P₄ Functionalization

Stabilization and Transfer of the Transient [Mes*P₄]⁻ Butterfly Anion Using BPh₃

Jaap E. Borger, Andreas W. Ehlers, Martin Lutz, J. Chris Slootweg, and Koop Lammertsma*

Abstract: The transient bicyclo[1.1.0]tetraphosphabutane anion, generated from white phosphorus (P₄) and Mes*Li $(Mes^* = 2, 4, 6-tBu_3C_6H_2)$, can be trapped by BPh₃ in THF. This Lewis acid stabilized anion can be used as an $[RP_4]^-$ transfer agent, reacting cleanly with neutral Lewis acids $(B(C_6F_5)_3)$ BH_3 , and $W(CO)_5$) to afford unique singly and doubly coordinated butterfly anions, and with the trityl cation to form a neutral, nonsymmetrical, all-carbon-substituted P_4 derivative. This reaction path enables a simple, stepwise functionalization of white phosphorus.

Lunctionalizing white phosphorus directly is imperative if chlorinated intermediates are to be avoided in producing organophosphorus compounds.^[1] However, the high and unpredictable reactivity of the P4 tetrahedron makes it a challenge to develop such processes.^[2] Lately, encouraging progress has been made by several groups aimed at the controlled, stepwise functionalization of P₄. For example, Scheer and co-workers^[3] generated symmetrically disubstituted bicyclo[1.1.0]tetraphosphabutanes (A) with Cp^{R} organic radicals^[4] (Scheme 1; $Cp^{R} = C_{5}R_{5}$), Wolf et al.^[5,6] used an organometallic nickel(I) radical to obtain a similar P₄ butterfly, Bertrand et al. demonstrated diverse P_4 activations with various carbenes,^[7] Weigand et al. reported stepwise R_2P^+ cation insertions into the P_4 cage $(\mathbf{B})^{[8]}$ with subsequent NHC-induced fragmentation into P_3^+ and P2 species,^[9] and Hill and co-workers used a nucleophilic approach to obtain the $[nBu_2P_4]^{2-}$ diamion (C)^[10] with coordinating Mg2+ complexes to stabilize the otherwise unstable phosphides.^[11] The group of Schulz addressed the role of Lewis acids (LA) in, for example, the interconversion of exo-exo and endo-exo disubstituted P₄ isomers,^[12] which can also serve as chelating ligands for Cu⁺, as reported recently by Scheer.^[13] In an exploratory study, mimicking a frustrated Lewis pair (FLP) approach, we showed that P₄

[*]	J. E. Borger, Dr. A. W. Ehlers, Dr. J. C. Slootweg, Prof. Dr. K. Lammertsma
	Department of Chemistry and Pharmaceutical Sciences
	De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands) E-mail: K.Lammertsma@vu.nl
	Dr. M. Lutz Crystal and Structural Chemistry Bijvoet Center for Biomolecular Research, Utrecht University Padualaan 8, 3584 CH Utrecht (The Netherlands)
	Prof. Dr. K. Lammertsma Department of Chemistry, University of Johannesburg Auckland Park, Johannesburg, 2006 (South Africa)
	Supporting information for this article is available on the WWV

X under http://dx.doi.org/10.1002/anie.201508916.

Scheme 1. Previous approaches toward the stepwise functionalization of P₄.

reacts in toluene with ArLi (Ar = Dmp (2,6-dimesitylphenyl) or Mes* $(2,4,6-tBu_3C_6H_2)$ and $B(C_6F_5)_3$ to give the stabilized $[ArP_4]^-$ anion (**D**) of which the nucleophilic LA-coordinated phosphorus atom can be endo-alkylated with MeI, thereby illustrating that P₄ can be substituted with two different C groups in two controlled steps.^[14] However, there are also limitations. Not only does the strongly stabilizing $B(C_6F_5)_3$ reduce the reactivity of **D** to a degree that an analogy with neutral phosphanes (R_3P) may be more appropriate, also the apolar solvent hampers their synthesis. The further development of this novel chemistry demands that the role of the Lewis acid is addressed. In the present study, we begin by describing the use of the far milder BPh₃ as trapping agent, which provides a convenient source of the stabilized [RP₄]⁻ ion in THF. We show that this weaker adduct enables the smooth transfer of the tetraphosphide anion to other Lewis acids and C electrophiles, which significantly facilitates the selective, stepwise functionalization of the P₄ scaffold.

Addition of Mes*Li to a THF solution of P4 and BPh3 at 0°C gave only bicyclo[1.1.0]tetraphosphabutanide 1 (76% yield of the isolated product after washing with benzene/npentane; Scheme 2), according to the ³¹P{¹H} NMR spectrum that shows only three signals in a 1:1:2 ratio (AMX₂ spin system) at $\delta = -112.5$ (P4), -149.0 (P1), and -306.5 ppm (P2,3).^[15] The synthesis is suited for multigram scale and is, because of the solubility of Mes*Li in THF, complete within 1 hour, as opposed to the 4 weeks needed for **D**. Notably, in contrast to B(C₆F₅)₃, BPh₃ does not form an adduct with ethers, which allows the use of THF as solvent for the synthesis of 1.

Crystals of 1, suitable for X-ray diffraction, were grown by layering a THF solution with n-hexane. The molecular structure of 1 (Figure 1a) reveals the BPh_3 adduct of the Mes*P₄ anion with the Li⁺ cation coordinated by four THF molecules (not shown) and shows an exo, exo configuration. The bridgehead P2–P3 bond (2.1562(12) Å), the slightly longer bonds connecting the flanking P1 and P4 atoms

Mes*Li + BPh₃
$$\xrightarrow{P_4}$$
 Mes* $\stackrel{1}{\xrightarrow{P_4}}$ Mes* $\stackrel{1}{\xrightarrow{P_2}}$ $\stackrel{P_2}{\xrightarrow{P_2}}$ BPh₃ 1 (76%)

Scheme 2. Synthesis of the BPh_3 -stabilized $[Mes*P_4]^-$ butterfly anion.

Figure 1. a) Molecular structure of **1** a in the crystal^[17] (thermal ellipsoids are set at 30% probability; H atoms, the $[\text{Li}(\text{THF})_4]^+$ counterion, and noncoordinated THF are omitted for clarity). Only one conformation of the disordered *tert*-butyl group is shown. Selected bond lengths [Å] and torsion angle [°]: P1–P2/P3 2.2234(12)/2.2245(12), P4–P2/P3 2.2117(12)/2.2048(12), P2–P3 2.1562(12), C1–P1 1.881(3), P4–B1 2.064(3); P1-P2-P3-P4 95.87(5). b) HOMO of the optimized geometry of anion **1**.

(P1–P2/P3 2.2234(12)/2.2245(12) Å, P4–P2/P3 2.2117(12)/ 2.2048(12) Å), and the P1-P2-P3-P4 torsion angle (95.87(5)°) are similar to those found for $\mathbf{D}^{[14]}$ and related neutral P₄ compounds.^[3,4-6,12] Importantly, the 37.7 kcalmol⁻¹ strong P–B bond of $\mathbf{1}^-$, computed at the ω B97X-D/6-311 + G(d,p)// 6-31 + G(d,p) level of theory,^[16] is 24.4 kcalmol⁻¹ weaker than that computed for \mathbf{D}^- ($\Delta E = 62.1$ kcalmol⁻¹), whereas the bond lengths are similar (P–BPh₃ 2.0785 Å, observed 2.064(3) Å; P–B(C₆F₅)₃ 2.0877 Å, observed^[14] 2.064(2) Å). The highest occupied molecular orbital (HOMO) of $\mathbf{1}$ shows the expected strong nucleophilic character with a large coefficient on the readily accessible wingtip P4 atom (Figure 1b).

Functionalizing the P₄ core of BPh₃-stabilized $[RP_4]^$ effectively calls for convenient replacement of its LA. To obtain the necessary insight, we first examined borane exchange and reacted 1.1 equiv of B(C₆F₅)₃ with a suspension of **1** in toluene at room temperature to selectively obtain the known *exo,exo-***2** (**D**; Ar = Mes*)^[14] which was isolated in 82% yield (Scheme 3; $\delta = -132.2$ (P1), -159.9 (P4), and -310.4 ppm (P2,P3)). Transferring [Mes*P₄]⁻ from *exo,exo*-

Scheme 3. The exchange of BPh₃ in **1** with $B(C_6F_5)_3$ to give **2**. a) $B(C_6F_5)_3$ (1.1 equiv), toluene, RT.

1 to obtain *exo*,*exo*-**2** and not the *exo*,*endo* isomer may suggest a dissociative process by first breaking the P–B bond ($\Delta E =$ 37.7 kcal mol⁻¹), but an associative path is more likely in light of the mild and apolar reaction conditions (toluene, RT). This pathway would entail the intermediate formation of the mixed bisborane [Mes*P₄·(*endo*-B(C₆F₅)₃)(*exo*-BPh₃)]⁻ and subsequently formation of *exo*,*endo*-**2** by dissociation of BPh₃.^[18] Compound *exo*,*endo*-**2** should then convert into the *exo*,*exo* isomer, for example, via a bis(B(C₆F₅)₃) adduct, as has been reported for the related phosphide [Li(12-crown-4)]-[H₂P·(B(C₆F₅)₃)₂].^[19] DFT calculations at the ω B97X-D/6– 311 + G(d,p)/PCM(toluene)//6-31G(d) level of theory support this course of events (Scheme 4), revealing the 13.4 kcal

Scheme 4. Relative computed ω B97X-D/6-311 + G(d,p)/PCM-(toluene)//6-31G(d) energies (in kcal mol⁻¹) for the conversion of *exo*,*exo*-1 into *exo*,*exo*-2.

mol⁻¹ favored formation of *exo,endo*-**2**. The formation of the *exo,exo* isomer from *exo,endo*-**2**, via the congested symmetrical bisborane adduct $[Mes^*P_4 \cdot (B(C_6F_5)_3)_2]^- (\Delta E = 1.3 \text{ kcal mol}^{-1})$, is favored by a further 2.0 kcal mol⁻¹.

The $B(C_6F_5)_3$ -induced exchange between *exo,endo-2* and exo,exo-2 is supported by analysis of the ³¹P and ¹¹B NMR spectra.^[20] A stoichiometric mixture of B(C₆F₅)₃ and exo,exo-2 in [D₈]toluene showed at room temperature broadened ³¹P{¹H} resonance signals and a single ¹¹B{¹H} signal at $\delta =$ -14.5 ppm, but the bridgehead P2 and P3 atoms gave two nonequivalent, baseline-separated signals at -60 °C ($\delta =$ -316.7 and -323.8 ppm, ratio 1.5:1; coalescence at -10°C; estimated $\Delta G^{+}_{263\mathrm{K}} = 11.2 \text{ kcal mol}^{-1})^{[21]}$ at which temperature also the resonance signals for the wingtip atoms ($\delta =$ -124.1 (P1) and -152.9 ppm (P4)) and the borane broadened. A control experiment showed that rapid cooling of a $[D_8]$ toluene solution of only exo, exo-2 to -60° C (no $B(C_6F_5)_3$ present) did not show broadening or splitting of the ${}^{31}P{}^{1}H$ and ${}^{11}B{}^{1}H$ NMR resonance signals. We interpret these results as supportive of an associative mechanism^[22] for the rapidly exchanging isomers of $2^{.[23]}$ In contrast, at ambient temperature *exo*,*exo*-1 does not undergo exchange with BPh₃ as it shows a sharp AMX₂ spin system in the ³¹P{¹H} NMR spectrum and an additional ¹¹B signal for the free borane at $\delta = 49.4$ ppm. DFT calculations concur with the apparent lack of dynamics, as the bis(BPh₃) intermediate (compare with Scheme 4) is a significant 15.3 kcalmol⁻¹ less stable than *exo*,*exo*-1, which inhibits rapid exchange at room temperature.

We next set out to investigate whether or not a bisborane– $[RP_4]^-$ is experimentally accessible. We felt that two boranes should be able to effectively stabilize both lone pairs of the wingtip phosphorus, but that the size of their substituents (Ph, C_6F_5) might be sterically too demanding to allow isolation of the bisborane adduct. The smallest of the boranes, BH₃, was targeted successfully for stabilizing $[Mes^*P_4]^-$. Adding an excess of Me₂S·BH₃ to a suspension of **1** in *n*-pentane enabled isolation of the desired bisborane **3a**, which was isolated in 68% yield (Scheme 5a). Its ¹¹B NMR spectrum showed two

Scheme 5. Transfer reactions of the BPh₃-stabilized Mes*P₄ butterflytype anion 1. a) Me₂S·BH₃ (2.5 equiv), *n*-pentane, RT; b) **3 a**, Ph₄PBr (1.1 equiv), THF, RT; c) [(MeCN)W(CO)₅] (2.1 equiv), THF, RT; d) **4 a**, Ph₄PBr (1.1 equiv), THF, RT.

broad quartets at $\delta = -30.9$ and -37.9 ppm and the expected AMX₂ spin system in the ³¹P{¹H} NMR spectrum with resonance signals at $\delta = -60$ (P4), -109.0 (P1), and -275.3 ppm (P2,P3). The resonance signal for the P4 nucleus is significantly deshielded compared to that of exo.exo-1 and compares well to that of the structurally related neutral $DmpP_4Me \cdot B(C_6F_5)_3$ $(-57.5 \text{ ppm})^{[14]}$ and $Ga_2P_4tBu_6$ (-50.7 ppm).^[24] Salt metathesis enabled exchange of the Li⁺ cation for Ph_4P^+ to give **3b** which was isolated in 25% yield (Scheme 5b). Crystals of 3b suitable for X-ray diffraction were grown and the obtained molecular structure confirmed its identity as a bis(BH₃)-stabilized [Mes*P₄]⁻ anion (Figure 2). The P1-P2-P3-P4 torsion angle of 105.41(3)° is nearly 10° larger than for 1, which suggests repulsion between the endo-BH₃ group (B2) and the lone pair on P1. This widening of the butterfly is also observed in the related trisubstituted DmpP₄Me·B(C_6F_5)₃ (102.98(2)°)^[14] and cationic $[Mes*_2P_4Cl]^+$ (-101.68(3)°) on which the group of Schulz reported recently,^[25] but is less pronounced than in the tetrasubstituted $[{CpRu(PPh_3)_2}_2(\mu^{1:3},\eta^{1:1}-P_4H_2)]^{2+}$ cation (134.2°) isolated by Stoppioni et al.^[26] The P4-P2 and P4-P3 bonds (2.1884(6), 2.1868(6) Å) are slightly contracted compared to the P1-P2 and P1-P3 bonds (2.2249(6), 2.2287(6) Å), likely as a result of the Lewis acidity of the BH₃ groups. The calculated P–B bond strengths of anionic 3

Figure 2. Molecular structure of **3 b** in the crystal^[17] (thermal ellipsoids are set at 50% probability; H atoms, the $[PPh_4]^+$ counterion, and a cocrystallized THF molecule are omitted for clarity). Selected bond lengths [Å], angle, and torsion angle [°]: P1–P2/P3 2.2249(6)/2.2287(6), P4–P2/P3 2.1884(6)/2.1868(6), P2–P3 2.1985(6), C1–P1 1.8787(16), P4–B1 1.961(2), P4–B2 1.957(2); B1-P4-B2 122.84(10); P1-P2-P3-P4 105.41(3).

differ slightly from each other (P4–B1 39.8, P4–B2 36.4 kcal mol⁻¹) with the *exo*-BH₃ group having the strongest bond. We note **3** to be the first isolable P₄ butterfly with two small coordinating groups on a flanking phosphorus atom that maintains its anionic character, thereby favorably contrasting bicyclic tetraphosphanes with large, sterically encumbered groups that hamper controlled functionalization.^[3-6,12,14,25]

Next, we targeted the transfer of $[Mes^*P_4]^-$ to the metalbased Lewis acid W(CO)₅, which is isolobal with BH₃, expecting a similar trisubstituted anion as **3**. Stirring **1** and $[(MeCN)W(CO)_5]$ in THF in a 1:2.1 ratio showed indeed the selective formation of the anticipated new ditungstate **4a**, which was isolated in 81% yield as a thick brown oil (Scheme 5c).^[27] The ³¹P NMR spectrum of compound **4a** shows characteristic resonance signals at $\delta = -56.4$ (P1), -171.3 (P4), and -259.0 ppm (P2,P3; AMX₂ spin system). Salt metathesis using Ph₄PBr afforded phosphonium salt **4b** (65% yield; Scheme 5d) of which crystals suitable for X-ray structure determination were obtained.

The molecular structure of **4b** (Figure 3) confirms the presence of two W(CO)₅ groups coordinating to P4 at similar distances (P4-W1 2.5811(4), P4-W2 2.5912(4) Å) with a W1-P4-W2 angle of 125.069(16)°. These structural parameters are akin to those reported for the related diphosphide [Ph₄P]-[((CO)₅W)₂PH₂].^[28] In the IR spectrum, the CO stretching modes (**4b**: 2060, 2048, 1921 and 1861 cm^{-1} ; $[((CO)_5W)_2PH_2]^-: 2048, 1930, 1872 \text{ cm}^{-1})$ also suggest that the donor strength of the anionic $[RP_4]^-$ core is similar to that of PH_2^- . The P_4 fold angle of **4b** (101.83(2)°) is, like that for **3b** $(105.41(3)^{\circ})$, larger than for bifunctionalized P₄ species.^[3-6,14] However, the P1-P2/P3 (2.2170(6)/2.2296(6) Å) and P4-P2/P3 (2.2113(6)/2.2175(6) Å) bond lengths are similar to those of bifunctionalized P₄ species and no ring contraction like in **3b** is found.

The *exo* P–W(CO)₅ bond of **4** is slightly stronger (1.5 kcalmol⁻¹) than its *endo* bond, just like for the borane groups of **3**, but both are about 25 kcalmol⁻¹ stronger (ΔE : P4–W1 63.7; ΔE : P4–W2 62.2 kcalmol⁻¹) than the P–B bonds, suggesting a more prominent charge transfer from the [RP₄]⁻ core to the metal complexes. This effect is also

Figure 3. Molecular structure of **4b** in the crystal^[17] (thermal ellipsoids are set at 50% probability; H atoms and the [PPh₄]⁺ counterion are omitted for clarity). Selected bond lengths [Å], angle, and torsion angle [°]: P1–P2/P3 2.2170(6)/2.2296(6), P4–P2/P3 2.2113(6)/2.2175(6), P2–P3 2.1780(6), C1–P1 1.8707(16), P4–W1 2.5811(4), P4–W2 2.5912(4); W1-P4-W2 125.069(16); P1-P2-P3-P4 101.83(2).

reflected in the different energies of the MOs of the lone pair on P1, that is, -0.18 eV (HOMO) for **3**, -0.21 eV (HOMO-6) for **4**. Equally indicative is the ³¹P NMR resonance signal for the P1 center of **4a** at $\delta = -56.4$ ppm, which is significantly deshielded ($\Delta \delta = 52.6$ ppm) from that of **3a** as a result of the difference in overlap of the HOMO of [Mes*P₄]⁻ with the LUMO of the two Lewis acids; W(CO)₅ gives a better overlap than BH₃, resulting in a smaller energy gap of 0.01 versus 0.08 eV, respectively.

Extending the $[RP_4]^-$ transfer strategy, we aimed for P–C bond formation using the carbon-based Lewis acid $Ph_3C^+PF_6^-$. Stirring 1 with 1.1 equiv of the tritylium salt in dimethoxyethane (DME) resulted indeed directly in full conversion to the desired borane-free 5, which on separation from BPh₃ by addition of pyridine to form the insoluble Py·BPh₃ adduct could be isolated in 33% yield (Scheme 6). In the ³¹P NMR spectrum of 5, resonance signals at $\delta =$ -105.5 (P4), -127.5 (P1), and -308.8 ppm (P2,P3) confirm that the bicyclic P₄ framework remained intact. The molecular structure of 5 (Scheme 6; bottom), obtained by an X-ray crystal structure determination, shows an exo, exo-disubstituted P₄ butterfly with comparable peripheral P-P bonds and a fold angle of 93.93(2)°, similar to those of other bifunctionalized species.^[3-6,12,14] Interestingly, in contrast to the previously reported *endo* methylation of $[DmpP_4 \cdot B(C_6F_5)_3]^-$ with MeI,^[14] addition of the tritylium salt only yields the exo,exo product devoid of the Lewis acid. Presumably, BPh₃ departs on *endo* P–C bond formation between the $[RP_4]^-$ ion and the Ph_3C^+ ion with concurrent isomerization. The resulting exo, exo-bicyclo [1.1.0] tetraphosphane 5 is the first stable, nonsymmetrical all-hydrocarbon-substituted butterfly derivative generated directly from P₄ in two simple steps.

In summary, transient $[Mes^*P_4]^-$ can be conveniently trapped with the mild Lewis acid BPh₃. The $[Mes^*P_4]^-$ core of the stabilized anion can be transferred to both the bulky B(C₆F₅)₃ and small BH₃ Lewis acid as well as to W(CO)₅ to afford unique singly and doubly coordinated $[RP_4]^-$ tetraphosphides. Transfer to the tritylium cation leads to formation of a new P–C bond, thereby further functionalizing the

Scheme 6. Top: Reaction of 1 with $Ph_3C^+ PF_6^-$; a) $Ph_3C^+ PF_6^-$ (1.1 equiv), pyridine (5 equiv), DME, RT. Bottom: Molecular structure of **5** in the crystal^[17] (thermal ellipsoids are set at 50% probability; H atoms are omitted for clarity). Selected bond lengths [Å], angle, and torsion angle [°]: P1–P2/P3 2.2257(6)/2.2294(6), P4–P2/P3 2.2001(6)/ 2.2243(6), P2–P3 2.1737(6), C1–P1 1.8700(16), P4–C19 1.9446(15); P1-P2-P3-P4 93.93(2).

 P_4 core. This novel transfer approach enables facile additional functionalization of bicyclo[1.1.0]tetraphosphabutane anions. We are now exploring the reactivity pattern of these intriguing new P_4 -derived species and their utility in subsequent controlled transformations.

Acknowledgements

This work was supported by the Council for Chemical Sciences of the Netherlands Organization for Scientific Research (NWO/CW).

Keywords: anions · boranes · Lewis acids · organophosphorus compounds · phosphorus

How to cite: Angew. Chem. Int. Ed. 2016, 55, 613–617 Angew. Chem. 2016, 128, 623–627

- [1] D. E. C. Corbridge, *Phosphorus 2000*, Elsevier, Amsterdam, **2000**.
- [2] For reviews, see: a) M. Scheer, G. Balázs, A. Seitz, *Chem. Rev.* 2010, 110, 4236–4256; b) N. A. Giffin, J. D. Masuda, *Coord. Chem. Rev.* 2011, 255, 1342–1359; c) B. M. Cossairt, N. A. Piro, C. C. Cummins, *Chem. Rev.* 2010, 110, 4164–4177; d) M. Caporali, L. Gonsalvi, A. Rossin, M. Peruzzini, *Chem. Rev.* 2010, 110, 4178–4235; e) M. Peruzzini, L. Gonsalvi, A. Romerosa, *Chem. Soc. Rev.* 2005, 34, 1038–1047.
- [3] S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 7639–7642; Angew. Chem. 2014, 126, 7769–7773.
- [4] The use of bulky main-group radicals has been explored in a number of cases, giving similar butterfly-type products. See: a) J.-P. Bezombes, P. B. Hitchcock, M. F. Lappert, J. E. Nycz, *Dalton Trans.* 2004, 499–501; b) B. M. Cossairt, C. C. Cummins, *New J. Chem.* 2010, 34, 1533–1536; c) N. A. Giffin, A. D. Hendsbee, T. L. Roemmele, M. D. Lumsden, C. C. Pye, J. D. Masuda, *Inorg. Chem.* 2012, 51, 11837–11850; d) S. Khan, R. Michel, J. M. Dieterich, R. A. Mata, H. W. Roesky, J.-P. Demers, A. Lange, D. Stalke, J. Am. Chem. Soc. 2011, 133, 17889–17894.

- [5] S. Pelties, D. Herrmann, B. de Bruin, F. Hartl, R. Wolf, *Chem. Commun.* 2014, 50, 7014–7016.
- [6] For selected other examples of transition-metal-based radicaltype activation of P₄ giving butterfly species, see: a) O. J. Scherer, T. Hilt, G. Wolmershäuser, Organometallics 1998, 17, 4110-4112; b) S. Heinl, M. Scheer, Chem. Sci. 2014, 5, 3221-3225; c) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2014, 53, 9077-9081; Angew. Chem. 2014, 126, 9223-9227.
- [7] a) J. D. Masuda, W. W. Schoeller, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2007, 46, 7052-7055; Angew. Chem.
 2007, 119, 7182-7185; b) O. Back, G. Kuchenbeiser, B. Donnadieu, G. Bertrand, Angew. Chem. Int. Ed. 2009, 48, 5530-5533; Angew. Chem. 2009, 121, 5638-5641.
- [8] a) M. H. Holthausen, J. J. Weigand, *Chem. Soc. Rev.* 2014, 43, 6639-6657; b) J. J. Weigand, M. Holthausen, R. Fröhlich, *Angew. Chem. Int. Ed.* 2009, 48, 295-298; *Angew. Chem.* 2009, 121, 301-304; c) M. H. Holthausen, J. J. Weigand, *J. Am. Chem. Soc.* 2009, 131, 14210-14211.
- M. H. Holthausen, S. K. Surmiak, P. Jerabek, G. Frenking, J. J. Weigand, Angew. Chem. Int. Ed. 2013, 52, 11078-11082; Angew. Chem. 2013, 125, 11284-11288.
- [10] M. Arrowsmith, M. S. Hill, A. L. Johnson, G. Kociok-Köhn, M. F. Mahon, Angew. Chem. Int. Ed. 2015, 54, 7882–7885; Angew. Chem. 2015, 127, 7993–7996.
- [11] Reacting organo-alkali reagents with P₄ gives complex product mixtures: a) M. M. Rauhut, A. M. Semsel, J. Org. Chem. 1963, 28, 471-472; b) M. M. Rauhut, A. M. Semsel, J. Org. Chem. 1963, 28, 473-477.
- [12] J. Bresien, K. Faust, C. Hering-Junghaus, J. Rothe, A. Schulz, A. Villinger, *Dalton Trans.* 2015, DOI: 10.1039/C5DT02757H.
- [13] C. Schwarzmaier, S. Heinl, G. Balázs, M. Scheer, Angew. Chem. Int. Ed. 2015, 54, 13116–13121; Angew. Chem. 2015, 127, 13309– 13314.
- [14] J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg, K. Lammertsma, Angew. Chem. Int. Ed. 2014, 53, 12836–12839; Angew. Chem. 2014, 126, 13050–13053.
- [15] Based on the ¹H NMR spectrum recorded immediately after mixing Mes*Li and BPh₃ in [D₈]THF at RT, these reagents do not show any direct quenching. However, upon standing overnight a reaction does occur showing full conversion to unidentified products.
- [16] J.-D. Chai, M. Head-Gordon, *Phys. Chem. Chem. Phys.* 2008, 10, 6615–6620. DFT calculations were performed at ωB97X-D using Gaussian09 (Revision D.01); see the Supporting Information for further details.

- [17] CCDC 1425046 (1a), 1425047 (3b), 1425048 (4b), and 1425049
 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- [18] The mixed borane complex $[Mes^*P_4 \cdot (endo-B(C_6F_5)_3)(exo-BPh_3)]^-$ could not be detected by ³¹P NMR spectroscopy.
- [19] A.-M. Fuller, A. J. Mountford, M. L. Scott, S. J. Coles, P. N. Horton, D. L. Hughes, M. B. Hursthouse, S. J. Lancaster, *Inorg. Chem.* 2009, *48*, 11474–11482.
- [20] While the *exo,exo* isomer is the most documented form of bicyclo[1.1.0]tetraphosphabutanes (see Refs. [3–6,14,25]), examples of the *exo,endo* product, or evidence thereof, have been reported: a) E. Niecke, R. Rüger, B. Krebs, *Angew. Chem. Int. Ed. Engl.* 1982, 21, 544–545; *Angew. Chem.* 1982, 94, 553–554; b) A. R. Fox, R. J. Wright, E. Rivard, P. P. Power, *Angew. Chem. Int. Ed.* 2005, 44, 7729–7733; *Angew. Chem.* 2005, 117, 7907–7911; c) Ref. [9]; d) Ref. [12].
- [21] See the Supporting Information for further details.
- [22] The *endo* isomer could not be detected by ${}^{31}P{}^{1}H$ NMR spectroscopy when **1** was reacted with a "deficit" (0.8 equiv) of $B(C_6F_5)_3$ in [D₈]toluene.
- [23] The chemical shift differences for the two products detected at -60 °C are in the same range as detected for the *rac* and *meso* isomers of the symmetrically substituted $1,4-P_4[P(N-(SiMe_3)_2(NiPr_2)]_2$, reported by Lappert et al.^[4a], which show three resonance signals for the bridgehead P atoms ($\delta = -325.8$ (*rac*), -332.9 (*meso*), and -338.0 ppm (*rac*)) and also only one for the wingtip P atoms (-139.5 ppm).
- [24] M. B. Power, A. R. Barron, Angew. Chem. Int. Ed. Engl. 1991, 30, 1353–1354; Angew. Chem. 1991, 103, 1403–1404.
- [25] J. Bresien, K. Faust, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2015, 54, 6926–6930; Angew. Chem. 2015, 127, 7030–7034.
- [26] P. Barbaro, C. Bazzicalupi, M. Peruzzini, S. Seniori Constantini, P. Stoppioni, Angew. Chem. Int. Ed. 2012, 51, 8628–8631; Angew. Chem. 2012, 124, 8756–8759.
- [27] No monosubstituted product could be detected when only one equivalent of the tungsten precursor was used.
- [28] U. Vogel, K.-C. Schwan, M. Scheer, Eur. J. Inorg. Chem. 2004, 2062–2065.

Received: September 23, 2015 Revised: October 27, 2015 Published online: November 27, 2015