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A B S T R A C T

Precise localization of electrodes is essential in the field of high-density (HD) electrocorticography (ECoG) brain
signal analysis in order to accurately interpret the recorded activity in relation to functional anatomy. Current
localization methods for subchronically implanted HD electrode grids involve post-operative imaging. However,
for situations where post-operative imaging is not available, such as during acute measurements in awake surgery,
electrode localization is complicated. Intra-operative photographs may be informative, but not for electrode grids
positioned partially or fully under the skull. Here we present an automatic and unsupervised method to localize
HD electrode grids that does not require post-operative imaging. The localization method, named GridLoc, is
based on the hypothesis that the anatomical and vascular brain structures under the ECoG electrodes have an
effect on the amplitude of the recorded ECoG signal. More specifically, we hypothesize that the spatial match
between resting-state high-frequency band power (45–120Hz) patterns over the grid and the anatomical features
of the brain under the electrodes, such as the presence of sulci and larger blood vessels, can be used for adequate
HD grid localization. We validate this hypothesis and compare the GridLoc results with electrode locations
determined with post-operative imaging and/or photographs in 8 patients implanted with HD-ECoG grids. Lo-
cations agreed with an average difference of 1.94� 0.11mm, which is comparable to differences reported earlier
between post-operative imaging and photograph methods. The results suggest that resting-state high-frequency
band activity can be used for accurate localization of HD grid electrodes on a pre-operative MRI scan and that
GridLoc provides a convenient alternative to methods that rely on post-operative imaging or intra-operative
photographs.
Introduction

Subchronic and acute electrocorticography (ECoG) are increasingly
used in the clinical and scientific communities in order to investigate and
map brain-functions and understand brain-disorders (Jacobs and
Kahana, 2010). ECoG is a technique that acquires brain signals via
electrode grids or strips that are placed directly on the cortical surface
(Freeman et al., 2000; Crone et al., 1998; Lesser et al., 2010), without
penetrating the cortical tissue. Typical clinical grids used to localize
seizure foci in patients with intractable epilepsy have an inter-electrode
spacing of 1 cm (Salles et al., 1994; Diehl and Lüders, 2000; Lesser et al.,
2010). These grids have also been used in other applications, ranging
from neurostimulation of the cortex of epilepsy patients to reduce seizure
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occurrence (Heck et al., 2014), to providing stroke patients with neuro-
feedback for rehabilitation (Gomez-Rodriguez et al., 2011) and
Brain-Computer Interfaces (Leuthardt et al., 2004; Vansteensel et al.,
2016). In recent years, however, electrode grids with higher spatial
resolution have been increasingly used to facilitate the diagnosis of
neural pathophysiology (Van Gompel et al., 2008) and for brain research
(Slutzky et al., 2010; Flinker et al., 2011; Siero et al., 2013; Bouchard and
Chang, 2014; Branco et al., 2017a). Indeed, ECoG grids with increased
spatial density, hereafter referred to as high-density (HD) grids, are
particularly useful for investigating fine-scale cortical dynamics (Kellis
et al., 2016; Wang et al., 2016), given the fact that electrodes spaced as
close as a few millimeters still provide discriminable information
(Slutzky et al., 2010; Siero et al., 2013).
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Table 1
Patient and HD-ECoG grid information.

Subject
No.

Age at
implantation

Gender Implanted
hemisphere

Type of
recording

No.
Included
electrodes

Interelectrode
distance (mm)

Exposed
diameter
(mm)

Grid
dimensions
(#
electrodes)

HD grid
Manufacturer

Imaging
scans

CT scan
resolution
(mm)

S1 18 Male Left Chronic 60 3 1.3 8� 8 AdTech1 CT,
T1,MRA

0.43� 0.43
�0.5

S2 19 Male Left Chronic 32 3 1.3 8� 4 AdTech1 CT,
T1,MRA

0.5� 0.5 �0.7

S3 19 Female Left Chronic 32 3 1.3 8� 4 AdTech1 CT, T1 0.6� 0.6 �0.6
S4 28 Male Right Acute 62 3 1.3 8� 8 AdTech1 MRI –

S5 19 Male Left Chronic 59 4 1 8� 8 PMT
Corporation2

CT, T1 0.5� 0.5 x 1

S6 22 Male Left Chronic 63 4 1 8� 8 PMT
Corporation2

CT 0.5� 0.5� 0.7

S7 53 Female Left Acute 63 3 1 16� 8 PMT
Corporation2

T1

S8 39 Male Left Acute 124 3 1 16� 8 PMT
Corporation2

T1

CT- Computed tomography; T1 – T1 weighted structural scan; MRA – Magnetic Resonance Angiogram; T1þgd – T1-weighted structural scan with gadolinium contrast;
1Racine, WI, USA; 2Chanassen, MN, USA.
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In both clinical and research applications of HD-ECoG, the precise
localization of each contact point is crucial to accurately pinpoint the
source of activity. To date, the available HD-ECoG localization methods
make use of post-operative Computed Tomography (CT) scans (Branco
et al., 2017b; Hamilton et al., 2017). In the absence of post-operative
imaging, however, such as during intra-operative (awake) recordings,
or when post-operative imaging provides insufficient or no information
about the implanted electrodes, there is currently, to our knowledge, no
technique available that allows for accurate localization of HD-ECoG
grids. For intra-operative cases (e.g., Jiang et al., 2015), HD grids could
potentially be localized using intra-operative localization methods
currently used to localize standard clinical grids and which make use of a
neuronavigator (Gupta et al., 2014), intra-operative photography, or
intra-operative fluoroscopy (Randazzo et al., 2016). However, these
methods have not been validated for HD grids and are not suitable for
electrodes hidden from view (under the skull).

Here we present a novel method for HD grid localization on the basis
of ECoG resting-state signals combined with pre-operative MRI infor-
mation of the brain structure and vasculature. This method is based on
two hypotheses. First, based on a previous study that showed that larger
blood vessels attenuate the high-frequency band (HFB) power recorded
from clinical ECoG electrodes (Bleichner et al., 2011), we postulate that
this effect would also be present in HFB ECoG recordings of HD grids.
Second, since the distance between the electrode and the cortical surface
is likely to influence the acquired signal amplitude, we further postulate
that HFB power is also attenuated in electrodes over a sulcus.

We tested the above hypotheses by comparing the HFB pattern, as
estimated based on the postulated attenuation effects at the grid locali-
zation computed using post-operative CT images (Hermes et al., 2010),
with the actual measured HFB pattern. For this, data was used from 5
subjects for whom a CT-scan was available. Since the standard localiza-
tion methods can only estimate but not determine true electrode loca-
tions relative to the cortex (due to brain shift and assumptions about
projecting electrodes to the cortical surface in the pre-operative MRI), we
then evaluated whether we could determine grid location solely based on
the attenuation effects. For this we developed and tested a method,
named GridLoc (Grid Localization), for finding the best fit between
estimated and measured HFB patterns by allowing the grid to shift and
rotate. This method was evaluated in 8 patients scheduled for or un-
dergoing epilepsy surgery. Since there is no ground truth reference to
compare results with, we report the gain in agreement betweenmeasured
and estimated HFB values as compared to CT-based localization, and
display the optimal position relative to the position obtained with the
accepted gold-standard methods, such as a post-operative imaging or
intra-operative photos (Hermes et al., 2010; Branco et al., 2017b).
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Materials and methods

Subjects

Data from 8 patients who underwent surgery for removal of their
focus of epilepsy were used. Six subjects (S1-S6) were implanted with
ECoG grids 5–7 days before resection (chronic grids) and two only un-
derwent ECoG during surgery (acute grids). All patients were implanted
with high-density (HD) ECoG grids (Table 1) and gave consent to
participate in the study. For 5 subjects (S1-3 and S5-6), the electrode
positions, as predicted with the new GridLoc method (detailed below),
were compared with locations obtained with a standard localization
method (Hermes et al., 2010; Branco et al., 2017b), where the clinical
post-operative CT scan (Philips Tomoscan SR7000, Table 1) was
co-registered with their structural MRI scan. For the other three subjects
(S4, chronic grid; and S7 and S8, acute grids) the GridLoc electrode po-
sitions were compared with (visible) locations determined with
intra-operative photographs (Hermes et al., 2010). The study was
approved by the ethical committee of the University Medical Center
Utrecht, in accordance with the Declaration of Helsinki (2013).
ECoG data acquisition and analysis

Resting-state HD-ECoG data was recorded for 3min from 7 subjects
(S1-S6 and S8), and for 1.5min from S7. Two systems were used for
recording, being a 128-channel Micromed recording system (Treviso,
Italy; hardware band-pass filter 0.15–134.4 Hz; sampled at 512Hz), and
a BlackRock system (Salt Lake City, USA; sampled at 2000 Hz). After
confirming that data did not contain epileptic events nor burst suppres-
sion (as determined by a qualified clinician), the data were analyzed
offline using the Fieldtrip Toolbox (Oostenveld et al., 2011) in a MATLAB®

environment. All signals were first band-pass filtered (0.5–134Hz) and
notch filtered at 50 and 100Hz to remove line noise. Subsequently, the
signals were re-referenced using the common average reference (CAR) of
all included HD-ECoG channels. Some channels were excluded because of
broken leads, flat or abnormally noisy signals (Table 1). Frequency
analysis was performed using the Morlet wavelet dictionary, with
multiplication in the frequency domain (length equal to 3 standard de-
viations of the implicit Gaussian kernel and width 7 cycles).
High-frequency band (HFB) power was extracted for the frequency range
of 45–120 Hz in steps of 1 Hz (or 2 Hz in case of 2000Hz sampling fre-
quency), and averaged across all bins. The HFB power signals were
extracted per channel and averaged over time. The measured distribution
of HFB power over the grid was taken as the measured HFB pattern.



Fig. 1. Computation of the estimated HFB pattern.
Example of the computation of the estimated HFB
pattern computed for subject S1 at the specific grid
location indicated by the black square. For each
electrode on the 8� 8 grid (matrix) the estimated HFB
values were computed by summing the anatomy and
angiogram components with equal weights (0.5).
Each component is represented as values between
dark blue (i.e., lower signal amplitude, high attenua-
tion) and yellow (i.e., higher signal amplitude, low
attenuation). The anatomy component was computed
by measuring the distance between the electrodes and
the cortical surface. The angiogram component (black
vessels on the brain cortical surface) was based on the
number of vertices identified as a vessel within 3mm
from the electrode.
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Anatomical and vascular acquisition analysis

For each subject, a 3T structural MRI scan (T1-weighted) was ac-
quired (Philips Achieva, Best, The Netherlands). For two subjects (S1 and
S2), Magnetic Resonance Angiogram (MRA) scans were also acquired at
3T to localize the blood vessels using a 3D gradient echo sequence (phase
contrast angiography, Philips Achieva, Best, The Netherlands). The res-
olution of both types of scans was 1mm isotropic (whole brain). For two
other subjects (S7 and S8) a structural MRI was performed with gado-
linium contrast, which provided vascular contrast (albeit less detailed
than an MRA). For S7 this scan was of poor quality, but it provided
suitable information for the central part of the HD grid (64 of the 128
electrodes, see Table 1). For each subject, the cortical surface model was
obtained by segmentation of the structural MRI, using FreeSurfer
(https://surfer.nmr.mgh.harvard.edu/). This generates a triangular mesh
lining the surface (including sulci), in which every vertex represents a
point in an [X,Y,Z]-coordinate space with a specific value (weight).

To test our hypotheses, we defined a model that estimates the HFB
attenuation pattern (i.e., the estimated HFB pattern) based on vascular and
227
cortical features, hereafter defined as the angiogram component and the
anatomy component:

Estimated HFB Pattern ¼ α �Angiogramþ β �Anatomy (1)

with α and β being the model component weights. For the model, an
equal contribution from each component was assumed (α ¼ β ¼ 0:5).

A degree of attenuation was assigned to each electrode in the grid
(Fig. 1), based on these two components. The angiogram component
contributes to the model with the attenuation that arises from the pres-
ence of blood vessels under the electrode, as identified by an MRA or
structural MRI scan with gadolinium contrast. These scans were first co-
registered to the individual T1-weighted scans in SPM12 (http://www.
fil.ion.ucl.ac.uk/spm/). The angiogram intensity values were thresh-
olded manually, such that the vessels were optimally displayed on the
cortical surface mesh. Subsequently, the angiogram values were
normalized (between 0 and 1) and displayed on the cortical surface
model (using standard methods). Lastly, the normalized values were
inverted such that 0 represented a vessel (smallest signal amplitude,
Fig. 2. Search-space. (A) A region-of-interest (ROI,
yellow squared-grid) is defined as the complete set of
N x N array of center-points (small yellow square), in
which a grid template will be centered and which are
spaced 1mm apart. The search-space is the combined
area of all possible grid template location (i.e., com-
binations of translations (B) and rotations (C)). (B)
Each grid is translated through all points in the ROI
and (C) rotated around its center from �45� to 45�.
For each point in the array of center-points and rota-
tion angle the grid template (see light and dark blue
circles for two examples of grid positions) is projected
from the tangent plane to the cortical surface (D).

https://surfer.nmr.mgh.harvard.edu/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


Fig. 3. Comparing measured and estimated HFB patterns at the CT-based grid location. (A) For two subjects, S1 and S2, both angiogram and anatomy components
were available. The HFB pattern was compared with the estimated HFB pattern, the angiogram and the anatomy components by means of Pearson correlations
(correlation values are indicated below). The estimated HFB pattern is the result of the equally-weighted sum of the angiogram and anatomy components. (B) For three
subjects, S3, S5 and S6, the angiogram component was not available. (A–B) The grid location computed using post-surgical CT scans is shown on the left column (black
dots). Electrodes excluded from analysis are marked with a red circle on the measured HFB patterns. The color-map represents low (dark blue) and high (yellow)
attenuation levels.
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higher attenuation) and 1 otherwise (largest signal amplitude, lower
attenuation). All vertices with a value between 0 and 1 were set to 0 to
increase the visibility of the blood vessels. Considering this factor, we
calculated the average angiogram value of the vertices located within a
3mm radius from each inspected electrode coordinate. This then resulted
in a (mean) value between 0 and 1 per electrode, where a value close to
0 means there are blood vessels located in the direct vicinity (�3mm
radius) of the electrode coordinate and a value of 1 means that there are
no blood vessels located in the direct vicinity of the electrode.

The anatomy component represents the Euclidean distance from the
228
electrode location to the cortical surface model. For that, the mean
normal vector of the vertices within 25mm of an electrode coordinate
was used to project the electrodes onto the cortical surface. Both the
normal vector and the subject's cortical model were based on the freely
available NeuralAct Toolbox (described by Algorithm 1 in Kubanek and
Schalk, 2015). The Euclidean distances from the electrodes to their
projections onto the surface model (along the averaged normal vector)
were then also normalized between 0 and 1, such that 1 was the smallest
distance to the surface (lower attenuation) and 0 the largest (higher
attenuation).



Fig. 4. Validation of the electrode grid position for five subjects using post-operative CT. (A) For two subjects both the angiogram and anatomy components and post-
operative CT were available. The estimated grid position (blue circles) is displayed together with the CT-based grid position (black squares), as detected using the CT
scan. The angiogram component is displayed for each subject for the region of interest (insert). The measured HFB spatial pattern was correlated with the estimated
HFB pattern at every grid location, except for the excluded channels (marked with red dots). The highest correlation yielded the estimated grid position. (B) For three
subjects the angiogram component was not available, hence the grid prediction was based solely on the anatomy component. All spatial patterns are displayed using a
color-map where yellow represents low signal attenuation, and blue represents high signal attenuation.
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Evaluation of the postulated attenuation patterns

In a first step, we assessed how well the above model predicts the
measured HFB patterns. For that, the estimated HFB pattern was
compared to the measured HFB pattern by means of a Pearson correla-
tion. The estimated HFB pattern was computed for 5 subjects (S1-S3, S5
and S6) for whom a CT scan was available. In order to determine which
229
model component (angiogram and anatomy) best estimated the HFB
pattern, the correlation to each component separately was also
computed. To assess the statistical significance of the correlation values,
we randomly permuted the HFB values 1000 times in order to obtain an
empirical null distribution of correlation values on random observation
(Combrisson and Jerbi, 2015).



Table 2
Summary of the GridLoc results per subject.

Subject
No.

Mean difference GridLoc and CT/
photography (mm)

Standard deviation of
difference (mm)

Correlation Measured and Estimated
HFB pattern

Available
components

Validation
method

S1 1.31 0.47 0.70 Anatomy and
angiogram

CT

S2 0.56 0.33 0.89 Anatomy and
angiogram

CT

S3 2.64 0.34 0.64 Anatomy CT
S4 1.35 0.64 0.61 Anatomy Intra-operative

photo
S5 2.71 0.45 0.50 Anatomy CT
S6 3.14 0.52 0.39 Anatomy CT
S7 1.44 0.86 0.46 Anatomy and

angiogram
Intra-operative
photo

S8 1.00 0.30 0.68 Anatomy and
angiogram

Intra-operative
photo

Mean 1.94 0.51 0.62
SEM 0.11
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Evaluation of the GridLoc localization method

In a second step, we tested whether the use of the postulated model
could be used to determine the position of HD grids on the brain. For that
we developed an unsupervised and automatic method (GridLoc) that
estimates the grid position. The GridLoc method iteratively moves the
grid over the cortical surface area and computes the correlation between
the measured HFB spatial pattern and the estimated HFB pattern
computed with equation (1) at each step. The highest correlation in-
dicates the best (estimated) grid position. The initial center and orien-
tation of the grid is specified �a priori by the user. From there, the search
for the best fit is conducted unsupervised. The search-space is defined as
follows: first, a region-of-interest (ROI) is defined by N x N array of
center-points, spaced 1mm apart (Fig. 2A). A two-dimensional grid
template, with the same inter-electrode spacing as the implanted grid, is
defined on the plane tangent to the cortex at the initial starting point and
is translated within the ROI to every point (Fig. 2B). The grid template is
additionally rotated up to a 45� angle with 1� increments in each di-
rection, to account for different grid orientations within the ROI
(Fig. 2C). The search-space is then defined as the combined area of all
possible grid template positions. For every translation and rotation, the
electrodes on the grid template are projected to the cortex (Fig. 2D)
(Kubanek and Schalk, 2015). For each projected grid position the Pear-
son correlation was computed, and the position with the highest corre-
lation was denoted the estimated grid position. Moreover, the estimated
grid position was also computed using each model component (angio-
gram and anatomy) separately. To assess the significance, a
non-parametric permutation test was used (Combrisson and Jerbi, 2015),
where the correlation values for all grid positions were used to determine
the empirical null distribution. Finally, for each subject the estimated
grid position was compared with the one determined with the standard
method described before (with post-operative CT or intra-operative
photography), yielding a mean and standard deviation of distances be-
tween electrodes of both methods.

Results

Correlation between measured HFB and estimated HFB patterns

For all 5 subjects with an available CT scan, the correlation between
the measured HFB and estimated HFB patterns was positive. For subjects
S1 and S2 (Fig. 3A), for whom an angiogramwas available, the measured
HFB pattern significantly correlated with the estimated HFB pattern, with
correlations values of 0.63 and 0.75 (p-value< 0.001), respectively. For
these two subjects, the angiogram component seemed to correlate higher
than the anatomy component (0.59 and 0.67, against 0.37 and 0.29,
respectively), but not as high as the two components combined (Fig. 3A).
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For three other subjects (S3, S5 and S6, Fig. 3B), only the anatomy
component was available. The correlations were 0.10, 0.11 and 0.49, for
S5, S6 and S3 respectively, of which only the last was significant (p-
value< 0.001). Overall, the results indicate that the model significantly
predicts the measured HFB spatial patterns at the known grid position,
and that the combination of both the angiogram and anatomy compo-
nents can explain the HFB patterns better than any of these components
alone.

Notably, in the model, the two components (angiogram and anatomy)
were summed with equal weights (Equation (1), α ¼ β ¼ 0:5). To
investigate if these weights yielded optimal results, a weight optimiza-
tion was carried out by comparing all possible combinations of 0 � α �
1 and 0 � β � 1 (with the constraint α þ β ¼ 1). Optimal settings per
subject yielded a minor mean increase across subjects of the correlation
values of only 0.04. Hence, all results shown here use equal weights.

GridLoc optimization results

The initial ROI center was specified per subject and the ROI size used
was 11mm� 11mm for subjects S1-S6 and S8. For S7, an ROI of
18mm� 18mm was chosen because the grid center was hard to deter-
mine from the intra-operative photograph due to the angle of view. As a
result, there were 121 or 324 center-points around which the grids were
positioned (see section 2.7) and a total of 121� 90� or 324� 90� grid
locations to test.

For five subjects (S1-S3 and S5-S6), the location as predicted using
GridLoc was compared with the ones computed using a method based on
post-operative CT scans (Fig. 4). For these subjects, the mean Euclidean
difference between the two methods was 2.45� 0.16mm (mean� SEM,
Table 2). The mismatch between the two positions was mainly caused by
small translations and rotations. For three subjects (S4, S7 and S8),
validation was carried out by comparing the estimated grid position
(Fig. 5) to the operative photos (explantation photo for S4; and intra-
operative photo for S7 and S8). For that, the 2D distance between the
electrodes on the rendered brain and the operative photo was computed.
This procedure, previously used in (Hermes et al., 2010), uses anatomical
features, such as sulci and blood vessels to match the brain rendering to
the intra-operative photograph (Supplementary Figures 1, 2 and 3). Re-
sults (Table 2) showed a mean (�std) distance between the GridLoc
prediction and electrodes visible on the intra-operative photograph of
1.35� 0.64mm for S4, 1.44� 0.86mm for S7 and 1.00� 0.30mm for
S8. Overall, the estimated HFB patterns correlated well with the
measured HFB pattern, yielding a mean correlation of 0.62� 0.15
(p-value< 0.001 for all subjects, Table 2). The model explained, thus, on
average 38% of the resting-state HFB power variation across electrodes.
This correlation was significantly higher than the correlation between
the measured HFB pattern and the estimated HFB pattern obtained at the



Fig. 5. Validation of the electrode grid position for
three subjects using intra-operative photographs. (A)
Estimated electrode grid position (blue circles) using
the GridLoc method for subject S4. This subject had
no angiogram scan. The measured HFB spatial pattern
was correlated with the estimated HFB pattern at
every grid location. The highest correlation yielded
the estimated grid position. (B) A structural MRI scan
with gadolinium contrast was available for subjects S7
and S8, hence the model was composed of angiogram
and anatomy components. The angiogram component
is displayed for each subject for the region of interest
(insert). (A–B) The estimated grid position is dis-
played together with the partial grid position based on
the visible parts of the grid on the intra-operative
photographs (black squares/corners estimated from
Supplementary Fig. 2 and 3). The measured HFB
spatial pattern was correlated with the estimated HFB
pattern at every grid location, except for the excluded
channels (marked with red dots). All spatial patterns
are displayed using a color-map where yellow repre-
sents low signal attenuation, and blue represents high
signal attenuation.
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grid location computed using the CT-based method (see previous section;
Wilcoxon signed rank test, median 0.49 against 0.64, N¼ 5,
p-value< 0.05).

In order to assess which model component (angiogram or anatomy)
best estimated the grid position, the latter was also calculated using each
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component independently. Results for 4 subjects, for whom both angio-
gram and anatomy components were available, showed that a prediction
based on one component alone may converge to an erroneous position,
while using both components the prediction converges to the optimal
position as determined using standard methods (Fig. 6). For S7 and S8



Fig. 6. GridLoc location using anatomy, angiogram or
both components. GridLoc grid location predicted
using a model based on the combined angiogram and
anatomy components (blue square), angiogram alone
(red square) or anatomy alone (yellow square) for
four subjects (S1, S2, S7 and S8), for whom both
angiogram and anatomy components were available.
GridLoc positions are also compared with the CT-
based (S1 and S2) or photography-based (S7 and S8;
estimated from Supplementary Fig. 2 and 3) gold-
standard location (black shaded square).
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the CT-based location was not available, but the GridLoc position showed
to be close to the grid position as derived from intra-operative photo-
graphs (see Table 2 and Supplementary Figures 2 and 3).

GridLoc computing time

The current method requires minimal user interaction, as it only re-
quires the user to the set the center of the search-space and orientation of
the grid and to define the angiogram threshold value. The algorithm
subsequently performs an automatic and systematic search using a
default precision (step-size) of 1 mm and 1�. These step-size values can be
further decreased by the user, leading to higher precision at the expense
of longer computational time. The time consumption of the GridLoc
computation increases linearly with the size of the ROI and the number of
electrodes.

Discussion

Evaluation of postulated attenuation patterns

Accurate localization of high-density intracranial grids is crucial
for the valid interpretation of the acquired signals. Here, we hypoth-
esized that the distance of an electrode to the cortical surface imposed
by an underlying blood vessel and/or sulcus causes attenuation of the
HFB power. HFB resting-state spatial power patterns were compared to
a model where attenuation was introduced based on the presence of a
blood vessel beneath the electrode and its distance to the cortical
surface. The model was obtained from the grid position as estimated
with a conventional CT-based method (Hermes et al., 2010; Branco
et al., 2017b). The correlation between measured and estimated HFB
patterns was highest when both angiogram and anatomy components
were available. These results indicate that the amplitude of the HFB
power is indeed attenuated in electrodes on sulci and large vessels,
extending earlier results (Bleichner et al., 2011).

GridLoc grid localization

Based on the attenuation results, we then tested whether the use of
such information could be used to determine the position of HD grids on
the brain. The correlation between measured HFB pattern and estimated
HFB pattern was optimized bymeans of iterative rotation and translation.
For this, an automatic and unsupervised search algorithm was developed
for finding the most likely grid position on the cortical surface using
features from the ECoG data. The GridLoc method was applied to 8
subjects, four of whom had angiograms available. The resulting esti-
mated grid positions were compared to those obtained with conventional
methods using post-operative CT scans or intra-operative photos (Hermes
et al., 2010; Branco et al., 2017b).

The estimated grid positions showed small rotation and translation
displacements relative to the conventional location methods, with a
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mean difference of 1.94 mm (SEM¼ 0.11 mm) across all subjects.
Additionally, the GridLoc method yielded a significant increase in
correlation values (between measured HFB pattern and the estimated
HFB pattern) as compared with correlation values based on the con-
ventional CT-based location. Since there is no way to determine the
true grid position, there is no objective way of assessing the accuracy
of either the GridLoc or the conventional localization methods. How-
ever, taking above findings together, we argue that the GridLoc
method may be more accurate than the conventional CT- or
photograph-based approaches. It seems reasonable that this is due to
the fact that the GridLoc method does not suffer from limitations
inherent to the CT and intra-operative photos methods, in particular
brain-shift-related electrode projection errors or inconsistent photo-
graph angles, respectively.

Although the results showed a fair prediction using an anatomy
component only, the best results were found for the subjects who also had
an angiogram (S1, S2 and S8). That is, the model combining both com-
ponents generally yielded the highest scores and the closest position to
the positions obtained with the conventional methods. Hence, the
GridLoc algorithm seems to work best when both anatomical and
angiographic information are obtained before surgery.
Assumptions and limitations

The GridLoc method relies on three assumptions. Firstly, the current
method relies on the structural and vascular geometry from which the
grid is recording. That is, the method assumes that the inter-electrode
distance is small enough and grid coverage is large enough to capture
enough vessels and sulci to match a spatial pattern that is regionally
unique. Hence, it may be expected that for HD-grids covering an area
smaller than 1000mm2 (e.g., 32 electrodes, 3 mm inter-electrode dis-
tance), or with an inter-electrode distance larger than 4mm, the speci-
ficity of the spatial pattern approaches a limit for an accurate
localization.

Second, the method assumes that the inter-electrode distance is
known and is constant, and that the distance between the tangent
plane where the grid lays and the cortical surface is small enough,
such that the inter-electrode distance between the electrodes is pre-
served after projection. This ignores the potential reduction of cur-
vature of the cortical surface after deformation due to loss of
ventricular cerebrospinal fluid (deflation typically results in surface
shrinkage as the cortex flattens). With the projection of the ‘deflated’
cortex to the full pre-surgical cortical surface, electrode distances
should ideally adapt to the increase in surface. This inaccuracy in-
creases with total grid surface. One way to address this could be to
allow inter-electrode distances to vary, to a certain degree, in the
optimization procedure.

Third, the method also assumes that the HD grid position is roughly
known and that only the exact position and orientation are yet to be
determined. Indeed, the algorithm requires the setting of an initial
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region-of-interest, which subsequently defines the search-space. This
assumption is fair since grid positions are often carefully chosen by the
surgeon. Uncertainty of the position can be addressed by increasing the
search space which will affect computation time.

Several factors limit the quality of the data used. For one, angiograms
did not always yield clear and complete blood vessel information. Since
the results demonstrate that angiographic information is important for
accurate localization, acquisition of high-quality angiogram images is
warranted. The quality of the resting-state data, although difficult to
determine, could have been also limited by inter-ictal activity or by
anesthesia. However, such confounds are likely to produce a positive bias
in our analysis, as they introduce a non-geometric suppression of the
HFB, and would thereby limit the precision of the method. Hence, a
degree of data inspection is advised for confound-free resting-state
measurements.

Conclusion

We show that high-frequency band power is affected by factors that
increase the distance between ECoG electrodes and the brain tissue.
The power is attenuated in electrodes positioned on top of a blood
vessel or on a sulcus. This phenomenon makes it possible to estimate
the position of an electrode grid on the cortical surface based only on
pre-operative structural and angiographic MR images, and a few mi-
nutes of resting-state ECoG data. Therefore, we present an automatic,
unsupervised and accurate method for localization of high-density
intracranial grids, named GridLoc, as an alternative to methods that
rely on post-operative imaging or intra-operative photographs. The
GridLoc software is customizable and allows the use of varying grid-,
ROI- and step-sizes. The algorithm was developed in Matlab®, was
tested in the Linux, Windows and Mac environments, and is freely
available on github (https://github.com/UMCU-RIBS/GridLoc).
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