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Abstract. LetM be the moduli space of rank 2 stable torsion free sheaves with Chern
classes ci on a smooth 3-fold X. When X is toric with torus T , we describe the T -fixed
locus of the moduli space. Connected components of MT with constant reflexive hulls
are isomorphic to products of P1. We mainly consider such connected components,
which typically arise for any c1, “low values” of c2, and arbitrary c3.

In the classical part of the paper, we introduce a new type of combinatorics called
double box configurations, which can be used to compute the generating function Z(q)
of topological Euler characteristics of M (summing over all c3). The combinatorics
is solved using the double dimer model in a companion paper. This leads to explicit
formulae for Z(q) involving the MacMahon function.

In the virtual part of the paper, we define Donaldson-Thomas type invariants of
toric Calabi-Yau 3-folds by virtual localization. The contribution to the invariant of
an individual connected component of the T -fixed locus is in general not equal to its
signed Euler characteristic due to T -fixed obstructions. Nevertheless, the generating
function of all invariants is given by Z(q) up to signs.
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1. Introduction

Let X be an n-dimensional smooth projective variety over C with polarization H. Let
MH

X(r, c1, . . . , cn) denote the moduli space of rank r µ-stable torsion free sheaves on X
with Chern classes c1, . . . , cn.1 See [HL] for the construction of the moduli space and its
history. In this paper, we do not consider strictly semistable sheaves so this moduli space
may be non-compact.2 Fixing c1, . . . , cn−1, one can consider the generating function

(1) ZX,H,r,c1,...,cn−1(q) =
∑
cn∈Z

e(MH
X(r, c1, . . . , cn))qcn ,

1A coherent sheaf F is called torsion free if it has no non-zero subsheaves of dimension < dimX.
2One way to ensure the absence of strictly semistable sheaves is by taking gcd(r, c1H

n−1) = 1. In
this case, the moduli space is compact.
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2 A. GHOLAMPOUR, M. KOOL, B. YOUNG

where e(·) denotes topological Euler characteristic. This is a Laurent series in q when n is
even and q−1 when n is odd [GK1, Prop. 3.6]. These generating functions are fascinating
objects with links to combinatorics, number theory, and representation theory. We
mention a few among many references. For n = 1, generating functions of Poincaré
polynomials were calculated by G. Harder and M. S. Narasimhan [HN], U.V. Desale and
S. Ramanan [DR], and M. F. Atiyah and R. Bott [AB]. For n = 2 and r = 1, generating
functions for Poincaré polynomials were computed by L. Göttsche [Got1]. For n = 2
and r > 1, these generating functions are related to (quasi-)modular forms and have
been computed in numerous examples [Kly2, Yos, Man1, Man2, Man3, Moz]. This case
is related to the S-duality conjecture of physics [VW]. For any n and r = 1, these
generating functions lead to counting n-dimensional boxes as shown by J. Cheah [Che].

For n = 3 and X satisfying H0(K−1
X ) 6= 0, R. P. Thomas constructed a perfect

obstruction theory on MH
X(r, c1, c2, c3) [Tho]. When the moduli space is compact, this

leads to a virtual cycle, which can be used to define deformation invariants. When X is
in addition Calabi-Yau, the perfect obstruction theory is symmetric so the virtual cycle is
0-dimensional. Its degree is known as a Donaldson-Thomas invariant. K. Behrend [Beh]
showed the DT invariant is also equal to the Euler characteristic of MH

X(r, c1, c2, c3)
weighted by a constructible function ν

deg([MH
X(r, c1, c2, c3)]vir) = e(MH

X(r, c1, c2, c3), ν) =
∑
k∈Z

k e(ν−1({k})).

Therefore, the generating function (1) is related to DT theory. When X is a toric
Calabi-Yau 3-fold and r = 1, D. Maulik, N. Nekrasov, A. Okounkov, and R. Pand-
haripande [MNOP1] showed that the generating function of DT invariants (defined by
T -localization) is given by counting the T -fixed points of MH

X(1, c1, c2, c3) with signs.3

The signs can be seen as a consequence of weighing by the Behrend function [BF].
This paper is split up in two parts, which can be read more or less independently. The

classical part is about (1) in the case r = 2 and X is a toric 3-fold. The virtual part is
concerned with rank 2 DT type invariants of a toric Calabi-Yau 3-fold and how these
invariants relate to the Euler characteristics discussed in the classical part.

Part I: Classical

Little is known about the generating function (1) for n > 2 and r > 1. We study
the case n = 3, r = 2, and X is toric. In this case, X contains a dense open torus T
acting on X and this action lifts to the moduli space. Elements of the fixed locus of
the moduli space admit a T -equivariant structure (unique up to tensoring by a character
of T ). Equivariant sheaves on toric varieties were studied in depth by A. Klyachko
[Kly1, Kly2]. He used his methods to calculate (1) for X = P2 and r = 2 obtaining the
holomorphic part of a quasi-modular form of weight 3/2 [Kly2, VW]. Other localization
calculations on (stacky/ordinary) toric surfaces appear in [Per2, Cho, GJK, Koo2].

Let (·)∗ = Hom(·,OX) denote the dual. Any torsion free sheaf F can be naturally
embedded in its double dual R = F∗∗, known as its reflexive hull. This leads to a short
exact sequence

0 −→ F −→ R −→ Q −→ 0,

3A toric Calabi-Yau 3-fold cannot be projective. In this case the DT invariants are defined by the
localization formula of [GP].
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where Q is a sheaf of dimension ≤ 1. Reflexive hulls are reflexive sheaves.4 A reflex-
ive sheaf is torsion free, but much easier to describe than a general torsion free sheaf,
because it is determined by its restriction to the complement of any closed subset of
codimension ≥ 2. Reflexive sheaves on a 3-fold are locally free outside a 0-dimensional
subscheme. For general theory on reflexive sheaves, we refer to [Har2]. Klyachko showed
that T -equivariant rank 2 reflexive sheaves have a straightforward description: they are
described by attaching a flag of C2 to each ray of the fan of X (his description works
for any rank on any toric n-fold). Denote by NH

X (2, c1, c2, c3) the moduli space of rank 2
µ-stable reflexive sheaves on X with Chern classes c1, c2, c3. Taking double dual gives a
map to the scheme theoretic disjoint union

(2) (·)∗∗ :MH
X(2, c1, c2, c3) −→

⊔
c′2,c
′
3

NH
X (2, c1, c

′
2, c
′
3).

Reflexive hulls of members of a flat family do not need to form a flat family (already
on surfaces), so this map is not a morphism. Nevertheless, by a result of J. Kollár
[Kol], this map is constructible.5 This is very useful for calculating Euler characteristics
by cut-paste methods. On a surface, the cokernel Q is 0-dimensional and the double
dual map leads to a product formula expressing (1) as a “point contribution” times the
generating function of reflexive (i.e. locally free) sheaves [Got2]. Two interesting things
happen when n = 3 and r = 2: the cokernel Q need not be 0-dimensional and R need
not be locally free. Since we are interested in Euler characteristics, we only need to
understand (2) at the level of T -fixed points, where we can use Klyachko’s description
of T -equivariant torsion free and reflexive sheaves. As already mentioned, T -equivariant
reflexive sheaves are very well-behaved. Generating functions of NH

X (2, c1, c
′
2, c
′
3) were

studied in [GK1].
Equivariant torsion free sheaves are much harder to enumerate than equivariant re-

flexive sheaves. At the level of closed points, the fibre of (2) over a reflexive sheaf R is
the Quot scheme

QuotX(R, c′′2, c′′3),

of cokernels R � Q where Q has dimension ≤ 1 and Chern classes c′′2, c′′3.6 Suppose R
is T -equivariant, then T acts on QuotX(R, c′′2, c′′3). The connected components of the T -
fixed locus of QuotX(R, c′′2, c′′3) are indexed by a new type of combinatorial objects, which
we call double box configurations (Definition 2.17). Moreover, each connected component
is isomorphic to a product of P1’s (Proposition 2.11). When Q is 0-dimensional, i.e. c′′2 =
0, we solve the combinatorics completely in a companion paper [GKY].

One basic building block for our computations is QuotC3(R, n): the Quot scheme of
0-dimensional quotients R� Q of length n, where R is a T -equivariant rank 2 reflexive
sheaf on C3. IfR is locally free, it decomposes7 as a sum of two line bundlesR ∼= L1⊕L2,
which gives an additional C∗-action by scaling the factors. Localization with respect to
this action gives a well-known result

(3)
∞∑
n=0

e(QuotC3(R, n))qn = M(q)2,

4A coherent sheaf F is called reflexive if the natural map F → F∗∗ is an isomorphism.
5More precisely, the domain can be written as a union of locally closed subschemes Ci such that on

each Ci the map (·)∗∗ is a morphism.
6The Chern classes ci, c

′
i, c
′′
i are related by equation (10).

7Due to Proposition 2.4.
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whereM(q) denotes the MacMahon function counting 3D partitions. WhenR is singular,
i.e. not locally free hence indecomposable7, this generating function is much harder to
calculate. Then there are integers v1, v2, v3 > 0, which roughly speaking encode the
weights of the three homogeneous generators of H0(R). In terms of these weights, we
have:

Theorem A. [GKY, GK2]
∞∑
n=0

e(QuotC3(R, n))qn = M(q)2

v1∏
i=1

v2∏
j=1

v3∏
k=1

1− qi+j+k−1

1− qi+j+k−2
.

The triple product factor is the generating function of 3D partitions in a box of lengths
v1 by v2 by v3 and is therefore a polynomial in q [Sta, (7.109)]. The length of the
singularity of R is v1v2v3 (Proposition 2.4). Therefore, in the singular case we get the
“locally free answer” M(q)2 times a polynomial counting partitions “in the singularity
of R”. There are two proofs of this theorem:

• Using C∗3-localization on QuotC3(R, n) and the double dimer model. The fixed
locus of QuotC3(R, n) is described in this paper. The link to double dimers and
how it leads to a proof of Theorem A form the topic of the (purely combinatorial)
companion paper [GKY].
• Using Hall algebra techniques, a non-toric version of Theorem A was recently

proved by the first two authors in [GK2]. This proof provides a geometric ex-
planation why counting inside the singularity of R and the MacMahon function
occur.

The combinatorial proof [GKY] was found before the geometric proof [GK2]. We briefly
discuss these two proofs in Section 2.6.

What does this result tell us about generating function (1) for n = 3 and r = 2?
Recall that we fix c1, c2 and sum over all c3. If c2 is chosen such that c2H is minimal
with the property that there exists a rank 2 µ-stable torsion free sheaf on X with Chern
classes c1, c2, then Q is automatically 0-dimensional (Proposition 3.1). In this case, we
get a structure theorem for (1) (Proposition 3.2). If in addition the polyhedron ∆(X) of
the toric 3-fold X is small in the sense of Definition 3.3 (e.g. when rk Pic(X) ≤ 3), then
all T -equivariant reflexive hulls in the moduli space are isolated T -fixed points and the
formula simplifies (Theorem 3.5). A special case of this setting is X = P3 and c2 = 1.
In principle, our approach also works for more general c2, but then the combinatorics
becomes increasingly complex. We illustrate this for X = P3 and c2 = 2.

Theorem B. For X = P3 and c1 = −1, we have

Zc2=1(q) = 4(q−1 + q)M(q−2)8,

Zc2=2(q) = 12

(
2q−4 − q−2 + 1− 4q2 + 3q4 + 5q8

(1− q2)2

)
M(q−2)8.

Part II: Virtual

Let Y be a smooth toric Calabi-Yau 3-fold. Since Y is non-compact, we choose a toric
compactification Y ⊂ X with H0(K−1

X ) 6= 0 and a polarization H on X. Define the
T -invariant open subset

MH
Y⊂X(2, c1, c2, c3) ⊂MH

X(2, c1, c2, c3)
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of torsion free sheaves F on X such that F∗∗/F ∼= Q is supported on Y . Openness is
proved in Proposition 4.3. Unlike the rank 1 case, this moduli space depends on the
choice of X and H. This reflects dependence of stability on choice of polarization for
higher rank. When C is a compact connected component ofMH

X(2, c1, c2, c3)T , it has an
induced virtual cycle by [GP] and one can consider the expression

(4)

∫
[C]vir

1

e(Nvir)
,

where e(·) denotes T -equivariant Euler class and Nvir denotes the virtual normal bundle
of C. These integrals depend on equivariant parameters s1, s2, s3. We are interested in
connected components C, which also satisfy C ⊂ MY⊂X . Unfortunately, the DT complex
restricted to such a component C is not automatically symmetric. However, if we suppose
in addition that all closed points of C have the same (i.e. isomorphic) reflexive hull R,
then we can write (4) as

e(RHom(R,R)0 ⊗OC)×
∫

[C]vir

1

e(Nvir) e(RHom(R,R)0 ⊗OC)
,

where the second factor of this product is a number for s1 + s2 + s3 = 0 (Proposition-
Definition 4.11). We denote this number by DT(C). The reason for this is that after
removing −RHom(R,R)0 from the DT complex on C in the K-group, it becomes sym-
metric (Proposition 4.6). We think of DT(C) as the contribution of C to rank 2 DT type
invariants of Y .8 We have a precise conjecture for generating functions of DT(C) in any
Chern classes on any toric Calabi-Yau 3-fold (Main Conjecture 6.1).

For Y = C3 and fixed T -equivariant rank 2 reflexive hull R on C3, consider all con-
nected components C for which all its elements have constant reflexive hull R and 0-
dimensional cokernel. Then the generating function of all DT(C) is the degree 0 rank 2
equivariant vertex, which we denote by WR,∅,∅,∅(q). We conjecture an explicit formula
for it (Conjecture 6.9):

Conjecture C.

WR,∅,∅,∅(q)
∣∣∣
s1+s2+s3=0

=

{
M(q)2 if R is locally free

M(q)2
∏v1

i=1

∏v2
j=1

∏v3
k=1

1−qi+j+k−1

1−qi+j+k−2 if R is singular.

This can be viewed as the degree 0 part of rank 2 DT theory on smooth toric 3-folds.
This formula is in accordance with the expectation that higher rank DT invariants can be
expressed in terms of rank 1 DT invariants and “point contributions”.9 Note that unlike
the rank 1 case, there are no signs in this formula (essentially because rank 2 is even).
Comparing to (3) and Theorem A, Conjecture C suggest DT(C) = e(C), but this is not
the case. In fact, DT(C) can be zero due to obstructions (Example 6.5). The following
is strong evidence for Conjecture C. Let T0 ⊂ T denote the “Calabi-Yau torus” defined
by t1t2t3 = 1. Let C ⊂ MY⊂X be a compact connected component of the T0-fixed locus
with constant reflexive hulls R and cokernels of dimension 0. Using T0-localization and

8Another approach to DT invariants of Y is by using “framing at infinity” as in the work of D. Oprea
[Opr]. In this case, the generating function becomes a product of rank 1 generating functions by using
an extra torus action on the framing. In our theory, such a splitting does not occur due to the presence
of singularities in the reflexive hull.

9Mentioned to us by D. Maulik and J. Manschot.
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assuming analogs of two conjectures10 used in the T0-localization of stable pair theory of
Pandharipande-Thomas [PT2], we prove∑

Ci⊂CC∗
DT(C) =

∑
Ci⊂CC∗

e(Ci) = e(C).

Here the sum is over all connected components of the T/T0
∼= C∗-fixed locus of C.

See Remark 6.25 for the precise statement. Combinatorially, this means that whenever
DT(Ci) = 0 for some Ci, other “buddy components” Cj in the same C∗-fixed locus will
compensate to recover the Euler characteristic.

Main Conjecture 6.1 is a generalization of Conjecture C to arbitrary smooth toric
Calabi-Yau 3-folds and Chern classes. It expresses generating functions of rank 2 DT
type invariants in terms of Euler characteristics and signs. The signs only occur in
the presence of legs, i.e. when the cokernel is 1-dimensional. We provide the following
evidence for Main Conjecture 6.1:

• Explicit examples (Section 6.1, 6.2).
• A proof in the case of “expected obstructions” (Theorem 6.17).
• A proof using T0-localization based on the analogs of two conjectures of [PT2]

(Theorem 6.24).

Notation. For any sets A,B, we denote projections to the factors by pA : A× B → A
and pB : A × B → B. If A,B are schemes with coherent sheaves E ,F , we write
E � F := p∗AE ⊗ p∗BF . We denote the closed points of a finite type C-scheme B by Bcl.

Acknowledgements. We would like to thank K. Behrend, J. Bryan, J. Manschot,
D. Maulik, and R. P. Thomas for useful discussions. We would also like to thank the
anonymous referees whose comments led to an immense improvement of the exposition,
e.g. by splitting the paper in two parts.

A.G. was partially supported by NSF grant DMS-1406788. M.K. was supported by
EP/G06170X/1, “Applied derived categories” (while at Imperial College), a PIMS post-
doctoral fellowship (CRG Geometry and Physics, while at UBC), and NWO-GQT and
Marie Sk lodowska-Curie Project 656898 (INVLOCCY) (while at Utrecht).

Part I: Classical

2. Fixed loci

In this section we recall Klyachko’s description of T -equivariant torsion free and re-
flexive sheaves on a smooth projective toric 3-fold X. In the rank 2 case, we use it to
describe (scheme-theoretically) the T -fixed locus of the moduli space of µ-stable torsion
free sheaves and deduce it is smooth (Theorem 2.10). We also give a combinatorial de-
scription of the fixed locus of the Quot scheme of a T -equivariant rank 2 reflexive hull in
terms of new combinatorial objects called double box configurations (Definition 2.17).

2.1. Toric 3-folds. Let X be a smooth projective toric 3-fold with dense open torus T .
We recall some basic facts and notation from toric geometry. For a general introduction
to toric varieties see [Ful]. Let ∆(X) be the Newton polyhedron of X determined by a
polarization (e.g. [MNOP1, Sect. 4.1]). Note that we are not actually fixing a polarization

10One conjecture asserts smoothness of C.
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at this stage, so ∆(X) does not come with an embedding in the character lattice. Denote
the collection of vertices of ∆(X) by V (X) and the collection of edges of ∆(X) by E(X).
The vertices α ∈ V (X) correspond bijectively to the cones of dimension 3 of the fan of
X. We denote the edge between two adjacent vertices α, β ∈ V (X) by αβ ∈ E(X). The
edges αβ ∈ E(X) correspond bijectively to the cones of dimension 2 of the fan of X. We
denote by Uα ∼= C3 the T -invariant affine open subset corresponding to α. Furthermore,
we write Xα for the fixed point corresponding to α and Cαβ ∼= P1 for the T -invariant line
joining Xα and Xβ. The toric divisors are labelled by the faces of ∆(X). We denote the
collection of faces of ∆(X) by F (X) and label its elements by ρ ∈ F (X).11 The toric
divisor corresponding to ρ ∈ F (X) is denoted by Dρ.

For any α ∈ V (X), there are coordinates (x1, x2, x3) on Uα ∼= C3 and t = (t1, t2, t3) on
T ∼= C∗3 such that

t · (x1, x3, x3) = (t1x1, t2x2, t3x3).

In these coordinates, the fixed point Xα has cotangent representation

〈dx1〉C ⊗ t1 + 〈dx2〉C ⊗ t2 + 〈dx3〉C ⊗ t3,

where 〈·〉C denotes C-span. We therefore have a T -equivariant isomorphism

(5) KX |Uα ∼= OUα ⊗ t1t2t3.

For each αβ ∈ E(X), there exist integers mαβ, m′αβ such that the normal bundle NCαβ/X

is given by

NCαβ/X
∼= OP1(mαβ)⊕OP1(m′αβ).

The transition function between the charts Uα, Uβ is given by

(6) (x1, x2, x3) 7→ (x−1
1 , x2x

−mαβ
1 , x3x

−m′αβ
1 ),

where Cαβ is defined by x2 = x3 = 0. Here we follow the notation of [MNOP1].

2.2. Equivariant torsion free sheaves. We give Klyacho’s description of T -equivariant
torsion free sheaves on a smooth projective toric 3-fold X [Kly1, Kly2]. Klyachko’s work
was further developed by M. Perling [Per1] and we will mostly follow his notation. Most
constructions of Sections 2.2–2.4 work for X of any dimension, but we stick to dimension
3 for notational convenience.

Let F be a T -equivariant quasi-coherent sheaf on X and α ∈ V (X). Let (x1, x2, x3)
be coordinates on Uα ∼= C3 as in Section 2.1. We first study the restriction F|Uα . The
global section functor H0(·) gives an equivalence between the categories of quasi-coherent
sheaves on Uα and C[x1, x2, x3]-modules. It is not hard to extend this to an equivalence
between the categories of T -equivariant quasi-coherent sheaves on Uα and C[x1, x2, x3]-
modules with regular T -action [Per1].

Given a T -equivariant quasi-coherent sheaf Fα on Uα, we have a decomposition into
weight spaces according to the character group X(T ) = Z3

H0(Fα) =
⊕

(k1,k2,k3)∈Z3

Fα(k1, k2, k3).

The sheaf Fα is coherent if and only if H0(Fα) has a finite number of homogeneous
generators. Moreover Fα is torsion free if and only if the multiplication maps x1, x2, x3

11We identify F (X) with the collection of rays of the fan of X by sending a face to the ray it is
transverse to.
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are injective on all weight spaces Fα(k1, k2, k3) [Per1]. Therefore, the category of T -
equivariant rank r torsion free sheaves Fα on Uα is equivalent to the category of collections
of complex vector spaces {Fα(k1, k2, k3)}(k1,k2,k3)∈Z3 satisfying:

• The vector spaces Fα(k1, k2, k3) form a triple filtration

Fα(k1, k2, k3) ⊂ Fα(k1 + 1, k2, k3),

Fα(k1, k2, k3) ⊂ Fα(k1, k2 + 1, k3),

Fα(k1, k2, k3) ⊂ Fα(k1, k2, k3 + 1).

• For all k1, k2, k3 � 0 we have Fα(k1, k2, k3) = Cr.
• Whenever k1 � 0 or k2 � 0 or k3 � 0 we have Fα(k1, k2, k3) = 0.

We refer to {Fα(k1, k2, k3)}(k1,k2,k3)∈Z3 as a rank r σ-family.12 The maps in the category
of T -equivariant rank r torsion free sheaves on Uα are T -equivariant morphisms and the
maps in the category of rank r σ-families are endomorphisms of Cr compatible with the
triple filtrations.

A T -equivariant torsion free sheaf F on X gives rise to T -equivariant torsion free
sheaves Fα := F|Uα and corresponding σ-families

F := {Fα(k1, k2, k3)}(k1,k2,k3)∈Z3,α∈V (X).

Conversely, given such a collection of σ-families, when do the corresponding sheaves Fα
glue to a sheaf F on X? Note that for fixed k2, k3, the vector space Fα(k1, k2, k3) ⊂ Cr

does not change for k1 � 0. We denote this “limiting vector space” by Fα(∞, k2, k3).
It is not hard to show that the gluing conditions are given by the following equations
[Kly2, Per1]

(7) Fα(∞, k2, k3) = Fβ(∞, k2, k3),

for all α, β ∈ V (X) and k2, k3 ∈ Z. Here the coordinates are chosen such that Cαβ is
defined by equations x2 = x3 = 0 in Uα and x′2 = x′3 = 0 in Uβ. This describes an
equivalence between the category of T -equivariant rank r torsion free sheaves on X and
collections of rank r σ-families satisfying the gluing conditions (7) [Per1]. The maps in
both categories are the obvious ones.

Definition 2.1. Let F be a T -equivariant torsion free sheaf on a smooth projective
toric 3-fold X with corresponding collection of σ-families F. We define the characteristic
function χF of F as follows

χF := {χαF}α∈V (X),

χαF : Z3 −→ Z, χαF(k1, k2, k3) := dim(Fα(k1, k2, k3)).

We denote the collection of characteristic functions of T -equivariant torsion free sheaves
on X by X .

Characteristic functions of members of a flat family of T -equivariant coherent sheaves
are locally constant over the base [Koo1]. One can construct projective coarse moduli
spaces of T -equivariant torsion free sheaves with fixed characteristic function using GIT.
Moreover, one can choose a GIT stability condition for which GIT stability and Gieseker
stability coincide [Koo1].

Let F be a T -equivariant torsion free sheaf on X. Then there is an explicit formula
for the Chern character ch(F) in terms of the characteristic function χF . This formula

12This terminology is due to Perling [Per1]. Here σ denotes the cone of maximal dimension corre-
sponding to vertex α. In our notation α-family would perhaps be better terminology.



RANK 2 SHEAVES ON TORIC 3-FOLDS 9

is due to Klyachko [Kly1, Kly2]. An alternative way for obtaining such a formula is
by T -equivariant dévissage. Concretely, this works as follows. The cohomology ring
H2∗(X,Z) is explicitly determined by the fan (or polyhedron) of X. It is the free Z-
module generated by the T -invariant closed subsets

Dρ, Cαβ, Xα

modulo certain relations [Ful]. For example Xα = Xβ for all α, β ∈ V (X) is such a
relation. There are three linear relations among the toric prime divisors Dρ and certain
relations among the Cαβ. The T -equivariant Picard group PicT (X) is generated by Dρ

without relations. Inside the T -equivariant K-group KT
0 (X), there is an explicit way of

writing F as a finite sum of elements of the form

ODρ ⊗ L, OCαβ ⊗ L, OXα ⊗ L,

for L ∈ PicT (X). The algorithm for getting such a decomposition is explicitly described
in [GK1] for the case X = P3, r = 2, and F reflexive. See Example 2.3 below for
the equations. It is straightforward to generalize the algorithm to any X and F a T -
equivariant rank r torsion free sheaf on X. For any χ ∈ X , we write ch(χ) for the Chern
character determined by a characteristic function χ. Characteristic function determines
Chern character and hence Hilbert polynomial (by Hirzebruch-Riemann-Roch). For a
fixed Chern character ch, we denote by

Xch ⊂ X
the collection of characteristic functions χ satisfying ch(χ) = ch.

2.3. Equivariant reflexive sheaves. Let X be a smooth projective toric 3-fold with
polarization H. Recall that a coherent sheaf F on X is µ-semistable (resp. µ-stable) if
and only if F is torsion free and we have µE ≤ µF (resp. µE < µF) for all subsheaves
E ⊂ F with 0 < rk(E) < rk(F) [HL, Def. 1.2.12]. Here the slope µF is defined by

µF :=
c1H

2

rk(F)
.

Recall from the introduction that we always work on the open subset of µ-stable sheaves
and disregard strictly µ-semistable sheaves completely. A torsion free sheaf F on X is
µ-stable if and only if its reflexive hull F∗∗ is µ-stable.13 Klyachko [Kly2] found out
that T -equivariant reflexive sheaves on X have a particularly straightforward descrip-
tion. Moreover, their stability is easily described in terms of their characteristic function
[Koo1]. We will now describe this.

We denote by l the number of faces of the polyhedron ∆(X). Note that l equals
the rank of PicT (X). Klyachko [Kly2] gives an equivalence between the category of
T -equivariant rank r reflexive sheaves on X and the category of collections of flags

R := {Rρ(k)}k∈Z,ρ∈F (X)

· · · ⊂ Rρ(k − 1) ⊂ Rρ(k) ⊂ Rρ(k + 1) ⊂ · · ·
satisfying

• Rρ(k) = 0 for all k � 0,
• Rρ(k) = Cr for all k � 0.

13The reason is that for all E ⊂ F the sheaves E and E∗∗ are equal on the complement of a closed
subset of codimension ≥ 2 so µE = µE∗∗ .
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The morphisms of both categories are the obvious ones.
We now describe how a family of flags R gives rise to a T -equivariant reflexive sheaf

R on X. Let α ∈ V (X) and let Uα ∼= C3 be the corresponding T -invariant affine open
subset. Write the coordinates on Uα by (x1, x2, x3) as in Section 2.1. Suppose the toric
divisor xi = 0 corresponds to ray ρi ∈ F (X). Define vector spaces

Rα(k1, k2, k3) := Rρ1(k1) ∩Rρ2(k2) ∩Rρ3(k3).

Then

{Rα(k1, k2, k3)}(k1,k2,k3)∈Z3,α∈V (X)

is a collection of rank r σ-families satisfying the gluing conditions (7). The corresponding
sheaf R on X is reflexive [Kly2, Per2]. Roughly speaking the reason is that a reflexive
sheaf is determined by its restriction to the complement of any closed subset of codi-
mension ≥ 2 [Har2, Prop. 1.6] and the flags Rρ1(k), Rρ2(k), Rρ3(k) precisely correspond
to the restriction of the reflexive sheaf to C× C∗ × C∗,C∗ × C× C∗,C∗ × C∗ × C.

In the case r = 2, a family of filtrations R is entirely determined by the integers where
the dimensions jump together with a choice of 1-dimensional subspaces for the jumps.
More precisely, for each ρ ∈ F (X), there are unique uρ ∈ Z, vρ ∈ Z≥0 and pρ ∈ P1 such
that

Rρ(k) =

 0 for all k < uρ
pρ for all uρ ≤ k < uρ + vρ
C2 for all uρ + vρ ≤ k

,

where pρ does not occur when vρ = 0.

Definition 2.2. Let R be a T -equivariant rank 2 reflexive sheaf on X corresponding to
a collection of filtrations {Rρ(k)}. We refer to the data

{(uρ, vρ, pρ)}ρ∈F (X)

described above as the toric data of R and abbreviate it by (u,v,p). Given toric data
(u,v,p), we define

δρ,ρ′ := dim(pρ ∩ pρ′) ∈ {0, 1},
δρ,ρ′,ρ′′ := dim(pρ ∩ pρ′ ∩ pρ′′) ∈ {0, 1}.

We abbreviate the collection of these number by δ. Clearly the the numbers (u,v, δ)
determine the characteristic function χR and vice versa. We treat both notions on equal
footing.

Example 2.3. The toric 3-fold X = P3 is described by the lattice N = Z3 together with
the fan consisting of the 3-dimensional cones

σ1 = 〈e1, e2, e3〉Z≥0
,

σ2 = 〈e2, e3,−e1 − e2 − e3〉Z≥0
,

σ3 = 〈e1, e3,−e1 − e2 − e3〉Z≥0
,

σ4 = 〈e1, e2,−e1 − e2 − e3〉Z≥0
.

Here (e1, e2, e3) is the standard basis of Z3. We denote the rays generated by e1, e2,
e3, −e1 − e2 − e3 by ρ1, ρ2, ρ3, ρ4. The corresponding polyhedron is a tetrahedron
and F (X) = {ρ1, ρ2, ρ3, ρ4}. Let h denote the hyperplane class on X and let R be a
T -equivariant rank 2 reflexive sheaf on X described by toric data (u,v,p). We define
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ui := uρi , vi := vρi , δij := δρi,ρj , and δijk := δρi,ρj ,ρk . In [GK1] the Chern classes of R are
computed using T -equivariant dévissage as mentioned in Section 2.2

c1(R) = −
(
2
∑
i

ui +
∑
i

vi
)
h,

c2(R) =
1

4
c1(R)2 +

(1

2

∑
i<j

(1− 2δij)vivj −
1

4

∑
i

v2
i

)
h2,

c3(R) =
∑
i<j<k

vivjvk(1− δij − δik − δjk + 2δijk)h
3.

This expresses ch(R) in terms of the characteristic function χR. By further removing
Chern characters of OCαβ⊗L, OXα⊗L with L ∈ PicT (P3), we obtain explicit expressions
for ch(F) in terms of χF for any given T -equivariant rank 2 torsion free sheaf F on P3.

Back to any smooth projective toric 3-fold X. The following proposition is very useful.

Proposition 2.4. Let R be a T -equivariant rank 2 reflexive sheaf on X with toric data
(u,v,p). Let α ∈ V (X) and denote by ρ1,α, ρ2,α, ρ3,α ∈ F (X) the faces sharing vertex α.
Then R|Uα is singular, i.e. not locally free, precisely if vρ1,α, vρ2,α, vρ3,α are all positive
and p1,α, p2,α, p3,α are mutually distinct. If R|Uα is singular, then the length of its
singularity equals the product vρ1,αvρ2,αvρ3,α. Moreover, the degree of c3(R) equals the
sum of the lengths of the singularities of {R|Uα}α∈V (X).

Proof. For X = P3 this is immediate from [Har2, Prop. 2.6] and the formula for c3(R) of
Example 2.3. For general X, the proof is easily adapted as is discussed in detail in the
proof of [GK1, Prop. 3.6]. �

Let R be a T -equivariant rank 2 reflexive sheaf on X described by toric data (u,v,p).
Like in the case of Chern classes, µ-stability of R can be described in terms of the toric
data only. More precisely R is µ-stable if and only if for any 1-dimensional subspace
q ⊂ C2 ∑

ρ∈F (X)

dim(pρ ∩ q)(DρH
2)vρ <

1

2

∑
ρ∈F (X)

(DρH
2)vρ,

where we recall that H denotes the polarization and Dρ the toric divisor corresponding
to ρ ∈ F (X) (Section 2.1). A similar description exists for any rank on any polarized
smooth projective toric n-fold [Koo1].

Let F be a T -equivariant torsion free sheaf on X. Then F is µ-stable if and only
if its reflexive hull R := F∗∗ is µ-stable. So in order to understand µ-stability of such
sheaves, we only need to write the family of filtrations R corresponding to R in terms of
the collection of σ-families F corresponding to F . This can be done as follows: for any
α ∈ V (X) denote by ρ1, ρ2, ρ3 the faces sharing vertex α, then

Rρ1(k) = Fα(k,∞,∞), Rρ2(k) = Fα(∞, k,∞), Rρ3(k) = Fα(∞,∞, k),

for all k ∈ Z ([Kly2], see also [GK1]).

2.4. General structure of fixed loci. Let χ ∈ X be the characteristic function of a
T -equivariant rank 2 torsion free sheaf on X. There exists a natural moduli functor of
families of µ-stable T -equivariant torsion free sheaves on X with characteristic function
χ [Koo1].14 Using the previous section, a fairly straight-forward GIT construction yields

14The paper [Koo1] rather deals with Gieseker stability. The case of µ-stability is easier.
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a quasi-projective C-scheme corepresenting this functor. In this section we describe the
outcome. For details and proofs (in a much more general setting) see [Koo1].

For a fixed characteristic function χ = {χα}α∈V (X) ∈ X , the following definitions
identify connected components in the domain of each χα where χα takes value 1. To
each such connected component, we will then associate a moduli factor P1 (up to gluing).

Definition 2.5. Denote the Euclidean norm on R3 by || · ||. Let χ = {χα}α∈V (X) ∈ X
and consider χα. Let S ⊂ X(T ) = Z3, then S is called a connected component of 1’s
associated to χα when

χα(k1, k2, k3) = 1, for all (k1, k2, k3) ∈ S
for all (k1, k2, k3) ∈ S and (l1, l2, l3) ∈ Z3 :

if χα(l1, l2, l3) = 1 and ||(k1, k2, k3)− (l1, l2, l3)|| = 1 then (l1, l2, l3) ∈ S,

and S does not contain a non-empty proper subset with these properties.

Definition 2.6. Let χ = {χα}α∈V (X) ∈ X and fix α ∈ V (X). Consider a connected
component of 1’s, κ, associated to χα.

• If κ is bounded in Z3, then we refer to it as a vertex component associated to χα.
• The connected component κ is called a local face component associated to χα if

it satisfies the following property. There exists a face ρ ∈ F (X) containing the
vertex α and with vρ > 0 such that if we choose coordinates for which the toric
divisor Dρ corresponds to {x1 = 0} and write u1 := uρ, v1 := vρ, then we have
(k1, k2, k3) ∈ κ for all integers u1 ≤ k1 < u1 + v1 and k2, k3 � 0.
• In all other cases κ is called a local edge components associated to χα.

Definition 2.7. Let χ = {χα}α∈V (X) ∈ X . The toric data (u,v,p) of any reflexive hull
of a T -equivariant torsion free sheaf on X with characteristic function χ has the same
values u, v. Consider all connected components of 1’s of all {χα}α∈V (X) at once. It is
clear that connected components of 1’s associated to χα, χβ glue just like σ-families (7).
Vertex components never glue, but local face or local edge components associated to one
χα may glue to local face or local edge components associated to another χβ. Note that
local face components may glue to local edge components. After gluing, we refer to a
global connected component of 1’s containing a local face component as a face component
associated to χ. All other global connected components of 1’s which are not vertex or
face components are called edge components associated to χ. We denote the number of
face, edge, vertex components associated to χ by a, b, c.

Let the situation be as in the previous definition. To each connected component of 1’s
of χ we associate a choice of C ⊂ C2. This specifies a filtration {Fα(k1, k2, k3)}α∈V (X),
i.e. a T -equivariant torsion free sheaf on X with characteristic function χ. Hence the
closed points of

(P1)a × (P1)b × (P1)c

are in bijective correspondence with all possible collections of σ-families of T -equivariant
torsion free sheaves on X with characteristic function χ. Moreover, two points corre-
spond to isomorphic objects if and only if they lie in the same SL(2,C)-orbit. Here
SL(2,C) acts by matrix multiplication on each factor P1. The SL(2,C)-equivariant line
bundles on this space are in 1-1 correspondence with elements of [Dol]

Za × Zb × Zc
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via the correspondence

({ai}ai=1, {bj}bj=1, {ck}ck=1)↔ �a
i=1OP1(ai) ��b

j=1OP1(bj) ��c
k=1OP1(ck).

We want to pick an SL(2,C)-equivariant line bundle for which the properly GIT stable
points exactly correspond to the collections of σ-families for which the associated sheaf
is µ-stable. Using the previous section, one can show that the following choice works
[Koo1]

ai :=
∑
ρ

(H2Dρ)vρ, bj = 0, ck = 0,

where the sum is over all faces ρ ∈ F (X) for which vρ > 0 and the corresponding local
face component is contained in the (global) face component indexed by i. The stability
does not depend on the edge and vertex components but only on the face components.
In particular, we get an open subset UH

X (χ) ⊂ (P1)a such that the closed points of

UH
X (χ)× (P1)b × (P1)c

precisely correspond to µ-stable sheaves. Unfortunately the above SL(2,C)-equivariant
line bundle is not ample. For ampleness, all ai, bi, ci must be positive. Therefore we fix
R� 0 and take

ai := R
∑
ρ

(H2Dρ)vρ, bi = 1, ci = 1,

where the sum over ρ is as above. Then the properly GIT stable locus is still

UH
X (χ)× (P1)b × (P1)c

and the GIT quotient

MH
X(χ) := UH

X (χ)× (P1)b × (P1)c / SL(2,C)

is a quasi-projective variety whose closed points exactly correspond to the T -equivariant
isomorphism classes of T -equivariant rank 2 µ-stable torsion free sheaves on X with char-
acteristic function χ. The spaceMH

X(χ) is projective when gcd(2, c1H
2) = 1. Moreover,

MH
X(χ) is smooth, because UH

X (χ)× (P1)b× (P1)c is smooth and PGL(2,C) acts without
stabilizers. One can show that MH

X(χ) indeed corepresents a natural moduli functor as
follows [Koo1]:

Theorem 2.8. Let X be a smooth projective toric 3-fold with polarization H. Let χ ∈ X
be the characteristic function of a T -equivariant rank 2 torsion free sheaf on X. Then

MH
X(χ) := UH

X (χ)× (P1)b × (P1)c / SL(2,C)

is a smooth quasi-projective variety corepresenting the moduli functor of families of T -
equivariant µ-stable torsion free sheaves on X with characteristic function χ.

Remark 2.9. In the above theorem, the double dual map is given by

UH
X (χ)× (P1)b × (P1)c / SL(2,C) −→ UH

X (χ) / SL(2,C),

where we denote the latter quotient by NH
X (χ). We deduce that if MH

X(χ) 6= ∅, then
a ≥ 3 (or else the connected component of reflexive hulls NH

X (χ) = ∅). We also deduce:
all closed points of MH

X(χ) have the same reflexive hull if and only if a = 3. Suppose
this is the case. ThenMH

X(χ) ∼= (P1)b× (P1)c. Moreover, NH
X (χ) is an isolated reduced

point {[R]} of the T -fixed locus of the moduli space of µ-stable reflexive sheaves on X.
Therefore

Ext1(R,R)T = 0.
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We have a tautological line bundle OP1(1) on each factor P1 of MH
X(χ). Using the

tautological inclusions
OP1(−1) ⊂ OP1 ⊕OP1 ,

it is easy to construct a universal family F on MH
X(χ) fitting in a short exact sequence

0 −→ F −→ p∗XR −→ Q −→ 0,

where the cokernel Q is MH
X(χ)-flat.

Suppose now X is a smooth projective toric 3-fold with polarization H and letMX :=
MH

X(2, c1, c2, c3) denote the moduli space of rank 2 µ-stable torsion free sheaves on X
with indicated Chern classes. We consider its fixed locusMT

X . Denote by X(2,c1,c2,c3) the
collection of characteristic functions of T -equivariant rank 2 torsion free sheaves on X
with Chern classes c1, c2, c3. Forgetting the T -equivariant structure defines a map

(8)
⊔

χ∈X(2,c1,c2,c3)

MH
X(χ) −→MT

X .

It is not hard to show this is a morphism [Koo1]. Any element of MT
X admits a T -

equivariant structure, which is unique up to tensoring by a character of X(T ) [Koo1].
The map (8) is therefore surjective but not injective. It can be made injective as follows.
Choose any vertex α0 ∈ V (X) and denote by ρ1, ρ2, ρ3 ∈ F (X) the faces having α0 as a
vertex. Define

X slice
(2,c1,c2,c3) ⊂ X(2,c1,c2,c3)

as the subset of characteristic functions χ for which the corresponding (u,v) satisfy

(9) uρ1 = uρ2 = uρ3 = 0.

Then ⊔
χ∈X slice

(2,c1,c2,c3)

MH
X(χ) −→MT

X

is a bijective morphism. In fact, it is an isomorphism of schemes [Koo1, Cor. 4.10].15

Combining with Theorem 2.8 gives:

Theorem 2.10. Let X be a smooth projective toric 3-fold with polarization H and let
MX := MH

X(2, c1, c2, c3). Then the forgetful map described above is an isomorphism of
schemes

MT
X
∼=

⊔
χ∈X slice

(2,c1,c2,c3)

MH
X(χ).

In particular, MT
X is a smooth quasi-projective variety.

2.5. Quot schemes of reflexive sheaves. As discussed in the introduction, double
duals of members of a flat family of torsion free sheaves do not need to form a flat
family. However, a result of Kollár [Kol] implies the double dual map is constructible

(·)∗∗ :MH
X(2, c1, c2, c3) −→

⊔
c′2,c
′
3

NH
X (2, c1, c

′
2, c
′
3).

At the level of closed points, the fibre over [R] ∈ NH
X (2, c1, c

′
2, c
′
3) is the Quot scheme

QuotX(R, c′′2, c′′3)

15This construction works for any rank r and any smooth projective toric n-fold.
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of quotients of R of dimension ≤ 1, such that

c′2 = c2 + c′′2

c′3 = c3 + c′′3 + c1c
′′
2.

(10)

In this section, we develop a way of indexing the connected components of QuotX(R, c′′2, c′′3)T

by a new type of combinatorial objects called double box configurations. Each connected
component is isomorphic to a product of P1’s as we will show first.

Suppose R is any T -equivariant rank 2 reflexive sheaf on X described by toric data
(u,v,p) (Definition 2.2). Denote by Xc′′2 ,c′′3 (R) ⊂ X the collection of characteristic
functions of T -equivariant subsheaves of R such that the cokernel has Chern classes c′′2,
c′′3. The closed points of QuotX(R, c′′2, c′′3)T are T -invariant submodules of

{H0(Uα,R)}α∈V (X)

satisfying the gluing conditions (7). This gives a decomposition into connected compo-
nents

(11) QuotX(R, c′′2, c′′3)T ∼=
⊔

χ∈Xc′′2 ,c′′3
(R)

Cχ.

Proposition 2.11. Each Cχ of (11) is isomorphic to a product of P1’s, where the number
of P1’s is the number of vertex and edge components associated to χ.

Proof. This can be proved using the methods of [Koo1]. In fact, this case is much easier
than Theorem 2.10. Step 1: introduce a moduli functor of T -equivariant families of
quotients of R with Chern classes c′′2, c

′′
3 as in [Koo1, Sect. 3.1]. Step 2: describe these

families via a family version of Klyachko’s filtrations like in [Koo1, Sect. 3.2]. Step 3:
construct the moduli spaces Cχ as GIT quotients and show they corepresent the previous
moduli functors [Koo1, Sect. 3.3]. Step 4: lift the action of T on X to QuotX(R, c′′2, c′′3)
(done in the proof of [Koo1, Prop. 4.1]). Step 4: show the forgetful morphism is an
isomorphism. This goes similar to [Koo1, Sect. 4.3] but much easier: this time elements
of QuotX(R, c′′2, c′′3)T admit a unique T -equivariant structure. �

Remark 2.12. Note that we do not assign factors of P1 to the face components in
Proposition 2.11. This is because the reflexive hull R is kept fixed so does not have
moduli.

Fix α ∈ V (X) and Rα := R|Uα . Our goal is to give a combinatorial description of
characteristic functions χ of rank 2 T -equivariant subsheaves of Rα. We denote the
collection of such characteristic functions by X (Rα). Let ρ1, ρ2, ρ3 ∈ F (X) be the faces
with vertex α. Suppose the labeling is chosen such that the toric divisor Dρi in chart
Uα corresponds to the coordinate hyperplane {xi = 0}. Then χ gives rise to integers
(Definition 2.2)

ui := uρi ∈ Z,
vi := vρi ≥ 0.

Moreover, Rα is described by toric data (Definition 2.2)

ui ∈ Z,
vi ≥ 0,

pi := pρi ∈ P1.
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•

x1

x2

x3

(u1, u2, u3)

•
(u1 + v1, u2 + v2, u3 + v3)

〈p1〉C

〈p2〉C

〈p3〉C

◦

◦

◦

Figure 1. Toric data ui, vi, pi lying in the character lattice X(T ) = Z3.
There are three local face components with weight spaces of dimension 1:
the green (generated by p1), blue (generated by p2), and yellow (generated
by p3) regions. The red region has weight spaces of dimension 2. All other
points of the character lattice have weight spaces of dimension 0.

This data is represented by Figure 1. The sheaf Rα is singular if and only if v1, v2, v3 > 0
and p1, p2, p3 are mutually distinct (Proposition 2.4). We discuss the case Rα is singular.
The (easier) case Rα is locally free is treated in Remark 2.26. In what follows, we let

Rαβ := R|Uαβ ,
where Uαβ = Uα ∩ Uβ for all αβ ∈ E(X). Recall that (Section 2.3)

Rαβ1(k2, k3) = Rα(∞, k2, k3)

for all k2, k3 ∈ Z (and similarly for Rαβ2 , Rαβ3). Note that

Rαβ1(k2, k3) =


C2 for all k2 ≥ u2 + v2 and k3 ≥ u3 + v3

p2 for all u2 ≤ k2 < u2 + v2 and k3 ≥ u3 + v3

p3 for all k2 ≥ u2 + v2 and u3 ≤ k3 < u3 + v3

0 otherwise.

In this way Rαβ1 determines the integers u2, u3, v2, v3 (and similarly for Rαβ2 , Rαβ3).
We start with some definitions. Given a point k = (k1, k2) in R2, we write

C(k) := {(k1 + l1, k2 + l2) | li ∈ R≥0}.

Definition 2.13. A 2D partition based at (m1,m2) ∈ Z2 is a subset λ ⊂ Z2 satisfying the
following condition. If (k1, k2) ∈ λ then k1 ≥ m1, k2 ≥ m2, and (l1, k2) ∈ λ, (k1, l2) ∈ λ
for all m1 ≤ l1 ≤ k1, m2 ≤ l2 ≤ k2. We call λ finite if |λ| <∞.
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Definition 2.14. Let (i; i′, i′′) = (1; 2, 3), (2; 1, 3), or (3; 1, 2). Consider a triple of
finite 2D partitions λ = (λ1, λ2, λ3) based respectively at (ui′ , ui′′ + vi′′), (ui′ + vi′ , ui′′),
(ui′ + vi′ , ui′′ + vi′′) and subject to the following condition. Let C1 := C(ui′ , ui′′ + vi′′),
C2 := C(ui′ + vi′ , ui′′), and D := C(ui′ + vi′ , ui′′ + vi′′). Define

λin := λ1 ∩ λ2 ∩ λ3,

λout := (λ1 ∪ λ2 ∪ λ3) ∩D.

Condition: each element of λout \ λin belongs to exactly two of the partitions λ1, λ2, λ3.
We define an equivalence relation ∼ on the collection of such triples λ = (λ1, λ2, λ3) as
follows. Write λ ∼ µ whenever:

(1) λj ∩ (Cj \D) = µj ∩ (Cj \D) for all j = 1, 2,
(2) λin = µin,
(3) λout = µout.

We refer to such equivalence classes as double square configurations in Rαβi and denote
the collection of such equivalence classes by Λ(Rαβi). For any λ ∈ Λ(Rαβi), we define
the size |λ| as

|λ| :=
( 3∑
i=1

|λi|
)
− |λout|.

Note that |λ| is independent of the choice of representative of the equivalence class.

Example 2.15. Let (u1, u2) = (0, 0) and (v1, v2) = (3, 1). Consider the following triples
of 2D partitions

( , , ), ( , ,∅), ( , , ).

For each of these triples λ, we have that λ1 ∩ (C1 \ D) = , λ2 ∩ (C2 \ D) = ,
λin = ∅, and λout = . Therefore all three triples are equivalent and determine the
same double square configuration.

Given a point k = (k1, k2, k3) in R3, we write

C(k) := {(k1 + l1, k2 + l2, k3 + l3) | li ∈ R≥0}.

Referring to Figure 1, we are interested in the following cones

C1 := C(u1, u2 + v2, u3 + v3),

C2 := C(u1 + v1, u2, u3 + v3),

C3 := C(u1 + v1, u2 + v2, u3),

D := C(u1 + v1, u2 + v2, u3 + v3).

(12)

For all (i; i′, i′′) = (1; 2, 3), (2; 1, 3), (3; 1, 2), let Pi : R3 → R2, Pi(k1, k2, k3) = (ki′ , ki′′)
denote projection.

Definition 2.16. A 3D partition based at (m1,m2,m3) ∈ Z3 is a subset π ⊂ Z3 satisfying
the following condition. If (k1, k2, k3) ∈ π, then k1 ≥ m1, k2 ≥ m2, k3 ≥ m3, and
(l1, k2, k3) ∈ π, (k1, l2, k3) ∈ π, (k1, k2, l3) ∈ π for all m1 ≤ l1 ≤ k1, m2 ≤ l2 ≤ k2,
m3 ≤ l3 ≤ k3. We call π finite if |π| <∞.

Definition 2.17. Fix outgoing double square configurations λi ∈ Λ(Rαβi) for all i =
1, 2, 3. Consider a triple of (not necessarily finite) 3D partitions π = (π1, π2, π3) based
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at (u1, u2 + v2, u3 + v3), (u1 + v1, u2, u3 + v3), (u1 + v1, u2 + v2, u3) subject to the two
conditions described below. Define

πin := π1 ∩ π2 ∩ π3,

πout := (π1 ∪ π2 ∪ π3) ∩D.
Take N � 0 sufficiently large such that the following projections do not depend on N

λ1(π1) := P1(π1 \ [u1, u1 +N ]× Z2),

λ1(π2) := P1(π2 \ [u1, u1 +N ]× Z2),

λ1(π3) := P1(π3 \ [u1, u1 +N ]× Z2),

λ2(π1) := P2(π1 \ Z× [u2, u2 +N ]× Z),

λ2(π2) := P2(π2 \ Z× [u2, u2 +N ]× Z),

λ2(π3) := P2(π3 \ Z× [u2, u2 +N ]× Z),

λ3(π1) := P3(π1 \ Z2 × [u3, u3 +N ]),

λ3(π2) := P3(π2 \ Z2 × [u3, u3 +N ]),

λ3(π3) := P3(π3 \ Z2 × [u3, u3 +N ]).

Condition 1 : Each element of πout \ πin belongs to exactly two partitions πi.
Condition 2 :

(λ1(π2), λ1(π3), λ1(π1)) ∼ λ1,

(λ2(π1), λ2(π3), λ2(π2)) ∼ λ2,

(λ3(π1), λ3(π2), λ3(π3)) ∼ λ3.

We define an equivalence relation ∼ on the collection of such triples as follows. Write
π ∼$ whenever:

(1) πi ∩ (Ci \D) = $i ∩ (Ci \D) for all i = 1, 2, 3,
(2) πin = $in,
(3) πout = $out.

We refer to such equivalence classes as double box configurations inRα and denote the col-
lection of such equivalence classes by Π(Rα,λ1,λ2,λ3). For any π ∈ Π(Rα,λ1,λ2,λ3),
we define the size of π as

|π| :=
( 3∑
i=1

|πi|
)
− |πout|,

where | · | on the RHS denotes the renormalized volume.16 Note that |π| is independent
of the choice of representative of the equivalence class.

The purpose of this definition is to give a new description of the characteristic function
χα of a rank 2 T -equivariant torsion free sheaf Fα ⊂ Rα on Uα. Since

χFα ≤ χF∗∗α = χRα ,

the difference χRα−χFα indicates regions of dimension 0,1,2. Double box configurations
are a combinatorial way of indexing all possible differences that can occur in this way.
The precise statement is:

16The renormalized volume of a 3D partition π is defined as |π| =
∑

�∈π (1−#legs containing �).

See [MNOP1] for details.
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Proposition 2.18. Let Rα be a T -equivariant rank 2 reflexive sheaf on toric chart
Uα ∼= C3. Let Rαβ1 := Rα|C∗×C×C, Rαβ2 := Rα|C×C∗×C, and Rαβ3 := Rα|C×C×C∗. Denote
by X (Rα) the collection of characteristic functions of T -equivariant rank 2 torsion free
sheaves on Uα with T -equivariant reflexive hull Rα. Then there is a natural bijection

X (Rα) ∼=
⊔

λ1 ∈ Λ(Rαβ1)
λ2 ∈ Λ(Rαβ2)
λ3 ∈ Λ(Rαβ3)

Π(Rα,λ1,λ2,λ3).

Proof. Let χ ∈ X (Rα) be the characteristic function of a T -equivariant rank 2 torsion
free sheaf on Uα with reflexive hull Rα described by toric data (u,v,p). Consider the
regions C1, C2, C3, D of (12). The region χ|Ci\D has zeros and ones. These zeros form a

3D partition π
(0)
i . The region χ|D has zeros, ones, and twos. The zeros give rise to a 3D

partition πin. The partition πin has the property that

π
(1)
1 := π

(0)
1 ∪ πin, π

(1)
2 := π

(0)
2 ∪ πin, π

(1)
3 := π

(0)
3 ∪ πin

are 3D partitions. Finally, consider the connected components of 1’s of χ|D. Such a
connected component κ has the property that πin ∪ κ is a 3D partition. Moreover, at
least two of

π
(1)
1 ∪ κ, π

(1)
2 ∪ κ, π

(1)
3 ∪ κ

are 3D partitions. If only two of these form a 3D partition, say (without loss of generality)

π
(1)
1 ∪ κ, π

(1)
2 ∪ κ, then define

π
(2)
1 := π

(1)
1 ∪ κ, π

(2)
2 := π

(1)
2 ∪ κ, π

(2)
3 := π

(1)
3 .

Otherwise choose any two, say π
(1)
1 , π

(1)
2 , and define

π
(2)
1 := π

(1)
1 ∪ κ, π

(2)
2 := π

(1)
2 ∪ κ, π

(2)
3 := π

(1)
3 .

Proceeding in this way for all connected components κ, we end up with 3D partitions

π1 := π
(0)
1 ∪ πin ∪ κi1 ∪ · · · , π2 := π

(0)
2 ∪ πin ∪ κj1 ∪ · · · , π3 := π

(0)
3 ∪ πin ∪ κk1 ∪ · · · .

Then π = (π1, π2, π3) forms a double box configuration and the different choices made
in the construction lead to equivalent double box configurations. We described a map

X (Rα) −→
⊔

λ1 ∈ Λ(Rαβ1)
λ2 ∈ Λ(Rαβ2)
λ3 ∈ Λ(Rαβ3)

Π(Rα,λ1,λ2,λ3).

It is easy to check this is a bijection. �

Next we assign moduli to each double box configuration. In the language of charac-
teristic functions: we want to assign a moduli factor P1 to each connected component
of 1’s which is not a local face component. The reason we do not assign moduli to local
face components is because the reflexive hull Rα is fixed (Remark 2.12). A precise way
of phrasing this in terms of double box configurations is as follows:

Definition 2.19. To any π ∈ Π(Rα,λ1,λ2,λ3) we associate a space Cπ as follows.
Analogous to Definition 2.5, the partition πout can be written as a union of connected
components. Define the regions

S1 := {u1 + v1 − 1} × [u2 + v2,∞]× [u3 + v3,∞],
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m

m

Figure 2. Example with Cπ ∼= P1.

S2 := [u1 + v1,∞]× {u2 + v2 − 1} × [u3 + v3,∞],

S3 := [u1 + v1,∞]× [u2 + v2,∞]× {u3 + v3 − 1}.

Let Pi : R3 → R2, i = 1, 2, 3 denote projections as before. Let κ be a connected
component of boxes contained in precisely two 3D partitions among π1, π2, π3. If

Pi(κ) ⊂ Pi(πi ∩ Si),(13)

for all i = 1, 2, 3, then we associate a copy of P1 to it. (Note that this is independent of
choice of representative of the equivalence class.) Otherwise the connected component
of boxes has no moduli assigned to it. We define the moduli factor associated to π as
the n-fold product of P1, where n is the number of connected components of boxes κ
satisfying (13)

Cπ := P1 × · · · × P1︸ ︷︷ ︸
n

.

We illustrate these definitions in the following examples.

Example 2.20. Let π ∈ Π(Rα, (∅,∅,∅), (∅,∅,∅), (∅,∅,∅)) be given by Figure 2.
The green, blue, yellow 3D partitions π1, π2, π3 are representatives of π = (π1, π2, π3).
The red boxes correspond to πin and are contained in all three 3D partitions π1, π2, π3.
The white boxes correspond to πout and are contained in precisely two of π1, π2, π3. Those
with moduli have a label m. Note that only one of the three connected components of
white boxes satisfies (13). Therefore Cπ ∼= P1.

Example 2.21. Let π ∈ Π(Rα, ( , ,∅), (∅, ,∅), ( , , )) be given by Fig-
ure 3. The dots indicate infinite legs. One connected component (of vertex type) fails
(13) so has no moduli. The other two connected components (of edge type) satisfy (13)
so Cπ ∼= P1 × P1.
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Figure 3. Example with Cπ ∼= P1 × P1.

Example 2.22. Let π ∈ Π(Rα, ( , ,∅), (∅, ,∅), ( , , )) be given by
Figure 4 (left). Then Cπ ∼= P1. However, adding one box in the corner Figure 4 (right)
kills the moduli and results in Cπ ∼= pt. Note that in this example πin = ∅.

We learn an important lesson from Example 2.22: if we are given a double box con-
figuration π ∈ Π(Rα,λ1,λ2,λ3), then we cannot decide from the λi alone whether there
are edge moduli. Informally: the “corners” influence the “legs”. This means we “cannot
split” vertex and edge contributions. A similar phenomenon occurs when discussing the
vertex/edge formalism of rank 2 DT theory in Section 5 (see Example 6.13). We are led
to consider “global” double box configurations in the following sense.

Definition 2.23. Consider a smooth projective toric 3-fold X and a T -equivariant rank 2
reflexive sheaf R on X defined by toric data (u,v,p) such that in each chart Rα := R|Uα
is singular. (The general case, where some Rα can be locally free, is discussed in Remark
2.26.) For each edge αβ ∈ E(X), fix a double square configuration

λ̂ := {λαβ}αβ∈E(X).

For each α ∈ V (X) we denote its neighbouring vertices by β1, β2, β3. The labeling
is chosen such that Cαβi is defined by {xi′ = xi′′ = 0} for all i = 1, 2, 3 and i′, i′′ ∈
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Figure 4. Example with Cπ ∼= P1 (left) and Cπ ∼= pt (right).

{1, 2, 3} \ {i} distinct. Fix a double box configuration

πα ∈ Π(Rα,λαβ1 ,λαβ2 ,λαβ3).

Then the collection π̂ := {πα}α∈V (X) describes the characteristic function χ of a T -
equivariant rank 2 torsion free sheaf on X with reflexive hull R by Proposition 2.18. We
denote the collection of all such double box configurations by Π(R, λ̂). To each πα we
associated a moduli factor Cπα (Definition 2.19). Then

Cχ ∼= Cπ̂ :=
∏

α∈V (X)

Cπα/ ∼ .

Here x ∼ y when for some αβ ∈ E(X), there is a local edge component containing x
in chart Uα and a local edge component containing y in chart Uβ and both components
match under gluing.17 We define the weight of π̂ as

ω(π̂) := e(Cπ̂),

where e(·) denotes topological Euler characteristic. Recall that for each αβ ∈ E(X), we
have (Section 2.1)

NCαβ/X
∼= OP1(mαβ)⊕OP1(m′αβ).

For each αβ ∈ E(X), there are two faces ρ1,αβ, ρ2,αβ which share αβ as an edge and two
disjoint faces ρ3,αβ, ρ4,αβ connected by the edge αβ. Suppose face ρ3,αβ contains vertex
α and ρ4,αβ contains β. We define the generating function associated to X, R, and λαβ

ZX,R,λ̂(q) :=
∑

π̂∈Π(R,λ̂)

ω(π̂)qχ(π̂),

χ(π̂) :=
∑

α∈V (X)

|πα|+
∑

αβ∈E(X)

(
fmαβ ,m′αβ(λαβ) + guρ3,αβ ,uρ4,αβ ,vρ3,αβ ,vρ4,αβ (λαβ)

)
,

fm,m′(λ) :=
3∑
i=1

∑
(k1,k2)∈λi

(−mk1 −m′k2 + 1)−
∑

(k1,k2)∈λout

(−mk1 −m′k2 + 1),

gu,u′,v,v′(λ) := −|λ|(u+ u′ + v + v′) + |λ3|(v + v′),

17Note that it might happen that an edge component with moduli gets matched with an edge com-
ponent without moduli, in which case the relation ∼ kills the moduli.
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for any λ = (λ1, λ2, λ3). There is one issue with this definition: fm,m′(λ), gu,u′,v,v′(λ)
depend on choice of representative of λ. In the formula for χ(π̂), it is assumed that
for all α ∈ V (X), we choose representatives (πα,1, πα,2, πα,3) of πα with the following
property:

For any αβ ∈ E(X), suppose without loss of generality that Cαβ is given by {x2 = x3 =
0} in chart Uα and {x′2 = x′3 = 0} in chart Uβ. Suppose the toric data of Rα in chart Uα
is given by (u1, u2, u3), (v1, v2, v3) and in chart Uβ by (u′1, u

′
2, u
′
3), (v′1, v

′
2, v
′
3). Then for

all i = 1, 2, 3

P1(πα,1 \ [u1, u1 +N ]× Z2) = P1(πβ,1 \ [u′1, u
′
1 +N ]× Z2)

P1(πα,2 \ [u1, u1 +N ]× Z2) = P1(πβ,2 \ [u′1, u
′
1 +N ]× Z2)

P1(πα,3 \ [u1, u1 +N ]× Z2) = P1(πβ,3 \ [u′1, u
′
1 +N ]× Z2),

where P1 : R3 → R2 denotes projection as before and N � 0.

This says that not only do πα and πβ have matching asymptotics (namely λαβ), but the
legs of their constituent partitions πα,i, πβ,i have matching asymptotics too. This choice
makes it more convenient to do the Čech calculation below. Even though fm,m′(λ),
gu,u′,v,v′(λ) depend on choice of representatives, the formula for χ(π̂) does not by the
following proposition:

Proposition 2.24. Let X be a smooth projective toric 3-fold. Let R be a T -equivariant
rank 2 reflexive sheaf on X described by toric data (u,v,p) and let R � Q be a T -
equivariant quotient of dimension ≤ 1. Let π̂ = {πα}α∈V (X) correspond to the charac-
teristic function of the kernel of R� Q, where

πα ∈ Π(Rα,λαβ1 ,λαβ2 ,λαβ3).

Suppose for all α ∈ V (X) we choose representatives of πα as described in Definition
2.23. Then

χ(Q) = χ(π̂).

Moreover

c3(Q) = 2χ(Q)−
∑

αβ∈E(X)

|λαβ|(c1(X)Cαβ).

Proof. This follows from a Čech calculation using the T -invariant open affine cover Uα,
α ∈ V (X) like in [MNOP1, Lem. 5]. The upshot is to choose representatives of each πα
as in the previous definition and then calculate the T -representation⊕

α∈V (X)

H0(Uα,Q)−
⊕

αβ∈E(X)

H0(Uαβ,Q).

Cancelling infinite terms and finally setting t1 = t2 = t3 = 1 gives the formula for χ(Q).
The formula for c3(Q) follows from Hirzebruch-Riemann-Roch. �

Remark 2.25. In Definition 2.23, we fixed a smooth projective toric 3-fold X. Suppose
Y is any smooth toric 3-fold with vertices V (Y ), edges E(Y ), and T -equivariant rank 2
reflexive sheaf R on Y .18 Denote by Ec(Y ) the edges which correspond to compact lines

18When Y is non-compact, one can still associate an open polyhedron to it, which is a subset of the
polyhedron of any toric compactification of X (Definition 4.1).
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P1 ∼= Cαβ ⊂ Y . Suppose for each αβ ∈ Ec(Y ), we fix a double square configuration λαβ,
then one can still consider

ZY,R,λ̂(q) :=
∑

π̂∈Π(R,λ̂)

ω(π̂)qχ(π̂),

χ(π̂) :=
∑

α∈V (Y )

|πα|+
∑

αβ∈Ec(Y )

(
fmαβ ,m′αβ(λαβ) + guρ3,αβ ,uρ4,αβ ,vρ3,αβ ,vρ4,αβ (λαβ)

)
,

where ρ3,αβ and ρ4,αβ are defined as in Definition 2.23. In applications, Y has toric
compactification X and R is the restriction of a T -equivariant rank 2 reflexive sheaf on
X. Then ZY,R,λ̂(q) is part of a generating function on X.

Sometimes, for computational reasons, it is useful to consider an analog of ZY,R,λ̂(q),

where one fixes a double square configuration λαβ for all (not necessarily compact!) edges
αβ ∈ E(Y )

(14) Zcomb
Y,R,λ̂(q) :=

∑
π̂∈Π(R,λ̂)

ω(π̂)q
∑
α∈V (Y ) |πα|.

When both defined, Zcomb
Y,R,λ̂(q) and ZY,R,λ̂(q) coincide up to an overall multiplicative factor

of q to some power. This power involves information of the normal bundle to the lines
Cαβ, whereas Zcomb

Y,R,λ̂(q) does not depend on the geometry but only on R and λ̂.

Remark 2.26. It is not hard to redo this section in the case Rα is locally free, i.e. vi = 0
for some i or pi = pj for some i, j (Proposition 2.4). We think of these as degenerate cases.
Then Rα is T -equivariantly decomposable. In this setting, a double box configuration is
defined as a pair of partitions π = (π1, π2) without any conditions, where we impose an
equivalence relation on such pairs as before (and similar for double square configurations).
After adapting the formulae for |π|, |λ| accordingly, the formula of Proposition 2.24 holds
for any T -equivariant rank 2 reflexive sheaf on X. The details are straight-forward and
left to the reader.

2.6. Combinatorial formulae. Let Y = C3 and R a T -equivariant rank 2 reflexive
sheaf on Y with toric data (u,v,p). The following generating function was introduced
in Remark 2.25

Zcomb
C3,R,λ̂(q) :=

∑
π∈Π(R,λ̂)

ω(π)q|π|.

Here λ̂ = (λ1,λ2,λ3) are three double square configurations describing fixed asymptotics
along the x1-, x2-, and x3-axes. In Section 3 we will see that these generating functions
form the building blocks for calculating (1) for rank r = 2 and toric 3-foldsX in examples.

Recall that R is singular if and only if all vi > 0 and all pi are mutually distinct
(Proposition 2.4). In the case R is locally free, Zcomb

C3,R,λ̂(q) decomposes. Each double

square configurations λi is given by a pair of 2D partitions (λi, µi) and

(15) Zcomb
C3,R,λ̂(q) = Wλ1,λ2,λ3(q)Wµ1,µ2,µ3(q),

where Wλ1,λ2,λ3(q) denotes the usual topological vertex first discovered in [AKMV].19

This product structure follows from the fact that R splits T -equivariantly as a sum of

19By definition Wλ1,λ2,λ3
(q) =

∑
π q
|π|, where the sum is over all 3D partitions π with asymptotics

λ1, λ2, λ3 and |π| denotes the renormalized volume mentioned in Definition 2.17.
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two T -equivariant line bundles (Proposition 2.4), which gives an extra C∗-scaling action
on the factors. Using this extra C∗, (15) follows.

The interesting case is when R is singular. The generating functions Zcomb
C3,R,λ̂(q) can

then be computed by relating double box configurations to double dimers. In the case
of no legs (or small legs) this leads to closed formulae. The following two theorems are
proved in a forthcoming combinatorial paper [GKY]. The first two authors recently found
a geometric proof motivated by wall-crossing and Hall algebra methods [GK2, GK3].

Theorem 2.27. [GKY, GK2] Let R be a singular T -equivariant rank 2 reflexive sheaf
on C3 described by toric data (u,v,p). Then20

Zcomb
C3,R,∅,∅,∅(q) = M(q)2

v1∏
i=1

v2∏
j=1

v3∏
k=1

1− qi+j+k−1

1− qi+j+k−2
,

where M(q) =
∏

k>0 1/(1− qk)k denotes the MacMahon function.

Theorem 2.28. [GKY, GK3] Let R be a singular T -equivariant rank 2 reflexive sheaf
on C3 described by toric data (u,v,p). Suppose (v1, v2, v3) = (1, 1, 1) and

(λ1,λ2,λ3) = ((∅,∅,∅), ( ,∅,∅), (∅,∅,∅)).

Then

Zcomb
C3,R,λ̂(q) = M(q)2 1 + q2

1− q
.

Denote by QuotC3(R, n) the Quot scheme of quotients

R� Q
where Q is 0-dimensional and has length n. The following is a corollary of Theorem 2.27:

Corollary 2.29. Let R be a T -equivariant rank 2 reflexive sheaf on C3 described by toric
data (u,v,p). Then

∞∑
n=0

e(QuotC3(R, n))qn =

{
M(q)2 if R is locally free

M(q)2
∏v1

i=1

∏v2
j=1

∏v3
k=1

1−qi+j+k−1

1−qi+j+k−2 if R is singular.

Since Theorems 2.27 and 2.28 play such a central role in our calculations, we give a
brief outline of the proofs to give a flavour of the ideas involved. This sketch is by no
means meant to be self-contained.

Combinatorial proof. We first replace our double box configurations with differ-
ent combinatorial objects, namely, configurations of the hexagonal-lattice double dimer
model with certain tripartite boundary conditions, as defined in [KW2]. This is essen-
tially done by separating the double-dimer model into two single-dimer models, and then
using the standard correspondence between the single dimer model on the honeycomb
lattice and plane partitions, though there is some work to do in order to see that the
“tripartite” boundary conditions of [KW2] are the correct ones. Figure 5 is the double
dimer model we associate to the example of the double box configuration in Figure 2.

We put these dimer models into a generating function by weighting each with cqm for
some c,m ∈ Z≥0 as we did in the case of double box configurations. The correspondence
between double box configurations and double dimer models is many to one, but it is
weight-preserving, and it does preserve the generating functions. Weight preserving here

20Here we take λ̂ = (λ1,λ2,λ3) with each λi = (∅,∅,∅).
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Figure 5. Double dimer model associated to Fig. 2

means each single dimer configuration contributes the same power of q as any of the
double box configurations in its preimage, and that the coefficient of q is the sum of the
coefficients of q of all double box configurations in its preimage.

We then compute the generating function of this double dimer model using the tech-
nology of Kenyon-Wilson [KW1, KW2]. It is a certain rational function in partition
functions of single dimer models on the hexagonal lattice. We realize each of these single
dimer model partition functions as a product of vertex operators, and use Fock space
computational techniques due to Okounkov [Oko, OR1, OR2, ORV] to simplify the re-
sult and identify the factor M(q)2 in the generating function. We then reinterpret the
resulting quantity as the generating function of a new single-dimer problem - namely the
classical q-count of boxed plane partitions [Mac]. This last step accounts for the final
product in Theorem 2.27.

Geometric proof. The geometric proof proceeds as follows. We first realize the left
hand sides of Theorems 2.27, 2.28 as generating functions of the Euler characteristics of
Quot schemes of reflexive sheaves R as in Corollary 2.29. Subsequently we apply Hall
algebra/wall-crossing arguments of [Bri, Joy, KS, ST] in order to to rewrite this as M(q)2

times the generating function

∞∑
n=0

e(Hilbn(Sing(R), n))qn,

where Sing(R) is a certain 0-dimensional subscheme of C3 supported at the point where
R is singular. This generating function accounts for the final product in Theorem 2.27.

3. Applications to Euler characteristics

Let X be a smooth projective toric 3-fold with polarization H. Let MH
X(2, c1, c2, c3)

be the moduli space of rank 2 µ-stable torsion free sheaves on X with indicated Chern
classes. Recall that we do not consider strictly µ-semistable sheaves. Consider the
generating function

ZX,H,c1,c2(q) :=
∑
c3∈Z

e(MH
X(2, c1, c2, c3))qc3 .
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In the introduction, we noted that the double dual map is a constructible morphism

(·)∗∗ :MH
X(2, c1, c2, c3) −→

⊔
c′2,c
′
3

NH
X (2, c1, c

′
2, c
′
3).

Here NH
X (2, c1, c

′
2, c
′
3) is empty unless

c2
1H

4
≤ c′2H ≤ c2H,

where the first is the Bogomolov inequality [HL, Thm. 7.3.1] and the second follows from
ampleness of H. Moreover, for a given c′2 there exists a constant K(X,H, c1, c

′
2) such

that NH
X (2, c1, c

′
2, c
′
3) is empty unless [GK1, Prop. 3.6]

(16) 0 ≤ c′3 ≤ K(X,H, c1, c
′
2).

The generating function ZX,H,c1,c2(q) is a Laurent series in q−1. Using the methods
of the previous section, it can be expressed in terms of Euler characteristics of Quot
schemes as follows:

• Find a GIT representation of all connected components C of all reflexive fixed loci
NH
X (2, c1, c

′
2, c
′
3)T . These are configuration spaces of points on P1 or open subsets

thereof. This was shown in [GK1]. E.g. for X = P3, each connected component
C is isomorphic to either a reduced isolated point pt or C∗ \ {pt} [GK1].
• Compute the Euler characteristics e(C). Euler characteristics of configuration

spaces of points on P1 have been computed in general by Klyachko [Kly3].
• Let C be a connected component of NH

X (2, c1, c
′
2, c
′
3)T . The toric data (u,v,p) of

any T -equivariant reflexive sheaf [R] ∈ C has fixed u,v and (in general) varying
p. We stress the fact that u, v are constant over the connected component C by
writing u(C), v(C). The components of the vectors u(C), v(C) are indexed by
rays ρ ∈ F (X) (Definition 2.2)

u(C) = {uρ(C)}ρ∈F (X), v(C) = {vρ(C)}ρ∈F (X).

The Chern classes c′2, c
′
3 can be expressed in terms of (u(C),v(C),p(C)) as ex-

plained in Section 2.3. In particular for any α ∈ V (X) either all restrictions R|Uα
of elements of [R] ∈ C have a singularity at the origin or not. In the former
case the length of the singularity is the same for all elements [R] ∈ C and is
given by the formula of Proposition 2.4. Since c′3 is the sum of the lengths of the
singularities over all charts (Proposition 2.4), all elements [R] ∈ C have the same
third Chern class.

At the level of closed points, the fibre of (·)∗∗ over [R] ∈ C is QuotX(R, c′′2, c′′3)T

c′2 = c2 + c′′2,

c′3 = c3 + c′′3 + c1c
′′
2.

Proposition 2.11 implies that all fibres QuotX(R, c′′2, c′′3)T over [R] ∈ C are iso-
morphic and we may write

QuotX(C, c′′2, c′′3)T := QuotX(R, c′′2, c′′3)T

for the isomorphism class. The connected components of the fibres QuotX(C, c′′2, c′′3)T

are all products of P1’s and were described in Section 2.5.
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• Putting everything together gives the following structure formula

(17) ZX,H,c1,c2(q) =
∑
c3

∑
c′2,c
′
3

∑
C⊂NHX (2,c1,c′2,c

′
3)T

∑
C′⊂QuotX(C,c′2−c2,c′3−c3−c1(c′2−c2))T

e(C)e(C ′)qc3 .

In the rest of this section we work out this generating function in the following cases:

• c2 is minimal in the sense of Proposition 3.1.
• X = P3 and c2 = 1, 2.

3.1. Minimal second Chern class. We start with two propositions.

Proposition 3.1. Let X be a smooth projective toric 3-fold with polarization H and fix
r and c1. Let c2 be such that c2H is minimal with the property that there exists a rank r
µ-stable torsion free sheaf on X with Chern classes c1, c2. Then for any such sheaf the
cokernel Q = F∗∗/F is 0-dimensional.

Proof. Let F be as stated. Since F is µ-stable, its Chern classes satisfy the Bogomolov
inequality [HL, Thm. 7.3.1]:

c2H ≥
(r − 1)c2

1H

2r
.

Since c2H is bounded below, it makes sense to speak of c2 satisfying the property that
c2H is the smallest value for which there exist rank r µ-stable torsion free sheaves on X
with Chern classes c1, c2. Suppose Q is 1-dimensional. Use the same notation for Chern
classes c′i, c

′′
i as in the beginning of this section. Then (−c′′2)H > 0 by ampleness, so

c′2H = c2H + c′′2H < c2H.

Therefore F∗∗ is a rank r µ-stable torsion free (reflexive) sheaf on X with Chern classes
c1, c

′
2 contradicting minimality. �

Proposition 3.2. Let X be a smooth projective toric 3-fold with polarization H and
fix c1. Let c2 be such that c2H is minimal with the property that there exists a rank 2
µ-stable torsion free sheaf on X with Chern classes c1, c2. For each α ∈ V (X), denote
by ρ1,α, ρ2,α, ρ3,α ∈ F (X) the faces sharing vertex α. Then

ZX,H,c1,c2(q) =M(q−2)2e(X)
∑
c′3

∑
C⊂NHX (2,c1,c2,c′3)T

e(C)qc′3

×
∏

α ∈ V (X)
∀[R] ∈ C : R|Uα is singular

vρ1,α (C)∏
i=1

vρ2,α (C)∏
j=1

vρ3,α (C)∏
k=1

1− (q−2)i+j+k−1

1− (q−2)i+j+k−2
.

Proof. Combining (17), Prop. 3.1, Prop. 2.24 gives

ZX,H,c1,c2(q) =
∑
c′3

∑
C⊂NHX (2,c1,c2,c′3)T

e(C)qc′3
∏

α∈V (X)

ZUα,R|Uα ,∅,∅,∅(q−2),

where ZUα,R|Uα ,∅,∅,∅(q−2) was introduced in Remark 2.25. The latter generating function
is given by Theorem 2.27. �

If the polyhedron ∆(X) is “small” (defined below), the connected components C in
the previous proposition turn out to be isolated T -fixed points.
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Definition 3.3. Let ∆ be a convex polyhedron such that each vertex has exactly 3
edges. We view ∆ up to arbitrary stretching of edges and angles between edges (but not
contracting them to a point). We say that ∆ is small if the following property holds.

Condition: For any way of colouring one face red and three faces blue (and not colouring
any of the other faces), the red face must share an edge with a blue face and at least two
blue faces must share an edge.

Example 3.4. Any convex polyhedron such that each vertex has exactly 3 edges and
≤ 6 faces is small. There are 4 of these: tetrahedron, cube, prism over a triangle, prism
over a triangle with one corner cut off. Hence rk Pic(X) ≤ 3 ensures ∆(X) is small.
Polyhedra with ≥ 7 faces are generally not small. However, a prism over a 5-gon has 7
faces but is small. Therefore 16 out of 18 smooth toric Fano 3-folds have small ∆(X)
(the two with rk Pic(X) = 5 do not have small ∆(X) [Bat, WW]).

Theorem 3.5. Let X be a smooth projective toric 3-fold such that ∆(X) is small. Let
H be a polarization and c1 a first Chern class such that gcd(2, c1H

2) = 1. Let c2 be such
that c2H is minimal with the property that there exists a rank 2 µ-stable torsion free sheaf
on X with Chern classes c1, c2. For each α ∈ V (X), denote by ρ1,α, ρ2,α, ρ3,α ∈ F (X) the
faces sharing vertex α. Then the connected components of NH

X (2, c1, c2, c
′
3)T are isolated

reduced points for all c′3. Moreover

ZX,H,c1,c2(q) =M(q−2)2e(X)
∑
c′3

∑
[R]∈NHX (2,c1,c2,c′3)T

qc
′
3

×
∏

α ∈ V (X)
R|Uα is singular

vρ1,α (R)∏
i=1

vρ2,α (R)∏
j=1

vρ3,α (R)∏
k=1

1− (q−2)i+j+k−1

1− (q−2)i+j+k−2
.

In particular, ZX,H,c1,c2(q) equals M(q−2)2e(X) times a Laurent polynomial in q.

Proof. Let R be a T -equivariant rank 2 µ-stable reflexive sheaf on X with Chern classes
c1, c2, toric data (u,v,p), and characteristic function χ. Suppose χ has a face compo-
nents (Definitions 2.6, 2.7). We claim a = 3. The case a < 3 cannot happen, because
then R is decomposable hence µ-unstable. If a > 3, then the connected component C
of the T -fixed locus containing R has positive dimension. We show that this leads to a
contradiction with ∆(X) is small and c2 minimal in the remainder of the proof. Once
this is established, the formula of the theorem follows from Proposition 3.2. Note that
for fixed c1, c2, the third Chern class c′3 is bounded by (16). Since the triple product of
Theorem 2.27 is a polynomial (counting boxed 3D partitions) polynomiality follows.

Suppose at a > 3, then the moduli space NH
X (χ) of T -equivariant rank 2 µ-stable

reflexive sheaves on X with characteristic function χ has dimension > 0. The space
of equivariant reflexive sheaves NH

X (χ) of Remark 2.9 is realized as the GIT quotient
of a non-empty Zariski open subset UH

X ⊂ (P1)a by SL(2,C). We denote its elements
by (q1, . . . , qa). Let V ⊂ (P1)a denote the Zariski open subset of elements (q1, . . . , qa)
with all qi mutually distinct. Therefore, there is a c′3 such that V/SL(2,C) is a positive
dimensional Zariski open subset

V/SL(2,C) ⊂ NH
X (2, c1, c2, c

′
3)T ⊂MH

X(2, c1, c2, c
′
3)T .
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Consider the classical GIT problem of a (ordered) points (q1, . . . , qa) on P1.21 We assign
weights w1, . . . , wa to these points as follows. The characteristic function χ has a face
components. For each face component, there is a maximal number of faces ρi1 , . . . , ρik
such that the corresponding local face components are glued together in χ. In particular,
pρi1 = · · · = pρik . To this face component we assign weight

wi := (Dρi1
H2)vρi1 + · · ·+ (Dρik

H2)vρik > 0.

Set w :=
∑a

i=1wi, then each wi is smaller than w
2
.

Next we use the assumption ∆(X) is small. By Lemma 3.6 below, there exists a
GIT semistable point configuration (q1, . . . , qa) such that there are i, j with the following
properties:

• qi = qj is distinct from all other qk and all other qk are mutually distinct,
• there exists a chart Uα containing the local face components corresponding to

both i and j.

Informally: on the polyhedron ∆(X), there are two adjacent faces whose corresponding
points on P1 can become equal. The unions of faces Θi of the lemma correspond to
the unions of local face components glued together by χ. Note that wi + wj ≤ w

2
is

a strict inequality, because gcd(2, c1H
2) = 1. Therefore, the above point configuration

(q1, . . . , qa) corresponds to a µ-stable torsion free sheaf F with characteristic function χ
(and hence Chern classes c1, c2). The reflexive hull F∗∗ is µ-stable with Chern classes
c1, c

′
2 for some c′2. Since qi, qj are equal, the characteristic function of F∗∗ is obtained from

the characteristic function χ of F by adding a (non-empty) infinite leg of 1’s. Therefore
ch′2H > ch2H, or equivalently c′2H < c2H, contradicting minimality of c2. �

Lemma 3.6. Let a ≥ 4, w1, . . . , wa ∈ Z>0, w :=
∑a

i=1 wi, and assume

wi ≤
w

2
,

for all i = 1, . . . , a. Let ∆ be a small polyhedron. Let {Θi : i = 1, . . . , a} be a collection,
such that

• Θi is a union of faces of ∆, for all i = 1, . . . , a.
• Θi minus the vertices is connected, for all i = 1, . . . , a.
• Θi and Θj have no faces in common, for each i, j = 1, . . . , a, i 6= j,
•
⋃a
i=1 Θi = ∆.

Then there exist Θi,Θj, which share an edge and

wi + wj ≤
w

2
.

Proof. It suffices to prove the case where each Θi is equal to a single face. Assume
without loss of generality w1 ≤ w2 ≤ · · · ≤ wa. Then

w1 + wi ≤
w

2
,

for all i = 2, . . . , a − 1. We first prove the lemma for a ≥ 5. Colour the face with label
w1 red and those with label w2, . . . , wa−1 blue. The result follows from Definition 3.3.
For a = 4 we need a slightly more refined analysis.

21This problem is discussed in [Dol, Ch. 11].
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Case 1: w1 + w4 ≤ w
2
. Then we colour the face with label w1 red and those with label

w2, w3, w4 blue. The result again follows from Definition 3.3.

Case 2: w1 + w4 ≥ w
2
. Then w2 + w3 ≤ w

2
. In this case, we colour the faces with label

w1, w2, w3 blue. The result follows from Definition 3.3. �

3.2. Applications to projective 3-space. In this section, we calculate ZX,H,c1,c2(q)
for X = P3 and c2 = 1, 2. We also classify the reflexive hulls for c2 = 3. The generating
function does not depend on H and we drop X and H from the notation. We take
c1 = −1 and also suppress it from the notation. Note that rank and degree are coprime
and there are no strictly µ-semistable sheaves. We use the notation of Example 2.3.

Example 3.7. Let c2 = 1. Using the methods of Section 2, one can see that c2 = 1
is the minimal value for which there exist rank 2 µ-stable torsion sheaves on P3 with
Chern classes c1, c2 (see also [GK1]). There are exactly four such sheaves which are
T -equivariant and reflexive. Each of them has a length 1 singularity at one of the torus
fixed points and no further singularities. The toric data (u,v,p) of these reflexive hulls
is described as follows:

(i) For any choice i, j, k, l ∈ {1, 2, 3, 4} with i, j, k, l mutually distinct

u1 = u2 = u3 = 0, u4 = −1,

vi = 0, vj = vk = vl = 1,

pj, pk, pl mutually distinct.

Recall that u2 = u3 = u4 = 0 is forced by equation (9). Note that for fixed u and
v, different choices of pj, pk, pl give T -equivariantly isomorphic reflexive hulls.

Theorem 3.5 gives
Zc2=1(q) = 4(q−1 + q)M(q−2)8.

We also note that any connected component C of any MP3(2,−1, 1, c3)T has constant
reflexive hulls. This is useful for applications to DT theory in Part II.

Example 3.8. Let c2 = 2. We describe all possible reflexive hulls of elements of⊔
c3

MP3(2,−1, 2, c3)T .

Like the previous example, these reflexive hulls are isolated reduced points. However
this time legs can appear, i.e. c2 and c′2 may differ. There are three types of reflexive
hulls. Their toric data (u,v,p) is described as follows:

(i) For any choice i, j, k, l ∈ {1, 2, 3, 4} with i, j, k, l mutually distinct

u1 = u2 = u3 = 0, u4 = −2

vi = vj = vk = 1, vl = 2,

pi = pj and pi, pk, pl mutually distinct.

These reflexive hulls have c′2 = 2.
(ii) For any choice i, j, k, l ∈ {1, 2, 3, 4} with i, j, k, l mutually distinct

u1 = u2 = u3 = 0, u4 = −2,

vi = 0, vj = 1, vk = vl = 2,

pj, pk, pl mutually distinct.

These reflexive hulls have c′2 = 2.
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(iii) The reflexive hulls of Example 3.7. Recall that these reflexive hulls have c′2 = 1.

Any T -equivariant rank 2 µ-stable torsion free sheaves F on P3 with Chern classes
c1 = −1, c2 = 2 has one of the above as its reflexive hull. In cases 1 and 2 the cokernel
F∗∗/F is 0-dimensional, whereas in case 3 the cokernel is 1-dimensional. Using formula
(17), Proposition 2.24, and Theorems 2.27, 2.28 one can compute the following formula

Zc2=2(q) = 12M(q−2)8

(
q4(1 + q−2 + (q−2)2)2︸ ︷︷ ︸

type (i) contribution

+ q4(1 + q−2 + 2(q−2)2 + (q−2)3 + (q−2)4)︸ ︷︷ ︸
type (ii) contribution

+ 2q4 1 + (q−2)2

(1− q−2)2
+ q4 1 + q−2

(1− q−2)2︸ ︷︷ ︸
type (iii) contribution

)

= 12

(
2q−4 − q−2 + 1− 4q2 + 3q4 + 5q8

(1− q2)2

)
M(q−2)8.

We also note that any connected component C of any MP3(2,−1, 2, c3)T has constant
reflexive hulls.

Example 3.9. Let c2 = 3. We describe the connected components C of⊔
c′2,c
′
3

NP3(2,−1, c′2, c
′
3)T

containing reflexive hulls of elements of

(18)
⊔
c3

MP3(2,−1, 3, c3)T .

This time, C no longer needs to be isolated. The toric data (u,v,p) of these connected
components is classified as follows:

(i) For any choice i, j, k, l ∈ {1, 2, 3, 4} with i, j, k, l mutually distinct

u1 = u2 = u3 = 0, u4 = −2,

vi = vj = vk = 1, vl = 2,

pi, pj, pk, pl mutually distinct.

These reflexive hulls have c′2 = 3 and form non-isolated connected components
isomorphic to C∗ \ pt. See also [GK1].

(ii) For any choice i, j, k, l ∈ {1, 2, 3, 4} with i, j, k, l mutually distinct

u1 = u2 = u3 = 0, u4 = −3,

vi = 1, vj = 2, vk = 1, vl = 3,

pi = pj and pi, pk, pl mutually distinct.

These reflexive hulls have c′2 = 3 and correspond to isolated reduced points.
(iii) For any choice i, j, k, l ∈ {1, 2, 3, 4} with i, j, k, l mutually distinct

u1 = u2 = u3 = 0, u4 = −3,

vi = 0, vj = 1, vk = vl = 3,

pj, pk, pl mutually distinct.

These reflexive hulls have c′2 = 3 and correspond to isolated reduced points.
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(iv) The reflexive hulls of Example 3.8. Recall that these reflexive hulls have c′2 = 1
or c′2 = 2 and correspond to isolated reduced points.

Any T -equivariant rank 2 µ-stable torsion free sheaf F on P3 with Chern classes c1 = −1,
c2 = 3 has one of the above as its reflexive hull. This time not all connected components
of (18) have constant reflexive hulls. Connected components with an element having a
reflexive hull appearing in (i) do not, whereas those having a reflexive hull as in (ii) and
(iii) do. For (iv) some do whereas others do not.

Part II: Virtual

4. Rank 2 Donaldson-Thomas type invariants

In this section we define rank 2 DT type invariants on a toric Calabi-Yau 3-fold by T -
and T0-localization, where T0 ⊂ T is the torus preserving the Calabi-Yau volume form.
We start with a discussion on the moduli space and T -equivariant Serre duality.

4.1. Moduli space. Let Y be a smooth toric Calabi-Yau 3-fold. Recall the notation
used for toric varieties from Section 2.1. Then Y is non-compact so has no good notion
of moduli space of stable sheaves on it. We therefore want to compactify Y .

Definition 4.1. Let Y be a smooth toric Calabi-Yau 3-fold. Let X be a smooth pro-
jective toric 3-fold. We say X is a toric compactification of Y if Y ⊂ X is a union of
some of the invariant affine open subsets {Uα}α∈V (X) of X. In this context, we denote
by V (Y ) the collection of vertices α for which Uα ⊂ Y . Moreover, we write Ec(Y ) for
the edges spanned by vertices of V (Y ). The subscript c indicates that we consider edges
corresponding to compact lines in Y only.

Let α ∈ V (Y ) and use coordinates (x1, x2, x3) on Uα as in Section 2.1. Define the
subtorus T0 ⊂ T by t1t2t3 = 1.22 Equation (5) implies that there exists a T0-equivariant
isomorphism

KX |Y ∼= OY .
Let αβ ∈ Ec(Y ). Then the degree of NCαβ/Y is −2 by the Calabi-Yau property, i.e.

mαβ +m′αβ = −2,

where mαβ, m′αβ were defined in Section 2.1.

Example 4.2. Important examples of toric compactifications are

C3 ⊂ P3,

Tot(OP1(k)⊕OP1(−2− k)) ⊂ P(OP1(k)⊕OP1(−2− k)⊕OP1),

Tot(KS) ⊂ P(KS ⊕OS),

where Tot denotes the total space of the indicated vector bundle, k ∈ Z, and S is any
smooth projective toric surface. These compactifications satisfy H0(K−1

X ) 6= 0.

22The torus T0 preserves the Calabi-Yau volume form on Y .
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Let X be a smooth projective 3-fold over C with polarization H. We denote by
MX :=MH

X(r, c1, c2, c3) the moduli space of µ-stable torsion free sheaves on X of rank r
and Chern classes c1, c2, c3. As mentioned in the introduction, we do not consider strictly
µ-semistable sheaves but work directly on the open subset of µ-stable sheaves. Suppose
X is a toric compactification of a toric Calabi-Yau 3-fold Y (Definition 4.1). We define
a moduli space of µ-stable sheaves on Y using the compactification X as follows

MY⊂X :=MH
Y⊂X(r, c1, c2, c3) := {[F ] ∈MX | F∗∗/F has support in Y }.

Proposition 4.3. MH
Y⊂X(r, c1, c2, c3) ⊂MH

X(r, c1, c2, c3) is open and T -invariant.

Proof. We first prove MY⊂X is T -invariant. Let [F ] ∈ MY⊂X and t ∈ T be closed
points. Then t induces an automorphism t : X → X. By definition, F fits into the short
exact sequence

0 −→ F −→ F∗∗ −→ Q −→ 0,

where Supp(Q) ⊂ Y . This sequence remains exact after applying t∗. Since t∗ commutes
with taking (double) dual, we have

(t∗F)∗∗/t∗F ∼= t∗Q and Supp(t∗Q) = t(Supp(Q)).

Since Supp(Q) ⊂ Y and Y is T -invariant, the result follows.
Next, we prove MY⊂X is open in MX by proving that its complement is closed.

Suppose C is a smooth quasi-projective curve and let 0 be a point on C. Suppose we
have a morphism C → MX such C \ 0 maps to MX \ MY⊂X . It suffices to show
0 also maps to MX \ MY⊂X . Let F be the family induced by this map. We know
Supp((Ft)∗∗/Ft) intersects X \ Y for all closed points t ∈ C \ 0 and we want to show
Supp((F0)∗∗/F0) intersects X \ Y .

After possibly removing a finite number of points from C \0, the reflexive hulls (Ft)∗∗,
t ∈ C \ 0 form a flat family [Kol]. We can take the flat limit of this family inside the
(proper) moduli space of Gieseker semistable torsion free sheaves containing (Ft)∗∗ with
t ∈ C \ 0 to fill in the missing fiber over 0. This gives a flat family R over C such that
Rt = (Ft)∗∗ for all closed points t ∈ C \ 0, but R0 may not be equal to (F0)∗∗ (because
reflexive hulls of members of a flat family may jump). In particular, R0 may not be
reflexive. A priori, R0 is only Gieseker semistable and hence µ-semistable.

Over C \ 0 we also have the flat family of quotients given by the short exact sequence

(19) 0 −→ Ft −→ Rt −→ Qt → 0.

We take the flat limit of these quotients inside the corresponding relative Quot scheme

(20) QuotX×C/C(R, P ) −→ C,

where P is the Hilbert polynomial of R0 with respect to a polarization on X. The flat
limit exists, because the map (20) is proper. We obtain a short exact sequence

0 −→ F ′ −→ R −→ Q→ 0

extending (19). We claim that F ′0 ∼= F0. Since F ′0 and R0 only differ in codimension ≥ 2,
F ′0 is µ-semistable. There exists a projective moduli scheme of µ-semistable sheavesMµss

X

constructed by D. Greb and M. Toma [GT]. Seperatedness of Mµss
X , implies equality of

the equivalence classes of F0, F ′0 in Mµss
X . This translates into

[grµ(F0)]∗∗ ∼= [grµ(F ′0)]∗∗,
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where grµ(·) denotes the graded object associated to a choice of µ-Jordan-Hölder filtra-
tion and [·]∗∗ denotes double dual [GT, Thm. 5.5].23 Since F0 is µ-stable this equality
implies F ′0 cannot be strictly µ-semistable. Since F ′0 is µ-stable, separateness of MX

implies F0
∼= F ′0.

Although R0 and (F0)∗∗ may not be equal, we claim that (R0)∗∗ ∼= (F0)∗∗. We
proved F0 injects into R0 with cokernel Q0, so they are isomorphic on the complement
of Supp(Q0). Since Supp(Q0) has codimension ≥ 2, their reflexive hulls are completely
determined on X \ Supp(Q0) and (R0)∗∗ ∼= (F0)∗∗ [Har2, Prop. 1.6]. From the chain of
the inclusions F0 → R0 → (F0)∗∗, we deduce

Supp(R0/F0) ⊂ Supp((F0)∗∗/F0).

So if Supp(R0/F0) intersects X \ Y , we are done. For this, it suffices to show that the
locus of quotients in QuotX×C/C(R, P ) whose support intersect X \ Y forms a closed
subset.

Let G be any S-flat family of torsion free sheaves on X × S for arbitrary base S.
Suppose the Hilbert polynomial of the members of the family is P with respect to some
polarization on X. Consider the corresponding relative Quot scheme

Q := QuotX×S/S(G, P ).

Let Q be the universal quotient over X ×Q. Then both Supp(Q) and (X \ Y )×Q are
closed subsets of X ×Q and so is their intersection Z. Since X is proper, the image of
Z under projection to Q gives a closed subset. �

In the case r = 1, the moduli spaceMH
X(1, c1, c2, c3) is independent of the polarization

H. Moreover, it is isomorphic to a Hilbert scheme Iχ(X, β) of ideal sheaves IC ⊂ OX
of closed subschemes C of dimension ≤ 1 with [C] = β and χ(OC) = χ. Here β is
Poincaré dual to c2 and χ is determined by c1, c2, c3. In this case, MY⊂X is the open
subset of closed subschemes C with support in Y . From this description, it is clear
that MY⊂X is independent of the choice of toric compactification X. There is no such
independence in the case r > 1. In general, not only does MY⊂X depend on the choice
of toric compactification X, it also depends on the choice of polarization H on X.24 We
think of MY⊂X as a moduli space of rank r µ-stable torsion free sheaves on Y .

4.2. Serre duality. On MY⊂X , we have a type of “Serre duality in the K-group” as
we will see in Proposition 4.6 below. Later we define DT type invariants of Y by virtual
localization on MY⊂X . Roughly speaking, Proposition 4.6 states that at the K-group
level, DT theory onMY⊂X is symmetric. This will allow us to specialize the equivariant
parameters s1 + s2 + s3 = 0 in Proposition-Definition 4.11. We start with some notation
and a technical lemma.

Definition 4.4. Let X be a smooth projective variety, F a B-flat family of coherent
sheaves on X over a base scheme B, and L a line bundle on X×B. We use the common
notation

RHompB(F,F⊗ L) := RpB∗RHom(F,F⊗ L).

23For any µ-semistable sheaf F and choice of µ-Jordan-Hölder filtration of F , the graded object
grµ(F) depends on the choice of filtration. However its double dual [grµ(F)]∗∗ is independent of this
choice (up to isomorphism) [HL, Cor. 1.6.10].

24In fact, for certain choices of H the moduli space MX can be empty. For examples, see [GK1].
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Moreover, we denote the corresponding K-group class by

〈F,F⊗ L〉 := [RHompB(F,F⊗ L)] ∈ K0(B).

The corresponding trace free parts are denoted by RHompB(F,F ⊗ L)0, 〈F,F ⊗ L〉0.
In the K-group, we often omit square brackets [·] for brevity. Note that in the case
F = p∗XF and L = p∗XL, we have

〈p∗XF , p∗XF ⊗ p∗XL〉0 = 〈F ,F ⊗ L〉0 ⊗OB.

On K0(B), we have an involution (·), induced by taking the derived dual (·)∨. If X is
toric and F is T -equivariant, then 〈F,F⊗L〉 is an element of the T -equivariant K-group

KT
0 (B) where we endow B with the trivial T -action. Since (·)∨∨ ∼= (·), the operation (·)

is an involution on KT
0 (B). For any coherent sheaf F on B, we have

F ⊗ tw1
1 tw2

2 tw3
3 = F∨ ⊗ t−w1

1 t−w2
2 t−w3

3 ∈ KT
0 (B).

Lemma 4.5. Let X be a smooth projective variety with polarization H and let MX =
MH

X(r, c1, . . . , cn) be the moduli space of µ-stable torsion free sheaves on X with indicated
Chern classes. Let F be a B-flat family of torsion free sheaves in MX over a variety B,
such that all members Fb, b ∈ Bcl have the same reflexive hull R. Then there exists a
line bundle L on B and a short exact sequence

0 −→ F −→ R� L −→ Q −→ 0,

where Q is B-flat. For each b ∈ Bcl, this induces a short exact sequence

0 −→ Fb −→ R −→ Qb −→ 0,

where the first map is the natural inclusion Fb ↪→ (Fb)∗∗ ∼= R.

Proof. For F any B-flat family, Kollár [Kol] constructs a stratification Si of B such that
over each stratum Bi, F|X×Bi has a Bi-flat hull

F|X×Bi → Gi.

Here Gi is a Bi-flat quasi-coherent sheaf and the morphism restricts to the natural
inclusion Fb ↪→ (Fb)∗∗ for all b ∈ Bcl. By the proof of [Kol, Thm. 21], the stratification
only depends on the Hilbert polynomials of (Fb)∗∗ for all b ∈ Bcl. In our case, all members
of F have isomorphic reflexive hulls, so Kollár’s stratification is trivial and we denote the
hull by φ : F → G. Then G is flat over B by the triviality of the stratification and
φb : Fb → Gb

∼= (Fb)∗∗ is the natural inclusion into the reflexive hull for all b ∈ Bcl. We
claim φ : F→ G is injective with B-flat cokernel Q. Consider the exact sequence defined
by taking kernel and cokernel

0 −→ K −→ F φ−→ G −→ Q −→ 0.

Fibres over b ∈ Bcl give short exact sequences

0 −→ Fb −→ (Fb)∗∗ −→ Qb −→ 0,

where the first map is the natural inclusion. Since F is B-flat and (Fb)∗∗ ∼= R by
assumption, we conclude that the Hilbert polynomials of Qb are constant. Hence Q is B-
flat. This implies K is B-flat. Therefore Kb

∼= 0 for all closed points b ∈ B, so pB∗K ∼= 0
and K ∼= 0.
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Finally, we show G ∼= R � L. Since Fb is µ-stable, its reflexive hull R is µ-stable.
Therefore, R is an element of a moduli space of µ-stable reflexive sheaves NX on X. The
B-flat family G gives a morphism

f : B −→ NX .
Suppose NX has a universal family R. Then

G ∼= (f × 1X)∗R⊗ p∗BL,
for some line bundle L on B. Since f factors through the closed point b = {[R]} the
result follows from R|b ∼= R. In general, NX may not have a universal family. In this
case, an étale cover of NX does have a universal family [HL, 4.D.VI]. Working on the
étale cover, the same result can be obtained. �

Proposition 4.6. Let Y be a smooth toric Calabi-Yau 3-fold and X be a toric com-
pactification of Y . Let H be a polarization on X and MY⊂X := MH

Y⊂X(r, c1, c2, c3),
MX := MH

X(r, c1, c2, c3). Let F be a B-flat family of torsion free sheaves in MX over
a variety B. Assume all members Fb, b ∈ Bcl lie in MY⊂X and have the same reflexive
hull R. Then

〈R,R〉0 ⊗OB − 〈F,F〉0 = −
(
〈R,R〉0 ⊗OB − 〈F,F〉0

)
∈ K0(B).

If F is a T0-equivariant family, then the same equality holds in KT0
0 (B). If F is a T -

equivariant family, then

〈R,R〉0 ⊗OB − 〈F,F〉0 = −
(
〈R,R〉0 ⊗OB − 〈F,F〉0

)
⊗ (t1t2t3)−1 ∈ KT

0 (B).

Proof. Consider the short exact sequence of Lemma 4.5

(21) 0 −→ F −→ R� L −→ Q −→ 0.

From this short exact sequence, we get exact triangles

RHompB(F,F) −→ RHompB(F,R� L) −→ RHompB(F,Q),(22)

RHompB(Q,R� L) −→ RHom(R,R)⊗OB −→ RHompB(F,R� L).(23)

The natural map
OX →Hom(R,R)

induces
RΓ(OX) −→ RHom(R,R) −→ RHom(R,R)0.

We define
A• := Cone{RΓ(OX)⊗OB → RHompB(F,R� L)},

where the map is the natural composition

RΓ(OX)⊗OB −→ RHom(R,R)⊗OB −→ RHompB(F,R� L).

This leads to the following equalities in the K-group

〈F,F〉0 = [A•]− 〈F,Q〉
= 〈R,R〉0 ⊗OB − 〈Q,R� L〉 − 〈F,Q〉.

The first equality follows from (22) and the definition of A•. The second equality follows
from (23) and the definition of A•. Repeating the same reasoning on (21) tensored by
p∗XKX gives

〈F,F⊗ p∗XKX〉0 =〈R,R⊗KX〉0 ⊗OB − 〈Q,R� L�KX〉 − 〈F,Q⊗ p∗XKX〉
=〈R,R⊗KX〉0 ⊗OB − 〈Q,R� L〉 ⊗ t1t2t3 − 〈F,Q〉 ⊗ t1t2t3,
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where we used that Q is supported in Y ×B ⊂ X ×B. We deduce

〈F,F〉0 − 〈F,F⊗ p∗XKX〉0 ⊗ (t1t2t3)−1

= 〈R,R〉0 ⊗OB − 〈R,R⊗KX〉0 ⊗OB ⊗ (t1t2t3)−1.

(Equivariant) Serre duality gives the results. �

4.3. Donaldson-Thomas invariants. When X is a smooth projective 3-fold with
H0(K−1

X ) 6= 0 (e.g. Calabi-Yau or Fano), the moduli spaceMX carries a natural perfect
obstruction theory constructed in [Tho]

(24) E• → LMX
,

where E• is a 2-term complex of locally free sheaves on MX and LMX
is the truncated

cotangent complex of MX . Over a closed point [F ] ∈MX , we have

E•∨|[F ]
∼= RHom(F ,F)0[1].

If X is Calabi-Yau, then the virtual dimension vd of this perfect obstruction theory is 0.
If X is toric, the above perfect obstruction theory is T -equivariant. A smooth projective
3-fold X cannot be Calabi-Yau and toric at the same time.

IfMX is compact, then the perfect obstruction theory E• gives rise to a virtual cycle
[MX ]vir. In the case X is Calabi-Yau, the Donaldson-Thomas invariants are defined as

deg([MX ]vir) ∈ Z.

For other 3-folds, we can take any α ∈ H∗(MX ,Q) of degree vd and consider∫
[MX ]vir

α ∈ Z.

When X is toric, α can be chosen in H∗T (MX ,Q) and the invariant lies in

H∗T (pt,Q) ∼= Q[s1, s2, s3].

In this case, one can use the virtual torus localization formula of T. Graber and R. Pand-
haripande to compute the invariant as explained in [GP]. This works as follows. The
T -fixed part of E• induces a perfect obstruction theory on MT

X . Moreover, the virtual
normal bundle is defined as

Nvir := E•∨|mMT
X
,

where (·)m means taking the moving part [GP]. The complex Nvir ∼= {W0 → W1} is a
T -equivariant 2-term perfect complex. Consider the insertion

e(Nvir) :=
e(W0)

e(W1)
∈ H∗(MT

X ,Q)⊗Q Q(s1, s2, s3),

where e(·) = cTtop(·) denotes top T -equivariant Chern class. The virtual localization
formula states ∫

[MX ]vir
α =

∫
[MT

X ]vir

1

e(Nvir)
α|MT

X
.

The rank 1 DT theory and its connections to Gromov-Witten theory have been studied
in the seminal papers [MNOP1, MNOP2].
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4.4. Rank 2 DT type invariants by T -localization. Let X be a smooth projective
toric 3-fold with H0(K−1

X ) 6= 0. Consider the moduli space MX . So far in this section,
the rank r was arbitrary. From now on, r = 2. In Section 2, we studied MT

X for r = 2
and showed it is smooth (Theorem 2.10). If MX is projective, then

[MX ]vir =
∑
C⊂MT

X

ι∗

( 1

e(Nvir)
∩ [C]vir

)
=
∑
C⊂MT

X

ι∗

(
e(TC − E•∨) ∩ [C]

)
,

(25)

where the sum is over all connected components C ⊂ MT
X , ι : C ⊂ MX denotes inclusion,

and TC denotes the tangent bundle of C. The first equality is the virtual localization
formula and the second equality follows from smoothness of C as in [PT2, Sect. 4.2]. In
Section 5, we develop a vertex/edge formalism for this class. In what follows, we do not
assume MX is projective.

Suppose Y is a smooth toric Calabi-Yau 3-fold with toric compactification X with
H0(K−1

X ) 6= 0. Openness of MY⊂X (Proposition 4.3) implies that it inherits the DT
perfect obstruction theory from MX . Unlike the rank 1 case, for each closed point
[F ] ∈MY⊂X , the class

E•∨|[F ] = −〈F ,F〉0
does not have rank zero even though Supp(F∗∗/F) ⊂ Y . However, the class

E•∨|[F ] + 〈R,R〉0,

has rank zero and a convenient symmetry by Proposition 4.6. We therefore want to
“split off” the part −〈R,R〉0. In order to be able to do this in families, we make the
following assumption:

Assumption 4.7. Let C ⊂ MT
X be a connected component such that C ⊂ MY⊂X .

Assume all closed points of C have the same (i.e. isomorphic) reflexive hull R.

Remark 4.8. By Remark 2.9, Assumption 4.7 implies R is an isolated reduced point in
the T -fixed locus (i.e. Ext1(R,R)T = 0) and C is a product of P1’s. Conversely, suppose
R is a T -equivariant rank 2 µ-stable reflexive sheaf on X with Ext1(R,R)T = 0. Any
connected component C ⊂ MT

Y⊂X with all closed points of C having reflexive hull R
is isomorphic to a product of P1’s, hence compact. This fact follows from the toric
description of Section 2.4.

Example 4.9. Let X a smooth projective toric 3-fold with rk Pic(X) ≤ 3. Let H be
a polarization on X and c1, c2 Chern classes such that gcd(2, c1H

2) = 1 and c2H is
minimal such that there exist rank 2 µ-stable torsion free sheaves on X with Chern
classes c1, c2. Then for any connected component C of MT

X , all closed points of C have
the same reflexive hull (Theorem 3.5). In this case the cokernels F∗∗/F of closed points
[F ] ∈ C are always 0-dimensional by Proposition 3.1. E.g. Example 3.7.

Example 4.10. In Example 3.8, the closed points of C have the same reflexive hull for
all connected components C of MT

X . However in this case F∗∗/F can be 1-dimensional.
In Example 3.9 some components have constant reflexive hulls whereas others do not.

Let C ⊂ MT
X be a connected component satisfying Assumption 4.7. Recall that

Hom(R,R)0 = 0 and Ext3(R,R) = 0 since H0(K−1
X ) 6= 0. Since by assumption
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Ext1(R,R)T = 0, the following expression is well-defined

1

e(−〈R,R〉0 ⊗OC)
= e(〈R,R〉0 ⊗OC).

Therefore we can factor it out
1

e(Nvir)
∩ [C]vir = e(TC − E•∨) ∩ [C]

= e(〈R,R〉0 ⊗OC) · e(TC − E•∨ − 〈R,R〉0 ⊗OC) ∩ [C].
We therefore write somewhat sloppily

1

e(Nvir) e(〈R,R〉0 ⊗OC)
∩ [C]vir = e(TC − E•∨ − 〈R,R〉0 ⊗OC) ∩ [C].

Here E•∨ + 〈R,R〉0 ⊗OC has rank zero by Proposition 4.6.

Proposition-Definition 4.11. Let Y be a smooth toric Calabi-Yau 3-fold with toric
compactification X with H0(K−1

X ) 6= 0 and polarization H. LetMX :=MH
X(2, c1, c2, c3),

MY⊂X := MH
Y⊂X(2, c1, c2, c3) and let C ⊂ MT

X be a connected component satisfying
Assumption 4.7 with reflexive hull R. Define

DT(C) :=

∫
[C]vir

1

e(Nvir) e(〈R,R〉0 ⊗OC)
.(26)

The specialization

DT(C)
∣∣∣
s1+s2+s3=0

∈ Q

is well-defined.

Proof. As mentioned above, Assumption 4.7 implies C ∼= (P1)N for some N ≥ 0 (Remark
2.9). By Remark 2.9 there exists a universal family F over C which fits in a short exact
sequence

0 −→ F −→ p∗XR −→ Q −→ 0,

where the cokernel Q is a C-flat coherent sheaf and its class in KT
0 (C) can be expressed in

terms of the classes hi := c1(OP1(1)) of the factors of C = (P1)N and classes of structure
sheaves of toric lines and fixed points in X tensored by equivariant line bundles. Using
this, we show in Section 5 (Theorem 5.2) that

E•∨ + 〈R,R〉0 ⊗OC ∈ KT
0 (C)

is a finite sum of elements ctw1
1 tw2

2 tw3
3 , where each coefficient c is the class of a line bundle

(possibly trivial) on a factor P1 of C = (P1)N .
Consider E•∨+ 〈R,R〉0⊗OC. We first consider terms in this expression which are not

T0-fixed. By Proposition 4.6 such terms come in pairs

ctw1
1 tw2

2 tw3
3 − c∗t−w1−1

1 t−w2−1
2 t−w3−1

3 ,

where c ∈ Pic(P1) for some factor P1 of C = (P1)N . Each such pair contributes

c1(c∗) + (−w1 − 1)s1 + (−w2 − 1)s2 + (−w3 − 1)s3

c1(c) + w1s1 + w2s2 + w3s3

∣∣∣
s1+s2+s3=0

= −1,

where we use c1(c∗) = −c.
Next we consider T0-fixed terms of E•∨+ 〈R,R〉0⊗OC, which (a priori) could lead to

poles when specializing. Each T0-fixed term has a weight of the form (t1t2t3)w. We first
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consider all terms with w ∈ {0,−1}. The T -fixed part of E•∨ is the tangent bundle TC
and its dual

−T ∗C ⊗ (t1t2t3)−1

has weight w = −1. Denote all T -fixed terms not appearing in TC by −ak, where
ak ∈ Pic(P1) for some factor P1 of C = (P1)N and k runs through some (possibly empty)
index set. Note that these terms must come from obstructions and hence have a minus
sign. Each such term comes with a dual term a∗k ⊗ (t1t2t3)−1, by Proposition 4.6. In
conclusion, the contribution of all terms with weight w ∈ {0,−1} to the integral (26) is

N∏
i=1

(−2hi − s)×
∏
k

c1(ak)

−c1(ak)− s
=

N∏
i=1

(−2hi − s)×
∏
k

−c1(ak)

s
,(27)

where s := s1 + s2 + s3.
Finally consider a T0-fixed term of E•∨+ 〈R,R〉0⊗OC with w /∈ {0,−1}. Denote the

terms occurring with a plus sign by

bl(t1t2t3)wl ,

where bl ∈ Pic(P1) for some factor P1 of C = (P1)N and l runs through some (possibly
empty) index set. By Proposition 4.6, such a term comes with a dual term

−b∗l (t1t2t3)−wl−1.

Together their contribution to (26) is∏
l

c1(b∗l )− (wl + 1)s

c1(bl) + wls
=
∏
l

[
− (wl + 1)s

wls
+
(
− 1

wls
+

(wl + 1)s

(wls)2

)
c1(bl)

]
=
∏
l

[
− (wl + 1)

wl
+

1

(wl)2s
c1(bl)

]
.

(28)

Multiplying out (27) and (28) gives the contribution of all T0-fixed terms. We see that
no powers of 1/s>N can occur since C = (P1)N and each factor 1/s comes with a class of
degree 1. Moreover after multiplying out (27) and (28), each non-zero term containing
a factor c1(ak)/s with ak ∈ Pic(P1) and P1 equal to the ith factor of C also contains
−2hi − s, which cancels the pole. Similarly for c1(bl)/s. Here we use that the factors of
C are 1-dimensional. We conclude that all poles cancel. �

4.5. Rank 2 DT type invariants by T0-localization. As in the previous sections,
we consider a smooth toric Calabi-Yau 3-fold Y with toric compactification X with
H0(K−1

X ) 6= 0 and polarization H. Let MY⊂X ⊂ MX be as before. Consider the
subtorus T0 ⊂ T defined by t1t2t3 = 1. In [PT2, Conj. 2], Pandharipande-Thomas
conjecture that the T0-fixed locus of the moduli space of stable pairs is smooth. We
conjecture the analog in our setting (see Remark 6.23 for some discussion):

Conjecture 4.12. Let X be a smooth projective toric 3-fold with polarization H and let
MX :=MH

X(2, c1, c2, c3). Then MT0
X is smooth.

We consider connected components C ⊂ MT0
X such that C ⊂ MY⊂X . We want to

endow C with a symmetric perfect obstruction theory coming from T0-localization. In
the stable pairs setting of [PT2] this part is automatic. However, in our case one must
factor out the part coming from reflexive hulls similar to the previous section. In order
to achieve this, we make an assumption:
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Assumption 4.13. Let C ⊂ MT0
X be a compact connected component such that C ⊂

MY⊂X . Assume all closed points of C have the same (i.e. isomorphic) reflexive hull R.
Moreover, assume Ext1(R,R)T0 = Ext2(R,R)T0 = 0.

Remark 4.14. Compared to the T -equivariant case (Assumption 4.7), there are two
more assumptions: Ext1(R,R)T0 = 0, and Ext2(R,R)T0 = 0. In the T -equivariant case,
the first vanishing was a consequence and the second vanishing was not needed. We have
evidence (from examples) that in this case both vanishings are consequences as well.

Let C ⊂ MT0
X satisfy Assumption 4.13. Then C has an induced perfect obstruction

theory from T0-localization. Assuming Conjecture 4.12, we obtain

1

e(Nvir,0)
∩ [C]vir = e(TC − E•∨) ∩ [C],

= e(〈R,R〉0 ⊗OC) · e(TC − E•∨ − 〈R,R〉0 ⊗OC),
where

Nvir,0 := E•∨|m0
C ,

denotes the virtual normal bundle and m0 denotes the T0-moving part.

Definition 4.15. Let Y be a smooth toric Calabi-Yau 3-fold with toric compactifica-
tion X with H0(K−1

X ) 6= 0 and polarization H. Suppose Conjecture 4.12 holds. Let
MX := MH

X(2, c1, c2, c3), MY⊂X := MH
Y⊂X(2, c1, c2, c3), and let C ⊂ MT0

X be a con-
nected component satisfying Assumption 4.13 with reflexive hull R. We define

DT(C) :=

∫
[C]vir

1

e(Nvir,0) e(〈R,R〉0 ⊗OC)
,

where e(·) denotes the T0-equivariant Euler class. Recall that C is a connected component
ofMT0

Y⊂X and notMT
Y⊂X as in Proposition-Definition 4.11. Therefore, we allow ourselves

to use the same notation. A priori, these invariants have equivariant parameters, but
Proposition 4.16 below implies that they are numbers.

The T0-equivariant DT invariants of Definition 4.15 and the T -equivariant DT invari-
ants of Proposition-Definition 4.11 are related in the obvious way.

Proposition 4.16. Let Y be a smooth toric Calabi-Yau 3-fold with toric compactification
X satisfying H0(K−1

X ) 6= 0 and polarization H. Suppose Conjecture 4.12 holds. Let
MX :=MH

X(2, c1, c2, c3),MY⊂X :=MH
Y⊂X(2, c1, c2, c3), and let C ⊂ MT0

X be a connected
component satisfying Assumption 4.13 with reflexive hull R. Then T/T0

∼= C∗ acts on C
and the connected components Ci of CC∗ are connected components of MT

Y⊂X . Moreover

DT(C) =
∑
Ci⊂CC∗

DT(Ci)
∣∣∣
s1+s2+s3=0

.

Proof. The formula follows by using the T/T0
∼= C∗-action on C and applying virtual

localization to DT(C). �

Theorem 4.17. Let Y be a smooth toric Calabi-Yau 3-fold with toric compactification
X with H0(K−1

X ) 6= 0 and polarization H. Suppose Conjecture 4.12 holds. Let MX :=
MH

X(2, c1, c2, c3), let MY⊂X := MH
Y⊂X(2, c1, c2, c3), and let C ⊂ MT0

X be a connected
component satisfying Assumption 4.13 with reflexive hull R. Then DT theory induces a
symmetric perfect obstruction theory E•∨|T0C on C. Moreover

E•∨ + 〈R,R〉0 ⊗OC = −
(
E•∨ + 〈R,R〉0 ⊗OC

)
∈ KT0

0 (C).
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Proof. Let F be the universal family on X ×C.25 Then F has a T0-equivariant structure.
By Assumption 4.13 and Lemma 4.5, we have a short exact sequence

(29) 0 −→ F −→ R� L −→ Q −→ 0.

The argument starts as in Proposition 4.6. From the above short exact sequence, we
obtain exact triangles

RHompC(F,F)T0 −→ RHompC(F,R� L)T0 −→ RHompC(F,Q)T0 ,(30)

RHompC(Q,R� L)T0 −→ (RHom(R,R)⊗OC)T0 −→ RHompC(F,R� L)T0 .(31)

The natural map

OX →Hom(R,R)

induces an exact triangle

RΓ(OX)T0 −→ RHom(R,R)T0 −→ RHom(R,R)T00 .

We define

A• := Cone{(RΓ(OX)⊗OC)T0 → RHompC(F,R� L)T0},
where the map is the composition

(RΓ(OX)⊗OC)T0 −→ (RHom(R,R)⊗OC)T0 −→ RHompC(F,R� L)T0 .

From (31) and the definition of A•, we obtain the exact triangle

(RHom(R,R)0 ⊗OC)T0 −→ A• −→ RHompC(Q,R� L)T0 [1].

By Assumption 4.13, RHom(R,R)T00
∼= 0, hence

A• ∼= RHompC(Q,R� L)T0 [1].

Combining this isomorphism with (30), gives an exact triangle

(32) RHompC(F,F)T00 −→ RHompC(Q,R� L)T0 [1] −→ RHompC(F,Q)T0 .

We can apply a similar reasoning to (29) tensored by p∗XKX . This gives an exact triangle

RHompC(F,F⊗p∗XKX)T00 −→ RHompC(Q,R�L�KX)T0 [1] −→ RHompC(F,Q⊗p∗XKX)T0 ,

where we used

RHom(R,R⊗KX)T00
∼= RHom(R,R)T0∨0 [−3] ∼= 0.

Since Q is scheme-theoretically supported on Y × C ⊂ X × C and Y is Calabi-Yau, we
have

Q⊗ p∗XKX
∼= Q.

We obtain the exact triangle

(33) RHompC(F,F⊗ p∗XKX)T00 −→ RHompC(Q,R� L)T0 [1] −→ RHompC(F,Q)T0 .

Combining exact triangles (32), (33), and a non-zero section OX ↪→ K−1
X gives an iso-

morphism

RHompC(F,F)T00
∼= RHompC(F,F⊗ p∗XKX)T00

∼= RHompC(F,F)T0∨0 [−3].

25Using our assumptions on R and smoothness of C, one can show that C is scheme-theoretically
isomorphic to a connected component of the T0-fixed locus of the Quot scheme QuotX(R) of quotients
R → Q. The universal sheaf F is the kernel of the universal quotient p∗XR → Q restricted to X × C.
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This isomorphism provides the non-degenerate symmetric bilinear form required for a
symmetric perfect obstruction theory26

E•|T0C ∼= (E•|T0C )∨[1].

Next, the second part of the theorem. Exactly as in the proof of Proposition 4.6, we
obtain the following equalities in KT0

0 (C)
〈F,F〉0 =〈R,R〉0 ⊗OC − 〈Q,R� L〉 − 〈F,Q〉,

〈F,F⊗ p∗XKX〉0 =〈R,R⊗KX〉0 ⊗OC − 〈Q,R� L�KX〉 − 〈F,Q⊗ p∗XKX〉
=〈R,R⊗KX〉0 ⊗OC − 〈Q,R� L〉 − 〈F,Q〉.

Subtracting these equations and using T0-equivariant Serre duality gives the desired
result. �

5. Vertex/edge formalism

Let X be a smooth projective toric 3-fold with H0(K−1
X ) 6= 0. Let H be a polarization

on X and let

MX :=MH
X(2, c1, c2, c3).

Let MH
X(χ) be a connected component of the fixed locus MT

X , where χ ∈ X slice
(2,c1,c2,c3)

(Theorem 2.10). Recall that the spaceMH
X(χ) is smooth and equal to the following GIT

quotient (Theorem 2.8)

MH
X(χ) = UH

X (χ)× (P1)b × (P1)c / SL(2,C), UH
X (χ) ⊂ (P1)a.

We will write C =MH
X(χ). In this section, we assume C satisfies:

All closed points of C have the same (i.e. isomorphic) reflexive hull R.

Recall that there are plenty of examples of such C (Examples 4.9 and 4.10). In applica-
tions, X is often a toric compactification of a toric Calabi-Yau 3-fold Y and C ⊂ MT

Y⊂X
as in Section 4.4. Assuming C has constant reflexive hulls has several nice consequences:

• C has a universal family F (Remark 2.9).
• We have a short exact sequence

0 −→ F −→ p∗XR −→ Q −→ 0,

where the cokernel Q is C-flat and Ext1(R,R)T = 0 (Remark 2.9).

• C is a connected component of the fixed locus of the Quot scheme QuotX(R, c′′2, c′′3)T

(Section 2.5). Therefore, C is isomorphic to a product of P1’s.

Remark 5.1. In this section we set up a vertex/edge formalism closely following [MNOP1]
in the rank 1 case and [PT2] in the stable pair case. Since our fixed loci are non-isolated
(products of P1’s) our situation is most similar to [PT2]. In order to follow their method,
we need the existence of a universal family on C, which is ensured by assuming C has
constant reflexive hulls. Unlike the case of [PT2], we can have edge moduli, i.e. moduli
in the legs (Example 2.21).

26For a symmetric perfect obstruction theory, it is also required that θ∨[1] ∼= θ, where θ : E• → LM is
the map to the cotangent complex [Beh]. In our applications, we only use the isomorphism E•∨[1] ∼= E•

(namely for calculations in the T0-equivariant K-group). Therefore, we do not prove the duality of θ.
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We want to compute the K-group class of the DT complex (24) restricted to C
E•∨|C ∈ KT

0 (C).
A torsion free sheaf [F ] ∈ Ccl has a T -equivariant structure as explained in Section 2.

The complex E•∨ restricted [F ] is the virtual tangent space T[F ] at [F ]

T[F ] = Ext1(F ,F)− Ext2(F ,F)

= −〈F ,F〉0.

Here we used Hom(F ,F)0 = 0 and Ext3(F ,F) ∼= Hom(F ,F ⊗KX) = 0, because F is
stable and H0(K−1

X ) 6= 0. Also note that for toric varieties h>0(OX) = 0 so tracelessness
is automatic. We write this as

T[F ] = 〈R,R〉 − 〈F ,F〉 − 〈R,R〉0,
where we keep the trace-free part in the last term or else we would get a unwanted factor
of Hom(R,R) ∼= C. The term 〈R,R〉− 〈F ,F〉 is well-behaved and can be described by
a nice vertex/edge formalism. The term −〈R,R〉0 only contributes an overall constant
in Z[t±1 , t

±
2 , t
±
3 ].

Let {Uα}α∈V (X) be the T -invariant open affine cover of X and denote the double
intersections by Uαβ = Uα∩Uβ. Denote the restriction of any sheaf F to Uα, Uαβ by Fα,
Fαβ respectively. Denote the global section functor by Γ(·). Using the local-to-global
spectral sequence for Ext groups and computing sheaf cohomology by a Čech calculation
gives

〈R,R〉 − 〈F ,F〉 =
∑
α,i

(−1)i
(

Γ(Uα,E xt
i(Rα,Rα))− Γ(Uα,E xt

i(Fα,Fα))
)

−
∑
αβ,i

(−1)i
(

Γ(Uαβ,E xt
i(Rαβ,Rαβ))− Γ(Uαβ,E xt

i(Fαβ,Fαβ))
)
,

where contributions of triple and higher intersections vanish because F and R only differ
on a T -invariant closed subscheme of dimension ≤ 1. Our goal is to calculate

〈Rα,Rα〉 − 〈Fα,Fα〉 =
∑
i

(−1)i
(

Γ(Uα,E xt
i(Rα,Rα))− Γ(Uα,E xt

i(Fα,Fα))
)
,

〈Rαβ,Rαβ〉 − 〈Fαβ,Fαβ〉 =
∑
i

(−1)i
(

Γ(Uαβ,E xt
i(Rαβ,Rαβ))− Γ(Uαβ,E xt

i(Fαβ,Fαβ))
)
.

5.1. Vertex calculation. This section calculates

〈Rα,Rα〉 − 〈Fα,Fα〉.
Suppose the action of T on Uα ∼= C3 is in standard form (t1, t2, t3) · xi = tixi for all
i = 1, 2, 3. Denote the Poincaré polynomial of Fα by

P (Fα) ∈ KT
0 (Uα) ∼= Z[t±1 , t

±
2 , t
±
3 ].

Consider the trace map
tr : KT

0 (Uα) −→ Z((t1, t2, t3)),

which associates to a T -equivariant vector bundle its character (i.e. decomposition into
weight spaces). Following the reasoning in [PT2, Sect. 4.4], we obtain

tr〈Fα,Fα〉 =
P (Fα)P (Fα)

(1− t1)(1− t2)(1− t3)
,
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where the operation (·) was introduced in Definition 4.4.
We need a family version of the above. This is easily done replacing F by F, R by

p∗XR, Uα by Uα × C, and Uαβ by Uαβ × C. This gives

tr〈Fα,Fα〉 =
P (Fα)P (Fα)

(1− t1)(1− t2)(1− t3)
∈ K0(C)⊗Z Z((t1, t2, t3)).

The Poincaré polynomial of p∗UαRα can be expressed in terms of the equivariant param-
eters ti as follows. Let (u,v,p) be the toric data associated to Rα (Definition 2.2).

Case 1: Rα is not locally free, or equivalently all vi > 0 and all pi are mutually distinct
(Proposition 2.4). Then

P (p∗UαRα) = tu11 t
u2+v2
2 tu3+v3

3 + tu1+v1
1 tu22 t

u3+v3
3 + tu1+v1

1 tu2+v2
2 tu33 − tu1+v1

1 tu2+v2
2 tu3+v3

3 .

Case 2: Rα is locally free. In this case Rα has two homogeneous generators and
P (p∗UαRα) is the sum of their characters.

The character of Qα is more complicated and involves moduli. Recall that C ∼= (P1)N

for some N ≥ 0. Each factor P1 of C has a tautological subbundle OP1(−1) ⊂ OP1 ⊕OP1

attached to it. The character Qα of Qα can be expressed in terms of the equivariant
parameters ti and the classes of these OP1(1)’s. Let π correspond to χα by Proposition
2.18. Then

Qα =
∑

(k1,k2,k3)∈π1∪π2∪π3

Qα,(k1,k2,k3),

where

• Qα,(k1,k2,k3) = 2tk11 t
k2
2 t

k3
3 when (k1, k2, k3) ∈ π1 ∩ π2 ∩ π3,

• Qα,(k1,k2,k3) = tk11 t
k2
2 t

k3
3 when (k1, k2, k3) lies in exactly one πi,

• Qα,(k1,k2,k3) = tk11 t
k2
2 t

k3
3 when (k1, k2, k3) lies in exactly two πi’s but not in a region

with moduli (see Section 2.5),
• Qα,(k1,k2,k3) = [OC(1)]tk11 t

k2
2 t

k3
3 when (k1, k2, k3) lies in exactly two πi’s and in a

region C ∼= P1 with moduli (see Section 2.5),
• Qα,(k1,k2,k3) = 0 otherwise.

Reasoning analogous to [PT2, Sect. 4.4] we obtain
(34)

tr〈p∗UαRα,p
∗
Uα
Rα〉−〈Fα,Fα〉 = QαP (p∗UαRα)−

QαP (p∗UαRα)

t1t2t3
+ QαQα

(1− t1)(1− t2)(1− t3)

t1t2t3
,

which lies in

K0(C)⊗Z Z((t1, t2, t3)).

5.2. Edge calculation. This section calculates 〈Rαβ,Rαβ〉 − 〈Fαβ,Fαβ〉. Assume the
coordinates are chosen such that the toric line Cαβ ∩ Uα is given by {x2 = x3 = 0}. We
work over the ring Γ(Uαβ) ∼= C[x±1

1 , x2, x3] and define the formal δ-function

δ(t) :=
∑
k∈Z

tk.

Let π correspond to χα by Proposition 2.18. Denote the limiting double square config-
uration along the x1-axis arising from π by λ = (λ1, λ2, λ3). Denoting the character of
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Qαβ by Qαβ, we obtain

Qαβ =
∑

(k2,k3)∈λ1∪λ2∪λ3

Qαβ,(k2,k3),

where

• Qαβ,(k2,k3) = 2tk22 t
k3
3 if (k2, k3) ∈ λ1 ∩ λ2 ∩ λ3,

• Qαβ,(k2,k3) = tk22 t
k3
3 if (k2, k3) lies in exactly one λi,

• Qαβ,(k2,k3) = tk22 t
k3
3 if (k2, k3) lies in exactly two λi’s but not in a region with

moduli,
• Qαβ,(k2,k3) = [OC(1)]tk22 t

k3
3 if (k2, k3) lies in exactly two λi’s and in a region C ∼= P1

with moduli,
• Qαβ,(k2,k3) = 0 otherwise.

Recall from Example 2.22 that from the data of λ alone, we cannot determine whether
a square lying in exactly two λi’s has moduli or not. This depends on what happens “in
the corners”. This already indicates we cannot split the vertex and edge contributions
as easily as in the rank 1 case. We come back to this in the examples of the next section.

A reasoning similar to the previous section gives

− tr〈p∗UαβRαβ ,p
∗
Uαβ
Rαβ〉−〈Fαβ ,Fαβ〉 = δ(t1)Gαβ,

Gαβ := −QαβP (Rαβ)−
QαβP (Rαβ)

t2t3
+ QαβQαβ

(1− t2)(1− t3)

t2t3
,

(35)

where P (Rαβ) denotes the Poincaré polynomial of Rαβ.

5.3. Redistribution. Exactly as in [MNOP1] and [PT2], the terms of the previous two
sections can be redistributed so they become Laurent polynomials in t1, t2, t3. Denote
the vertices neighbouring α ∈ V (X) by β1, β2, β3. Define

Vα := tr〈p∗UαRα,p
∗
Uα
Rα〉−〈Fα,Fα〉+

3∑
i=1

Gαβi(ti′ , ti′′)

1− ti
,

Eαβ := t−1
1

Gαβ(t2, t3)

1− t−1
1

− Gαβ(t2t
−mαβ
1 , t3t

−m′αβ
1 )

1− t−1
1

,

(36)

where {t1, t2, t3} = {ti, ti′ , ti′′}. Here the labelling is such that Cαβi ∩ Uα is given by
{xi′ = xi′′ = 0} for all i, i′, i′′ ∈ {1, 2, 3} mutually distinct. Recall the definition of mαβ,
m′αβ from Section 2.1. This redistribution does not lead to over-counting due to the
choice of the second term in Eαβ (see (6)). The reason these are Laurent polynomials is
the same as [PT2, Lem. 4]. We summarize this section in one theorem.

Theorem 5.2. Let X be a smooth projective toric 3-fold with H0(K−1
X ) 6= 0 and polar-

ization H. Let MX :=MH
X(2, c1, c2, c3). Suppose C ⊂ MT

X is a connected component of
the fixed locus such that all its closed points have reflexive hull R. Then the T -character
of DT theory TF := E•∨|C ∈ KT

0 (C) is given by

(37) trTF = tr−〈R,R〉0 +
∑

α∈V (X)

Vα +
∑

αβ∈E(X)

Eαβ,

where tr−〈R,R〉0 ∈ Z[t±1
1 , t±1

2 , t±1
3 ] and for all α, β ∈ V (X)

Vα ∈ K0(C)⊗Z Z[t±1
1 , t±1

2 , t±1
3 ],

Eαβ ∈ K0(C)⊗Z Z[t±1
1 , t±1

2 , t±1
3 ].
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6. Applications to toric Calabi-Yau 3-folds

Let Y be a smooth toric Calabi-Yau 3-fold and let X be a toric compactification with
H0(K−1

X ) 6= 0 and polarization H. We fix c1, c2 and consider the moduli spaces

(38) MX :=
⊔
c3

MH
X(2, c1, c2, c3).

In Section 4.1, we introduced the T -invariant open subset

MY⊂X :=
⊔
c3

MH
Y⊂X(2, c1, c2, c3)

of torsion free sheaves F with F∗∗/F supported in Y . We fix a connected component
C ⊂ MT

Y⊂X satisfying Assumption 4.7:

All closed points of C have the same (i.e. isomorphic) reflexive hull R.

We introduced invariants DT(C) in Proposition-Definition 4.11. We are interested in
the “Calabi-Yau specialization” s1 + s2 + s3 = 0 of these invariants. In this section, we
conjecture a formula for generating functions of these invariants in terms of ZY,R|Y ,λ̂(q)
of Remark 2.25.

Suppose [F ] ∈ C is a closed point with characteristic function corresponding to double
box configurations π̂ (Proposition 2.18), where

πα ∈ Π(Rα,λαβ1 ,λαβ2 ,λαβ3),

for each α ∈ V (X) with neighbouring vertices β1, β2, β3. Since the cokernel Q = R/F
lies entirely in Y , the asymptotic double square configurations λαβ are zero unless αβ ∈
Ec(Y ) (i.e. Cαβ ⊂ Y ) and πα = 0 unless α ∈ V (Y ). Note that λ̂ determines the second
Chern class and π̂ determines the third Chern class (Section 2.3, Proposition 2.24).

Main Conjecture 6.1. Let Y be a smooth toric Calabi-Yau 3-fold with toric compacti-
fication X satisfying H0(K−1

X ) 6= 0. Fix a polarization H on X and Chern classes c1, c2.
Let R be a T -equivariant rank 2 µ-stable reflexive sheaf on X with toric data (u,v,p).
Suppose any connected component C of

⊔
c3
MH

Y⊂X(2, c1, c2, c3)T has constant reflexive
hulls R. For each αβ ∈ Ec(Y ), there are two faces ρ1,αβ, ρ2,αβ which share αβ as an
edge and two disjoint faces ρ3,αβ, ρ4,αβ connected by the edge αβ. Then∑
c3

∑
C⊂MH

Y⊂X(2,c1,c2,c3)T

DT(C)
∣∣∣
s1+s2+s3=0

qc3 =

∑
λ̂

ZY,R|Y ,λ̂(q−2)qc3(R)
∏

αβ∈Ec(Y )

(−1)|λαβ |(mαβ(vρ1,αβ+vρ2,αβ+1)+vρ3,αβ+vρ4,αβ )q|λαβ |Cαβ(c1(X)+c1),

where C runs over all connected components and λ̂ = {λαβ ∈ Λ(Rαβ)}αβ∈Ec(Y ) runs over
all double square configurations giving rise to second Chern class c2.

The assumptions of this conjecture are satisfied in numerous interesting cases e.g. Ex-
amples 4.9 and 4.10. We provide the following evidence for Main Conjecture 6.1:

• The examples of Sections 6.1, 6.2.
• For connected components C, “with expected obstructions” we compute the in-

variants DT(C)|s1+s2+s3=0 using methods of [MNOP1] (Section 6.3). The answers
are compatible with Main Conjecture 6.1.
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• Assuming two analogs of conjectures in the stable pairs case [PT2, Conj. 2,
Conj. 3], we prove Main Conjecture 6.1 using T0-localization (Section 6.4).

Remark 6.2. Note that the formula of Conjecture 6.1 only depends on the compactifi-
cation through whether R is µ-stable or not and through an overall multiplicative factor
of q···. In particular, the formula∑

λ̂

ZY,R|Y ,λ̂(q−2)
∏

αβ∈Ec(Y )

(−1)|λαβ |(mαβ(vρ1,αβ+vρ2,αβ+1)+vρ3,αβ+vρ4,αβ )

does not depend on the compactification. We expect this formula to be of the form
M(q)2e(Y ) times a rational function in q, which is invariant under q ↔ q−1 (up to an

overall multiplicative factor). We prove this expectation in the case all λ̂ = ∅ (no legs),
where the rational function is in fact a Laurent polynomial (Remark 6.11).

6.1. Rank 2 equivariant vertex without legs. In this section, we consider Y = C3

and R an arbitrary T -equivariant rank 2 reflexive sheaf on C3 described by toric data
(u,v,p). We will see below that R is always the restriction of a T -equivariant rank 2 µ-
stable reflexive sheaf on a (polarized) toric compactification X of C3 with H0(K−1

X ) 6= 0
(Lemma 6.8). Nevertheless, we want to think of the results of this section as being
intrinsic to C3. Since Ec(C3) = ∅, we choose all legs empty. Let π ∈ Π(R,∅,∅,∅).
Then Cπ is the moduli space of T -equivariant rank 2 torsion free sheaves on C3 with
characteristic function corresponding to π (Proposition 2.18). Even though we did not
start with a compact 3-fold, the vertex expression (34) still makes sense for Cπ and is
denoted by Vπ.

Example 6.3. Suppose v = (1, 1, 1) and p1, p2, p3 are mutually distinct. Consider π
given by

Qπ = t1t3 + t2t3 + t1
2t3 + t2

2t3 + t1t2t3 + t1
3t3 + t1

2t2t3 + t2
2t1t3,

so |π| = 8 (see Figure 6). Then we have

Vπ =t3 + t1t3 + t2t3 +
t1

3

t2t3
− 1

t1t2
− 3

1

t1t3
− 3

1

t2t3
− 1

t1
2t3

+
t1

3

t2
3

+
t2

2

t1
4

+ t3
−1

+ 3 t1
−1 + 3 t2

−1 + t1
−2 − t2−3 − t2

t1
3t3

+
t1t3
t2
− t1
t2t3

+
t2t3
t1
− t1

3

t2
3t3
− t2

2

t1
4t3

+
t2

2

t1t3
− t1

2

t2
2t3

+
t1

2t3
t2
− t1

2

t2
3t3
− t2

2

t1
3t3

+ 2
t1t2
t3
− t1−4 − 1

t2
2t1
− 1

t1
2t2

+ 2
t1

2

t3

+
t2

2

t3
− 2

1

t1
2t2

2
+ 2

t2
t1

2
+
t1
t3

+ 2
t1
t2

2
+
t3
t1

+
t3
t2
− 1

t1t2t3
2
− 1

t1
2t2t3

2
− 1

t1t2
2t3

2

− 1

t2t3
2
− 1

t2
2t3

2
− 1

t1
2t3

2
− 1

t1t3
2

+
t1

2

t2
2

+
t1

2

t2
3

+
t2

2

t1
3

+
t2
t1

3
− 2

1

t1
3t2
− 1

t1t2
3

+
t2
t3

+
t1
t2
− 2

t1
t2

2t3
− 2

t2
t1

2t3
− 1

t1
3t3

2

and hence
1

e(Vπ)

∣∣∣
s1+s2+s3=0

= 1 = ω(π),

where ω(π) is the weight defined in Definition 2.23.

Next we consider an example with moduli.
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m

Figure 6. Double box configuration of Examples 6.3 and 6.4.

Example 6.4. Suppose v = (1, 1, 1) and p1, p2, p3 are mutually distinct. We consider
an example with |π| = 4 and Cπ ∼= P1, namely

Qπ = t1t2 + t1t3 + t2t3 + [OP1(1)]t1t2t3.

See Figure 6. Then we have

Vπ = 2[OP1(1)]− 1− 2
[OP1(−1)]

t1t2t3
+

1

t1t2t3
+ · · · ,

where · · · indicates the T0-moving terms. Since TCπ = 2[OP1(1)]− 1, we obtain

TCπ − Vπ = 2
[OP1(−1)]

t1t2t3
− 1

t1t2t3
+ · · · .

A direct calculation shows that · · · produces a sign −1. We conclude∫
Cπ
e(TCπ − Vπ)

∣∣
s1+s2+s3=0

= 2 = ω(π).

These two examples suggest∫
Cπ
e(TCπ − Vπ)

∣∣
s1+s2+s3=0

?
= ω(π),

for any π ∈ Π(R,∅,∅,∅). However this is false as is shown by the following example.

Example 6.5. Suppose v = (1, 1, 1) and p1, p2, p3 are mutually distinct. We consider π
and π′ given by

Qπ = t1t3 + t2t3 + t1
2t3 + t2

2t3 + t1t2t3 + t1t2 + t1
2t2t3 + t2

2t1t3,

Qπ′ = t1t3 + t2t3 + t1
2t3 + t2

2t3 + t1t2t3 + t1
2t2

2t3 + t1
2t2t3 + t2

2t1t3,

so |π| = |π′| = 8 (see Figure 7). Note that neither Cπ nor Cπ′ has moduli. We obtain

Vπ =
1

t1t2t3
− 1 + · · · ,

Vπ′ = t1t2t3 −
1

t21t
2
2t

2
3

+ · · · ,

where · · · indicates the T0-moving terms. Further calculation shows

1

e(Vπ)

∣∣∣
s1+s2+s3=0

= 0 6= ω(π) = 1,

1

e(Vπ′)

∣∣∣
s1+s2+s3=0

= 2 6= ω(π′) = 1.

However, we do have( 1

e(Vπ)
+

1

e(Vπ′)

)∣∣∣
s1+s2+s3=0

= 2 = ω(π) + ω(π′).
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Figure 7. Double box configurations of Example 6.5.

In [GKY], we associate to any double box configuration π a double dimer model D(π).
It turns out that in this example

D(π) = D(π′).

In analogy to [MNOP1, PT2], we define the rank 2 equivariant vertex measure:

Definition 6.6. Let R be a T -equivariant rank 2 reflexive sheaf on C3. For each π ∈
Π(R,∅,∅,∅) define the rank 2 equivariant vertex measure associated to π by

w(π) :=

∫
Cπ
e(TCπ − Vπ).

Define the rank 2 equivariant vertex as

(39) WR,∅,∅,∅(q) :=
∑

π∈Π(R,∅,∅,∅)

w(π)q|π| ∈ Z(s1, s2, s3)[[q]].

It is not a priori clear the “Calabi-Yau specialization” s1 + s2 + s3 = 0 of the rank 2
equivariant vertex is well-defined.

Proposition 6.7. Let R be a T -equivariant rank 2 reflexive sheaf on C3. Then

WR,∅,∅,∅(q)
∣∣∣
s1+s2+s3=0

∈ Z[[q]]

is well-defined.

Proof. By Lemma 6.8 below, this is a special case of Proposition-Definition 4.11. We
only have to note that each Cπ satisfies Assumption 4.7. �

Lemma 6.8. Let R be a T -equivariant rank 2 reflexive sheaf on Y = C3. We can view
Y as a T -invariant affine open subset of X = (P1)3. There exists a polarization H on
X and a T -equivariant rank 2 µ-stable reflexive sheaf R̃ on X such that R̃|Y ∼= R and
R̃ restricted to any other T -invariant affine open subset is locally free.

Proof. Let (u,v,p) be the toric data of R and denote the pull-back of the class of the
point via projection to each of the three factors of X = (P1)3 by D1, D2, D3. We prove
the case R is singular, i.e. v1, v2, v3 > 0 and p1, p2, p3 are mutually distinct (Proposition
2.4). The degenerate cases can be treated in a similar fashion. Let

H = a1D1 + a2D2 + a3D3

be any polarization on X, i.e. a1, a2, a3 ∈ Z>0. Define R̃ by the following toric data.
For each of the faces ρ ∈ ∆(X) corresponding to the chart Y = C3, we take uρ, vρ, and
pρ equal to the corresponding value of ui, vi, and pi coming from R. For each other
ρ ∈ ∆(X), we take uρ = vρ = 0. Then clearly

R̃|Y ∼= R
and R̃ restricted to the other standard charts is locally free (Proposition 2.4). It suffices
to ensure R̃ is µ-stable. This is equivalent to (Section 2.3)

(DiH
2)vi < (DjH

2)vj + (DkH
2)vk,
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for all i, j, k ∈ {1, 2, 3} mutually distinct. These inequalities are equivalent to

2ajakvi < 2aiakvj + 2aiajvk,

for all i, j, k ∈ {1, 2, 3} mutually distinct. Taking a1 = v1, a2 = v2, a3 = v3 proves the
lemma. �

Conjecture 6.9. Let R be a T -equivariant rank 2 reflexive sheaf on C3. Then

WR,∅,∅,∅(q)
∣∣∣
s1+s2+s3=0

= ZC3,R,∅,∅,∅(q).

Remark 6.10. Recall from Section 2.6 that ZC3,R,∅,∅,∅(q) is just the generating function
of Quot schemes

∞∑
n=0

e(QuotC3(R, n))qn.

There are two essentially different cases of Conjecture 6.9.

(1) R is locally free, i.e. some vi = 0 or some pi are equal (Proposition 2.4). Then
Conjecture 6.9 and equation (15) imply

WR,∅,∅,∅(q)
∣∣∣
s1+s2+s3=0

= M(q)2.

(2) R is singular, i.e. all vi > 0 and pi are mutually distinct. In this case (39) only
depends on v (by (34)) and we define

Wv1,v2,v3,∅,∅,∅(q) := WR,∅,∅,∅(q).

The right hand side of Conjecture 6.9 is computed in Theorem 2.27. Conjecture
6.9 is an interesting non-trivial combinatorial identity stating

Wv1,v2,v3,∅,∅,∅(q)
∣∣∣
s1+s2+s3=0

= M(q)2

v1∏
i=1

v2∏
j=1

v3∏
k=1

1− qi+j+k−1

1− qi+j+k−2
.

Remark 6.11. Conjecture 6.9 implies Main Conjecture 6.1 in the case all λ̂ = ∅ (no
legs). In this case, the LHS of Main Conjecture 6.1 equals ZY,R|Y (q−2) up to an overall
multiplicative factor of q to some power. Since there are no legs, the formula of the
previous remark shows the generating function is M(q)2e(Y ) times a Laurent polynomial
in q−2. As can be checked by a small calculation, this Laurent polynomial is invariant
under q ↔ q−1 (up to an overall multiplicative factor).

Remark 6.12. In Example 6.5, we saw that in general w(π) 6= ω(π). However, we do
expect the following refinement of Conjecture 6.9 to be true. Let R be a T -equivariant
rank 2 reflexive sheaf on C3. In [GKY], we associate a double dimer model D(π) to any
π ∈ Π(R,∅,∅,∅). For any double dimer model D, we conjecture∑

π ∈ Π(R,∅,∅,∅)
D(π) = D

w(π)
∣∣∣
s1+s2+s3=0

q|π| =
∑

π ∈ Π(R,∅,∅,∅)
D(π) = D

ω(π)q|π|.

In [GKY], we refer to elements Π(R,∅,∅,∅) with the same double dimer model as
buddies. In Section 6.4, we give a (conjectural) geometric characterization of buddies:
π1,π2 are buddies if and only if Cπ1 , Cπ2 are T/T0-fixed connected components inside
the same T0-fixed connected component (Remark 6.20).
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6.2. Rank 2 equivariant vertex/edge for one leg. For Y = C∗ × C2, one can fix
a double square configuration λ along C∗ (Definition 2.14). Unlike the rank 1 case, the
edge term (36) along this leg is not determined by λ alone. Therefore, Eλ is not well-
defined. The reason is that whether the leg has moduli or not depends on what happens
in the “corners attached to the leg” (Example 2.22). In this section, we consider

Y = Tot(OP1(−1)⊕OP1(−1)).

Let R be a T -equivariant rank 2 reflexive sheaf on Y described by toric data (u,v,p).
Let 0, 1 label the two vertices of ∆(Y ). The polyhedron ∆(Y ) has four non-compact
faces. Two of them share the unique compact edge and we denote them by ρ1, ρ2. The
other two we denote by ρ3, ρ4, where ρ3 has vertex 0 and ρ4 has vertex 1. We will see
that R is always the restriction of a T -equivariant rank 2 µ-stable reflexive sheaf on a
(polarized) toric compactification X of Y (Lemma 6.15). In order for this extension of
R to have no T -fixed moduli, we assume

vρ4 = 0.

Fix a double square configuration λ along the compact leg and π̂ = {πα}α=0,1, where

πα ∈ Π(Rα,λ,∅,∅).

Then π̂ has at most 3 face components and can have several leg and vertex components
of 1’s (Definition 2.7). Therefore, there are no moduli associated to the face components.
In particular, the moduli space Cπ (Definition 2.23) decomposes according to vertex and
edge components

Cπ ∼= Cvert × Cedge.

Note that the expression for the edge in (35), (36) makes sense without reference to a
compactification of X. We write the corresponding expression as Eπ̂. It is tempting to
define an equivariant edge measure

(40)

∫
Cedge

e(TCedge − Eπ̂).

However, this may not be well-defined as illustrated by the following example.

Example 6.13. Suppose R is given by toric data (u,v,p) with (vρ1 , vρ2 , vρ3 , vρ4) =
(1, 1, 1, 0) and p1, p2, p3 mutually distinct. We consider the following three double box
configurations π̂, π̂′, π̂′′ with leg along the zero section of Y

(Qπ0 ,Qπ1) =

(
t1t2 +

t3(t1 + t2 + 2t1t2)

1− t3
,
t1t
−1
3 + t2t

−1
3 + 2t1t2t

−2
3

1− t−1
3

)
,

(Qπ′0
,Qπ′1

) =

(
t1t2 +

t3(t1 + t2 + [OP1(1)]t1t2)

1− t3
,
t1t
−1
3 + t2t

−1
3 + [OP1(1)]t1t2t

−2
3

1− t−1
3

)
,

(Qπ′′0
,Qπ′′1

) =

(
t3(t1 + t2 + t1t2)

1− t3
,
t1t
−1
3 + t2t

−1
3 + t1t2t

−1
3

1− t−1
3

)
.

The double box configurations in chart U0 are depicted in Figure 8. One can compute

(Vπ0 ,Vπ1) =

(
− 1

t21
− 1

t1
− 1

t22
− 1

t2
+

1

t1t3
+

1

t2t3
+

t1
t2t3

+
t2
t1t3

, 0

)
,

(Vπ′0
,Vπ′1

) =

(
− 1

t21
+

1

t1
− [OP1(1)]

t1
− 1

t22
+

1

t2
− [OP1(1)]

t2
− 2

t1t2
+

[OP1(1)]

t1t2
+

2

t3



54 A. GHOLAMPOUR, M. KOOL, B. YOUNG
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Figure 8. Double box configurations π0,π
′
0,π

′′
0 of Example 6.13.

− [OP1(−1)]

t3
− 1

t1t3
+

[OP1(−1)]

t1t3
− 1

t2t3
+

[OP1(−1)]

t2t3
+

t1
t2t3

+
t2
t1t3

, 0

)
,

(Vπ′′0
,Vπ′′1

) =

(
−1− 1

t1
− 1

t2
+

1

t1t3
+

1

t2t3
+

1

t1t2t3
, 0

)
,

Eπ̂ =
2t1
t2

+
2t2
t1
− 2

t21t3
− 2

t22t3
,

Eπ̂′ =2[OP1(1)]− 1 +
[OP1(1)]t1

t2
+

[OP1(1)]t2
t1

− [OP1(−1)]

t21t3
− [OP1(−1)]

t22t3

− 2[OP1(−1)]

t1t2t3
+

1

t1t2t3
,

Eπ̂′′ =1 +
t1
t2

+
t2
t1
− 1

t21t3
− 1

t22t3
− 1

t1t2t3
.

Interestingly, Eπ̂′′ has a positive T -fixed part, so 1/e(Eπ̂′′) is not well-defined. Therefore
(40) is in general not well-defined. As a consistency check: an explicit calculation using
these expressions leads to the sign predicted by Main Conjecture 6.1.

In the previous example, the obstruction term in Eπ̂′′ cancels after adding Vπ′′0
, Vπ′′1

. We
should therefore not separate these three terms. This motivates the following definition.

Proposition-Definition 6.14. Let Y = Tot(OP1(−1)⊕OP1(−1)) and label the vertices
and faces of ∆(Y ) as before. Let R be a T -equivariant rank 2 reflexive sheaf on Y
described by toric data (u,v,p) with vρ4 = 0. Let λ be a double square configuration
along the compact edge and let π̂ = {πα}α=0,1, where

πα ∈ Π(Rα,λ,∅,∅), for α = 0, 1.

Then

w(π̂) :=

∫
Cπ̂
e(TCπ̂ − (Vπ0 + Vπ1 + Eπ̂)) ∈ Q(s1, s2, s3)

is the rank 2 equivariant resolved conifold measure associated to π̂. The specialization

w(π̂)
∣∣∣
s1+s2+s3=0

∈ Q

is well-defined. Define the generating function of these measures as

WR,λ,∅,∅(q) =
∑

π̂∈Π(R,λ,∅,∅)

w(π̂)q|π|+f−1,−1(λ)+guρ3 ,uρ4 ,vρ3 ,0(λ) ∈ Z(s1, s2, s3)[[q]],

where f−1,−1(λ), guρ3 ,uρ4 ,vρ3 ,0(λ) were defined in Definition 2.23.
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Proof. We have to prove the Calabi-Yau specialization s1 + s2 + s3 = 0 is well-defined.
The proof is similar to that of Proposition 6.7 and follows from the following lemma and
Proposition-Definition 4.11. �

Lemma 6.15. Let R be any T -equivariant rank 2 reflexive sheaf on Y = Tot(OP1(−1)⊕
OP1(−1)) described by toric data (u,v,p) (not necessarily with vρ4 = 0). Then there

exists a polarized toric compactification X of Y and a rank 2 µ-stable reflexive sheaf R̃
on X, such that R̃|Y ∼= R and the restriction of R̃ to any T -invariant affine open subset
not contained in Y is locally free.

Proof. We treat the case all vi > 0 and all pi are mutually distinct. The degenerate cases
can be done similarly.

Let F1 = P(OP1⊕OP1(1)) be the first Hirzebruch surface and let C be the T -fixed line
with C2 = −1. Let F be a T -fixed fibre. Define

π : X = P(OF1 ⊕OF1(F )) −→ F1.

The following divisors form a Z-basis for Pic(X)

D1 = π−1(C), D2 = π−1(F ), D3 = P(OF1 ⊕ 0) ⊂ X.

Then C is a (−1,−1) curve in X contained in two toric charts U0, U1. Their union is
isomorphic to Y . We define R̃ on X by the following toric data (ũ, ṽ, p̃). The faces
ρ1, ρ2, ρ3, ρ4 of ∆(Y ) (introduced at the beginning of this section) correspond to faces of
∆(X) and we take ũρi , ṽρi , p̃ρi from the given toric data (u,v,p). For all other faces ρ

of ∆(X), we set ũρ = ṽρ = 0. Then R̃|Y ∼= R and R̃ restricted to any other other toric
chart is locally free (Proposition 2.4). We are reduced to finding a polarization H on X
such that R̃ is µ-stable.

The intersection numbers among the toric divisors are

D1D2D3 = pt, D1D
2
3 = D2

1D3 = −pt,
D2

2 = D2
1D2 = D2

3D2 = D3
1 = D3

3 = 0,

where pt denotes the class of a point. A divisor

H = a1D1 + (a1 + a2 + a3)D2 + a3D3

is ample if and only if a1, a2, a3 > 0. Take λ ∈ Q>0 arbitrary and a1 = λv1, a2 = v2 + v4,
a3 = v3. Using the above intersection numbers, it is not hard to see that there exists a
λ ∈ Q>0 such that the following four stability inequalities hold

(H2Di)vi < (H2Dj)vj + (H2Dk)vk + (H2Dl)vl, ∀i, j, k, l ∈ {1, 2, 3, 4} mutually distinct.

After scaling H such that all its coefficients are integer, we are done. �

Parallel to Main Conjecture 6.1 we conjecture:

Conjecture 6.16. Let Y = Tot(OP1(−1) ⊕ OP1(−1)) and label the vertices and faces
of ∆(Y ) as before. Let R be any T -equivariant rank 2 reflexive sheaf on Y described
by toric data (u,v,p) with vρ4 = 0. Let λ be a double square configuration along the
compact edge. Then

WR,λ,∅,∅(q)
∣∣∣
s1+s2+s3=0

= (−1)|λ|(vρ1+vρ2+vρ3+1)ZR,λ,∅,∅(q).
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6.3. Expected obstructions. In this section, we explain where the sign in Main Con-
jecture 6.1 comes from. The following theorem discusses the contribution of connected
components C with “expected obstructions”. The argument is a variation on [MNOP1,
Sect. 4.10, 4.11].

Theorem 6.17. Let Y be a smooth toric Calabi-Yau 3-fold with toric compactification
X with H0(K−1

X ) 6= 0 and polarization H. Let R be a T -equivariant rank 2 µ-stable
reflexive sheaf on X with toric data (u,v,p). For each αβ ∈ Ec(Y ), there are two faces
ρ1,αβ, ρ2,αβ which share αβ as an edge and two disjoint faces ρ3,αβ, ρ4,αβ connected by

the edge αβ. Let π̂ ∈ Π(R|Y , λ̂) for some λ̂ = {λαβ ∈ Λ(Rαβ)}αβ∈Ec(Y ) and consider
the connected component C = Cπ̂. Assume the following:

(i) All closed points of C have reflexive hull R.
(ii) The T0-fixed part of

∑
α∈V (Y ) Vα +

∑
αβ∈Ec(Y ) Eαβ equals TC − ΩC ⊗ (t1t2t3)−1.

Then

DT(C) = e(C)
∏

αβ∈Ec(Y )

(−1)|λαβ |(mαβ(vρ1,αβ+vρ2,αβ+1)+vρ3,αβ+vρ4,αβ ).

Remark 6.18. In the case C is in addition isolated, (ii) states that
∑

α∈V (Y ) Vα +∑
αβ∈Ec(Y ) Eαβ has no T0-fixed terms. In [MNOP1], the T -fixed locus automatically

consists of isolated reduced points and the absence of T0-fixed terms always holds (this
is the crucial technical point mentioned in [MNOP1, Sect. 4.11]). In our case, C could
be non-isolated. Moreover, even when C is isolated there can be non-zero T0-fixed terms
as for π and π′ in Example 6.5. Examples 6.3, 6.4, and 6.13 satisfy the assumptions of
the theorem.

Proof of Theorem 6.17. From the definition and assumptions

DT(C) =

∫
C
e(ΩC ⊗ (t1t2t3)−1) · · ·

∣∣∣
s1+s2+s3=0

,

where · · · stands for the contribution of all T0-moving terms. This is equal to

DT(C) =

∫
C
ctop(ΩC) · · ·

∣∣∣
s1+s2+s3=0

.

Because of degree reasons, the contribution of · · · is simply ±1. More precisely, it is −1
to the power the number of (Serre dual) T0-moving pairs in

∑
α∈V (Y ) Vα+

∑
αβ∈Ec(Y ) Eαβ

by Proposition 4.6. We conclude

DT(C) = (−1)dim(C)+number of T0-moving pairse(C).
In order to determine the sign, we use the following claim. For all αβ ∈ Ec(Y ) and
α ∈ V (Y ), there exist splittings

Eαβ = E+
αβ + E−αβ,(41)

Vα = V+
α + V−α ,(42)

such that27

E−αβ = −(t1t2t3)−1E
+

αβ,(43)

V−α = −(t1t2t3)−1V
+

α .(44)

27Note that [MNOP1] only show these dualities after specialization t1t2t3 = 1. Our dualities also
hold before specialization.
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If the claim is proved, then we conclude DT(C) equals

(−1)dim(C)+
∑
α∈V (Y )(V

+
α (1,1,1)−Constant(V+

α ))+
∑
αβ∈Ec(Y )(E

+
αβ(1,1,1)−Constant(E+

αβ)e(C),

where Constant(· · · ) denotes the rank of the T0-fixed term. Moreover, V+
α (1, 1, 1) and

E+
αβ(1, 1, 1) should be interpreted as first restricting the vertex and edge expression to

(any) closed point of C, thus getting rid of moduli, and then putting (t1, t2, t3) = (1, 1, 1).
So we need to prove the above splittings and compute the terms in the power modulo 2.

For (41), we define (similar to [MNOP1, Sect. 4.10])

G+
αβ := −QαβP (Rαβ)− QαβQαβ

1− t2
t2

.

In this definition, the coordinates are chosen such that Cαβ ∩Uα is given by x2 = x3 = 0.
We then define E+

αβ as in expression (36), but with Gαβ replaced by G+
αβ. Also define

E−αβ := Eαβ−E+
αβ. The identity (43) can then be checked by direct calculation. This uses

mαβ +m′αβ = −2 (valid because αβ ∈ Ec(Y ) and Y is Calabi-Yau). From the definition

of E+
αβ, we obtain

E+
αβ(1, 1, 1) = − d

dτ

(
τG+

αβ(t2, t3)− G+
αβ(t2τ

mαβ , t3τ
m′αβ)

)∣∣∣
(τ,t2,t3)=(1,1,1)

= −G+
αβ(1, 1) +

(
mαβt2

∂

∂t2
+m′αβt3

∂

∂t3

)
G+
αβ(t2, t3)

∣∣∣
(t2,t3)=(1,1)

mod 2

=
(
mαβt2

∂

∂t2
+m′αβt3

∂

∂t3

)
G+
αβ(t2, t3)

∣∣∣
(t2,t3)=(1,1)

mod 2,

where the second equality follows from P (Rαβ)(1, 1, 1) = 0 mod 2 (R has rank 2). Using
the fact that P (Rαβ)(1, 1, 1) = 0 mod 2 and mαβ +m′αβ = −2, one obtains

(45) E+
αβ(1, 1, 1) = mαβ|λαβ|(vρ1,αβ + vρ2,αβ + 1) mod 2,

where ρ1,αβ, ρ2,αβ ∈ F (X) are the two faces with common edge αβ.
The splitting (42) is more complicated. Let G+

αβ be defined as above. Naively, one
would like to define

V+
α := QαP (Rα)− QαQα

(1− t1)(1− t2)

t1t2
+

3∑
i=1

G+
αβi

(ti′ , ti′′)

1− ti

and V−α := Vα −V+
α . Here the vertices neighbouring α ∈ V (Y ) are denoted by β1, β2, β3,

where the labelling is such that Cαβi ∩ Uα is given by {xi′ = xi′′ = 0} for all i, i′, i′′ ∈
{1, 2, 3} mutually distinct. In the case |λαβ| = 0 (no legs), this works and one obtains
(42). The general case is more complicated. One introduces Q′α by the equation

Qα = Q′α +
3∑
i=1

Qαβi

1− ti

and defines V+
α exactly analogous to [MNOP1, Sect. 4.10]. Setting V−α := Vα − V+

α ,
equation (42) can be deduced. The correct definition of V+

α leads to

V+
α (1, 1, 1) = Q′α(1, 1, 1)P (Rα)(1, 1, 1)+

3∑
i=1

Qαβi(P (Rα)− P (Rαβi))

1− ti

∣∣∣
(t1,t2,t3)=(1,1,1)

mod 2.
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This equality follows after noting that various terms in V+
α are zero or even for (t1, t2, t3) =

(1, 1, 1). A similar (but easier) calculation as for E+
αβ(1, 1, 1) shows

(46) V+
α (1, 1, 1) =

3∑
i=1

|λαβi |vρi mod 2,

where ρ1, ρ2, ρ3 are the three faces with vertex α labelled such that ρi′ , ρi′′ are the faces
sharing edge αβi.

Finally, we claim∑
α∈V (Y )

Constant(V+
α ) +

∑
αβ∈Ec(Y )

Constant(E+
αβ) = dim(C) mod 2.

Define

X± :=
∑

α∈V (Y )

V±α +
∑

αβ∈Ec(Y )

E±αβ.

Take any T0-fixed term f in X+ not occurring in TC − ΩC ⊗ (t1t2t3)−1. This term must
cancel after adding X− (by assumption). Therefore, X− contains the term −f . By
duality (43) and (44), X+ must contain f ∗(t1t2t3)−1. Therefore, nonzero terms in X+ not
occurring in TC − ΩC ⊗ (t1t2t3)−1 come in pairs (and likewise for X−). Distributing the
terms of TC−ΩC⊗ (t1t2t3)−1 over X± by using (43), (44) and calculating modulo 2 shows
the claim. �

6.4. T0-localization. In this section, we prove Main Conjecture 6.1 from a T0-localization
argument similar to [PT2, Sect. 5.2]. Pandharipande-Thomas need two conjectures for
their argument [PT2, Conj. 2, Conj. 3]. We need completely similar analogs of their con-
jectures in our setting. The first is smoothness of the T0-fixed locus (Conjecture 4.12).
The second will be described below.

Theorem 6.19. Assume Conjecture 4.12 is true. Let Y be a smooth quasi-projective
toric Calabi-Yau 3-fold with toric compactification X satisfying H0(K−1

X ) 6= 0. Fix a
polarization H on X and letMX :=MH

X(2, c1, c2, c3) andMY⊂X :=MH
Y⊂X(2, c1, c2, c3).

Suppose C ⊂ MT0
X is a connected component satisfying Assumption 4.13 with reflexive

hull R. Let Nvir,0 be the virtual normal bundle on C w.r.t. the T0-action. Then the class

Nvir,0 + 〈R,R〉0 ⊗OC ∈ KT0
0 (C)

is of the form N+ +N− with N
−

= −N+ ∈ KT0
0 (C). Moreover

DT(C) = (−1)dim(C)+rk(N+)e(C).

Proof. By symmetry of the T0-equivariant obstruction theory (Theorem 4.17)

E•∨ = TC − ΩC +Nvir,0.

Therefore, the invariant is given by

DT(C) =

∫
C
e(ΩC − (Nvir,0 + 〈R,R〉0 ⊗OC)).

Note that 〈R,R〉0 only has T0-moving terms by Assumption 4.13. Theorem 4.17 therefore
gives

Nvir,0 + 〈R,R〉0 = −
(
Nvir,0 + 〈R,R〉0 ⊗OC

)
∈ KT0

0 (C).
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Consequently, Nvir,0 +〈R,R〉0 is of the form N+ +N− with N
−

= −N+ and we conclude

DT(C) =

∫
C
ctop(ΩC)(−1)rk(N+) = (−1)dim(C)+rk(N+)e(C). �

Remark 6.20. Combining Theorem 6.19 and Proposition 4.16 gives

DT(C) = (−1)dim(C)+rk(N+)
∑
Ci⊂CC∗

e(Ci) =
∑
Ci⊂CC∗

DT(Ci),

where T/T0
∼= C∗. It is tempting to conclude

(47) DT(Ci)
?
= (−1)dim(C)+rk(N+)e(Ci),

for any C∗-fixed component Ci of C. This is certainly not true in general, because it
would imply DT(Ci) is never zero contradicting Example 6.5. This is very reminiscent
of the discussion of buddies in Remark 6.12. This leads us to expect that two elements
π1,π2 ∈ Π(R, λ̂) are buddies if and only if Cπ1 , Cπ2 lie in the same connected component
of the T0-fixed locus. This would provide a geometric explanation for the (combinatorially
mysterious) notion of buddies. So in general the classical count ±e(Ci) and virtual count
DT(Ci) are different. Remarkably, they become equal again after summing over all
connected components Ci of the same connected component of the T0-fixed locus.

The analog of the second conjecture of Pandharipande-Thomas [PT2, Conj. 3] is:

Conjecture 6.21. Let Y be a smooth quasi-projective toric Calabi-Yau 3-fold with
toric compactification X satisfying H0(K−1

X ) 6= 0. Fix a polarization H, let MX :=
MH

X(2, c1, c2, c3), and let MY⊂X := MH
Y⊂X(2, c1, c2, c3). Suppose C ⊂ MT0

X is a con-
nected component satisfying Assumption 4.13 and let Ci be a connected component of CC∗

where C∗ ∼= T/T0. Since Ci is a connected component of MT
X , we have defined vertices

Vα, V±α and edges Eαβ, E±αβ on it. For any [F ] ∈ Ci, these give restrictions Vα|[F ], V
±
α |[F ],

Eαβ|[F ], E
±
αβ|[F ]. Then

dim Ext1(F ,F)T0 =
∑

α∈V (Y )

Constant(V+
α |[F ]) +

∑
αβ∈Ec(Y )

Constant(E+
αβ|[F ]) mod 2,

where Constant(· · · ) denotes the rank of the T0-fixed term.

Remark 6.22. We recall that the quantities V±α |[F ] and E±αβ|[F ] were defined in the proof
of Theorem 6.17. Their definition and equations (45), (46) hold under the assumptions
of Conjecture 6.21 and do not need the additional assumption (ii) of Theorem 6.17.

Remark 6.23. Suppose the setting is as in Conjecture 6.21 for some T0-fixed connected
component C. If Ci is a connected component of CC∗ satisfying (ii) of Theorem 6.17, then
it satisfies Conjecture 6.21 by the proof of Theorem 6.17. If C = CC∗ then C is smooth
(namely a product of P1’s) so it satisfies Conjecture 4.12. See Examples 6.3, 6.4, and
6.13. If C 6= CC∗ , we also have evidence supporting Conjecture 4.12, e.g. the T0-fixed
terms of π and π′ of Example 6.5 suggest that C ∼= P1 and CC∗ consists of its two T -fixed
points.

Conjectures 4.12 and 6.21 imply (a slightly weaker version of) Main Conjecture 6.1.

Theorem 6.24. Let Y be a smooth quasi-projective toric Calabi-Yau 3-fold with toric
compactification X satisfying H0(K−1

X ) 6= 0. Fix a polarization H on X and Chern
classes c1, c2. Let R be a T -equivariant rank 2 µ-stable reflexive sheaf on X with toric
data (u,v,p). We assume:
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(i) Conjectures 4.12 and 6.21 hold.
(ii) Ext1(R,R)T0 = Ext2(R,R)T0 = 0.
(iii) All the connected components C ⊂

⊔
c3
MH

Y⊂X(2, c1, c2, c3)T0 are compact and have
constant reflexive hulls R.

For each αβ ∈ Ec(Y ), there are two faces ρ1,αβ, ρ2,αβ which share αβ as an edge and two
disjoint faces ρ3,αβ, ρ4,αβ connected by the edge αβ. Then∑
c3

∑
C⊂MH

Y⊂X(2,c1,c2,c3)T

DT(C)
∣∣∣
s1+s2+s3=0

qc3 =

∑
λ̂

ZY,R|Y ,λ̂(q−2)qc3(R)
∏

αβ∈Ec(Y )

(−1)|λαβ |(mαβ(vρ1,αβ+vρ2,αβ+1)+vρ3,αβ+vρ4,αβ )q|λαβ |Cαβ(c1(X)+c1),

where C runs over all connected components and λ̂ = {λαβ ∈ Λ(Rαβ)}αβ∈Ec(Y ) runs over
all double square configurations giving rise to second Chern class c2.

Proof. The LHS can be written as∑
c3

∑
C⊂MH

Y⊂X(2,c1,c2,c3)T0

DT(C)qc3 ,

by Proposition 4.16 and where the sum is over all connected components of the T0-fixed
locus. By Theorem 6.19

DT(C) = (−1)dim(C)+rk(N+)e(C) = (−1)dim(C)+rk(N+)
∑
Ci⊂CC∗

e(Ci),

where the sum is over all connected components of CC∗ . Such a component Ci ∼= Cπ̂ for
some π̂ ∈ Π(R|Y , λ̂) for some λ̂ = {λαβ ∈ Λ(Rαβ)}αβ∈Ec(Y ) giving rise to second Chern
class c2. If we can show

dim(C) + rk(N+|Cπ̂) =
∑

αβ∈Ec(Y )

|λαβ|(mαβ(vρ1,αβ + vρ2,αβ + 1) + vρ3,αβ + vρ4,αβ) mod 2,

then we obtain RHS.
We evaluate dim(C) + rk(N+) on an arbitrary closed point [F ] ∈ Cπ̂. By definition of

N±, V±α , E±αβ

rk(N+|[F ]) =
∑

α∈V (Y )

(V+
α |[F ](1, 1, 1)−Constant(V+

α |[F ]))

+
∑

αβ∈Ec(Y )

(E+
αβ|[F ](1, 1, 1)−Constant(E+

αβ|[F ])).

In the proof of Theorem 6.17, we computed∑
α∈V (Y )

V+
α |[F ](1, 1, 1) +

∑
αβ∈Ec(Y )

E+
αβ|[F ](1, 1, 1)

=
∑

αβ∈Ec(Y )

|λαβ|(mαβ(vρ1,αβ + vρ2,αβ + 1) + vρ3,αβ + vρ4,αβ) mod 2.

The theorem follows from

dim(C) =
∑

α∈V (Y )

Constant(V+
α |[F ]) +

∑
αβ∈Ec(Y )

Constant(E+
αβ|[F ]) mod 2,

which is precisely Conjecture 6.21. �
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Remark 6.25. Let Y be a smooth toric Calabi-Yau 3-fold with toric compactification
X satisfying H0(K−1

X ) 6= 0. Let R be a rank 2 µ-stable reflexive sheaf on X with respect
to some polarization. Assume:

(i) Conjectures 4.12, 6.21 hold.
(ii) Ext1(R,R)T0 = Ext2(R,R)T0 = 0. Let C ⊂ MT0

Y⊂X be a compact connected
component with constant reflexive hulls R and all cokernels 0-dimensional.

Then DT(C) = (−1)dim(C)+rk(N+)e(C). By the calculation in the proof of the previous
theorem, (−1)dim(C)+rk(N+) = 1 (no legs). We deduce that in the absence of legs

DT(C) =
∑
Ci⊂CC∗

DT(C) =
∑
Ci⊂CC∗

e(Ci) = e(C).

This formula holds even though in general DT(Ci) 6= e(Ci) (Example 6.5).
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