systems with the following properties: each system has to run on
Microsoft Windows 7 Professional or Windows Server and it must be equipped with an Intel dual-
core processor. These two decisions were based partly on the most appealing subset of the limited
number of available systems, but also both decisions provided us with several useful capabilities,
such as remote access and advanced performance monitoring. Other selection criteria regarding
system properties were not that strict, in fact: we included both a laptop, PC and a server (Nb.
the energy use of the display was excluded), processors from different generations with different
specifications, and different types of other components, such as the memory. This decision may
be controversial, since it makes it more difficult to create a controlled test environment in which
results between systems can be easily compared. Nevertheless, we determined that it would be
impossible to create a perfect environment (with the given resources). Furthermore, we believe
that (currently) it is more valuable to experiment with dissimilar systems, because in practice it
is more likely that a software product will be executed on many different systems. Therefore, we
assume that it is more meaningful to create research results that are based on different computer
systems. Moreover, there will always be a remaining margin of error, since the ultimate aim of
this research is towards being able to estimate, given a limited set of measurement instruments, an
amount of energy necessary to execute a certain application independent of the executing system.

Metrics for the Operational Energy Use of Application Software 35

CHAPTER 6. EXPERIMENTATION

Application
System

En
ergy

En
ergy

Energy Use Data

Performance Data

WUP

Instructions

Settings

P
o

w
er

So
u

rce

Management
System

Figure 6.1: Representation of Experimental Setup I

6.1.1 Instrumentation

As is discussed in Section 4.3, we initially envisioned to use Joulemeter for estimating the power
usage of systems. However, this software-based instrument turned out to be too unstable, amongst
others. Therefore, we decided to use the more reliable WUP plug-load meter. As is depicted in
Figure 6.1, the WUP meter is placed between an electronic device and the external power source
of the device. It can register the power consumption of a device at a minimal interval of 1 time
per second with an accuracy of +/- 1,5 percent [23]. Furthermore, it has the capability to measure
up to 18 different electrical properties, such as Power Factor and Line Voltage. However, we only
measured Watts and Amps to maximize the limited storage capabilities of the device. The benefit
of the “Pro” version is that you can download the recorded data via USB to another computer (i.e.
the Management System) and, in addition, modify the settings of the WUP meter remotely. An
important benefit of this feature is that it excludes the Application System from the recording of
its own energy use and, consequently, potential interferences during the recordings are minimized.

Besides the logging of the power usage data, we also monitored and logged the performance
of systems during measurement. This was necessary because: due to the nature of the computer
systems (e.g. existence of random and variable background processes), we had to be able to check
(afterwards) whether a system was sufficiently idle during a “base” measurement and whether the
system was (mostly) only processing the specific application task, during “application” measure-
ments. Since all systems run on Windows, we were able to use the build-in Performance Monitor
(PerfMon). PerfMon is a visualization tool for viewing and recording system performance data,
which can be exported in a user-friendly CSV format. The tool provides the options to monitor
performance counters, event trace data, and configuration information, which are combined into
so-called “Data Collector Sets”. For this research, we only focused on the performance counters,
which are “measurements of system state or activity” [36]. Moreover, we created multiple custom-
ized Data Collector Sets, which included, among others, the %Idle Time and %CPU Time per
CPU, and %CPU Time per process. By using the same IP address for the system that was being
measured, we were able to use some of these sets on multiple systems, which made the compar-
ison between resulting logs easier. In addition, as Appendix A shows, additional (e.g. non-CPU
related) counters were included, such as memory, physical disk, network and the complete system.

6.1.2 Systems

The measurements were performed on three different Application Systems. The specifications of
these systems are showed in Table 6.1. Each system represents a different computer class, i.e. a
laptop, a desktop PC, and a server system. The main reason for including these systems, besides
that they were available, is that they all have an Intel processor, with two available cores and
an unlocked CPU multiplier (e.g. for locking CPU on a specific frequency), and no dedicated
graphics card. It should be noted that the specific CPU of the SRVR system has in fact 4 separate
cores (e.g. quad-core). However, its underlying infrastructure, i.e. VMware ESXi 5.0, restricts it

Metrics for the Operational Energy Use of Application Software 36

CHAPTER 6. EXPERIMENTATION

to 2 separate cores performing at 2GHz. Furthermore, besides these systems, additional systems
were considered, such as: a desktop computer with a single-core Intel Pentium 4 processor and 2
modern dual-core laptops with Hyper-Threading technology. These systems were eventually not
included due to their number of CPU threads, e.g. 1 and 4, respectively. Also, the Pentium 4 did
not have an unlocked CPU multiplier and, thus, its frequency (i.e. 3GHz) could not be adjusted.

Table 6.1: Overview of system specifications

System

Property LPTP DKTP SRVR

Brand/model ASUS F3JA Custom PC HP DL380

Processor C2D T7200 C2D E6750 Xeon E5335

FSB & TDP 667 / 34 1333/ 65 1333 / 80

Chipset Intel i945PM Intel P35 Intel 5000P

Memory 2GB DDR2 2GB DDR2 4GB EDO

OS - SP/bits W7P 2/32 W7P 2/32 W2K8 1/64

6.1.3 Application Versions

Given the purpose of the experimentation, we searched for a test application, which includes
a “task” that would produce a clear and reproducible workload during its execution. The re-
producible workload was necessary because we saw that systems often have random changes in
terms of their workload and energy use, and by collecting multiple instances of measurements we
would be able to filter out most of the noise. In addition, we also searched for an application
that mainly uses the CPU component because in general it is the most consuming component,
according to [33], and this way it would be easier to analyze and compare the data (due to the
collection of performance counters available). After considering multiple options (see Section 4.3),
we selected a system stressing and benchmarking tool named Systester (version 1.5.1) [60]. The
main purpose of Systester is to test a system’s stability by calculating up to 128 millions of Pi
(decimal) digits. The task of calculating Pi decimals is common for such system benchmarking
tools to implement, since it requires large amounts of resources (e.g. CPU time) to calculate the
larger decimal numbers and, therefore, pushes a system to its limits. Furthermore, the duration
to finish such a task is relatively stable over repetitive executions, since the application is designed
to minimize the calculation time by using as much of the system’s available computation power as
possible. Consequently, the resulting calculation times can be compared with results from other
systems, to see which system has better performance and stability properties. However, for this
research we were not interested in producing the lowest calculation times, yet we were interested
in Systester ’s ability to (1) execute configurable tasks, which (2) keep a system busy for roughly
5 minutes, (3) produce mainly a high CPU workload and (4) require similar resources between
multiple execution repetitions.

With respect to the most suitable duration of the task, we determined that the quality of the
energy use measurement data (e.g. amount of noise), directly correlates with the duration of the
measurements. The reason for this is that (in general) the impact of random but brief workload-
spikes on the average energy consumption of systems decreases when the duration of measurements
increases. Consequently, the quality of measurement data would be the “cleanest” if the largest
task offered by Systester is selected, i.e., calculating 128 million Pi decimals. However, a downside
of this would be that the number of measurements would be smaller due to a limited amount of
time available for measuring. Therefore, after multiple experimental runs, we decided to select
a task that would take around 5 minutes for most of the systems. In addition, Systester offers

Metrics for the Operational Energy Use of Application Software 37

CHAPTER 6. EXPERIMENTATION

the option to select two different algorithms, namely: the Quadratic Convergence of Borwein and
Gauss-Legendre. The latter is a significantly faster algorithm and is also being used other (more
popular) benchmarking applications (e.g. SuperPI [61]). However, only the Borwein implement-
ation supports multi-core processing. Therefore, we included both algorithms in our experiments.
Finally, these considerations resulted in 3 application versions, which are included in Table 6.2.

Table 6.2: Overview of application versions

Code Algorithm # Decimals # CPUs

Gaus8M1C Gauss Leg. 8 x 106 1

Borw8M1C Borwein 8 x 106 1

Borw8M2C Borwein 8 x 106 2

6.1.4 Experiment Protocols

This section includes descriptions of the main steps that were made before, during and after
the measurements. They are included to provide additional insight to the readers as well as the
opportunity for other researchers to reproduce the measurements, more easily.

Preparing an Application System

Before a series of measurements can be performed, the Application System (AS) and Management
System (MS) need to be prepared properly. To do so, the following steps need to be taken.

1. Place the WUP meter between the AS and the power source and connect it with the MS.

2. Copy the files of Systester to the AS. We used the Command Line (CLI) version of Systester
which enabled us to execute the application from a Batch script with the desired parameters.
In addition, we compiled a modified version of Systester, in which the application waits 5
seconds both after initiation and before ending of the process. This way, the PerfMon log
were more reliable and it was easier to determine the interval of each specific execution run.

3. Disable obsolete Services on the AS, such as Windows Back-up, Defender and Update. Also,
disable connection with the Internet and connect AS with MS through a wired connection.

4. Ensure that PerfMon (operated from MS) has access to the performance counters on AS.

5. Ensure that the CPU of AS is locked on 2GHz and that Throttlestop starts after a reboot.

6. Ensure that the AS can be rebooted remotely (e.g. without login screen) via PsTools [49].

7. Check the power settings of AS for abnormalities, such as hibernation and hard drive settings.

8. If AS is a laptop, remove the battery and turn off (or dim) the screen to minimize interference.

Preparing the Management System

When the AS is ready for a measurement, the following preparations need to be taken at the MS.

1. Create/select a Data Collector Set within PerfMon for the connected AS, which consist of a
primary set (e.g. the CPU and Process related performance counters) and a secondary set
(e.g. the System, Network, Memory, and Disk related counters). [Tip: give AS a static IP]

2. Ensure that the following applications are installed on MS: PsTools (for executing commands
on remote system), WattsUpUSB (for collecting WUP data and modifying settings), the
custom scripts e.g. for initiating a measurement run (see Appendix B for an overview).

3. Ensure that MS does not terminate the script prematurely (e.g. execute a test run).

Metrics for the Operational Energy Use of Application Software 38

CHAPTER 6. EXPERIMENTATION

Executing a series of application runs

When both the AS and MS are prepared, a measurement series can be performed, which entails
the execution of multiple application runs with a constant rest period between each runs. We have
automated the main parts of the related protocol by means of a script, named PiBatch, including:
(1) initiating and terminating the monitoring with PerfMon, (2) optional rebooting of the system,
(3) a parameterized number of Systester execution runs, and (4) the amount of rest between each
runs (including a specific amount for before and after the series). Consequently, the possibility of
human interference during a measurement has been eliminated. In addition, we investigated the
effect of rebooting the system before a measurement series. In a small experiment we found that a
system was significantly more active during the first 15 minutes after rebooting. After this period,
the system was (in general) stabilized and ready for a measurement. Furthermore, we noticed
that by waiting longer, for instance more than 30 minutes, some systems started with processing
significantly heavy background processes, which were difficult to determine and, thus, to eliminate.
Therefore, we decided to include a minimal of 15 minutes of rest time within the PiBatch script
before the first application run is initiated. However, at the time of the experimentation, remotely
rebooting the SRVR system appeared not to be straightforward. Therefore, this activity was not
included in the main protocol for executing a series of application runs. This protocol is as follows:

1. When the preparation of the AS and MS is ensured, clear the memory of the WUP meter.

2. Initiate the PiBatch script from MS and set the configuration parameters, including: the
amount of rest time before/after series and in between runs, the number of runs and Pi
decimals, algorithm (Gauss-Legendre or Borwein) and the (hexadecimal) CPU affinity value.

3. When the script is finished, it terminates and saves the logging of PerfMon automatically.
Depending on its settings, the WUP continues to collect data until its memory is full.

In order to get a representative dataset for this research, preliminary measurements were
performed with each AppSys-configurations. Within these measurements, some runs showed con-
siderable differences in comparison to other runs within their series. Therefore, the decision was
made to perform measurements until at least thirty clean runs per configuration were collected.

Post-processing the measurement data

After each series of application runs, the following actions are necessary before the recorded
measurement data can be used for analysis.

Read out WUP and convert PerfMon logs After the PiBatch script is finished, the WUP
data is collected via WattsUpUSB and the PerfMon logs are converted to CSV format.

Determine run intervals We use the %CPU Time of the application process, which is recored
by PerfMon, to determine the execution times of the application. The execution interval
starts at the second at which the %CPU Time of the application process is more than 0 and
finishes at the second at which the %CPU Time of the application process is (near) 0 again.

Synchronize WUP and PerfMon timestamps Despite the different options of the WUP for
assigning timestamps, WUP data and the PerfMon data do not fit easily. As a solution, we
search for the first initiation of a run that has a clear and immediate increase in the WUP
data log and adjust its time to the value at the moment of initiation of the related process (in
the PerfMon data log). The time in PerfMon is leading as this log includes more details per
second: we do not know for sure what causes an increase in the data of the WUP. However,
when we have synchronized the starting point of one run, we can also verify if the end points
correspond, and repeat the process at the subsequent runs in the series.

Assess quality of runs Despite our efforts to stabilize the systems, we observed that systems
can have remarkably variable power usages during the measurements that are often unrelated

Metrics for the Operational Energy Use of Application Software 39

CHAPTER 6. EXPERIMENTATION

to SA. Figure 6.2 shows an example of the energy consumption during a series containing 12
application runs. In the first 15 minutes of the series the variability is caused by the system
reboot. In the next 45 minutes, the system executes 4 runs with an average P (SA) below 19
W. These runs are considered to be clean as no other unrelated processes were active, and
the application base energy use around these runs is similar to the values observed at other
measurements with this particular system. The subsequent 7 application runs are considered
not to be clean as the increased base energy values around these runs differs significantly.

5

7

9

11

13

15

17

19

21

23

25

P
o

w
e

r
(W

at
ts

)

Figure 6.2: WUP data - Series of measurement runs

6.2 Experimentation Results

Executing the protocols, as described in the previous section, resulted in an extensive dataset.
Table 6.3 presents the main outcomes of the measurement data, which includes the following ele-
ments: the total and “clean” number of runs per application per system, the amounts of time and
energy the systems require to execute the applications on average (including median, min and max
of the energy values), and additional information with respect to the stability of measurements (by
means of their standard deviation). This includes the variability in execution time and required
energy between runs, and the average stability of power use during runs. Within the table, the
results are grouped per system and each of these groups consists of three rows i.e. one for each
application version. Then, the columns are divided over 4 categories, namely: the number of
measurements runs per combination, the execution time, the energy use, and a single column for
the power use during a run. Subsequently, these categories will be discussed in a similar order.

First, the results show that the number of accepted, or “clean”, runs does not always equal
the total amount of runs executed, since sometimes the amount of unrelated workload and/or
power use during a run was unacceptable. However, we ensured that at least 30 clean runs
per AppSys were collected. Because system SRVR produced a considerable smaller number of
clean runs compared to the other systems, we had to perform additional series of runs with
SRVR. Remarkably, this problem did not occur with application version Borw8M2C. Thus, the
additional energy use problem with system SRVR only occurs when a single CPU is being used for
SA. Second, the results in Table 6.3 show a general trend with regards to the required execution
time and total energy: the Gauss-Legendre algorithm is the most efficient of the 3 application
versions. Next comes the dual-core version of the Borwein algorithm, which is more efficient (both
in execution time and total energy) than the single-core version. To illustrate these correlations,
we included Figure 6.3 and Figure 6.4, which depict the average amount of time and energy,
respectively, a system requires to execute a certain application version (incl. min. & max. bars).

Metrics for the Operational Energy Use of Application Software 40

C
H
A
P
T
E
R

6.
E
X
P
E
R
IM

E
N
T
A
T
IO

N

Table 6.3: Overview of the main measurement results per application per system

S = LPTP # Runs Execution Time E(SA) :: Energy Use (Joules) P (SA) :: Power Use (W)

Configuration Total Clean Seconds σ(T) Mean Median Min. Max. σ(E) σ/Mean Mean Mean(σ p/run)

Gaus8M1C 32 32 137,3 0,46 7.442 7.445 7.399 7.496 20,53 0,0072 54,2 1,53

Borw8M1C 32 32 324,9 0,70 17.989 17.994 17.912 18.096 46,69 0,0047 55,4 1,44

Borw8M2C 32 32 247,8 0,71 14.724 14.712 14.586 14.836 50,53 0,0067 59,4 5,05

S = DKTP # Runs Execution Time E(SA) :: Energy Use (Joules) P (SA) :: Power Use (W)

Configuration Total Clean Seconds σ(T) Mean Median Min. Max. σ(E) σ/Mean Mean Mean(σ p/run)

Gaus8M1C 34 31 134,0 0,31 10.891 10.906 10.704 11.026 78,56 0,0028 81,3 1,36

Borw8M1C 32 31 317,9 0,34 26.092 26.080 25.876 26.314 121,86 0,0026 82,1 1,27

Borw8M2C 32 31 241,8 0,51 20.555 20.596 20.300 20.808 137,31 0,0034 85,0 4,25

S = SRVR # Runs Execution Time E(SA) :: Energy Use (Joules) P (SA) :: Power Use (W)

Configuration Total Clean Seconds σ(T) Mean Median Min. Max. σ(E) σ/Mean Mean Mean(σ p/run)

Gaus8M1C 80 42 164,1 1,68 44.870 44.828 43.458 46.153 459,55 0,0102 273,4 1,05

Borw8M1C 72 42 376,2 2,25 103.165 103.252 101.236 104.685 743,21 0,0072 274,3 0,98

Borw8M2C 55 55 295,4 1,37 82.204 82.183 81.269 83.232 402,41 0,0049 278,2 3,78

M
etrics

for
th

e
O

p
era

tio
n

al
E

n
erg

y
U

se
of

A
p

p
lication

S
oftw

are
41

CHAPTER 6. EXPERIMENTATION

0

50

100

150

200

250

300

350

400

LPTP DKTP SRVR

D
u

ra
ti

o
n

 (
se

co
n

d
s)

Gaus8M1C

Borw8M1C

Borw8M2C

Figure 6.3: Results - Execution time per application per system

Inspecting the stability of the measurement runs, Table 6.3 indicates that system SRVR is less
stable regarding the required execution time and energy use values. However, when it comes to the
stability of the power during single runs (see last column), SRVR appears to be slightly more stable
than the other systems. In addition, we observed that there are relatively large differences between
the required energy use values of the different systems due to differences in scales. Consequently,
we calculated the normalized standard deviation values, i.e. σ/Mean, to be able to compare these
values on a (more) similar scale. The normalized standard deviation is calculated by dividing the
St.Dev.(E(SA)) by the related the E(SA) value. This measure is also known as the unitized risk or
the coefficient of variation [6]. The σ/Mean values show that (1) the standard deviation values are
insignificant when compared to the absolute means and (2) the normalized deviations between sys-
tems appear to be quite similar despite that this is not the case at the absolute standard deviations.

0

20.000

40.000

60.000

80.000

100.000

120.000

LPTP DKTP SRVR

En
er

gy
 (

Jo
u

le
)

Gaus8M1C

Borw8M1C

Borw8M2C

Figure 6.4: Results - Energy use per application per system

Metrics for the Operational Energy Use of Application Software 42

CHAPTER 6. EXPERIMENTATION

6.2.1 Measuring the Base Energy Use Values

Table 6.4 shows the aggregated measurement results related to clean intervals in which systems
were in their base state. Because of the variable nature of the systems with regards to their power
use, we determined a specific P (SB) value during each series of measurement runs. This way, we
envisioned to use a more representative P (SB) value within each series of an AppSys-configuration.
However, afterwards we concluded that the differences between the minimum and maximum P (SB)
values were 0,5, 0,9 and 0,1 for the LPTP , DKTP and SRVR system, respectively. Thus, based on
these findings, we decided to use a single P (SB) value per system, which simplified the calculations.

Table 6.4: Overview of power during base state

System Σ T (SB) P (SB) Min. Max. σ(P (SB)) σ(P) p/run

LPTP 05:36:14 34,4 34,04 34,99 0,23 0,20

DKTP 06:28:00 69,3 68,09 70,51 0,58 0,92

SRVR 16:13:44 265,6 264,99 266,97 0,32 0,35

6.2.2 Determining the Power Use Range

As explained in Section 5.2.2, we would like to normalize the power use values further to minimize
the differences in scales. To achieve this, we needed to determine the power use range of a system,
i.e. P (SR), which lays between the P (SB) and P (SM), i.e. the maximum power use of a system.

Table 6.5: Overview of determined P (SM) and P (SR) values (in Watts)

System P (SM) Min. Max. σ(P) ΣT (sec) P (SR)

LPTP 71,5 69,9 71,7 0,803 883 37,2

DKTP 92,2 91,4 93,4 1,307 501 23,6

SRVR 288,1 283,2 291,2 0,801 1936 22,5

Table 6.5 shows the maximum power use values which were measured during maximum work-
load intervals produced by HeavyLoad 1. Compared to the P (SB) and P (SA) values, it was more
difficult to determine a constant value for the P (SM) per system, because the temperature and
efficiency of the system are more variable at maximum workload. Consequently, we performed a
series of runs to determine the average value for each system. For each system we calculated the
difference between the P (SB) and P (SM) values, denoted P (SR), i.e. a system’s power use range.

6.3 Experimentation Analysis

Next step is to relate the obtained results with the metrics defined in Section 5.2.2. This includes
(1) the determination of E(AS), (2) the application of the power use range of each system for
better comparison of power use values between different systems, and (3) how this can be used to
determine the relation between the workload at a system during SA and the resulting power use.

6.3.1 Determining the Operational Energy Use

As expected, Table 6.3 showed that executing the applications on different systems result in vari-
ous power consumption and execution time values, despite that the CPUs operated on the same
frequencies. Nevertheless, per AppSys-configuration, the measurement data is remarkably stable

1http://www.jam-software.com/heavyload/

Metrics for the Operational Energy Use of Application Software 43

CHAPTER 6. EXPERIMENTATION

in terms of the required execution time and energy per run, as well as the power during the runs.
Furthermore, the results show that the systems require considerable different amounts of energy
for executing the application. This can be explained i.a. by the different base values of systems,
as is shown in Table 6.4. In response to this, we introduced a more independent metric in Sec-
tion 5.2.2. The main assumption to come to metric (5.3) is that the system does not execute any
other, unrelated, processes while executing the application. Comparing the processing times for
the application during runtime, depicted in Table 6.6, shows that, for the single core versions,
one core is completely occupied by the process and with Borw8M2C it is more evenly balanced.
However, during each SA-measurement, both cores often have a higher workload than during the
SB-measurements. Hence, it was necessary to investigate which processes were active during SA.

Table 6.6 shows that, during SA, each system spent less than 4,5% of their %CPU time on
other processes than Systester, i.e. App., and the Idle processes. It also shows that, during the
Base intervals (e.g. last row), each system spent less at least 99.7% of their %CPU Time on the Idle
process. Further analysis of the active processes during the execution of the application showed
that the Systester, Idle and general system processes (e.g. the base) together accounted for at least
99,6% of the %CPU Time. Consequently, at most 0,4% of the %CPU time was related to other
processes. Therefore, we conclude that the energy increase during SA is caused by the execution
of the application. As the assumption for metric 5.3 holds, we can calculate the operational energy
use for each combination of application and system, as shown in Table 6.7. The results show that,
even though we filter out the P (SB), this metric remains to be dependent on the system, i.e. there
are still differences between the systems per applications version when comparing the E(AS) values.

To illustrate the differences, Figure 6.5 gives a graphical comparison between the E(SA) and
E(AS) values. Given that the scales of the 2 y-axis are considerably different (e.g. 120.000 vs.
8.000 as maximum), we argue that the differences between E(AS) values are much smaller between
systems and applications in comparison to the E(SA) values. For instance, the normalized standard
deviation of the E(AS) per application version, denoted “σ/Mean”, is on average 0,30, while the
deviation of the E(AS) value is 0,79. With respect to the P (AS) values, showed at the right side
of Table 6.7, we observe a similar significant difference when comparing its average normalized
standard deviation value with the specific value of the P (SA), i.e. 0,34 vs. 0,71 respectively.

0

20.000

40.000

60.000

80.000

100.000

120.000

LPTP DKTP SRVR

En
er

gy
 (

Jo
u

le
)

Gaus8M1C

Borw8M1C

Borw8M2C

0

1.000

2.000

3.000

4.000

5.000

6.000

7.000

8.000

LPTP DKTP SRVR

En
er

gy
 (

Jo
u

le
)

Gaus8M1C

Borw8M1C

Borw8M2C

Figure 6.5: Overview of E(SA) [left] and E(AS) [right] values

Moreover, Table 6.7 shows that, at each application version, SRVR and LPTP produce the
highest and lowest E(SA) values, respectively, while at the E(AS) the exact opposite is the case.
Also, we noticed that at systems LPTP and DKTP the E(SA) and E(AS) values related to
application Borw8M2C are lower, despite that these systems have higher P (SA) values during the
Borw8M2C application version than during Borw8M1C (e.g., high but short intensity). However,
this does not hold for SRVR since Borw8M2C produces both the highest energy and power values.

Metrics for the Operational Energy Use of Application Software 44

C
H
A
P
T
E
R

6.
E
X
P
E
R
IM

E
N
T
A
T
IO

N

Table 6.6: %CPU Time during measurements per CPU [left] and per Process [right]

Per CPU Per Process

LPTP DKTP SRVR LPTP DKTP SRVR

Configuration cpu0 cpu1 cpu0 cpu1 cpu0 cpu1 App. Idle App. Idle App. Idle

Gaus8M1C 4,5% 99,4% 99,0% 3,1% 98,8% 6,3% 49,6% 48,1% 49,4% 49,0% 49,2% 47,4%

Borw8M1C 4,2% 99,7% 99,5% 3,1% 99,4% 6,3% 49,7% 48,1% 49,7% 48,7% 49,5% 47,1%

Borw8M2C 68,0% 69,1% 75,5% 60,2% 59,1% 79,4% 66,2% 31,4% 66,1% 32,1% 64,8% 30,7%

Base 0,2% 0,4% 0,3% 0,3% 0,6% 0,1% 0,0% 99,7% 0,0% 99,8% 0,0% 99,7%

Table 6.7: Overview of determined E(AS) [left] and P (AS) [right] values

Energy use :: E(AS) (Joules) E(SA) Power use :: P (AS) (Joules/s) P (SA)

Configuration LPTP DKTP SRVR σ/Mean σ/Mean LPTP DKTP SRVR σ/Mean σ/Mean

Gaus8M1C 2.719 1.608 1.282 0,3290 0,8017 19,8 12,0 7,8 0,3764 0,7160

Borw8M1C 6.812 4.078 3.261 0,3219 0,7821 21,0 12,8 8,7 0,3608 0,7105

Borw8M2C 6.199 3.806 3.740 0,2496 0,7796 25,0 15,7 12,7 0,2948 0,6934

Table 6.8: Ratios of P (AS) to P (SA) [left] and P (SR) [middle], and %CPU Times [right]

P (AS)/P (SA) P (AS)/P (SR) :: R(AS) %CPU Time(SA)

Configuration LPTP DKTP SRVR LPTP DKTP SRVR LPTP DKTP SRVR

Gaus8M1C 36,5% 14,8% 2,9% 53,2% 50,8% 34,7% 51,9% 51,1% 52,6%

Borw8M1C 37,9% 15,6% 3,2% 56,3% 54,3% 38,5% 51,9% 51,3% 52,9%

Borw8M2C 42,1% 18,5% 4,6% 67,2% 66,6% 56,2% 68,6% 69,3% 69,3%

M
etrics

for
th

e
O

p
era

tio
n

al
E

n
erg

y
U

se
of

A
p

p
lication

S
oftw

are
45

CHAPTER 6. EXPERIMENTATION

Further, Table 6.8 (see previous page) includes multiple ratio’s. The first one (columns 2 to 4)
concerns the ratio between P (SA) and P (AS) values, i.e. the portion of P (SA) related to P (AS).
By comparing the values per application, we concluded that there is little correlation between
systems when the system’s total power usage is included, due to large differences in P (SB) values
between systems. In addition, we see little correlation between these values and their related %
CPU Time values (see columns 8 to 10). Consequently, to cope better with different systems, we
determined the position of the P (AS) value within the specific power use range of systems, i.e.
P (SR). Hence, column 5 to 7 in Table 6.8 and Figure 6.6 (right) show the resulting R(AS)-ratios.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

LPTP

DKTP

SRVR

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

LPTP

DKTP

SRVR

Figure 6.6: Overview of P (AS)/P (SA) [left] and R(AS) [right] ratios

The values in the table and graph show that there is a stronger correlation between the systems
if we normalize the operational power use values of each application to the respective power use
ranges (i.e. metric 5.4). For instance, the difference between the minimal and maximum values
per version decreases by 19,5% (e.g. averaged over the different systems). In addition, Figure 6.7
illustrates that there is a stronger correlation between the R(AS) and %CPU Time values (per
system). For instance, while the min/max-difference between P (SA)/P (AS) and %CPU Time is
50,7% on average with a standard deviation of 16%, the difference between R(AS) and %CPU Time
is only 17,6% with a deviation of 6%. Furthermore, statistics (i.e. Pearson’s r) show a signific-
ant correlation with Gaus8M1C at LPTP (c : 0.367, p : 0, 043) and at DKTP(c : −0.366, p : 0, 04).

These results indicate that metric 5.4 can help to align CPU workload with the resulting power
use. However, the results also indicate that the metric is not yet stable enough to be used as an
system independent metric for sustainability. Analysis using one-way ANOVA on the R(AS) values
only shows no significant difference between the Gaus8M1C values of LPTP and DKTP (p : 0, 07).
A possible cause for the lack of more similarity can be that our assumption of a linear dependence
between the workload and the energy usage does not hold, or that the measuring of the maximum
power consumption did not correctly take all the hardware components into consideration.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

LPTP

DKTP

SRVR

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

LPTP

DKTP

SRVR

Figure 6.7: Overview of R(AS) [left] and %CPU Time(SA) [right] ratios

Metrics for the Operational Energy Use of Application Software 46

CHAPTER 6. EXPERIMENTATION

Table 6.9: Differences between applications :: T (SA) [left] and E(AS) [right]

Execution time :: T (SA) Energy use :: E(AS)

Ratio f(Ax)/f(Ay) LPTP DKTP SRVR LPTP DKTP SRVR

Gaus8M1C/Borw8M1C 42,3% 42,2% 43,6% 41,0% 39,4% 39,3%

Gaus8M1C/Borw8M2C 55,4% 55,4% 55,6% 44,9% 42,3% 34,3%

Borw8M2C/Borw8M1C 76,3% 76,1% 78,5% 91,5% 93,3% 114,7%

6.3.2 Differences between Application Versions

Besides the system independence of the metrics, we also require to investigate their rigidity. To
do so, we determined the ratios based on the differences in required execution time and energy
between different application versions. This enables us to determine whether differences between
application versions remain the same between different systems. Table 6.9 shows that the differ-
ences in required time for executing the application versions are relatively similar, which is also
depicted in Figure 6.8. However, SRVR often deviates (slightly) from the others, which could be
explained by lower RAM performance compared to the other systems. The same holds for the
E(AS) values of systems. Here, we only observe a strong similarity between the three systems at the
Gaus8M1C /Borw8M1C -ratio. Further, ratios that include Borw8M2C show weaker correlations
between the systems, mostly due to SRVR. Therefore, we assume that SRVR has less advantage
of dual-core processing, since only at SRVR holds that EAS

(Borw8M1C) < EAS
(Borw8M2C).

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gaus8M1C/Borw8M1C Gaus8M1C/Borw8M2C Borw8M2C/Borw8M1C

LPTP

DKTP

SRVR

0%

20%

40%

60%

80%

100%

120%

Gaus8M1C/Borw8M1C Gaus8M1C/Borw8M2C Borw8M2C/Borw8M1C

LPTP

DKTP

SRVR

Figure 6.8: Differences between applications :: T (SA) [left] and E(AS) [right]

6.3.3 Investigating the Other Components

As mentioned in Section 6.1, we also recorded the performance of other components during SA.
Although the exact relation between (outstanding) values at these performance counters and the
(resulting) E(SA), let alone R(AS), values is beyond the scope of this research, we discuss sev-
eral elements concerning these additional recordings, including: (1) an example of a non-clean
application run which showed remarkable values at other performance counters than the %CPU
Time, and (2) differences at other components between different systems and versions of Systester.

Figure 6.9 shows the energy consumption of system DKTP related to a series with 16 executions
of application version Borw8M1C. In this series, the first run was considered not clean and the
remaining 15 runs were judged as clean runs. Regarding execution time and required energy, there
was already a noticeable difference between the first run and the other runs, namely: 403 seconds
instead of 318 seconds and 34.633 Joules instead of the 26.141 Joules on average at the remainder
of the runs. Table 6.10 shows a selection of non-CPU Time performance counters, that contained
unusual values during Run 1 im comparison to the other runs in this particular series.

Metrics for the Operational Energy Use of Application Software 47

CHAPTER 6. EXPERIMENTATION

Table 6.10: Overview of (average) non-CPU performance values at DKTP

System (per second) Disk Memory NIC

System calls Data operations Contex switches %Idle Pages/s Bytes/s

Run 1 13.530 126,16 2.690 43,2% 278 30.671

Rest 2.339 9,13 1.054 100% 0,05 29.724

σ(Rest) 82,58 0,51 12,39 0,02 0,10 170,05

Base 2.347 9,23 940 100% 0,37 29.597

For instance, we see additional activity at the Disk, Memory, NIC, and at the three System
performance counters (Nb. in fact, almost all of the measured System counters showed unusual
values during Run 1). In addition, the σ(Rest)-row shows, for each particular performance counter,
the amount of deviation between the values of the “other” runs. Due to the relatively low values
in this row, we can conclude that the specific values in the Rest-row give a reliable indication
of the average values. We assume that the Disk component is the main cause for the increased
energy values, since it consumes a substantial amount of power when it is active [33]. However,
given the available instrumentation, we are currently not able to further validate this assumption.

Moreover, we assume that the analysis of the performance counters of non-CPU components
can serve 2 main purposes: (1) investigating the cause(s) for an increased energy use if the %CPU
Time does not show unusual values and/or (2) investigating the possible source(s), e.g. processes,
in case the %CPU Time does show unusual values. The first example in this section belongs to
the latter purpose. It shows that, even with all these additional counters, it remains (too) difficult
to determine the exact cause(s). Nevertheless, we argue that by using PerfMon in combination
with the WUP meter we can sufficiently determine whether a run is clean, i.e. by assuring that
the activity at the CPU is caused by the specific application and that the other components do
not show “abnormal” activity, which entails activity that is not similar to the workload profile of
the application. For instance, the profile of the single-core Systester is that it utilizes one (of the)
CPU(s) with a maximum intensity, while the other components should remain relatively idle.

65

70

75

80

85

90

95

P
o

w
e

r
(W

at
ts

)

Figure 6.9: WUP data - 16 runs of application Borw8M1C on system DKTP

Metrics for the Operational Energy Use of Application Software 48

CHAPTER 6. EXPERIMENTATION

Table 6.11: Overview of average non-CPU performance values at LPTP and DKTP

System (per second) Disk Memory NIC

App/Base R. System calls Data operations Contex switches %Idle Pages/s Bytes/s

A(LPTP) 32 683,9 10,2 331,4 100% 0,05 30.671

A(SRVR) 33 954,1 11,1 222,1 100% 0,75 28.963

B(LPTP) 18 559,8 10,5 404,1 100% 0,08 33.903

B(SRVR) 19 845,7 9,07 197,6 100% 0,07 28.565

To investigate the workload profile of Systester further, Table 6.11 shows the non-CPU per-
formance counters values related to a series of measurements performed with LPTP and SRVR.
Similar to the previous table, we combined the values related to application runs to compare them
with the values related to the base. The values indicate that the System and NIC related values
vary between the different systems with respect to the relationship between application and base
runs (e.g. which value is greater). Therefore, we cannot make any hard conclusions about these
counters. However, we do see that the Disk and Memory components remain relatively idle during
both the (clean) application and base runs. Since, the same holds for the values at LPTP , we are
confident that these specific characteristics should be included in the workload profile for Systester.

Finally, we compare the non-CPU performance counter values of the Borwein single/dual-core
versions of Systester. For this, we selected two series of measurements performed by LPTP , which
both contain 32 clean application runs. Table 6.12 shows the values of all the non-CPU perform-
ance counters, which were included during the experimentation (see also Appendix A). Since the
scale between the counters is different, we normalized the values to be able to compare the amount
of difference (i.e. abs(single − dual)/ single+dual

2) between the counters. Consequently, we con-
cluded that the largest relative differences between the two versions are at Processor Queue Length
(0,62), Disk Time (0,49), Exception Dispatches/s (0,31), and Memory Pages/s (0,30). However,
it should be noted that due to the large differences in scale, this comparison method is not ideal,
because the absolute values closer to zero result in a higher relative difference more quickly.

In addition to this table, the next page also includes a graph, which illustrates the relative
differences between the counters of the versions. Furthermore, to handle the differences in scales
between counters, we applied the same formula from the previous paragraph, which divides the
absolute difference between two values by their mean. Besides the difference between the values
related to the application runs of both versions, i.e. A(1C)/A(2C), we also included the following
comparisons: singe-core application vs. (single) base (A(1C)/B(1C)), dual-core application vs.
base (A(2C)/B(2C)), and (to be complete) single-core base vs dual-core base (B(1C)/B(2C)). This
graph quickly shows, or underlines, that the largest relative differences are at the Processor Queue
Length, Memory Pages/s, Disk Time, Exception Dispatches/s, and File Read Bytes/s counters.
Furthermore, it shows that at most counters the differences between the application runs and
base runs is larger than the difference between the two application versions. However, at some
counters the opposite is the case and therefore it remains difficult to draw exact conclusions from
such a graph. Nevertheless, with respect to the provided table and the graph, we conclude this
section with the following interpretation: since two CPUs are used to process Systester, the dual-
core version has a smaller Processor Queue Length value (e.g. less waiting time), higher Memory
Page/sec and %Disk Time value (e.g. higher utilization and quicker results). Consequently,
besides the CPU component, the Disk and Memory components are more active during the dual-
core version and, therefore, the systems requires (on average) more power during the execution.
However, due to a better utilization of the CPU and Memory components, most systems require
less time and, thus, less energy (e.g. both E(SA) and E(AS)) to execute the Borw8M2C version.

Metrics for the Operational Energy Use of Application Software 49

C
H
A
P
T
E
R

6.
E
X
P
E
R
IM

E
N
T
A
T
IO

N

Table 6.12: Overview of workload at other components during measurements with Systester and LPTP

Comp. SYSTEM MEMORY NIC DISK

Config.

(Borw.)

S
y
stem

C
alls/

sec

F
ile

R
ea

d
B

y
tes/

sec

E
x
cep

t.
D

isp
atch

/
s

#
T

h
rea

d
s

F
ile

W
rite

O
p

era
tio

n
s

F
ile

D
a
ta

O
p

era
tio

n
s

F
ile

R
ea

d
O

p
era

tio
n
s

F
ile

C
o
n
tro

l
O

p
er.

P
ro

cesso
r

Q
u
eu

e
L

.

F
ile

W
rite

K
B

y
tes/

s

C
o
n
tex

t
S
w

itch
es/

s

F
ile

C
o
n
tro

l
B

y
tes/

s

P
a
g
es/

sec

A
va

ila
b
le

M
B

y
tes

C
a
ch

e
M

B
y
tes

K
B

y
tes

R
ec./

sec

P
a
ck

ets
S
en

t/
sec

%
D

isk
T

im
e

D
isk

K
B

y
tes/

sec.

*8M1C 682,9 510,6 0,00 488,1 8,13 10,2 2,04 64,8 1,60 30,3 331,4 3,93 0,05 1.590 19,4 34,2 27,4 0,17 2,35

Base 599,8 1.712 0,01 485,6 8,28 10,5 2,18 68,4 0,02 30,9 404,1 4,08 0,75 1.674 19,5 33,9 27,5 0,46 4,14

*8M2C 716,0 619,6 0,00 483,9 8,18 10,2 2,06 65,5 2,10 30,4 304,5 3,99 0,11 1.603 19,2 34,3 28,3 0,26 2,71

Base 589,2 1.756 0,01 480,6 8,15 10,3 2,19 66,9 0,02 30,2 394,9 4.011 0,37 1.683 19,2 33,9 27,6 0,19 2,56

Figure 6.10: Relative differences between versions (normalized to the mean of the specific combination) with LPTP

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%
A(1C)/B(1C) A(2C)/B(2C) A(1C)/A(2C) B(1C)/B(2C)

M
etrics

for
th

e
O

p
era

tio
n

al
E

n
erg

y
U

se
of

A
p

p
lication

S
oftw

are
50

CHAPTER 6. EXPERIMENTATION

6.4 Additional considerations

During the course of the experimentation phase, we have considered many additional aspects that
have not been discussed yet. This includes an attempt on determining the power consumptions at
different workload levels (e.g. to gain a more detailed profile) and also how an artificially increased
base workload (e.g. +50%) would influence the execution of an application. To provide additional
information to the “enthusiastic” readers, we included a select few of these aspects in this section.

6.4.1 Power Profiling the Systems

As we mentioned before, we assumed a linear dependence between the system workload (at the
CPU component) and the resulting power consumption to determine the R(AS) values. One of
the reasons for this, is that it remains difficult to determine the power consumption related to an
exact workload at a system or a specific component. We have showed that the power consumption
during base workload can be achieved, but still provides obstacles, and that the maximum work-
load is more difficult mostly due to the influence of variable temperatures. Further, the workloads
between the base and maximum workload are even harder to determine, because most stress test
tools such as HeavyLoad are designed to create only a maximum workload at a set of compon-
ents. In addition, given that there are multiple components, there are many different combinations
to consider (e.g. 50% CPU, 0% Disk, ... vs. 50% CPU, 25% Disk, ... vs. 50% CPU, 50% Disk, ...).

After an extensive search, we finally found Pressure 2, which is a CPU stress tester that enables
the artificial creation of workload per separate CPU core and, thus, specific %CPU Time values.
In addition, since it can be installed as a Windows service and initiated from command-line, we
were able to remotely conduct measurements with it. Given our focus on the CPU component and
the additional functionalities, we happily settled with this tool. However, due to the OS of SRVR,
we were not able to install the service on this system and, therefore, it is not included within the
results. Further, since Pressure only controls the CPU component, we realize that the power use
related to its maximum achievable workload is lower than when HeavyLoad creates a maximum
workload at all components together. Hence, we should note that the results presented below re-
main experimental (e.g. until all of the components are included properly) and that they are more
valuable when combined with an application that mostly creates workload at the CPU component.

As Figures 6.11 and 6.12 show, Pressure enables us to produce various workload steps resulting
in related power consumption steps. For instance, the graphs in these figures contains the following
steps: 25%, 50%, 75% and 100% workload, at 1, 2, and 4 CPU cores. (Nb. the combination of 1
CPU core at 25% and the other cores at 0%, i.e. the first step, is missing due to an unclean run).

12

14

16

18

20

22

24

26

28

30

P
o

w
e

r
(W

at
ts

)

Figure 6.11: WUP data - Series of measurement runs with Pressure on LPTP2

2http://www.elifulkerson.com/projects/pressure-cpu-stress-tester.php

Metrics for the Operational Energy Use of Application Software 51

CHAPTER 6. EXPERIMENTATION

We used these steps to determine the relation between a systems workload and the resulting
power consumption at various intensities. In addition, we were able to conduct multiple (auto-
mated) measurements, since we already had useful protocols and multiple test systems available.
Since Pressure did not work on SRVR, the set of systems on which we performed the tests included
the DKTP system and three laptops: LPTP, i.e. LPTP1, and the two previously excluded laptops
with Hyper-Threading technology, i.e. LPTP2 and LPTP3. Furthermore, we only included 4 dif-
ferent steps, due to the differences in cores between the systems and also a limited amount of time.
These steps were 2 separate cores at 25%, 50%, 75% and 100%. As can be seen in Figure 6.11, we
also investigated the options of using 4 cores (with the two modern laptops), however we quickly
realized that since the 4 cores of these systems are “logical”, or virtual, their behavior is not at all
similar to a system with 4 separate physical cores and, therefore, we ignored these options.

0

20

40

60

80

100

C
P

U
 T

Im
e

 (
%

)

CPU0a CPU0b CPU1a CPU1b

Figure 6.12: PerfMon data - CPU Time per logical cores of LPTP2

The results of the measurements are included in Table 6.13 and Figure 6.13, which illustrates
two graphs containing absolute and relative values per systems. The absolute graph shows the
resulting power consumption at each workload step, while the relative graph shows the normalized
values by rescaling the absolute values by the specific range that lies between the minimum and
maximum power values per system. Since the absolute values are on different scale, the latter
graph is useful because it enables us to compare the values on a single scale between 0 and 1.
The results show that the dependence between the workload and power use variables are more
closer to a linear growth than to, for instance, an exponential (e.g. what most of us expected)
or logarithmic growth. We argue that this observation is in favor of our metrics. However, to be
more sure, we should conduct additional measurements with more test systems, more workload
steps, and, to further minimize the amount of noise, more and longer iterations (while monitoring
the temperature of the systems). Nevertheless, we believe that our (experimental) attempt with
Pressure can be used as a good foundation for more advanced profiling methods.

Table 6.13: Overview of Pressure results per workload step in absolute and relative values

Absolute (W) Relative (%)

System 0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

DKTP 69,0 75,0 77,2 83,5 86,8 0,0 33,7 46,1 81,5 100,0

LPTP1 35,7 39,5 43,2 45,4 49,1 0,0 28,4 56,0 72,4 100,0

LPTP2 13,0 18,7 24,4 26,5 29,0 0,0 35,6 71,3 84,4 100,0

LPTP3 8,4 13,1 16,6 19,4 22,9 0,0 32,5 56,8 76,3 100,0

Metrics for the Operational Energy Use of Application Software 52

CHAPTER 6. EXPERIMENTATION

5

15

25

35

45

55

65

75

85

95

Base 25% 50% 75% 100%

DKTP LPTP1 LPTP2 LPTP3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Base 25% 50% 75% 100%

DKTP LPTP1 LPTP2 LPTP3

Figure 6.13: Pressure results per workload step in absolute [left] and relative [right] values

6.4.2 Increasing the Base Workload

After our initial measurements with Pressure, we also considered performing measurements with
Systester while in the meantime Pressure would produce an artificially increased base workload.
The hypothesis behind this investigation would be: if we increase the base workload with 50%, will
the execution time and/or E(AS) values of Systester double in comparison to the original values.
The idea behind this hypothesis is related to the dependency between the workload and power
consumption variables, because originally we assumed that there would be a more exponential
growth between the two variables, which would imply that a system would be less efficient when it
reaches its maximum workload and power consumption values. However, Table 6.13 shows that,
in fact, the growth has a slight decreasing drop (e.g. it is steeper near the base/minimal workload).

To investigate the hypothesis, we performed additional measurement with LPTP2, i.e. a mod-
ern laptop with Hyper-Threading technology. We performed 3 different series containing multiple
runs during which Pressure was configured to produce workloads of 25%, 50% and 100% at two
separate physical cores, respectively. Moreover, these specific workloads would also be produced
during the base intervals in order to determine the (artificially increased) P (SB) values per series.

The results of our investigation showed that the three steps resulted in an execution time of
31%, 80%, and 138% greater than the original value, respectively. Then, with respect to the total
required energy, we see that the steps resulted in an increase of 44%, 100%, 271%, respectively.
The interesting thing of these values is that although the execution time does not double in value,
the required energy in the case of the 50% step is exactly twice the amount of the original value.
The reason for is that besides the increase in execution time, the average power consumption also
increases when Pressure is configured with a higher workload step (despite the fact that Systester
is designed to consume maximum CPU resources). In hindsight, we realize that Systester is not an
ideal application for this kind of investigation due to its specific design. Furthermore, we should
also note that the Hyper-Threading technology caused for difficulties and therefore it would be
better to conduct additional measurements with other systems, that only have physical cores.

6.4.3 Influence of the Operating System

Due to the many alterations of the included systems, we have also gathered measurements data
of DKTP with a clean 64bit version of Windows 7 installed, besides the 32bit version. Although
the set of 64bit-runs is much smaller, we noticed that the execution times are similar to the 32bit
version, but that it requires slightly more energy during SA (e.g. 1,3%). However, since the 32bit
has a lower P (SB) value, the two versions appear to require similar values solely related to SA.

Metrics for the Operational Energy Use of Application Software 53

Chapter 7

Validation

This chapter describes the case-study conducted after the initial experimentation, i.e. the valida-
tion of the metrics. Similar to the activities described in Chapter 6, the case-study includes a set of
protocols for measuring and gathering sufficient (and correct) data. However, to test the external
validity of the metrics, the case-study was performed with a different experimental setup (e.g. a
more complex application). Hence, before we discuss the results and analysis of the case-study
measurements in Section 7.2 and 7.3, respectively, we explain the specifics of the setup first.

7.1 Validation Setup

Within this thesis (cf. Section 6.1), an experimental setup comprises the following elements: instru-
mentation, systems, application and experiment protocols. With respect to the instrumentation,
the WUP meter is used again for measuring the power consumptions. As Figure 7.1 shows, the
meter is placed between the Application System (AS) and the power source of AS. Furthermore,
it is connected with a Management System (AS) to be able to download the energy data and
change settings. Further, with respect to the systems and applications, there are some noteworthy
differences in comparison to the original experimental setup. First, the only system that plays the
role of AS is the SRVR system. The reason for this is that the validation application, i.e. DOC-
GEN , is designed for servers (and there was only one server available, unfortunately). Second, we
can see in Figure 7.1 that the AS is now connected (at least) with an external Oracle database
and with one or more clients. To explain these relations, we briefly discuss the basic workflow of
DOCGEN .

Application
System

Management
System

WUP

En
ergy

En
ergy

Energy Use Data

Oracle DB
(external)

Data

Client
(1..*)

Initiate
Job

P
o

w
er

So
u

rce

Settings
Performance

Data

Job Results

Figure 7.1: Representation of Experimental Setup II

DOCGEN is a mail tool developed by the research partner, that works independently from an
ERP system or document management system (DMS). It can be used to automatically generate
large batches of documents (e.g., in real life it generates over 30 million documents per year).

Metrics for the Operational Energy Use of Application Software 54

CHAPTER 7. VALIDATION

When a batch, or job, is initiated by the user at the client-side of DOCGEN , the server-side (i.e.
deployed at the AS) validates the request and, if accepted, starts the collection of the data and
documents definitions. This data resides in a separate database, i.e. the Oracle DB in Figure 7.1,
whereas the definitions are created and managed internally at the AS. Once collected, the data is
merged into a preview, that has to be approved, or the generation of documents is directly started,
depending on the configurations of the user. Once the generation is finished, the documents can
be archived (e.g. in a DMS) or directly transfered to an outlet (e.g. printer or mail system).

During this case-study, we want to determine the required energy consumption for executing a
job in DOCGEN . As described above, there are multiple systems involved with the processing of a
job. Therefore, it would be best to measure the energy consumption of all these systems. Unfortu-
nately, this was not possible because only one WUP meter was available and, also, we did not have
exclusive access to the Oracle DB. However, given our focus on the CPU component, we argue
that most of the processing specifically related to DOCGEN is performed by the AS. We assume
that both the initiation of the job (e.g. at the client) and collection of data (e.g. at the Oracle
DB) are relatively constant factors, while the generation of documents (e.g. at AS) might depend
heavily on whether the processing is done by a single core or multiple cores. Although we cannot
validate this assumption for the Oracle DB, we did attempt to validate it at the client side by
monitoring its workload during each job (e.g. via PerfMon). This showed no significant differences.

Finally, with respect to the experiment protocols applied during the validation, some alterations
had to made due to the specific experiment environment. First, it was not possible to initiate a job
in DOCGEN from command-line, let alone with the desired configuration. Second, the job must be
initiated from a separate client system (CS), which entails that (if we exclude the Oracle DB) there
are at least 3 different systems within the environment. In addition, we considered experimenting
with more than one client concurrently. However, due to a limited time for measuring, this remains
for future research to be examined. Consequently, the main protocol for DOCGEN is as follows:

1. Ensure that DOCGEN works correctly at the server-side and clear cached/previous data.

2. Ensure connection between AS and MS (cf. Section 6.1.4) and clear memory of the WUP.

3. Initiate (from the MS system) remote performance logging of both AS and CS.

4. Start the client-side of DOCGEN , ensure connection and select a specific job.

5. After waiting a moment to settle from startup (e.g. less interference), initiate the job.

6. When the job is finished (e.g. documents are generated), wait and prepare for a next job.

7. When sufficient jobs have been executed, collect and process all the measurement data.

As protocol steps 6 and 7 describe, we attempted to execute multiple jobs during a measure-
ment series (e.g. similar to the experimentation with Systester). However, due to the design of
DOCGEN , the activity of initiating a next jobs could not be automated. Therefore, we decided
to determine the average execution time of a specific job and, then, wait this amount time plus
an additional 15 minutes to let the system sufficiently settle before a next job. Furthermore, also
due to the design of the application, the preparation of a job required the removal of the results
related to a previous job. Otherwise the execution of the next job will be influenced, if it requires
to produce the same results as the cached data, which is not acceptable. To minimize interference
with the AS, this data is removed remotely through a script initiated from MS (i.e. via PsTools).

Further, with respect to a suitable test job, we conducted multiple orientation measurements
with jobs that were included in the supplied version of DOCGEN . From this, we determined that
a specif job containing 5000 documents resulted in a sufficiently long execution time, e.g.: around
40 minutes. We realize that this is much longer than the execution times with Systester. However,
given the protocol for the measurements with DOCGEN , and its expected profiles, we concluded
that it would be more practical and valuable to focus on a longer task during the validation.

Metrics for the Operational Energy Use of Application Software 55

CHAPTER 7. VALIDATION

7.2 Validation Results

Executing the protocol described in the previous section, resulted (again) in an extensive dataset.
Only this time, there was one AS, i.e. SRVR, and two different application versions, i.e. the single-
and dual-core version. To have two different versions of DOCGEN , we modified the CPU affinity
of the application, since (by design) the application utilizes all available CPUs of the executing
system and, unfortunately, it was no option to modify the source code. Therefore, to simulate a
single-core version, we applied the same method from the experimentation, which entails config-
uring the CPU affinity of the main process at AS, i.e. BriefServer.exe, to a single CPU.

Table 7.1 presents the main outcomes of the validation measurements. This table includes
the same elements as Table 6.3, namely: the total and “clean” number of measurement runs,
the amounts of time and energy SRVR requires to execute the different applications versions, or
configurations, on average (including median, min and max of the energy values), and additional
information with respect to the stability of the measurements based on their standard deviation.

NB. besides the two expected configurations, the table includes an additional third one, i.e.:
Single-as-Dual. The reason for this, is that we had difficulties with limiting the CPU affinity of
DOCGEN to a single CPU. Consequently, the results in the third row relate to measurements that
were configured as single-core, but that were eventually executed with dual-core characteristics.

Figure 7.2 depicts a graph which shows the %CPU Time of both CPUs of SRVR during a
single-core execution, i.e. gray-colored, and a dual-core execution, i.e. black-colored. We can
see that the execution can be divided into two parts: the beginning with high intensity and the
(relatively longer) ending with low intensity. Furthermore, this graphs shows several differences in
characteristics between the two version. The main three of these differences are (1) the beginning
part of the single-core version lasts longer and has a higher intensity, (2) the single-core requires
more time to execute (e.g 150 seconds), and (3) the intensity at the CPUs of the dual-core version
are more balanced during the beginning, which is of course not that surprising (e.g. given the
configuration). Finally, (partially) due to the differences in workload at the CPU component, we
can also see differences with respect to the energy and power values. For instance, the power use
of the single-core version is higher and, in combination with its longer execution time, the average
total energy use required for this version is considerably higher. i.e. 682.260 vs. 630.826 Joules. In
addition, we see more variability with respect to the execution times in comparison with Systester.

0

10

20

30

40

50

60

70

80

90

100

%
 C

P
U

 T
im

e

Single

Dual

Figure 7.2: Comparing %CPU Time values of different versions during a DOCGEN run

Metrics for the Operational Energy Use of Application Software 56

C
H
A
P
T
E
R

7.
V
A
L
ID

A
T
IO

N

Table 7.1: Overview of the main measurement results with DOCGEN and SRVR

Runs Execution Time E(SA) :: Energy Use (Joules) P (SA) :: Power Use (W)

Configuration Total Clean Seconds σ(T) Mean Median Min. Max. σ(E) σ/Mean Mean Mean(σ p/run)

Dual-core 36 33 2.354 22,71 630.826 630.406 620.070 650.456 6.915 0,0110 268,0 4,09

Single-core 22 19 2.506 90,68 682.260 670.798 656.104 741.732 26.927 0,0395 272,2 5,92

Single-as-Dual 53 47 2.343 22,65 625.731 625.914 615.582 647.498 6.244 0,0100 267,1 3,05

264

266

268

270

272

274

276

278

280

Figure 7.3: WUP data (in Watts) - Series of 6 measurement runs with DOCGEN

M
etrics

for
th

e
O

p
era

tio
n

al
E

n
erg

y
U

se
of

A
p

p
lication

S
oftw

are
57

CHAPTER 7. VALIDATION

7.3 Validation Analysis

The analysis within the validation entails testing the metrics defined in Section 5.2.2 with the
data resulting from the DOCGEN measurements. Since the metrics have already been explained
extensively, the analysis has been limited to the following topics: investigating the workload at
the CPU component, applying the metrics on the results, and the influence of other components.

7.3.1 Investigating the CPU Component during a Job

Similar to the experimentation with Systester, we monitored the performances of the executing
system during the validation measurements to be able to tell (more precisely) whether a run was
clean. For this monitoring, we used a different data collector, because DOCGEN is a more com-
plex application with multiple active processes during SA. For instance, besides BriefServer, Idle
and System, the following processes showed additional activity during SA: snmp (e.g. network
management), lsass (e.g. local security authentication), and service hosts #2, #6, and #8. The
monitoring results, i.e. the average performance values per configuration, are shown in Table 7.2.

Table 7.2: %CPU Time during DOCGEN measurements per CPU [left] and per Process [right]

Per CPU Per Process

Config. cpu0 cpu1 BriefS Idle snmp System lsass svch2 svch6 svch8

Dual 7,56% 6,28% 8,99% 86,2% 1,69% 0,28% 1,81% 2,44% 0,23% 0,98%

Single 3,53% 25,4% 24,5% 71,1% 2,03% 0,14% 0,12% 1,40% 0,06% 0,99%

S-as-D 3,70% 7,26% 7,32% 89,0% 1,46% 0,20% 0,06% 2,32% 0,05% 0,94%

Base 0,79% 0,16% 0,03% 99,1% 0,0% 0,09% 0,06% 0,03% 0,05% 0,99%

From Table 7.2, we can conclude that the Single-as-Dual configuration is more closely related
to the Dual-core configuration, than to the Single’s. Furthermore, in contrast to our orientational
measurements, we see that some of the included processes turned out to be not considerably more
active during SA than during SB , such as service hosts #6 and #8. However, a reason for this
might be that during the Base intervals the connection of DOCGEN between the client and server
remains active. Nevertheless, based on the performance data, we assume that the influence of these
processes is insignificant in comparison to the influence of the BriefServer process. Furthermore,
we can also conclude that at each configuration the %CPU Time values of the processes sum op
to 100%. In fact, they are even a bit more than 100% (e.g caused by rounding errors in PerfMon).

7.3.2 Normalized Operational Energy Use of DOCGEN

Now that we have shown that (at least at the CPU component) the workload during the SA runs
is (almost) completely caused by SA related processes, we can apply the subtractive method for
determining the operational energy use of DOCGEN . To do so, the P (SB) values are required,
which we determined for each series separately. However, since the differences between the minimal
and maximum measured P (SB) values within series were between 0,76 and 1,45 W, we have used
a single value per configuration, namely: 265,4 (Dual), 265,2 W (Single), and 264,8 W (S-as-D).
In addition, Figure 7.3 shows that, after completing a run of SA, SRVR did not always reached it’s
minimum power consumption before the next job was initiated. Since all the general performance
counters appear to be idle during base intervals, we assume that the cause for this is the specific
cooling system implemented at SRVR, which often remains active while its workload has already
decreased significantly. By using a single P (SB) value per configuration and, thus, averaging over
multiple series, we attempted to minimize the impact of this (less than optimal) behavior.

Metrics for the Operational Energy Use of Application Software 58

CHAPTER 7. VALIDATION

Table 7.3: The energy [left] and power [right] values of DOCGEN

Energy values (Joules) Power values (W)

Config. E(SA) E(SB) E(AS) P (SA) P (SB) P (AS)

Dual 630.826 624.781 5.782 268,0 265,4 2,6

Single 682.260 664.817 17.560 272,2 265,2 7,0

S-as-D 625.730 620.496 4.977 267,1 264,8 2,2

σ/Mean 0,0395 0,0313 0,6093 0,0083 0,0009 0,5529

00:39:14

00:41:49

00:39:03

00:34:34

00:36:00

00:37:26

00:38:53

00:40:19

00:41:46

00:43:12

00:44:38

00:46:05

Dual Single S-as-D

E
n

e
rg

y
 (

Jo
u

le
s
)

630.826
682.260

625.731

0.000

100.000

200.000

300.000

400.000

500.000

600.000

700.000

Dual Single S-as-D

E
n

e
rg

y
 (

Jo
u

le
s
)

Figure 7.4: Overview of required time [left] and energy [right] per DOCGEN configuration

624.781

664.817

620.496

5.782

17.560

4.978

600.000

610.000

620.000

630.000

640.000

650.000

660.000

670.000

680.000

Dual Single S-as-D

E
n

e
rg

y
 (

Jo
u

le
s
)

265,41 265,22 264,84

2,6

7,0

2,2

260,00

262,00

264,00

266,00

268,00

270,00

272,00

Dual Single S-as-D

P
o

w
e

r
(W

a
tt

s)

Figure 7.5: Overview of Base/App-distribution at energy [left] and power [right] values

Metrics for the Operational Energy Use of Application Software 59

CHAPTER 7. VALIDATION

Table 7.3 depicts the specific operational energy use values that resulted from applying the sub-
tractive metric on the DOCGEN measurement data. The values show that, besides that S-as-D
remains similar to Dual, there remains a clear difference between the Dual and Single configur-
ations. Moreover, this difference is confirmed by the deviations over each column (i.e. σ/Mean),
which are larger at E(AS) and P (AS) than at E(SA) and P (SA), respectively. To further illustrate
the difference between the configurations, several graphs are shown in Figure 7.4 and Figure 7.5.
It should be noted that at three of these graphs the y-axis does not begin at zero, because other-
wise it would be difficult to notice differences between configurations. The first two graphs show
clearly that the amounts of execution time and energy required at the Single-core configuration
are more than at the other two configurations In addition, the included error bars indicate that
the differences between the related minimal and maximum values are larger. Further, the second
pair of graphs illustrate the (average) application and base ratios within the total system’s energy
and power consumption, respectively. With respect to the energy consumption, we see that the
base at Single is considerably larger, which is mainly caused by the longer execution time related
to this configuration. Then, with respect to the power consumption, we see that the power related
to the application, i.e. P (AS), of Single is higher than the other two configurations. We assume
that this is caused, amongst others, by the higher average workload at the CPU component during
SA. Thus, because of its longer execution time and higher P (AS) values, we can conclude that
the operational energy use of Single is higher than that of Dual. Since both configurations process
the same amount of work, we can argue that (on SRVR) Dual is more energy efficient than Single.

7.3.3 Applying the Power Use Range on DOCGEN

The final metric to be validated is the position of the configurations within the power use range
of SRVR. Only, the main value of this metric would be to compare the positions of one or more
configurations within the ranges of different systems, which was unfortunately not possible yet.
However, we can still investigate how the specific R(AS)’s correlate with the %CPU Time values.

Table 7.4: Overview of power use range values and %CPU Times for DOCGEN

Config. P (SR) (W) P (AS)/P (SA) P (AS)/P (SR) :: R(AS) %CPU Time(SA)

Dual 22,69 0,96% 11,32% 13,8%

Single 22,88 2,56% 30,41% 28,9%

S-as-D 24,26 0,84% 9,21% 11,0%

As Table 7.4 shows, the correlation between the R(AS), i.e. P (AS)/P (SR), and %CPU Time
values is (again) stronger than the correlation between P (AS)/P (SA) and %CPU Time. Moreover,
we see a slightly stronger similarity than we saw at Systester data with SRVR. We assume that the
main cause for this is the difference in workload and, thus, the energy consumption profiles. For
instance, Systester shows stable yet maximum workload at a single component, while DOCGEN
shows more variability in the intensity at the CPU component. In addition, we expect that, in the
case of DOCGEN , some of the other components show an increased activity during SA as well.

7.3.4 Analyzing the Performance of Other Components

The results in Table 7.4 show that our initial assumption with respect to the existence of a (nearly)
linear dependency between the %CPU Time and power use range of a system (during the execution
of an application), does hold for DOCGEN , to some extend. However, statistics have indicated
(again) that the correlations are not (yet) significant. Therefore, we want to investigate if there
are non-CPU components that are utilized considerably during the execution of DOCGEN . To
conduct this investigation, we included the performance counters values of these other components.

Metrics for the Operational Energy Use of Application Software 60

C
H
A
P
T
E
R

7.
V
A
L
ID

A
T
IO

N

Table 7.5: Overview of workload at other components during measurements with DOCGEN

Comp. SYSTEM MEMORY NIC DISK

Config.

S
y
stem

C
alls/

sec

F
ile

R
ead

B
y
tes/

sec

E
x
cep

t.
D

isp
a
tch

/
s

#
T

h
read

s

F
ile

W
rite

O
p

era
tio

n
s

F
ile

D
a
ta

O
p

era
tio

n
s

F
ile

R
ea

d
O

p
era

tio
n
s

F
ile

C
o
n
trol

O
p

er.

P
ro

cesso
r

Q
u
eu

e
L

.

F
ile

W
rite

B
y
tes/

s

C
o
n
tex

t
S
w

itch
es/

s

F
ile

C
o
n
tro

l
B

y
tes/

s

%
C

o
m

m
.

B
y
tes

A
va

ila
b
le

M
B

y
tes

C
a
ch

e
F

a
u
lts/

sec

B
y
tes

R
ec./

sec

B
y
tes

S
en

t/
sec

%
Id

le
T

im
e

A
v
g
.

Q
u
eu

e
L

en
g
th

Dual 12.936 113.163 0,01 432 44,1 336 292 607 0,23 115.189 1.177 65.297 10,1 3.230 40,8 61.821 120.733 98,8 0,01

Single 12.471 98.633 0,01 430 38,5 374 336 570 0,69 99.879 1.149 58.034 14,8 2.825 34,4 58.613 116.870 99,0 0,01

S-as-D 11.688 94.213 0,01 430 39,7 293 254 595 0,24 102.213 1.018 66.724 9,52 3.261 36,8 62.027 120.784 98,9 0,01

Base 1.746 1.753 1,0 430 16,2 24,2 7,9 362 0,00 55.521 313,4 13.464 10,3 3.199 0,4 5.759 57.736 100 0,00

Figure 7.6: Performance values per counter normalized to the mean over the specific counter

0

0,5

1

1,5

2

2,5

3

3,5
Dual Single S-as-D Base

M
etrics

for
th

e
O

p
era

tio
n

al
E

n
erg

y
U

se
of

A
p

p
lication

S
oftw

are
61

CHAPTER 7. VALIDATION

During the measurements with DOCGEN , we monitored the performance through multiple
data collectors, i.e. an “overview” collector that combines the main counters of all the components
and multiple “detail” collectors that each focus on a specific important component and include
all counters of the specific component. The main purpose of this approach was to have a primary
collection of combined performance data (e.g. compact and thus easier to process), and a second-
ary collection, that could be consulted when additional details are desired or during future research.

Table 7.5 (see previous page) gives an overview of the performance counters that are included in
the “overview” collector besides the already discussed main CPU and Processes related counters.
Each column in the table contains a specific counters while multiple counters are grouped by their
component, i.e. System, Memory, Network Interface Card (NIC) and Disk. With respect to the
rows, the values are grouped per configuration while the Base interval values are grouped together.

Moreover, the values in Table 7.5 indicate the workload at the different components in the case
that the system is idle in comparison to when it is executing the application, but also between the
different application versions. For instance, we can see significant increases at 10 of the 13 System
counters, during SA compared to the base intervals. Furthermore, the Memory, NIC and Disk also
show additional activity, although at some counters there is only a marginal increase. In addition,
at some of the counters, the base values are higher than the application values. For instance,
this holds for System/Exception Dispatches/sec, which can be related to possible interferences
inflicted during the preparation of the application and a new job, and Disk/%Idle Time, which
is not unexpected because at this counter the “minimum” and “maximum” are switched (e.g. in
comparison to other counters). Then, with respect to the comparison between different versions,
we see that the Single version appears to result in more committed memory, less network traffic,
and slightly less disk utilization. Finally, we also see some remarkable things with respect to the
values related to S-as-D, for instance, at multiple counters its values are more similar to the Single
configuration than to Double, despite that the reverse has been observed at the CPU and Pro-
cesses counters. For this reason, we decided to include the S-as-D runs as a separate configuration
e.g. until future research might provide a better understanding of why these specific runs occurred.

To further illustrate the relations between the different configurations and the base, the previous
page also includes a graph, which shows the normalized performance values. The normalization
is achieved by calculating the mean over the values per performance counter, i.e. the “counter
mean”, and then dividing each counter value by its related counter mean. The result of this is
that values that are similar to the counter mean receive a y-value of 1 in the graph and, also, the
difference in scale between counters is minimized, which makes comparing them more practical.

7.3.5 Adjusting to the Profile of DOCGEN

The analysis of the other components have showed that there is indeed additional activity at the
other components during the execution of DOCGEN . Some of these differences are only marginal
(e.g. Disk) and, therefore, their influence on the power consumption seems insignificant. However,
given the specific workload profile of DOCGEN (i.e. a high intensity beginning and a low intensity
ending) and the relatively long execution time of the selected job, we should consider analyzing
the two parts separately. The main reason for this is that, currently, the small differences - with
respect to the system workload and the resulting power use - between the low intensity ending
part and the base intervals overwhelms, or skews, the relatively large difference that is present
during the high intensity beginning part due to the longer duration of the ending part, which is
at least 500% longer and 125% longer in the case of Dual and Single, respectively.

To analyze these High and Low parts, we selected two measurement series of the DOCGEN
validation data collection: a Dual, containing six clean runs, and a Single, which also contains
six clean runs. For each run, we determined the duration of the High Intensity part, which was
mainly based on the % CPU Time value of the BriefServer process. However, we also considered

Metrics for the Operational Energy Use of Application Software 62

CHAPTER 7. VALIDATION

the % CPU Time values of the processors and the other processes, when the BriefServer process
values did not indicate a sufficiently clear transition. The next step was to gather and process
the WUP and PerfMon data with the new intervals, which resulted in the collection of tables and
graphs displayed at the subsequent two pages.

The organization of the tables and graphs are as follows. Table 7.6 and Table 7.7 show the
main (e.g. CPU and Process) and other components measurement results, respectively. Since we
only included the Dual and Single version, these tables consist of 4 different ”part/version”-rows.
Figure 7.7 consists of 2 graphs concerning the %CPU Time values per part/version, which show
the workload per CPU and per different process during the execution of DOCGEN , respectively.
Then, Figure 7.8 also consists of 2 graphs, which concern the determined power distribution per
different part/version (e.g. how much belongs to the base and the application) and a comparison
between the R(AS) values of the High (intensity) parts and the related total %CPU Time values.
With respect to the latter graph, we did not include the Low (intensity) parts because we wanted
to limit the scope the most influential parts (e.g. P (AS) of Low parts are less than 1 W). Finally,
Figure 7.9 gives a normalized representation of the workload at the other components during the
High parts. By normalizing the values, we can combine the counters in one (clear) graph, which
makes the process of comparing the differences between the versions per counter more practical.

As we explained before, the included normalized graph should be analyzed with care, because
the counters that have absolute values close to zero result more quickly in large differences in
comparison to the counters that have greater absolute values. For instance, the last counter, i.e.
Disk/Avg. Queue Length, indicates that the two versions differ by 1,2; this is the largest difference
among the counters. However, the absolute values for this counter are only 0,08 and 0,02 at the
Dual and Single version, respectively. Moreover, the counter Memory/Available MBytes, gives a
normalized difference of 0,13, while in absolute values it appears that the Dual version requires
more than 400MB additional memory on average. This was also visible in Table 7.5 (e.g. without
separated parts), only now we can see that there is a large difference at the Cache Faults/sec
counter between the High and Low parts, but also between the High parts of the two versions.
Thus, besides the observed difference in the amount of occupied memory per version, which might
not necessarily result in different power consumptions, we also see differences in the amount of
activity at the Memory component between both versions and parts. The same holds for the %Idle
Time at the Disk component, for which we already saw a small difference between the different ver-
sions, only now we see that during the High part of the Dual version the disk is almost 5% less idle.

Since the Disk and Memory components are (slightly) more active during the High part of
the Dual version, we would assume that the similarity between the related R(AS) and %CPU
Time metrics is weaker in comparison to the Single version. Figure 7.8b shows that the differences
between these two metrics are 2,8% and 1,7% in the case of Dual and Single, respectively. Thus,
our assumption appears to be true, despite that these values are just 1,1% apart from each other.

In conclusion, the additional analysis of different parts within the execution of DOCGEN has
given more insight into the workload at different components. For instance, before the analysis,
we assumed that the two versions produced a similar workload at the Disk component and that
the 0,2% difference at the Disk/Avg. Queue Length was caused by noise. However, by focusing
on the High part, we see that the two versions differ by almost 5% at this counter, which is a
sizable amount that is less likely caused by noise. Therefore, besides the influence of the CPU and
Memory components, the exact influence of the Disk component should also be considered within
the profile of DOCGEN . Yet, despite the additional activity at the non-CPU components during
Dual and the higher total %CPU Time of Single, we see in Figure 7.8a that Single appears to have
a greater P (AS) value. Consequently, we can argue that - within our setup - the specific workload
at the CPU component has the most influence on the power consumption during the execution of
DOCGEN and, thus, optimizing the workload at this component would be a smart decision.

Metrics for the Operational Energy Use of Application Software 63

C
H
A
P
T
E
R

7.
V
A
L
ID

A
T
IO

N

Table 7.6: Overview of the main measurement results per part/version of DOCGEN

Duration (avg.) E(SA) :: Energy Use (Joules) P (SA) :: Power Use (W)

Part :: version Runs Seconds σ(T) Mean Median Min. Max. σ(E) σ/Mean Mean Mean(σ p/run)

High :: Dual 6 288 22,06 79.418 78.372 72.493 88.166 6.240 0,0786 275,9 1,43

High :: Single 6 1.041 49,37 289.112 289.191 268.556 308.080 13.717 0,0474 277,8 1,33

Low :: Dual 6 2.071 33,76 551.575 550.628 538.788 564.979 9.081 0,0165 266,3 0,63

Low :: Single 6 1.402 40,86 372.771 370.031 360.489 393.653 11.043 0,0296 265,9 0,51

Table 7.7: Overview of workload at other components per part/version of DOCGEN

Comp. SYSTEM MEMORY NIC DISK

Part

S
y
stem

C
alls/

sec

F
ile

R
ead

B
y
tes/sec

E
x
cep

t.
D

isp
atch

/s

#
T

h
rea

d
s

F
ile

W
rite

O
p

era
tio

n
s

F
ile

D
a
ta

O
p

era
tio

n
s

F
ile

R
ea

d
O

p
era

tio
n
s

F
ile

C
on

trol
O

p
er.

P
ro

cessor
Q

u
eu

e
L

.

F
ile

W
rite

B
y
tes/s

C
on

tex
t

S
w

itch
es/s

F
ile

C
o
n
tro

l
B

y
tes/

s

%
C

o
m

m
.

B
y
tes

A
vailab

le
M

B
y
tes

C
ach

e
F

au
lts/

sec

B
y
tes

R
ec./

sec

B
y
tes

S
en

t/sec

%
Id

le
T

im
e

A
v
g.

Q
u

eu
e

L
en

gth

H :: D 42.856 424.806 0,01 442 231,8 1.841 1.609 959 0,75 346.007 5.773 160.127 8,69 3.345 251,6 132.937 174.669 93.0 0,08

H :: S 19.237 152.982 0,01 430 66,85 826,2 759,4 590,1 1,20 124.625 2.129 65.843 13,6 2.928 66,8 70.140 124.615 97,8 0,02

L :: D 7.854 62.224 0,01 431 18,2 56,9 38,4 556,7 0,10 84.270 463,8 63.800 9,43 3.282 12,6 51.882 114.157 99,6 0,00

L :: S 7.901 61.689 0,01 426 18,1 56,4 38,3 550,2 0,14 82.278 451.7 54.114 13,64 2.924 11,6 52.334 113.666 99,8 0,00

M
etrics

for
th

e
O

p
era

tio
n

al
E

n
erg

y
U

se
of

A
p

p
lication

S
oftw

are
64

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

High_Dual High_Single Low_Dual Low_Single

CPU0 CPU1

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

High_Dual High_Single Low_Dual Low_Single

BriefS. Idle Snmp System Other

Figure 7.7: %CPU Time per part/version of DOCGEN per CPU [left] and Process [right]

265,41 265,22 265,41 265,22

10,5
12,6

0,9 0,7

260,00

262,00

264,00

266,00

268,00

270,00

272,00

274,00

276,00

278,00

High_Dual High_Single Low_Dual Low_Single

P
o

w
er

 (
W

at
ts

)

App

Base

44,4%
50,6%47,1% 52,4%

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

High_Dual High_Single

R(A_s)

%CPU

Figure 7.8: Overview of Power per part/version of DOCGEN [left] and Ratio’s [right]

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8
High_Dual High_Single

Figure 7.9: Normalized performance counter values of High Intensity-parts per version

Chapter 8

Discussion

The following chapter provides a general overview of the findings and research contributions of
this thesis. Furthermore, we will elaborate on their significance and the influence of limitations.

8.1 Findings & Research Contribution

The following items are ordered by their importance within the thesis project. We begin with our
method for measuring the power and workload of systems during the execution of an application.
Subsequently, we discuss the different metrics that can be applied on the clean measurement data.

8.1.1 Method for Measuring the Power and Workload of Systems

By now, it should be clear that it was not at all an easy task to create the reliable datasets that
were necessary for investigating the metrics. Yet, despite the still experimental nature of this re-
search, we made the utmost effort of considering all the important factors in order to maximize the
reliability of the research. Consequently, our method provides extensive guidance for coping with
different computer systems, variable background workloads, relatively reliable instrumentation,
and inflicting minimal interferences by means of conducting measurements remotely. In addition,
we explain how the measurement data of PerfMon and WUP can be combined and, subsequently,
how the intervals related to execution of applications can be interpreted. Finally, we have showed
how the performance data can be used to analyze the workload at different components and how
unclean runs, or characteristic, can sometimes be linked to certain components or counters.

To our knowledge, important aspects such as the extensive process of creating reliable datasets,
considering properties of different systems, and analyzing the characteristics (and possible influ-
ences) of system components during measurements are yet underexposed in most other research.

8.1.2 Determining the Operational Energy Use of an Application

Most of the related research mainly focuses on the comparison of total system energy use val-
ues to compare (e.g. the efficiency of) different applications, or versions. We argue that metrics
based on these values can still provides useful insights. First, there is the metric to compare
different application versions on a single system. The results from this metric enable us to de-
termine which version is more energy-efficient, on the basis of a particular system. Second, there
is the metric of comparing a single application version on different systems. This would then en-
able us to determine which system is more energy-efficient, on the basis of a particular application.

However, given that product software is often executed on many different systems (e.g. with
various properties), assumptions made with the former metric can be difficult to generalize and
the latter metric is difficult to interpret when systems have power use values on different scales.

Metrics for the Operational Energy Use of Application Software 66

CHAPTER 8. DISCUSSION

In this research, we have demonstrated a subtractive method that can be used for determining
the energy use solely related to SA, or the operational energy use. We argue that this methods
provides more generalizable and more easier to interpret results, by excluding the Base power
consumption of systems, which we assume (after extensive analyzes) is unrelated to SA. Com-
parisons of the operational energy use values show that the similarities between different systems
are considerably stronger than in comparison to the total energy values of the systems during
SA. However, exact energy consumption values that are required to execute a specific application
independent of the underlying system have not yet been found with this metric.

8.1.3 Benefits of the Power Use Range

This research showed that, to cope better with different power consumption scales of systems, we
require to determine the power use range of systems, which is based on the P (SB) and P (SM)
values. By doing so, we saw that, although the size of the range can be different between systems,
most systems share a considerably strong relation between the position of the power consump-
tion solely related to the execution of the application, i.e. P (AS), within the power use range and
the amount of workload at the CPU component, i.e. the main “energy consumer” in most systems.

This observation opened the way of investigating the “prediction” metrics introduced in Sec-
tion 5.2.2. However, since statistics showed that the correlation between the variables were not
significant and the fact that we had difficulties with determining the exact P (SM) values, we did
not pursue making any real conclusions for these metrics at the moment. Hence, future research
should focus on a method for determining reliable P (SM) values before considering these metrics.

8.1.4 Architectural aspects

Since eventually the major part of this thesis is about ensuring reliable measurements (due to i.a.
the unreliability of Joulemeter and variability of systems), a smaller than originally planned part
is about the influence of architectural aspects on the sustainability of software. Yet, we managed
to include at least one aspect, i.e. executing an application by a single core vs. multiple cores.
This effort proved to be a valuable one, because our data shows that the CPU component has the
most influence on the power consumption at both of the applications tested within this thesis. We
also concluded that multi-core processing is in fact more energy efficient in practically all of the
cases. Only with SRVR and Systester is the single-core version of Borwein slightly more efficient,
yet this may also have been caused by the underlying virtual machine or the type of memory in
this particular system. With DOCGEN , the dual-core version is three times more energy efficient.

8.1.5 Current practices studies

This research showed that before 2014 there was hardly any literature that combines the research
fields of Software Architecture and Green Software. Furthermore, our brainstorm illustrates that
software architects have various ideas concerning aspects that might influence the sustainability
of software, yet they have no methods or tools to actually measure or (effectively) influence it.

8.2 Research Limitations

Despite our best efforts, there are various limitations to the research and the conducted experi-
ments. In the following section, we will discuss the most important of these limitations.

8.2.1 Influence of Other Components

As we explained before, we deliberately used Systester as the initial test application, due to its
“simple” workload (e.g., mostly uses the CPU, plus some Memory in the case of the dual-core
version). In reality, an application often produces less constant workloads, uses multiple processes

Metrics for the Operational Energy Use of Application Software 67

CHAPTER 8. DISCUSSION

and it can also produce workloads at other components than the CPU. As we saw with DOCGEN ,
workload can also be generated at the Disk component (e.g. this creates the necessity to clean the
disk and cache at each experiment run) or, for instance, in a “distributed” network environment.

8.2.2 Measurement Instrumentation

We realize that since the WUP meter and PerfMon have a granularity of one measurement record
per second while systems process millions of instructions per second, we miss a considerable amount
of detail. Furthermore, the WUP and PerfMon logs are sometimes corrupted: the chance of zero
differences between the PerfMon and WUP timestamps is 0% at longer measurement-logs (e.g.,
>4 hours). In addition, some values in PerfMon logs are higher than their maximums in reality.

8.2.3 Cooling-down after a Measurement Run

The application execution time intervals of Systester and DOCGEN were determined based on
the activity of the “Systester” and “BriefServer” processes, respectively, which means that we
only included the moments in which the processes had a %CPU Time value greater than zero.
Although this was the best method available for methodically collecting the measurement data,
the disadvantage of this was that we did not include the “cooling-down” period, which often oc-
curred after the execution of A. During this period, the power use of the system appeared to be
considerably higher than its P (SB) value, despite that the execution of A was already finished.

The obstacle that we faced was that this specific period did not have a constant duration, hence
it was impossible to collect the values methodically. Furthermore, we can not reliably determine
which portion of this additional power is actually related to SA. Therefore, we ignored these
portions completely. Also, a similar event sometimes occurred before SA; the system energy use
would rise although SA had not been started, or the %CPU Time of the process was still 0%.

NB. for the determination of P (SB) values, we did reckon with the presence of cooling-down
periods, by including a buffer of at least 30 seconds between each Application and Base interval.

8.2.4 Influence of Climate on the Efficiency of Components

The amount of power consumption of the CPU component can be influenced by several factors,
including: dynamic power consumption, short-circuit power consumption, and power loss due to
transistor leakage currents. The amount of transistor leakage can be an important aspect since it
influences the efficiency of a system’s performance and it tends to inflate for increasing temperat-
ures. Hence, we considered briefly the influence of the Thermal Design Power (TDP), which is the
maximum amount of heat generated by the CPU that the cooling system is required to dissipate.

During our investigation, we observed that the power consumption of some of the systems,
running on their maximum performance and processing a maximum workload, kept on increasing
over a longer period of time while the power consumption at systems with a limited performance
would reach their maximum value almost instantly. In addition, we observed at a specific system
that when we removed the side panel of the case (e.g. improve heat dissipation), its P (SA) value
decreased with 5 Watts. This made use realize that the actual room temperature as well as the
system cooling performance should also be controlled, or at least monitored, during measurements.

8.2.5 Concerning DOCGEN

As we discussed in Chapter 7, conducting measurements with DOCGEN was not straightforward.
However, although the measurements did not went perfectly they were far from complete failures.
In fact, by documenting our experiences (including pitfalls), we can make better decisions in future
research. Hence, the main limitations concerning measurements with DOCGEN are as follows:

Metrics for the Operational Energy Use of Application Software 68

CHAPTER 8. DISCUSSION

Sporadic increased base power consumption - Both with Systester and DOCGEN , we saw
that system SRVR sometimes had an increased base power consumption over remarkably
lengthy periods of time. Despite additional analysis, the exact cause for this behavior still
remain inexplicable. Yet, we presume that it is caused by SRVR’s outdated cooling-system.

Unpredictable S-as-D runs - Our method for adjusting the CPU affinity of an application (e.g.
to simulate a single-core version), did not prove to be reliable with DOCGEN . Therefore, we
should investigate how we can improve its reliability or consider modifying the source code.

Increasing execution times after multiple runs - Within our dataset, we saw that at some
series the execution time per run increased during the series. Thus, instead of a benefit of
e.g. caching, we see a disadvantage when multiple runs a combined within a series. Since
we do not know the exact cause of this, we can only advice to consider additional removal
of cached or result data and possible reboot the system between two runs (NB. this does
increase the length of measurement series and it most likely causes additional interferences).

No automated (remote) execution method - Since we were not able to operate DOCGEN
from command-line, it is more challenging (or possibly impossible) to initiate multiple series
of runs, where each run lies within a similar environment. We aimed to minimize and stand-
ardize the amount of interference, yet in the future more automation should be considered.

Possible influence of virtual machine - We realize that SRVR was not a real dual-core sys-
tem, despite that the virtual machine layer limited its amount of cores to 2 and that we
had exclusive access to the system. Given our limited experience with VM’s and server, we
initially settled with this system, yet in retrospect we should have considered a different one.

Test version of DOCGEN - Due to a limited amount of resources available for deploying DOC-
GEN in our environment, we worked with a version that had some defects. For instance,
when a job was finished, the generated documents (in PDF format) were not transfered to
the client system. However, since our focus was on the CPU component (e.g. generating the
documents from the definitions), we settled with this defect. Nevertheless, we should ensure
a defect free version of DOCGEN in order to produce better measurements in the future.

8.2.6 Other limitations

State of the systems - During each series of runs, we recorded the System Up time of the system
and (at most systems) we also performed a system reboot before a series. As we explained
before, we observed that, on average, systems require around 15 minutes to settle after a
reboot. With respect to the System Up time, we did not see remarkable differences between
a run that was executed at 20 minutes System Up Time, or at 200 minutes. However, we
did see that after the 15 minutes of settling from the reboot, the system would stay idle for
around 30 minutes and after that it would have an increased power use for a sizable long
interval. We did not retrieve the cause for this increase, yet we presumed that it may be a
Windows-related process that would be triggered after a specific amount of idle time.

Peripherals - We excluded the power use of peripherals e.g. by disconnecting the USB devices.
We did not measure the power use of displays, because the WUP can only measure 1 device.
The benefit of Systester is that it does not produce any visual results and, thus, we can omit
the peripherals. Yet, with a more complex application, their influence might not be ignored.

%CPU Time: User/Privileged - During our quest for a sufficiently detailed and reliable per-
formance measurement tools, such as PerfMon, we also considered the distribution of dif-
ferent modes within the %CPU Time, namely: User and Privileged mode, with User mode
being the processing mode in which applications run and Privileged, or kernel, mode the
processing mode that allows code to have direct access to all hardware and memory in the
system. The reason for why this should be considered (in the future) is that the %CPU
Time values at the Process level are often dependent of the %User Time at the CPU level.

Metrics for the Operational Energy Use of Application Software 69

Chapter 9

Conclusion

Now we have come to the final chapter of this thesis document, which includes a general conclusion
on the research and the thesis project, an overview of the thesis results linked to the research
questions, and, last but certainly not least, we discuss various opportunities for future research.

9.1 General Conclusion

With this thesis project, we envisioned to bridge the gap between the fields of Software Architecture
and Green Software, i.e. how the former can be used to realize aspects of the latter. However,
the immaturity of the latter field (e.g. absence of adequate instrumentation) forced us to focus
our study on the process of developing proper measuring methods as well as intuitive metrics for
determining the operational energy use of applications. Due to this change of plans and the desire
to perform a case-study at the research company, the time to finish the project has been increased
substantially. Nevertheless, we argue that it is, above all, important that we have overcome many
obstacles during this project in terms of collecting empirical data, considering various aspects,
and of course conducting valid research. With respect to architectural aspects, we have shown in
detail why a dual-core version is in most cases more energy-efficient. Thus, the next step would be
making a trade-off between the additional amount of developing time and the potential operational
benefits. With respect to monetary implications, we see that the dual-core version of DOCGEN ,
i.e. generating 5000 “Huurverhoging” documents, requires on average 11.778 Joules less than the
single-core version. Hence, if this job would be executed a million times, it saves 3.271 kWh, which
results in a monetary saving lying between e650 and e750 (e.g. depending on electricity pricing).

9.2 Thesis Results Linked to RQs

The purpose of this section is to match the research question, introduced in Section 1.3, with a list
of brief answers that refer to the corresponding chapters, containing more elaborate explanations.

RQ. How can we determine the operational energy use of application software?

The main deliverable of this research is our method for measuring the power use and workload
of systems during base states and the execution of an application. We showed in Chapters 6 and 7
that by combining this data, we can more reliably and less system dependent determine the amount
of energy required to execute an application. However, we also showed that we are not (yet) able
to determine completely system independent values. Therefore, the answer to the main research
question is that subtracting the base power consumptions results in more representable operational
energy use values, yet the influence of other system properties should also be considered.

SQ. 0 What are the current practices, both theoretical and practical, with regards to software
architectural aspects for measuring and developing sustainable software?

Metrics for the Operational Energy Use of Application Software 70

CHAPTER 9. CONCLUSION

Chapter 4 showed that the body of relevant literature is small, yet growing, and that software
architects have no methods or tools to actually measure or influence the sustainability of software.

SQ. 1 How can we reliably measure the energy use of a computer system, execute an application
and concurrently monitor its workload, with minimal interference?

In Chapter 4 we discussed our considerations concerning the reliability of instrumentation for
measuring the power consumption and workload of systems. We have concluded that to remotely
measure and monitor a system, the WUP meter together with PerfMon is the best combination.

SQ. 2 How can we isolate the energy use solely related to the execution of an application (e.g.,
perform a specific task) from the measured energy use of the underlying system(s)?

In Chapter 6 we explained how we used different performance counters to determine whether
during an Application run the workload at the systems was mostly created by the specific ap-
plication created. If this was the case, we argued that the additional power use in comparison to
the system’s base state, was inflicted solely by the application. Subsequently, we determined the
energy use solely related to the application by subtracting the amount related to the base state.

SQ. 3 How can we use system specific properties to normalize the measured energy usages of
executions of a single application on different systems and make them comparable?

In Chapters 6 and 7 we showed how we determined the power use range of each system and
why this metric can be useful when systems would have power use values on different scales.

SQ. 4 How do the metrics behave in environments with other applications and/or systems?

In Chapter 6 we discussed various validity aspects of the metrics, such its rigidity. For instance,
we investigated differences between different versions between the systems, which proved to be
remarkably stable. Further, in Chapter 7, we discussed the case-study that we performed with
DOCGEN , which provided measurements within a secondary environment and valuable insights.

SQ. 5 To what extend can the resulting metrics be used to determine the influence of software
architectural aspects on the sustainability of software?

Although we have not yet succeeded in developing completely system independent metrics,
we do now have metrics that provide more precise results (e.g. more reliably measured and less
unrelated data). Therefore, we were better able to compare difference between application versions,
such as single vs. multi-core processing or the Gauss-Legendre vs. the Borwein algorithms.

9.3 Future Research

Besides that this research has provided a extensive collection of new insights, it has also produced
many new opportunities for future research work. Hence, we discuss a few of these opportunities.

Including other task sizes - During this project we only considered a task in Systester of cal-
culating 8 · 106 Pi decimals. We can extend our research by choosing longer tasks, such as
32 · 106 and investigate the relations between the two sizes. Furthermore, we can extend the
durations of base intervals between the measurements runs. Both these changes result in
longer intervals, which (presumably) further improves the quality of the measurement data.

Instrumentation - Given the facts that WUP meter is not very cheap and that it requires to be
placed between the Application system and the power source, we might consider replacing
it with Joulemeter. Now that we have developed our own set of metrics, we could perform
additional measurements during which we use both a WUP and Joulemeter concurrently
and/or solely Joulemeter (e.g. with or without calibration by the WUP). Subsequently,

Metrics for the Operational Energy Use of Application Software 71

CHAPTER 9. CONCLUSION

we could compare the different measurement data and investigate to what extend there are
similarities. However, a few challenges concerning the quality of the measurements remain.
For instance, because Joulemeter needs to be executed on the Application system, we cannot
initiate or measure with it without creating additional interference at the Application system.

Control the power use range artificially - One of the most interesting aspects that could be
investigated is the influence of modifying a system’s base power use or its maximum power on
the amount of energy required solely for SA. We can control both values as follows: the base
power use can be increased by creating artificial workload with Pressure (cf. Section 6.4),
and the maximum power use can be altered by modifying the performance of the system (e.g.
locking the CPU frequency). It would be interesting to study by what degree the amounts of
required execution time and energy will change when, for instance, the workload at the CPU
component is artificially raised to 50% or when its performance is decreased by 50%. Other
research has showed that (certain) systems work significant less efficient above a certain
percentage of workload e.g. we can investigate if the same holds with our configuration (NB.
we have concluded that Systester is not the right application for this kind of investigation).

Other processor types - Since modern computers often have more than 2 CPUs, the research
can be extended by including system with 4 or 8 CPUs, and comparing the results with our
dual-core systems. Also, we have conducted measurements with a single-core system and
with two dual-core systems with Intel’s Hyper-Threading Technology (e.g. having 4 logical
processing cores). Although this gave us some interesting insights, it also provided too many
challenges for the moment and, thus, we only included the dual-core systems in this research.

Other operating systems - The research can be extended by performing similar measurements
with systems that run on other (potential more energy stable) operating systems, such as
Mac OS or Ubuntu. However, additional resources are needed to realize this, such as experi-
ence with the operating systems and, most importantly, we need to have suitable alternatives
for the tools used during the experiments, such as Pressure, ThrottleStop, and HeavyLoad.

DOCGEN ::

Multiple clients - During our case-study, we only considered measuring the power con-
sumption of SRVR while “serving” a single client. In the real world, the system is
designed to process jobs from multiple clients concurrently. Therefore, the challenge in
future research, is to create a test environment in which multiple clients create DOC-
GEN jobs that need to be processed by SRVR. This way, we gain more realistic insights
into to what extend a multi-core processing version is beneficial over a single-core ver-
sion. However, if we strive for a more realistic environment, we should also deploy the
application on a more modern test system with better specifications.

Possible influence of other systems - Since DOCGEN requires at least one additional
system, i.e. the Oracle DB, future research might consider isolating this system as well.
In addition, all of the related systems (including clients) could placed in an exclusive
environment. This way, we can ensure better that the present workload is inflicted by
DOCGEN and, thus, the interference during measurements will be minimized.

Affinity of other processes - We mentioned that we only controlled the Affinity of the
BriefServer process, yet we can also consider investigating the affinity of other processes.

Architectural aspects - Given our positive initial results with DOCGEN , concerning the
difference between single and dual-core processing, we can consider modifying the source
code of the application to test whether our method of adjusting the CPU affinity is
reliably. Furthermore, we can consider other architectural aspects related to the design
of DOCGEN (e.g. document generating methods), which can be altered by modifying
the source code or, if possible, by adjusting its configuration after it has been compiled.

Metrics for the Operational Energy Use of Application Software 72

Bibliography

[1] William M Adams. The future of sustainability: Re-thinking environment and development
in the twenty-first century. In Report of the IUCN renowned thinkers meeting, volume 29,
page 31, 2006.

[2] Luca Ardito. Energy-aware Software. PhD thesis, Politecnico di Torino, 2014.

[3] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice. Addison-
Wesley Professional, 3rd edition, 2012.

[4] G. Bekaroo, C. Bokhoree, and C. Pattinson. Power measurement of computers: Analysis of the
effectiveness of the software based approach. International Journal of Emerging Technology
and Advanced Engineering, 4(5), May 2014.

[5] Paolo Bozzelli, Qing Gu, and Patricia Lago. A systematic literature review on green software
metrics. Technical report, Technical Report: VU University Amsterdam, 2013.

[6] S.A. Broverman, Society of Actuaries, Casualty Actuarial Society, and Actex Publications.
Actex study manual, Course 1 examination of the Society of Actuaries, Exam 1 of the Casualty
Actuarial Society. Number v. 1 in Actex Study Manual, Course 1 Examination of the Society
of Actuaries, Exam 1 of the Casualty Actuarial Society. Actex Publications, 2001.

[7] David J. Brown and Charles Reams. Toward energy-efficient computing. Communications of
the ACM, 53(3):50, March 2010.

[8] Ian Burton. Report on reports: Our common future. Environment: Science and Policy for
Sustainable Development, 29(5):25–29, 1987.

[9] Elsevier B.V. Sciencedirect. http: // www. sciencedirect. com. proxy. library. uu. nl/

science/ search/ , 2014.

[10] E. Capra, C. Francalanci, and S. Slaughter. Is software green? application development
environments and energy efficiency in open source applications. Information and Software
Technology, 54(1):60–71, 2012.

[11] L Dobrica and E Niemela. A survey on software architecture analysis methods. Software
Engineering, IEEE Transactions on, 28(7):638–653, 2002.

[12] John Elkington. Enter the triple bottom line. The triple bottom line: Does it all add up,
pages 1–16, 2004.

[13] M.A. Ferreira, E. Hoekstra, B. Merkus, B. Visser, and J. Visser. Seflab: A lab for meas-
uring software energy footprints. In Green and Sustainable Software (GREENS), 2013 2nd
International Workshop on, pages 30–37, May 2013.

[14] Arlene Fink. Conducting Research Literature Reviews: From the Internet to Paper. SAGE
Publications, 2005.

[15] Martin Fowler. Inversion of control containers & the dependency injection pattern, 2004.

Metrics for the Operational Energy Use of Application Software 73

http://www.sciencedirect.com.proxy.library.uu.nl/science/search/
http://www.sciencedirect.com.proxy.library.uu.nl/science/search/

BIBLIOGRAPHY

[16] David Garlan and Mary Shaw. An Introduction to Software Architecture. Technical report,
Carnegie Mellon University, Pittsburgh, January 1994.

[17] K. Glynn. Throttlestop 6.00. http: // www. techpowerup. com/ downloads/ 2288/

throttlestop-6-00/ , October 2013.

[18] M. Goraczko, A. Kansal, J. Liu, and F. Zhao. Joulemeter 1.2. http: // research.

microsoft. com/ en-us/ projects/ joulemeter/ , September 2011.

[19] C. Hart. Doing a Literature Review: Releasing the Social Science Research Imagination. Open
university set book. SAGE Publications, 1998.

[20] Alan Hevner and Samir Chatterjee. Design Research in Information Systems: Theory and
Practice. Springer Publishing Company, Incorporated, 1st edition, 2010.

[21] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design science in inform-
ation systems research. MIS Quarterly, 28(1):75–105, March 2004.

[22] Christine Hofmeister, Philippe Kruchten, Robert L. Nord, Henk Obbink, Alexander Ran, and
Pierre America. A general model of software architecture design derived from five industrial
approaches. Journal of Systems and Software, 80(1):106–126, January 2007.

[23] ThinkTank Energy Products Inc. Watts up? plug load meters. https: // www.

wattsupmeters. com/ , 2012.

[24] ISO/IEC. ISO/IEC 25010:2011 – Systems and software engineering - Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software quality models. Tech-
nical report, ISO/IEC, 2011.

[25] ISO/IEC/IEEE. Iso/iec/ieee systems and software engineering – architecture description.
ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000),
pages 1–46, Dec 2011.

[26] E. Jagroep, J.M. Van der Werf, S. Jansen, M. Ferreira, and J. Visser. Profiling energy
profilers, 2015.

[27] T. Johann, M. Dick, S. Naumann, and E. Kern. How to measure energy-efficiency of software:
Metrics and measurement results. In Green and Sustainable Software (GREENS), 2012 First
International Workshop on, pages 51–54, June 2012.

[28] Eva Kern, Markus Dick, Stefan Naumann, Achim Guldner, and Timo Johann. Green Soft-
ware and Green Software Engineering–Definitions, Measurements, and Quality Aspects. on
Information and Communication Technologies, page 87, 2013.

[29] Sedef AKINLI Kocak. Green software development and design for environmental sustainabil-
ity. In 11th International Doctoral Symposium an Empirical Software Engineering (IDOESE
2013). Baltimore, Maryland, volume 9, 2013.

[30] Heiko Koziolek. Sustainability evaluation of software architectures. In Proceedings of the joint
ACM SIGSOFT conference – QoSA and ACM SIGSOFT symposium – ISARCS on Quality of
software architectures – QoSA and architecting critical systems – ISARCS - QoSA-ISARCS
’11, page 3, New York, New York, USA, June 2011. ACM Press.

[31] Patricia Lago and Toon Jansen. Creating environmental awareness in service oriented software
engineering. In E.Michael Maximilien, Gustavo Rossi, Soe-Tsyr Yuan, Heiko Ludwig, and
Marcelo Fantinato, editors, Service-Oriented Computing, volume 6568 of LNCS, pages 181–
186. Springer Berlin Heidelberg, 2011.

[32] F Losavio, L Chirinos, A Matteo, N Lvy, and A Ramdane-Cherif. {ISO} quality standards
for measuring architectures. Journal of Systems and Software, 72(2):209 – 223, 2004.

Metrics for the Operational Energy Use of Application Software 74

http://www.techpowerup.com/downloads/2288/throttlestop-6-00/
http://www.techpowerup.com/downloads/2288/throttlestop-6-00/
http://research.microsoft.com/en-us/projects/joulemeter/
http://research.microsoft.com/en-us/projects/joulemeter/
https://www.wattsupmeters.com/
https://www.wattsupmeters.com/

BIBLIOGRAPHY

[33] A. Mahesri and V. Vardhan. Power consumption breakdown on a modern laptop. In Pro-
ceedings of the 4th International Conference on Power-Aware Computer Systems, PACS’04,
pages 165–180, Berlin, Heidelberg, 2005. Springer-Verlag.

[34] Sara S. Mahmoud and Imtiaz Ahmad. A Green Model for Sustainable Software Engineering.
International Journal of Software Engineering and Its Applications, 7(4), 2013.

[35] Salvatore T. March and Gerald F. Smith. Design and natural science research on information
technology. Decis. Support Syst., 15(4):251–266, December 1995.

[36] Microsoft. Windows performance monitor. http: // technet. microsoft. com/ en-us/

library/ cc771692. aspx/ , April 2007.

[37] Microsoft Patterns & Practices Team. Microsoft Application Architecture Guide. Microsoft
Press, 2 edition, 2009.

[38] Mark P Mills. The cloud begins with coal: an overview of the electricity used by the global
digital ecosystem. Technical report, Digital Power Group, August 2013.

[39] Simon Mingay. Green IT: The New Industry Shockwave. Gartner RAS Research Note G,
153703:7, 2007.

[40] Jeremy Moon. The contribution of corporate social responsibility to sustainable development.
Sustainable Development, 15(5):296–306, 2007.

[41] San Murugesan. Harnessing green it: Principles and practices. IT Professional, 10(1):24–33,
2008.

[42] S. Naumann, M. Dick, E. Kern, and T. Johann. The {GREENSOFT} model: A reference
model for green and sustainable software and its engineering. Sustainable Computing: In-
formatics and Systems, 1(4):294 – 304, 2011.

[43] Chitu Okoli and Kira Schabram. A guide to conducting a systematic literature review of
information systems research. Sprouts: Working Papers on Information Systems, 10(26),
2010.

[44] Alex F Osborne. Applied imagination: principles and procedures of creative problem solving.
Charles Scribeners Sons, New York, 1953.

[45] B. Penzenstadler, V. Bauer, C. Calero, and X. Franch. Sustainability in software engineering:
a systematic literature review. In 16th International Conference on Evaluation & Assessment
in Software Engineering (EASE 2012), pages 32–41. IET, 2012.

[46] C. Pettey and R. van der Meulen. Cfo advisory: The impact of sustainability on enterprise
performance. http: // www. gartner. com/ newsroom/ id/ 1749115 , July 2011.

[47] G. Procaccianti, P. Lago, and G.A. Lewis. A catalogue of green architectural tactics for
the cloud. In Maintenance and Evolution of Service-Oriented and Cloud-Based Systems
(MESOCA), 2014 IEEE 8th International Symposium on the, pages 29–36, Sept 2014.

[48] W. W. Royce. Managing the development of large software systems: Concepts and techniques.
In Proceedings of the 9th International Conference on Software Engineering, ICSE ’87, pages
328–338, Los Alamitos, CA, USA, 1987. IEEE Computer Society Press.

[49] M. Russinovich. Pstools suite. http: // technet. microsoft. com/ en-us/ sysinternals/

bb896649. aspx/ , May 2014.

[50] I. Sartori and A.G. Hestnes. Energy use in the life cycle of conventional and low-energy
buildings: A review article. Energy and Buildings, 39(3):249 – 257, 2007.

Metrics for the Operational Energy Use of Application Software 75

http://technet.microsoft.com/en-us/library/cc771692.aspx/
http://technet.microsoft.com/en-us/library/cc771692.aspx/
http://www.gartner.com/newsroom/id/1749115
http://technet.microsoft.com/en-us/sysinternals/bb896649.aspx/
http://technet.microsoft.com/en-us/sysinternals/bb896649.aspx/

BIBLIOGRAPHY

[51] Chiyoung Seo, George Edwards, Daniel Popescu, Sam Malek, and Nenad Medvidovic. A
framework for estimating the energy consumption induced by a distributed system’s architec-
tural style. In Proceedings of the 8th International Workshop on Specification and Verification
of Component-based Systems, SAVCBS ’09, pages 27–34. ACM, 2009.

[52] Mark Silver, Lynne Markus, and Cynthia Beath. The information technology interaction
model: A foundation for the mba core course. MIS Q., 19(3):361–390, September 1995.

[53] Herbert A. Simon. The Sciences of the Artificial (3rd Ed.). MIT Press, Cambridge, MA,
USA, 1996.

[54] Bob Steigerwald and Abhishek Agrawal. Green software. Harnessing Green IT: Principles
and Practices, page 39, 2012.

[55] Yuzhong Sun, Yiqiang Zhao, Ying Song, Yajun Yang, Haifeng Fang, Hongyong Zang, Yaqiong
Li, and Yunwei Gao. Green challenges to system software in data centers. Frontiers of
Computer Science in China, 5(3):353–368, 2011.

[56] Mikael Svahnberg, Claes Wohlin, Lars Lundberg, and Michael Mattsson. A method for
understanding quality attributes in software architecture structures. In Proceedings of the
14th international conference on Software engineering and knowledge engineering - SEKE
’02, page 819, New York, New York, USA, July 2002. ACM Press.

[57] Juha Taina. Good, bad, and beautiful software-in search of green software quality factors.
CEPIS UPGRADE, 12(4):22–27, 2011.

[58] Hideaki Takeda, Paul Veerkamp, and Hiroyuki Yoshikawa. Modeling Design Process, Decem-
ber 1990.

[59] J. Tayeb, K. Bross, S. Chang, L. Cong, and S Rogers. Intel Energy Checker Software Devel-
opment Kit User Guide. Technical report, Intel, 2010.

[60] L Tsatiris, P. Anastasiadis, and M. Kaniadakis. System stability tester: test your sys-
tem’s stability and performance by calculating millions of digits of pi. http: // systester.
sourceforge. net/ , July 2012.

[61] L Tsatiris, P. Anastasiadis, and M. Kaniadakis. System stability tester: test your sys-
tem’s stability and performance by calculating millions of digits of pi. http: // systester.
sourceforge. net/ , July 2012.

[62] Inge van de Weerd and Sjaak Brinkkemper. Handbook of Research on Modern Systems Ana-
lysis and Design Technologies and Applications. IGI Global, July 2008.

[63] P. Verschuren and H. Doorewaard. Designing a Research Project. Eleven International Pub-
lishing House, 2 edition, 2010.

[64] S Vijayalakshmi, G Zayaraz, and V Vijayalakshmi. Article: Multicriteria Decision Analysis
Method for Evaluation of Software Architectures. International Journal of Computer Applic-
ations, 1(25):22–27, 2010.

[65] T. Willhalm, R. Dementiev, and P. Fay. Intel performance counter monitor - a bet-
ter way to measure cpu utilization. https: // software. intel. com/ en-us/ articles/

intel-performance-counter-monitor/ , December 2014.

[66] Lai Xu and Sjaak Brinkkemper. Concepts of product software. European Journal of Inform-
ation Systems, 16(5):531–541, Oktober 2007.

[67] Benjamin Zhong, Ming Feng, and Chung-Horng Lung. A Green Computing Based Architec-
ture Comparison and Analysis. In 2010 IEEE/ACM Int’l Conference on Green Computing
and Communications & Int’l Conference on Cyber, Physical and Social Computing, pages
386–391. IEEE, December 2010.

Metrics for the Operational Energy Use of Application Software 76

http://systester.sourceforge.net/
http://systester.sourceforge.net/
http://systester.sourceforge.net/
http://systester.sourceforge.net/
https://software.intel.com/en-us/articles/intel-performance-counter-monitor/
https://software.intel.com/en-us/articles/intel-performance-counter-monitor/

List of Figures

1.1 Core activities in Software Architecture Design, according to [22] 5

2.1 Research Design: the IS Research Conceptual Framework by [21] 7
2.2 Research Model . 9
2.3 Process-Deliverable Diagram . 12

3.1 Venn diagram of Sustainability factors . 15
3.2 The GREENSOFT model by [42] . 18
3.3 Waterfall Model of the SDLC based on [48] . 18
3.4 Quality model for internal and external quality by [37] 19

4.1 Structured Literature Review Approach . 21
4.2 Structured Literature Review Search Terms . 22
4.3 Structured Literature Review Search Terms . 23
4.4 Representation of Incremental Application Versions 26
4.5 Instrumentation: a WattsUP? PRO power meter 27

5.1 Representation of measuring multiple executions of A 30
5.2 Representation of measuring with multiple AppSys-configurations 31
5.3 Comparing data (and results) from multiple runs with a single AppSys-configuration 32
5.4 Comparing results between different systems with a single application version . . . 32
5.5 Comparing results between different application versions with a single system . . . 32
5.6 Example of power distributions per system :: absolute P [left] and R(AS) [right] . 33

6.1 Representation of Experimental Setup I . 36
6.2 WUP data - Series of measurement runs . 40
6.3 Results - Execution time per application per system 42
6.4 Results - Energy use per application per system . 42
6.5 Overview of E(SA) [left] and E(AS) [right] values 44
6.6 Overview of P (AS)/P (SA) [left] and R(AS) [right] ratios 46
6.7 Overview of R(AS) [left] and %CPU Time(SA) [right] ratios 46
6.8 Differences between applications :: T (SA) [left] and E(AS) [right] 47
6.9 WUP data - 16 runs of application Borw8M1C on system DKTP 48
6.10 Relative differences between versions (normalized to the mean of the specific com-

bination) with LPTP . 50
6.11 WUP data - Series of measurement runs with Pressure on LPTP2 51
6.12 PerfMon data - CPU Time per logical cores of LPTP2 52
6.13 Pressure results per workload step in absolute [left] and relative [right] values . . . 53

7.1 Representation of Experimental Setup II . 54
7.2 Comparing %CPU Time values of different versions during a DOCGEN run 56
7.3 WUP data (in Watts) - Series of 6 measurement runs with DOCGEN 57
7.4 Overview of required time [left] and energy [right] per DOCGEN configuration . . 59

Metrics for the Operational Energy Use of Application Software 77

LIST OF FIGURES

7.5 Overview of Base/App-distribution at energy [left] and power [right] values 59
7.6 Performance values per counter normalized to the mean over the specific counter . 61
7.7 %CPU Time per part/version of DOCGEN per CPU [left] and Process [right] . . . 65
7.8 Overview of Power per part/version of DOCGEN [left] and Ratio’s [right] 65
7.9 Normalized performance counter values of High Intensity-parts per version 65

D.1 %CPU Time at LPTP per process during SA [left] and SB [right] 88
D.2 %CPU Time at DKTP per process during SA [left] and SB [right] 88
D.3 %CPU Time at SRVR per process during SA [left] and SB [right] 89
D.4 %CPU Time at LPTP per CPU during SA [left] and SB [right] 89
D.5 %CPU Time at DKTP per CPU during SA [left] and SB [right] 89
D.6 %CPU Time at SRVR per CPU during SA [left] and SB [right] 89

Metrics for the Operational Energy Use of Application Software 78

List of Tables

2.1 Research Questions linked to Activities . 14

6.1 Overview of system specifications . 37
6.2 Overview of application versions . 38
6.3 Overview of the main measurement results per application per system 41
6.4 Overview of power during base state . 43
6.5 Overview of determined P (SM) and P (SR) values (in Watts) 43
6.6 %CPU Time during measurements per CPU [left] and per Process [right] 45
6.7 Overview of determined E(AS) [left] and P (AS) [right] values 45
6.8 Ratios of P (AS) to P (SA) [left] and P (SR) [middle], and %CPU Times [right] . . . 45
6.9 Differences between applications :: T (SA) [left] and E(AS) [right] 47
6.10 Overview of (average) non-CPU performance values at DKTP 48
6.11 Overview of average non-CPU performance values at LPTP and DKTP 49
6.12 Overview of workload at other components during measurements with Systester

and LPTP . 50
6.13 Overview of Pressure results per workload step in absolute and relative values . . . 52

7.1 Overview of the main measurement results with DOCGEN and SRVR 57
7.2 %CPU Time during DOCGEN measurements per CPU [left] and per Process [right] 58
7.3 The energy [left] and power [right] values of DOCGEN 59
7.4 Overview of power use range values and %CPU Times for DOCGEN 60
7.5 Overview of workload at other components during measurements with DOCGEN . 61
7.6 Overview of the main measurement results per part/version of DOCGEN 64
7.7 Overview of workload at other components per part/version of DOCGEN 64

D.1 Activity Table . 90
D.2 Concept Table . 91

Metrics for the Operational Energy Use of Application Software 79

Appendix A

Data Collector Sets

A.1 Experimentation Phase

The following two PerfMon data collectors sets were used during the Systester measurements.

Primary Set

Component Counter Description

Processor (per core)
%Idle Time

The percentage of time the processor is idle
during the sample interval

% Processor Time
The percentage of time that the processor
spends to execute a non-Idle thread

Process (Systester)

% Processor Time
The percentage of elapsed time accounted to
processing this process by the CPU(s)

Private Bytes
The current size, in bytes, of memory that this
process has allocated that cannot be shared
with other processes

Elapsed Time
The total elapsed time, in seconds, that this
process has been running

Thread Count
The number of threads currently active in this
process, which is at least one thread.

Process (other) % Processor Time Incl. System, Services, Idle, & Explorer

Secondary Set

Component Counter Description

System

Threads
The number of threads in the computer at the time
of data collection

Processes
The number of processes in the computer at the time
of data collection

System Up Time
The elapsed time (sec.) that the computer has been
running since it was last started

System Calls/sec
Combined rate of calls to operating system service
routines by all processes running on the computer

Exception Dispatches

/sec

The rate, in incidents per second, at which excep-
tions were dispatched by the system

Metrics for the Operational Energy Use of Application Software 80

APPENDIX A. DATA COLLECTOR SETS

Component Counter Description

System

File Read Bytes/sec
The overall rate at which bytes are read to satisfy file
system read requests to all devices on the computer,
including reads from the file system cache

File Write Bytes/sec
The overall rate at which bytes are written to sat-
isfy file system write requests to all devices on the
computer, including writes to the file system cache

File Control Bytes/sec

The overall rate at which bytes are transferred for
all file system operations that are neither reads nor
writes, including file system control requests & re-
quests for information about device characteristics
or status

File Data Operations

/sec

The combined rate of read and write operations on
all logical disks on the computer

File Read Operations

/sec

The combined rate of file system read requests to all
devices on the computer, including requests to read
from the file system cache

File Control Operations

/sec

The combined rate of file system operations that are
neither reads nor writes, such as file system control
requests and requests for information about device
characteristics or status

Processor Queue Length Number of threads in the processor queue

% Registry Quota In Use
The (current) percentage of the Total Registry Quota
Allowed that is currently being used by the system

Context Switches/sec
The combined rate at which all processors on the
computer are switched from one thread to another

Disk(s)
% Idle Time

The percentage of time during the sample interval
that the disk was idle

% Disk Time
The percentage of elapsed time that the selected disk
drive was busy servicing read or write requests

Disk Bytes/sec
The rate bytes are transferred to or from the disk
during write or read operations

NIC
Bytes Total/sec

The rate at which bytes are sent and received over
each network adapter, including framing characters

Packets/sec
The rate at which packets are sent and received on
the network interface

Memory

Available Bytes
The amount of physical memory, in bytes, immedi-
ately available for allocation to a process or for sys-
tem use

Pages/sec
The rate at which pages are read from or written to
disk to resolve hard page faults

Cache Bytes
The size, in bytes, of the portion of the system file
cache which is currently resident and active in phys-
ical memory

% Committed Bytes In

Use

The ratio of “Memory//Committed Bytes” to the
“Memory//Commit Limit”

Metrics for the Operational Energy Use of Application Software 81

APPENDIX A. DATA COLLECTOR SETS

A.2 Validation Phase

The following PerfMon data collectors sets were used during the DOCGEN measurements.

Overview Set

Component Counters Details

Process

% Processor Time
BriefServer, BriefConnector, System & Idle

lssas, snmp, svchost#2, svchost#6, svchost#8

Page Faults/sec
BriefServer, BriefConnector & snmpIO Data Operations/sec

IO Other Operations/sec

Processor
% Processor Time

CPU0/CPU1 (per separate core)
% Interrupt Time

System

See Systester “Secondary”

Excluded: “% Registry Quota” & “System Up Time”

Disk Excluded: “% Disk Time”

Memory Excluded: “Pages/sec”

NIC

Detailed Set per Component

• 6 component categories: Processor, Process, System, Disk, Memory, NIC

• We created a separate data collector for each component category

• Each collector includes all available counters per category

• Location: retrievable at the management server

Client Set

Component Counters Details

Process
% Processor Time BriefInterface, BriefConnector, ServerApplet

% Priv./User Time System, Idle, services & explorer

Processor
% Idle/Processor Time

Total (not per CPU core)
% Priv./User Time

System

See Systester “Secondary”Disk Excluded: “% Disk Time”

Memory

NIC

Metrics for the Operational Energy Use of Application Software 82

Appendix B

Scripts

This appendix includes an overview of the script, that was used for automating the execution
and monitoring of Systester. This script, named PiBatch, controls both the Management and
Application systems. When the systems are prepared, the script is initiated from the Management
system. Next, the arguments for the configuration of Systester can be filled in. The arguments
enable the user to specify different arguments on the measurement level: (1) an additional “rest”-
interval before the first series, (2) the number of series in the complete measurement by rebooting
the application system each time (N.B. this was not possible with system SRVR), and (3) the
amount of rest between runs as well as the number of runs per series. Then, on the application
level, Systester also provides us the option to fill in arguments: (1) the number of Pi decimals to
be calculated per run, (2), the number of concurrent threads (e.g., 2 threads entails processing
2 distinct calculations concurrently), (3) the CPU affinity (e.g. a specific single core or different
combinations of multi-core processing), and (4) the calculating algorithm to be used. If the
arguments are correctly filled in, the script will initiate Systester with the specified configuration.
We added some additional feedback in the script to make it more-user friendly. However, we limited
the amount of feedback that was given from the Application system to minimize the amount of
interference. In addition, we also included an example script for using the Pressure application.

B.1 PiBatch - Management System

@echo o f f
: : Guide f o r s e t t i n g CPU a f f i n i t y
echo Overview A f f i n i t y (=Hexadecimal)
echo CPU3 CPU2 CPU1 CPU0 Bin Hex
echo −−−− −−−− −−−− −−−− −−− −−−
echo OFF OFF OFF ON = 0001 = 1
echo OFF OFF ON OFF = 0010 = 2
echo OFF OFF ON ON = 0011 = 3
echo e tc .
echo .

echo − Measurement S e t t i n g s −
s e t /p de lay=Set DelayTime (sec .) :
s e t /p r e s t=Set Resttime (sec .) :
s e t /p runs=Set Calc .−Runs:
echo .
echo − Sy s t e s t e r S e t t i n g s −
s e t /p dec imals=Set Dec imals :
s e t /p threads=Set Threads:
s e t /p a f f=Set A f f i n i t y :
echo .

: : I f System i s SRVR: no reboot !
s e t /p reb=Set Reboots :

Metrics for the Operational Energy Use of Application Software 83

APPENDIX B. SCRIPTS

echo −− Algrotihm Part −−
s e t /p a lg=Gauss (1) or Borwein (2) :

i f ‘ ‘% a lg%’ ’ == ‘ ‘1 ’ ’ s e t a lgo=gaus s l g e l s e s e t a lgo=borwein
echo Se l e c t ed Algor i thm: %algo%
echo .

: : I n i t i a t e (Remote) PerfMon logg ing
echo −−This procedure beg ins with s t a r t i n g MS PerfMon [takes some time]−−
echo .

echo − Sta r t i ng Perfmon @ %time% −
Cal l logman s t a r t t s t s r v
echo .

echo −−(Option) delay−−
t imeout %delay% /nobreak
echo .

: : Execute Reboot (s) , e . g . S e r i e s
FOR /L %%i IN (1 ,1 , %reb %) DO (

echo −−Wait %r e s t% Minutes be f o r e new Se r i e s−−
t imeout %r e s t% /nobreak
echo .

: : Only i f System i s not SRVR!
echo −− I n i t i a t i n g Reboot%%i −−
Star t C:\ I n t e l \PStools \PsExec \ \ ∗ . ∗ . ∗ . ∗ −u ∗ −p ∗ −d − i shutdown . exe / r / t 00

: : Check cur rent hour i s s i n g l e /double d i g i t
s e t HOUR=! t ime : ˜0 , 2 !
IF ‘ ‘ !HOUR:˜0 , 1 ! ’ ’ == ” ” SET HOUR=0!HOUR:˜1 , 1 !
s e t stamp=! da t e : ˜ 9 , 4 ! ! da t e : ˜ 6 , 2 ! ! da t e : ˜3 , 2 ! !HOUR! ! t ime : ˜ 3 , 2 ! ! t ime : ˜6 , 2 !

echo −−I n i t i a t i n g Measurement ! stamp ! @ ! time!−−
echo .

: : S ta r t PiBatch on Appl i ca t ion system [Version Borwein or Gauss]
Ca l l C:\ I n t e l \PStools \PsExec \ \ ∗ . ∗ . ∗ . ∗ −u ∗ −p ∗ − i ‘ ‘ C:\Code\PiBatch\PIbatch %

algo%.bat ’ ’ ! stamp ! %dec imals% %threads% %a f f% %runs% %r e s t% %%i
echo .

)

echo −−Cooling−Down (@ %time%)−−
t imeout 300 /nobreak

: : Stop PerfMon logg ing
echo − Stopping Perfmon @ %time% −
Cal l logman stop t s t s r v
echo .

echo −− Completed Measurement %stamp% −−
echo .

: : Check cur rent hour i s s i n g l e /double d i g i t
s e t HOUR=! t ime : ˜0 , 2 !
IF ‘ ‘ !HOUR:˜0 , 1 ! ’ ’ == ‘ ‘ ’ ’ SET HOUR=0!HOUR:˜1 , 1 !
s e t stamp=!HOUR! ! t ime : ˜ 3 , 2 ! ! t ime : ˜6 , 2 !

: : Update ex t e rna l l og (e . g . , an alarm when logged o f f from management system)
echo . F in i shed Measurement %stamp% >> C: \ . . . \ . . . \ temp\Endtime %stamp%. txt

PAUSE

Listing B.1: Script on Management system

Metrics for the Operational Energy Use of Application Software 84

APPENDIX B. SCRIPTS

B.2 PiBatch - Application System

@echo o f f

: : Check cur rent hour i s s i n g l e /double d i g i t
s e t HOUR=%time : ˜0,2%
IF ‘ ‘%HOUR:˜0,1% ’ ’ == ‘ ‘ ’ ’ SET HOUR=0%HOUR:˜1,1%

: : Check parameter (timestamp)
IF [%1]==[] (

s e t stamp=%date : ˜9,4%%dat e : ˜6,2%%dat e : ˜3,2% %HOUR%%time : ˜3,2%%t ime : ˜6,2%
) e l s e (

s e t stamp=%1
)

: : Check i f l o c a l l og f i l e e x i s t s
i f NOT Exis t C:\Code\PiBatch\Logs\%stamp%. txt (

echo . >> C:\Code\PiBatch\Logs\%stamp%. txt
echo −− Log o f Measurement %stamp% −− >> C:\Code\PiBatch\Logs\%stamp%. txt
echo −− Created @ %time% −− >> C:\Code\PiBatch\Logs\%stamp%. txt
echo . >> C:\Code\PiBatch\Logs\%stamp%. txt

s e t /a new=1
) e l s e (

s e t /a new=0
)

: : Check parameters (Sy s t e s t e r) , i f empty = l o c a l (t e s t) i n i t i a t i o n
IF [%2]==[] (

echo − Sy s t e s t e r s e t t i n g s−
s e t /p r e s=Set Res t :
s e t /p run=Set Runs:
s e t /p dec=Set Dec imals :
s e t /p thr=Set Threads:
s e t /p a f f=Set A f f i n i t y :
: : Number o f Reboots
s e t /a reb=0

) e l s e (
s e t dec=%2
s e t thr=%3
s e t a f f=%4
s e t run=%5
s e t r e s=%6
s e t reb=%7

)

: : Update l o c a l l og
i f %new%==1 (

echo Algo : Borwein >> C:\Code\PiBatch\Logs\%stamp%. txt
echo Rest : %r e s% >> C:\Code\PiBatch\Logs\%stamp%. txt
echo Runs: %run% >> C:\Code\PiBatch\Logs\%stamp%. txt
echo Dec imals : %dec% >> C:\Code\PiBatch\Logs\%stamp%. txt
echo #Threads: %thr% >> C:\Code\PiBatch\Logs\%stamp%. txt
echo A f f i n i t y : %a f f% >> C:\Code\PiBatch\Logs\%stamp%. txt
echo . >> C:\Code\PiBatch\Logs\%stamp%. txt

)

: : Confirm Sy s t e s t e r c on f i gu r a t i on
echo .
echo − Overview PI Input [%run% Run(S)] −
echo Rest (s ec .) : %r e s%
echo #Calc . Runs: %run%
echo Dec imals : %dec%
echo #Threads: %thr%
echo A f f i n i t y : %a f f%
echo .

Metrics for the Operational Energy Use of Application Software 85

APPENDIX B. SCRIPTS

: : Execute Run(s)
FOR /L %%i IN (1 ,1 ,% run%) DO (

echo −− Taking some Rest be f o r e the Run−−
t imeout %re s% /nobreak
echo .

echo − Run %reb%.%%i s t a r t ed @ ! time ! >> C:\Code\PiBatch\Logs\%stamp%. txt
echo − Run %reb%.%%i s t a r t ed @ ! time !

: : I n i t i t a t e Sys t e s t e r−c l i with arguments
[Borwein version] s t a r t ‘ ‘ t aa r t ’ ’ /MIN /WAIT /NORMAL /AFFINITY %a f f% ‘ ‘ C:\Code\

Sy s t e s t e r \ s y s t e s t e r−c l i ’ ’ −qcborwein %dec% −threads %thr%

[Gauss−Legendre version] s t a r t ‘ ‘ t aa r t ’ ’ /MIN /WAIT /NORMAL /AFFINITY %a f f% ‘ ‘ C:\
Code\ Sy s t e s t e r \ s y s t e s t e r−c l i ’ ’ −gausslg %dec% −threads %thr%

echo − Run %reb%.%%i f i n i s h e d @ ! time ! >> C:\Code\PiBatch\Logs\%stamp%. txt
echo . >> C:\Code\PiBatch\Logs\%stamp%. txt
echo − Run %reb%.%%i f i n i s h e d @ ! time !
echo .

)

echo .
echo −− Cooling−down (@ ! time !)
t imeout %re s% /nobreak
echo .

echo Measurement %stamp% Fin i shed @ ! time ! >> C:\Code\PiBatch\Logs\%stamp%. txt

Listing B.2: Script on Application system

B.3 Pressure - CPU Energy Use Profile

@echo o f f

REM Command f o r s t a r t i n g Pressure Se rv i c e
net s t a r t p r e s su r e

REM Command f o r s e t t i n g CPU0 to 50 %
Cal l C:\Pressure \ p r e s s u r e c on s o l e −x 0 :50 1 : 1

timeout 100 /nobreak

REM Command f o r s e t t i n g CPU0 to 100 %
Cal l C:\Pressure \ p r e s s u r e c on s o l e −x 0 :100 1 : 1

timeout 100 /nobreak

REM Command f o r s e t t i n g CPU0 and CPU1 to 50 %
Cal l C:\Pressure \ p r e s s u r e c on s o l e −x 0 :50 1 :50

timeout 100 /nobreak

REM Command f o r s e t t i n g CPU0 and CPU1 to 100 %
Cal l C:\Pressure \ p r e s s u r e c on s o l e −x 0 :100 1 :100

timeout 100 /nobreak

REM Command f o r stopping Pressure Se rv i c e
net stop pr e s su r e

Listing B.3: Example script for Pressure

Metrics for the Operational Energy Use of Application Software 86

Appendix C

Structured Literature Review

• Date of search: January 16, 2014

• Digital Library: ScienceDirect (accessed through Utrecht University proxy)

• Science domains: Computer Science and Business, Management & Accounting

• Initial results: 262 (CS) & 32 (BMA) articles

C.1 Search Term String

(“software architecture” OR “application architecture” OR “macro-architecture” OR “high-level design”)

AND

(green AND (software OR it OR computing) OR (sustainability OR sustainable) AND (software OR ict))

AND

(metric OR measure OR evaluation OR assessment OR method OR analysis)

AND

(goal OR requirement OR driver OR decision OR concern OR principle OR aspect)

C.2 Remaining Articles

• Ardito, Luca & Morisio, Maurizio (2013). Green IT - Available data and guidelines for reducing
energy consumption in IT systems

• Capra, Eugenio; Francalanci, Chiara & Slaughter, Sandra A (2012). Is software “green”? Applica-
tion development environments and energy efficiency in open source applications

• Hoorn, Johan F; Farenhorst, Rik; Lago, Patricia & van Vliet, Hans (2011). The lonesome architect

• Kipp, Alexander; Jiang, Tao; Fugini, Mariagrazia & Salomie, Ioan (2012). Layered Green Perform-
ance Indicators

• Naumann, Stefan; Dick, Markus; Kern, Eva & Johann, Timo (2011). The GREENSOFT Model: A
reference model for green and sustainable software and its engineering

• Zhang, He; Liu, Lin & Li, Tong (2011). Designing IT systems according to environmental settings:
A strategic analysis framework

Metrics for the Operational Energy Use of Application Software 87

Appendix D

Figures & Tables

[add: introduction]

D.1 Workloads at Processes and CPUs during SA and SB

[add: description of section] (Nb. different CPU affinity at LPTP)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gaus8M1C Borw8M1C Borw8M2C

%Idle

App.

Rest

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gaus8M1C Borw8M1C Borw8M2C

%Idle

App.

Rest

Figure D.1: %CPU Time at LPTP per process during SA [left] and SB [right]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gaus8M1C Borw8M1C Borw8M2C

%Idle

App.

Rest

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gaus8M1C Borw8M1C Borw8M2C

%Idle

App.

Rest

Figure D.2: %CPU Time at DKTP per process during SA [left] and SB [right]

Metrics for the Operational Energy Use of Application Software 88

APPENDIX D. FIGURES & TABLES

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gaus8M1C Borw8M1C Borw8M2C

%Idle

App.

Rest

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Gaus8M1C Borw8M1C Borw8M2C

%Idle

App.

Rest

Figure D.3: %CPU Time at SRVR per process during SA [left] and SB [right]

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

CPU0

CPU1

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

CPU0

CPU1

Figure D.4: %CPU Time at LPTP per CPU during SA [left] and SB [right]

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

CPU0

CPU1

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

CPU0

CPU1

Figure D.5: %CPU Time at DKTP per CPU during SA [left] and SB [right]

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

CPU0

CPU1

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

Gaus8M1C Borw8M1C Borw8M2C

CPU0

CPU1

Figure D.6: %CPU Time at SRVR per CPU during SA [left] and SB [right]

Metrics for the Operational Energy Use of Application Software 89

APPENDIX D. FIGURES & TABLES

D.2 Process-Deliverable Diagram

To complete the PDD constructed for this thesis (see Section 2.3) and provide additional descriptions,
this appendix includes the respective Activity Table as well as the Concept Table.

Table D.1: Activity Table

Activity Sub-Activity Description

Literature &
Company Study

Prepare literature
study

A custom LITERATURE STUDY PROTOCOL is
constructed after considering multiple SLR methods

Search literature
LITERATURE is obtained by applying the determ-
ined search string at the set of selected digital libraries

Process candidate liter-
ature

The LITERATURE COLLECTION is refined by ap-
plying a set of rules (e.g. inclusion/exclusion criteria)

Search additional liter-
ature

Additional techniques are applied to increase the LIT-
ERATURE COLLECTION size (e.g. snowballing)

Summarize literature
collection

A LITERATURE SUMMARY contains main findings
after analyzing the LITERATURE COLLECTION

Create brainstorm pro-
tocol

A BRAINSTORM PROTOCOL is constructed to
prepare the structure and ensure a certain quality

Identify domain-
expert(s)

The session requires multiple participants with relat-
ive work experience (e.g. a SA DOMAIN EXPERT)

Conduct brainstorm
session

Conducting the session results in a BRAINSTORM
RECORDING, which can be analyzed afterwards

Collect brainstorm ses-
sion results

Multiple BRAINSTORM RESULT’s are determined
after analyzing the BRAINSTORM RECORDING

Summarize brainstorm
session

The BRAINSTORM SUMMARY contains main find-
ings after analyzing the BRAINSTORM RESULT’s

Development
Synthesize studies &
build candidate metrics

After synthesizing the preceding studies, the KNOW-
LEDGE BASE and METRIC(s) are constructed

Experimentation
Develop experimental
setup & protocol(s)

Both an extensive EXPERIMENTAL SETUP and
EXPERIMENT PROTOCOL are constructed (and
documented) to increase the quality of the measure-
ments and support the reproduction of results

Select & prepare an
AppSys-configuration

Each specific APP/SYS CONFIGURATION needs to
be prepared before a measurement is performed

Perform measurement
with configuration

Multiple MEASUREMENT DATA is created by a
group of MEASUREMENT INSTRUMENTATION

Process measurement
data & analyze results

The Raw MEASUREMENT DATA is processed and
combined in the MEASUREMENTS COLLECTION

Write & submit paper
on experiment results

Based on the analyzes of i.a. the EXPERIMENTA-
TION RESULTS, a RESEARCH PAPER is written

Validation
Perform measurements
with DOCGEN

By applying the VALIDATION PROTOCOL(s), ad-
ditional measurements are performed and, also, the
VALIDATION DATA COLLECTION is constructed

Process measurement
data & analyze results

The VALIDATION RESULTS are constructed by
analyzing the VALIDATION DATA COLLECTION

Discussion Reflect research results (Including discussing the limitations of the research)

Discuss research results
The meaning of RESEARCH RESULT is discussed
(incl. its significance and expectations vs. outcome)

Identify possibilities for
future research

Different aspects of the RESEARCH RESULT, that
can be applied in future research, are discussed

Write thesis & present
final results

Finally, all the main elements of the RESEARCH
RESULT are combined in the THESIS DOCUMENT

Metrics for the Operational Energy Use of Application Software 90

APPENDIX D. FIGURES & TABLES

Table D.2: Concept Table

Concept Description

Literature Study Protocol An approach for conducting a SLR based on the guide by [43]

Literature A journal (article) or book

Literature Collection A collection of LITERATURE instances

Literature Summary A summary of the LITERATURE COLLECTION findings

Brainstorm Protocol A structured approach for conducting a brainstorm session

Domain Expert A person who is an authority in a particular (work) area or topic

Brainstorm Recording An audio recording created during the BRAINSTORM session

Brainstorm Results Definition of i.a. the problem, objectives or possible solution(s)

Brainstorm Summary A documented summary of the BRAINSTORM RESULTS

Knowledge Base The collection of findings that determine the experimentation

Metric (for software)
A (objective, reproducible and quantifiable) measure of a degree
to which a software system or process possesses some property

Experiment Protocol A structured approach for conducting a (set of) experiment(s)

Experimental Setup The instrumentation, protocols, test systems and application(s)

Application Version A specific version, or configuration, of the test application

System (Application) The computer system on which the application is executed

Measurement Instrumentation
The hardware (incl. Management System) and software tools for
measuring the energy consumption and performance of systems

App/Sys Configuration Combination of an Application Version and Application System

Measurement Data The raw data produced by the different INSTRUMENTATION

Measurements Collection Processed, combined & analyzable MEASUREMENT DATA

Experimentation Results The result of analyzing the MEASUREMENTS COLLECTION

Research Paper A paper based on the Experimentation phase’s main findings

Validation Protocol A structured approach for conducting validation measurements

Validation Data Collection Analyzable data that results from the validation measurements

Validation Results Result of analyzing the VALIDATION DATA COLLECTION

Research Reflection A collection of considerations and limitations for this research

Research Discussion An overview of the meaning of the results (e.g. significance)

Future Research (options) An overview of (created) opportunities for future research

Thesis (report) An extensive document that describes the whole thesis project

Research Result Incl. the main artifacts constructed during this thesis project

Metrics for the Operational Energy Use of Application Software 91

	Introduction
	Problem Statement
	Research Objectives
	Research Questions
	Research Context
	Thesis Content

	Research Approach
	Research Design
	Research Model
	Research Method
	Research Deliverables
	Research Questions linked to PDD Deliverables

	Towards Sustainable Software
	Sustainability and IT
	Defining Green IT
	Realizing Green IT Principles
	Focusing on Green Software
	The Role of Software Architecture

	Current Practices
	Literature on Software Sustainability
	Architects on Software Sustainability
	Synthesizing the Current Practices

	Building Metrics for Sustainability
	Recap of the Research Context
	Measuring the Operational Energy Use

	Experimentation
	Experimental Setup
	Experimentation Results
	Experimentation Analysis
	Additional considerations

	Validation
	Validation Setup
	Validation Results
	Validation Analysis

	Discussion
	Findings & Research Contribution
	Research Limitations

	Conclusion
	General Conclusion
	Thesis Results Linked to RQs
	Future Research

	Bibliography
	List of Figures
	List of Tables
	Appendix Data Collector Sets
	Experimentation Phase
	Validation Phase

	Appendix Scripts
	PiBatch - Management System
	PiBatch - Application System
	Pressure - CPU Energy Use Profile

	Appendix Structured Literature Review
	Search Term String
	Remaining Articles

	Appendix Figures & Tables
	Workloads at Processes and CPUs during SA and SB
	Process-Deliverable Diagram

