
The Arabidopsis bZIP transcription factor family — an
update
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The basic (region) leucine zippers (bZIPs) are evolutionarily

conserved transcription factors in eukaryotic organisms. Here,

we have updated the classification of the Arabidopsis thaliana

bZIP-family, comprising 78 members, which have been

assorted into 13 groups. Arabidopsis bZIPs are involved in a

plethora of functions related to plant development,

environmental signalling and stress response. Based on the

classification, we have highlighted functional and regulatory

aspects of selected well-studied bZIPs, which may serve as

prototypic examples for the particular groups.

Addresses
1Department of Pharmaceutical Biology, Julius-von-Sachs-Institute,

Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg 97082,

Germany
2 Theoretical Biology and Bioinformatics, Department of Biology, Faculty

of Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The

Netherlands
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Organisation of the Arabidopsis bZIP-family
Sequencing of various eukaryotic genomes highlighted

the importance of transcriptional control as approximately

8% of the protein-encoding capacity is attributed to

transcription factors (TFs) [1��]. In general, TFs are

classified in families according to their conserved

DNA-binding domains. Currently, around 100 TF fami-

lies have been defined for the model plant Arabidopsis
[1��]. Here, we will focus on basic (region) leucine zipper

(bZIP) TFs, which are characterized by a basic DNA-

binding region and an adjacent so-called leucine zipper,

enabling bZIP dimerisation (for details see Figure 1)

[2,3]. As bZIPs generally perform as dimers,
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heterodimerisation results in an enormous regulatory

flexibility, for example, with respect to target-side selec-

tion or protein interactions [4��].

With respect to numbers, the bZIP-family size differs

considerably with 53 in humans [4��], 78 in Arabidopsis,
92 in rice [5], 125 in maize and 247 in rapeseed [6]. Whole

genome, chromosome and tandem duplications appear to

be important mechanisms in shaping bZIP families, par-

ticularly in plants [6]. Phylogenetic studies could trace

back bZIPs to early ancestors in green algae [5]. In line

with this finding, plant bZIPs have been associated with a

plethora of functions, supporting a recruitment early in

plant evolution [7,5].

Jakoby et al. [7] provided the first near-complete genome-

wide update on the Arabidopsis bZIP family, which was

further revised and discussed in an evolutionary context

[5]. A grouping based on homology of the basic region and

additional conserved motifs has been proposed, which is

somewhat subjective, but has found wide acceptance by

the community. Nevertheless, after 15 years it is reason-

able to summarise new insights and update this classifica-

tion as outlined in the phylogenetic tree in Figure 2.

Overall, data mining retrieved 78 bZIP members, adding

bZIP76-bZIP79, which were in part previously described

[5]. Moreover, we excluded one pseudogene (bZIP73).

Following the previous nomenclature [7], these bZIPs

were classified into 13 groups (designated A-M).

As an enormous amount of functional data has been

collected on Arabidopsis bZIPs, an exhaustive overview

is not feasible. Thus, this review will focus on selected,

well-studied bZIPs, which may stand as prototypic exam-

ples for functional and regulatory aspects or display

group-specific properties.

Function of Arabidopsis bZIPs
Group D

Group D comprises the so-called TGA factors (TGAs),

named according to their cognate TGACG DNA-binding

motif. From the historical perspective, tobacco TGA1a

was the first TF isolated from plants, binding to the viral

activation sequence-1 (as-1) motif. TGAs are characterized

by a short zipper domain consisting of three repeats, a

rather conserved C-terminus including two Q-rich

domains, and a more variable N-terminus. The ten Ara-
bidopsis TGAs are classified into five clades as recently

reviewed [8].
www.sciencedirect.com
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Structural aspects of bZIP transcription factors [2,5,7,129]. (a) Structural model of a dimer of the bZIP domains, exemplified for the prototypic

human TF, CREB (https://commons.wikimedia.org). According to the ‘scissors-grip-model’ [3], each bZIP domain forms a continuous a-helical

structure and dimerises via the so-called leucine zipper (ZIP). Like a pair of scissors, the bZIP proteins contact the major groove of double-

stranded DNA. (b) Schematic representation of the bZIP domain, consisting of a basic DNA-binding region (blue) and the adjacent ZIP domain

(grey). The ZIP domain consists of heptad repeats of leucine (L) or related hydrophobic aa. The number of repeats differs considerably from three

(group D), to more than eight (groups C and S). Structural data demonstrate that only five aa of each basic domain facilitate the contact to DNA.

Here, an invariant N-X7-R/K motif with asparagine (N) and basic (R/K) residues with exact spacing is found. As an exception, group E bZIP76-

bZIP79 harbour a deletion and hence lack the N residue. In the basic region of the group J member bZIP62, R/K is exchanged by I. Yet, a

possible functional relevance of these alterations has not been analysed. The bZIP target sequences often consist of an ACGT-core with adjacent

nucleotides, forming palindromic or pseudo-palindromic hexamers. With respect to the 30 flanking nucleotide, these boxes are designated

palindromic G-boxes (CACGTG), C-boxes (GACGTC) etc. Nevertheless, some bZIPs perform binding to non-ACGT-motifs [79,80,81��,102�].
Heterodimerisation may account for a more complex target-site selection. (c) Schematic view on the bZIP dimerisation interphase. The

amphipathic C-terminal zipper domain dimerises to form coiled-coils. A heptameric repeat is formed by seven aa, arranged in two turns and

labelled a–g. As depicted in the scheme, the positions a–d and a0–d0 are hydrophobic (typically L) and expose their site-chains to form a

hydrophobic face facilitating intermolecular interactions. Charged aa in positions g and e often form crosswise electrostatic interactions between

helices (g–e0 and g0–e). Deduced from these interactions, structure-based rules have been used for predictions of heterodimerisation, proposing

that preferentially homodimers or dimers within related group-members (quasi-homodimers) are formed by Arabidopsis bZIPs [129]. Nevertheless,

non-predicted heterodimerisation patterns between groups have been demonstrated, for example, between E and I, C and S1 or H and G

[30,59,80].
The clade II factors TGA2, TGA5, TGA6 redundantly

act as crucial transcriptional regulators in systemic

acquired resistance (SAR). SAR is part of the plants’

immune system and implements plant-wide, broad-spec-

trum pathogen immunity that is triggered by a prior local

infection [9]. Importantly, clade II and several other

TGAs physically interact with nonexpressor of pr genes1

(NPR1), which represents a major regulator of plant

pathogen responses [9]. In the non-induced state,

NPR1 resides as an inactive multimeric complex in the

cytosol. However, upon infection, local redox changes

mediated by accumulation of the important defence-

related hormone salicylic acid (SA) initiate the
www.sciencedirect.com 
disaggregation of NPR1 complexes, enabling transloca-

tion of monomers to the nucleus [10] (Figure 3a). Expres-

sion of the classical SA-induced marker gene pathogenesis
related1 (PR1) depends on class II TGAs and is impaired

in the npr1 mutant [8,9]. Although it was generally

accepted, that NPR1 acts as a transcriptional co-activator

of TGAs, a mechanistic gene regulatory model was pre-

sented only very recently for the clade III factor TGA3.

This model proposes the formation of dynamic promoter

TF-NPR1 complexes, controlled by multiple post-trans-

lational NPR1 modifications [11��,10]. Both as-1 and W-

boxes are well-described PR1 promoter cis-elements

for TGAs and WRKYs, respectively [12]. During the
Current Opinion in Plant Biology 2018, 45:36–49
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Figure 2
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Organisation of the Arabidopsis thaliana bZIP-family. All sequences encoding a bZIP domain were retrieved from genome resources as outlined

below. A phylogenetic tree (left) was calculated and grouping of bZIPs was performed based on similarities in the bZIP and other conserved

motifs (right). We identified 78 bZIP proteins (bZIP1 to bZIP79), following the generic naming according to [7]. As the previously annotated bZIP73

(group I) turned out to be a pseudogene, it was excluded from the family. The classification into 10 groups (A-I and S) [7] was further extended by

Current Opinion in Plant Biology 2018, 45:36–49 www.sciencedirect.com
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(Figure 2 Legend Continued) introducing the single-member groups M, K and J, as these bZIPs differ considerably in their motif structure.

Besides the generic names, At identifiers and trivial names are given, if generally accepted in the community. Bioinformatic procedures: bZIP

protein sequences of the longest splice variant of each gene were obtained from EnsemblPlants Biomart (plants.ensembl.org/biomart/martview/).

HMM profiles were obtained from pfam (http://pfam.xfam.org/family/PF00170#tabview=tab6 and http://pfam.xfam.org/family/

PF07716#tabview=tab6). These HMM profiles were used to reassure the bZIP motif was present in the obtained genes. Genes were aligned

applying the Einsi function of MAFFT, then alignments were trimmed using TRimAl, at 30% conserved AA. (trimal -in Bzip_mafft_einsi_input.txt

-out Bzip_trimal03_output .txt -gt 0.3). Iqtree was used for model selection, after which the best model LG+R7 was selected to calculate the

phylogenetic tree (settings: iqtree-omp -s Bzip_input -m LG+R7 -alrt 1000 -nt AUTO). The tree figure was made using R and package ‘ggtree2’.

Conserved sequences were determined using MEME (http://meme-suite.org/tools/meme), generating the 30 most significantly conserved

sequences (in MEME and MAST output) in the full length bZIP sequences. Conserved sequences found by MAST were visualized using R and

‘ggplot2’ (for details see Supplementary Figure S1).

Figure 3
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Schematic representation of selected signalling pathways employing bZIP TFs modified according to [11��,37��,44,61��,89]. For details see text. P:

phosphorylation; S: sumoylation; Ac: acetylation; HAT: histone acetyl-transferase.
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non-induced state, phosphorylated NPR1 interacts with

WRKY70, forming a repressive complex at a W-box.

Upon SA-induction, this complex dissociates due to a

change in the NPR1 phosphorylation pattern and subse-

quent sumoylation. Post-translationally modified NPR1

now switches partners, and forms a transient TGA3-

NPR1 complex on the as-1 element to activate PR1
transcription. Whether this highly dynamic mechanism

generally accounts for SA-induced genes and also for

clade II TGAs, needs to be established.

In a simplified view, plants rely on SA-dependent

defences when they encounter biotrophic pathogens,

whereas the hormones jasmonic acid (JA) and ethylene

(ET) coordinate defences against necrotrophs. Interest-

ingly, clade II TGAs are also required for the activation

of the later pathway [13�] by supporting ethylene-insen-

sitive3 (EIN3)-mediated activation of ORA59, which

encodes a master regulator of the JA/ET pathway

[14]. Since SA is well-known to repress JA/ET signalling

in a manner that requires clade II TGAs [15], these

TFs might serve as a point of pathway integration.

TGAs interact with land plant-specific glutaredoxins

(called ROXYs in Arabidopsis) [16]. Most of the ROXYs

interact with the transcriptional co-repressor TOPLESS

[17]. Specific members of the ROXY family are induced

by SA and since they negatively regulate the JA/ET

pathway when ectopically expressed, they are candi-

dates to mediate the negative effect of SA on the JA/

ET pathway [16].

Besides their involvement in defence responses, clade II

TGAs have also been implicated in controlling detoxifi-

cation processes [18]. In this regard, the TGAs regulate a

distinct set of detoxification genes by recruiting the

GRAS co-activator scarecrow-like14 (SCL14) [19]. This

NPR1-independent response mediates plant tolerance

towards various toxic endogenous and exogenous com-

pounds and is also repressed by specific ROXYs [20].

Among the clade III members, only the previously men-

tioned TGA3 has been analysed in detail. TGA3 is

involved in basal pathogen resistance and in mediating

hormonal cross-talk between SA and cytokinin [21].

Cytokinin signalling leads to phosphorylation of the

response regulator ARR2, which together with TGA3

binds and activates SA-dependent promoters. Moreover,

recent work positioned TGA3 in the context of heavy

metal detoxification [22].

TGA1 and TGA4 (clade I) are not involved in establish-

ing SAR, but control basal resistance [8]. Although TGA1

physically interacts with NPR1, clade I-mediated gene

regulation is largely NPR1-independent [23]. TGA1 and

TGA4 induce apoplastic defences and ER stress

responses [24] and directly control transcription of SARD1
and CBP60g, both important TFs involved in biosynthesis
Current Opinion in Plant Biology 2018, 45:36–49 
of SA and further signalling molecules in pathogen

defence [25].

A previously unexpected function in root nitrate uptake

and nitrate responses has recently been established for

clade I TGAs [26]. Interestingly, TGA1/4 transcripts

accumulate in a nitrate dependent manner and most of

the genes differentially expressed in wild-type compared

to the tga1tga4 double mutant are nitrate responsive.

Moreover, direct binding to promoters of nitrate uptake

transporter genes, as well as clade I dependent alterations

in root architecture has been observed [26,27].

Whereas limited data on developmental functions of

clade IV (TGA9, TGA10) are available [8], the single

clade V member TGA8/PAN (PERIANTHIA) controls

the formation of floral organ primordia [28]. In the

mutant, the outer floral whorls are transformed from a

tetramerous to pentamerous organisation. From the evo-

lutionary perspective it is interesting to note that PAN

interacts not only with ROXYs, but also with the NPR1-

like proteins BOP1/2, indicating mechanistic conserva-

tion in TGA regulatory patterns [8].

Taken together, most of the group D bZIPs increase the

plant’s ability to survive pathogen and xenobiotic stress.

However, some members adopted developmental func-

tions and (partially) exploit conserved interaction partners

to control their activities.

Groups C and S

Group S comprises the largest bZIP-cluster of 17, gener-

ally intron-less genes, which encode small TF proteins of

approximately 20 kD in size. Yet, only the group S1
members (bZIP1, bZIP2, bZIP11, bZIP44, bZIP53) have

been characterized, in detail. Based on the finding that all

four group C-bZIPs (bZIP9, bZIP10, bZIP25, bZIP63)

preferentially heterodimerise with group S1 members and

on results demonstrating that these heterodimers [29,30]

are functionally interlinked in plant starvation signalling,

they are referred to as the C/S1-bZIP network, as recently

reviewed [31].

The proposed function of this network in plant energy

management is based on its activation by several energy/

nutrient-dependent signalling inputs: first, due to con-

served upstream open reading frames (uORFs), all S1-

bZIPs share a unique translational regulation. Encoded

by the uORF, a nascent peptide is produced leading to

ribosome stalling and inhibition of main ORF-translation

in a sucrose-dependent manner [32,34] (Figure 3b).

Remarkably, sucrose-induced repression of translation

(SIRT) provides a mechanism by which cellular nutri-

ent/energy availability can be relayed into gene expres-

sion. Second, with respect to group C, bZIP63 has been

demonstrated to be phosphorylated by SNF1-related

kinase1 (SnRK1), an evolutionarily conserved major
www.sciencedirect.com
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metabolic kinase responding to energy and nutritional

starvation [35��]. SnRK1 phosphorylates bZIP63 in vivo
and thereby, enhances its ability to heterodimerise with

S1-bZIPs [36��]. Moreover, a transiently formed, ternary

C/S1-bZIP/SnRK1 complex was found to be recruited to

target promoters, facilitating histone acetylation and gene

activation [36��,37��,38]. In a genome-wide view, a dis-

tinct subset of the SnRK1 and starvation-induced genes

depends on S1-bZIP downstream activity. Particularly

striking, a co-ordinated activation of a pathway leading

to catabolism of branched-chain amino acids has been

observed, providing ATP to sustain plant survival during

stress [37��]. Along this line, overexpression of bZIP11/

ATB2 mimics responses observed in carbon-starved

plants [39]. Third, transcription of bZIP1 was found to

be repressed by the presence of the metabolic signal

glucose, depending on the glucose-sensor hexokinase1

(HXK1) [40]. Finally, bZIP1 has been implicated in the

integration of darkness-induced starvation and NO3
�

signalling [41��]. Taken together, based on their hetero-

dimerisation properties the C/S1-bZIP network has been

proposed to function as signalling hub to facilitate meta-

bolic reprogramming upon energy/nutritional starvation

leading to metabolic adaptation and survival upon stress.

Energy homeostasis is critical to all phases of plant life,

which might explain why C/S1-bZIPs have been

described to control a plethora of energy-demanding

processes both, in stress and development. For example

S1-bZIPs related to bZIP11 control auxin-dependent

primary root growth [38,42�] and similar to OPAQUE2

in maize, the orthologous group C members bZIP10 and

bZIP25 dimerise with bZIP53 to activate seed maturation

genes [43]. Moreover, bZIP1 and its partners control

metabolic reprogramming upon salt stress in roots [44]

and bZIP10 is involved in pathogen defence responses,

regulated by a cytosolic anchor protein [45��].

Functional analyses of the C/S1-network is complicated by

partial redundancy [37��,46], and complex transcriptional,

translational and post-translational regulation [31]. Syner-

gistic gene activation by C/S1-heterodimers has been dem-

onstrated [29,43] however, nuclear abundance of particular

bZIPs and their specific heterodimerisation properties [30]

need to be studied to unravel transcriptional control. Gene

activation by direct recruitment of the histone acetylation

machinery has been demonstrated for several, but not all C-

bZIPs and S1-bZIPs [39]. A striking regulatory property of

bZIP1 has recently been described as a ‘hit-and-run’ mech-

anism in protoplasts. Transient binding of the TF to a

promoter (‘hit’) and its subsequent mobilization to a second

promoter (‘run’) leads to sustainable alterations in gene

expression at the primary binding site [41��]. Studies unra-

velling the mechanism in planta are however required.

Taken together, a significant advance has been made to

link C/S1-signalling to the plant’s low energy management
www.sciencedirect.com 
system. The importance of these TFs is highlighted by

their evolutionary conservation, as C/S-bZIPs can be

traced back to an algal ancestor and a functional SIRT-

regulation was demonstrated in gymnosperms [33]. Nev-

ertheless, redundant and/or specific functions of particular

C-bZIPs and S1-bZIPs or their impact on the integration of

non-energy related stimuli remain to be elucidated.

Group H

Group H consists of only two members, elongated hypo-

cotyl5 (HY5) and HY5 homolog (HYH) and has recently

been reviewed [47]. Initially, hy5 was identified in a

mutant screen, showing elongated hypocotyls under var-

ious light conditions. Meanwhile, the functional rele-

vance of HY5 in numerous developmental processes is

well-established, such as promoting photomorphogene-

sis, chloroplast development and pigment accumulation

downstream of phytochromes, cryptochromes and UV-B

photoreceptors [47,48]. HY5 is also implicated in multiple

hormone signalling pathways, related to abscisic acid

(ABA), auxin [49�,50], cytokinin, gibberellin, brassinos-

teroids [51], ET [52] or strigolactones [47]. Moreover,

HY5 participates in the shade avoidance response [53]

and it translates red:far-red light quality changes that are

sensed in leaves into auxin-controlled lateral root devel-

opment [49�]. In short, HY5 performs as an evolutionarily

conserved master regulator in plants, which co-ordinates

light, environmental and developmental signalling [47].

HY5 activity is particularly controlled by post-transla-

tional mechanisms. The central negative regulator of

photomorphogenesis, the E3 ubiquitin-protein ligase

constitutive photomorphogenic1 (COP1) was found to

interact with HY5, resulting in its ubiquitination and

degradation in darkness (Figure 3c) [54]. HY5 protein

appears in a phosphorylated and a non-phosphorylated

pool, but only the latter is physiologically active and binds

DNA. In contrast, phosphorylated HY5 was demonstrated

to be insensitive to COP1-dependent degradation and

hence provides a pool of TF proteins, which can be

rapidly activated by de-phosphorylation [47].

Thousands of genes were found to be directly controlled

by HY5 [55,56] via binding to ACGT-core and non-

ACGT-motifs. In particular, genes implicated in the

circadian clock, chlorophyll biosynthesis, light and hor-

mone signalling as well as distinct miRNAs are under

control of HY5 [47,56]. Typical mechanisms which have

been described for HY5-mediated gene regulation are

competition for cis-elements and interaction with other

TFs. For example, integration of light, temperature and

reactive oxygen species (ROS) signalling has been stud-

ied by antagonistic binding of HY5 and phytochrome

interacting factor (PIF) bHLH factors (basic-helix-

loop-helix) to G-boxes (CACGTG) [57]. Physical TF

interactions have been described for MYBs, calmodulin7

(CAM7) or group-G bZIPs [47].
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The HY5 zipper structure has been disclosed and exhibits

significant differences to other bZIP proteins [58].

Whereas homodimers and heterodimers were described

between HY5 and HYH, dimerisation properties reach

out to groups G, C and S1 [59]. HY5 and HYH display

partly overlapping functions, for example, with respect to

hypocotyl and lateral root growth or pigment accumula-

tion [50,47]. Nevertheless, the hyh mutant does not show

the pronounced hy5 phenotype. Importantly, HY5 and

HYH activate HY5 transcription, suggesting an auto-reg-

ulatory circuit and supporting the view that protein avail-

ability and interplay is critical for HY5/HYH function

[50,60,47].

Recent work supported a pivotal function of HY5 in

controlling C/N-homeostasis and root architecture [61��].
Indeed, shoot photosynthetic C-fixation and acquisition of

N via the roots have to be tightly coordinated to sustain

optimal plant growth (Figure 3c). In photosynthetic leaves,

HY5 protein is stabilized and supports sucrose export to

roots by activating transcription of SWEET-facilitator
genes. As supported by grafting experiments and tracking

of mobile HY5-GFP fusions, HY5 was proposed to be

translocated as a phloem-mobile TF from the shoot to the

root system. In roots, HY5 auto-activates its own transcrip-

tion, and directly binds and activates the NRT2.1 gene,

encoding a high-affinity nitrate uptake transporter. Subse-

quently, nitrate is transported from the root to the shoot to

meet demands of the growing tissues.

Groups G and J

Group G comprises five members from which only G-box-

binding factor1 (GBF1) has been studied in detail.

Although related to other group G members, the so far

uncharacterized bZIP62 was placed in group J, as it misses

several conserved group G motifs.

GBF1 is a long-known, negative regulator of blue-light

dependent hypocotyl expansion and thus, performs

largely antagonistically to HY5 and HYH [62]. In fact,

whereas HY5 and its homolog HYH are degraded in

darkness in a COP1-dependent manner, GBF1 is

addressed by a different degradation mechanism. In con-

trast to HY5, both GBF1 and HYH were found to act

synergistically in chlorophyll and anthocyanin accumula-

tion [62]. A mechanistic insight arises from studies on

GBF1 dimerisation properties, indicating that gene regu-

lation largely depends on the interaction partner [59].

Whereas HY5 homodimers activate G-box controlled

genes, GBF1-HY5 heterodimers decrease their transcrip-

tion and GBF1-HYH heterodimers do not bind or regulate

transcription at all [63]. Moreover, genome-wide binding

studies of overexpressed GBF1 in a hy5 or hyh background

demonstrate that HY5 is almost indispensable for GBF1

binding, whereas HYH serves more specific functions [64].

Moreover, GBF1 interacts with the bHLH master regula-

tor MYC2 and the CAM7-TF [62,65].
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Additional important functions of GBF1 have been estab-

lished in promoting lateral root development [65] and

natural senescence [66�]. At bolting time and the onset of

senescence, GBF1 binds to the catalase2 (cat2) promoter

to repress transcription. By reducing the H2O2-scaveng-

ing activity of cat2, GBF1 triggers ROS accumulation,

which is proposed to function as a signal orchestrating the

senescence program. Similarly, GBF1 effects the SA-

dependent pathogen defence, presumably by enhancing

ROS-dependent hypersensitive cell-death and the acti-

vation of the well-known defence regulator phytoalexin
deficient 4 (PAD4) [67].

As GBF1 is usually not regulated on transcriptional level,

post-transcriptional regulation of GBF1 is assumed.

Indeed, redox control of GBF1 [68,69] and in vitro phos-

phorylation to alter DNA binding properties [70] have

been demonstrated. However, in vivo studies are required

to substantiate these mechanisms. Moreover, the indi-

vidual functions of other group G members, their hetero-

dimerisation properties and the nuclear translocation of

the partially cytosolic bZIP68 need to be addressed [59].

Group I

Among the 12 group I members, VirE2-interacting pro-

tein1 (VIP1; bZIP51) has attracted attention as a putative

host factor in Agrobacterium-mediated T-DNA transfer

[71]. Agrobacterium VirE2 is well-known as a single-

stranded DNA-binding protein, which protects the T-

DNA strand while it is mobilized to the plant nucleus. Via

protein interaction, VIP1 was shown to bridge between

VirE2 and the nuclear importin a [71,72]. This observa-

tion led to the ‘Trojan horse hypothesis’, proposing that

Agrobacterium is hitchhiking VIP1 to transport the T-

DNA strand to the plant nucleus [73��]. However, a

recent study questions the impact of this mechanism

both with respect to subcellular localisation of VirE2

and Agrobacterium-mediated transformation [74].

Work by Djamei et al. [73��] analysed the mechanistic

properties of the nuclear import of VIP1, establishing a

cascade in which pathogen-activated mitogen-activated

protein kinase3 (MPK3), results in VIP1 phosphorylation,

which in turn triggers its translocation to the nucleus

(Figure 3d). In here, VIP1 controls stress-related genes by

binding to VIP1 response elements (VRE; ACNGCT)

[75,76]. However, ensuing studies support a more pleio-

tropic function of VIP1, such as in low sulphur tolerance

[77] or osmosensory signalling [78,79]. Indeed, nuclear

translocation was also found to be driven by hypo-osmotic

stress whereas the impact of particular phosphorylation

sites are still a matter of debate [80,78]. In line with the

proposed function, key genes involved in ABA inactiva-

tion have been found to be activated by VIP1, targeted to

an AGCTGT/G-motif [79,80]. Genome-wide in vitro
binding studies propose a CAGCT-element for group I
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factors, which resembles data from several studies and

clearly harbours no ACGT-core [81��].

As single vip1 mutants are not impaired in the dehydra-

tion/rehydration response [79], functional redundancy

between related group I members was proposed. Accord-

ingly, stimulated nuclear translocation and heterodimer-

isation were demonstrated for VIP1, bZIP59, bZIP69,

bZIP29, bZIP30 and bZIP52 [80]. Work on the VIP1

homolog bZIP29 further broadens the view, as members

of the sub-group of VIP1-related TFs have also been

identified as VIP1 protein interaction partners [82]. To

address the issue of redundancy, a dominant negative

bZIP29:SRDX repressor was expressed under the native

promoter, resulting in developmental alterations concern-

ing leaf cell number and root meristem function. Accord-

ingly, bZIP29 was found to be expressed in proliferative

tissues and ChIPseq and transcriptome experiments sup-

port a function in cell cycle control and cell wall organi-

sation [82]. Moreover, bZIP59 (PosF21) has been defined

to function in auxin-induced callus formation and plant

regeneration [83] and bZIP30 (DKM, DRINK ME) and

bZIP18 have been implicated in female and pollen repro-

ductive organ development, respectively [84,85].

Classical studies on group I orthologues in Arabidopsis and

other plant species have proposed a function in vascular

development [86]. Although only a subset of group I

bZIPs has been analysed yet, a more complex picture

emerges, linking group I bZIPs to stress response, cell-

cycle regulation and various developmental aspects.

Groups E and M

In addition to the previously classified group E-members

bZIP34 and bZIP61 [7], we extended this group by

bZIP76-79. Whereas these bZIPs share group E-specific

motifs, this is not the case for bZIP72, which thus was

placed in the single-member group M. It needs to be

noted that the highly conserved Asn (Figure 1b) is miss-

ing in the basic region of the novel group E members.

Moreover, bZIP78 stands out, as it harbours a truncated

zipper domain. The functional implications of these

alterations with respect to DNA binding and dimerisation

need to be analysed.

Yet, only bZIP34 has been partially characterized by

linking it to pollen germination and pollen tube growth

[87]. Strikingly, bZIP34 and bZIP61 are unable to form

homodimers, due to the presence of a proline residue,

which breaks the a-helical structure of the zipper [88]. In

fact, a mutant approach exchanging the proline to alanine,

results in homodimers binding a G-box. Moreover, het-

erodimerisation with VIP1 related bZIPs (group I) or

bZIP43 (group S) has been demonstrated for bZIP34

and bZIP61 [82,84,88], proposing a functional link

between these groups.
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Groups B and K

The three members of group B (bZIP17, bZIP28,

bZIP49) and the one group K member (bZIP60) perform

as important regulators of the evolutionarily conserved

endoplasmic reticulum (ER) stress response [89]. Proper

folding of proteins in the ER lumen is crucial for survival

and is facilitated by chaperones such as binding proteins

(BiPs). Upon adverse environmental conditions, the load

of misfolded proteins exceeds the cellular protein folding

capacity leading to their degradation, referred to as

unfolded protein response (UPR). In contrast to three

ER-stress pathways identified in mammals, only two were

found to be conserved in plants, executed by B-bZIP and

K-bZIP, respectively. Although involved in a related

functional aspect, their domain structure, the evolution-

ary relationship and distinct mechanistic differences sup-

port the separation in two groups.

The mechanisms of bZIP activation in UPR are particu-

larly striking (Figure 3e). Group B bZIP28 is tethered to

the ER membrane, facing via its N-terminus to the

cytosol. In the ER-lumen, the C-terminus is covered

by BiPs, which are allocated to unfolded proteins during

ER-stress. Subsequently, membrane bound bZIP28 is

transported via vesicles to the Golgi. Here, the N-termi-

nal part of bZIP28 is cleaved off, releasing the truncated

active TF, which relocates to the nucleus [90,89]. A

sequential activity of S1P and S2P proteases has been

proposed however, recent studies do not support partici-

pation of S1P [90]. In the nucleus bZIP28 binds promo-

ters harbouring the ER stress–response element 1

(ERSE1), composed of two sub-elements (CCAAT-

N10-CACG)[91]. The CACG consensus is recognized

by a bZIP dimer and the adjacent CCAAT-box is bound

by heterotrimeric nuclear factor Y (NF-Y-TFs). Indeed, a

larger TF-complex has been proposed to activate ER

stress genes [91]. Although most studies focus on bZIP28,

structural similarities support an analogous mechanism of

activation for the other group B members [89,92,93]. To

evaluate the biotechnological potential, transgenic plants

overexpressing bZIP17 under a stress-inducible promoter

were constructed, which display enhanced tolerance to

salt treatment. However, constitutive activation of the ER

stress pathway leads to significant growth retardation [94].

The second, evolutionary more ancient pathway of ER

stress response [89] involves the dual-functioning kinase/

ribonuclease inositol-requiring enzyme 1 (IRE1) and

group K bZIP60, which when inactive was also found

to be tethered to the ER via a trans-membrane domain

[89] (Figure 3e). Similarly to group B proteins, a truncated

bZIP60 was found to be the active form, which is mobi-

lized to the nucleus to regulate ER stress-genes [95,96].

However, maturation of bZIP60 does not rely on prote-

olysis. In fact, the ER membrane localised IRE1

dimerises in response to ER stress, enabling its ribonu-

clease activity to excise a 23 bp fragment of the bZIP60
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mRNA. This splicing event leads to a frame-shift, which

eliminates the trans-membrane domain and fuses a

nuclear-localisation sequence to the mature bZIP60

[97�,98,99].

Interestingly, both ER-stress pathways may converge on

distinct target gene sets, as bZIP60 and bZIP28/bZIP17

were found to heterodimerise [91,93]. Moreover, recent

studies focus on cell survival or cell death [100] and cross-

talk between UPR and light signalling facilitated by HY5

and bZIP28 [101].

Group F

Group F consists of three members (bZIP19, bZIP23 and

bZIP24) from which bZIP19 and bZIP-23 redundantly

control genes that encode for Zn transporters. By these

means, they are proposed to facilitate plant adaptation to

Zn-limiting conditions [102�,103].

Moreover, group F-bZIPs bind palindromic zinc defi-

ciency response elements (ZDREs; RTGTCGACAY)

in vitro, which do not contain an ACGT-core motif

[102�]. Phylogenetic studies reveal a conservation of

these TFs and their binding motifs in transporter gene

families within land plants [104]. The third member

(bZIP24) was not found to regulate genes in Zn homeo-

stasis, but was proposed to act as a negative regulator in

the salt-stress response [105,106].

Group A

Group A consists of 13 members, thereby representing

the second biggest cluster, which can be further classified

in four distinct subgroups.

The prominent subgroup of abscisic acid responsive ele-

ment binding factors (ABFs) contains the highly related

ABF1–4 that have been found to act at the core of ABA

signalling in a partially redundant manner [107]. Being

transcriptionally induced by abiotic stresses that impair

water availability, such as cold, salinity or drought and

post-transcriptionally  activated by ABA signalling these

factors implement adaptive responses to counteract water

deficit in vegetative tissues [107]. For example, in response

to drought, they participate in stomatal closure [108] and

reprogram metabolism to ensure accumulation of protective

osmolytes or directly induce expression of late embryogen-

esis abundant (LEA) genes to protect cells from dehydra-

tion [109,107]. Applying reverse genetic and molecular

approaches the upstream ABA signalling components of

ABFs were identified [110��,111] (Figure 3f). In short,

members of the clade A serine/threonine protein phospha-

tases 2Cs (PP2Cs) were found to negatively control ABA

signalling by inactivating  the positively acting SnRK2.2,

SnRK2.3 and SnRK2.6 (SNF1-related kinases 2) via de-

phosphorylation. Upon ABA perception by pyrabactin resis-

tance proteins/PYR-like proteins/regulatory component of

ABA receptor (PYR/PYL/RCAR) co-receptors, PP2Cs are
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sequestered, thereby preventing their interaction with

SnRK2 kinases [112��,111,113]. Predominantly activated

by auto-phosphorylation, SnRK2s directly phosphorylate

ABFs to strongly enhance their transactivation  properties

[114,109]. Via direct binding to ABA responsive element

(ABRE; ACGTGG/TC) cis-elements, ABFs control expres-

sion of their stress-responsive  target genes [109,115]. An

interplay of ABFs and C/S1 bZIPs in controlling gene

regulation in salt-treated roots has been described, but

requires further analyses [44].

Besides ABFs also individual members of the closely

related DPBF subgroup (DPBF1-4; DC3 promoter binding

factors), have been found to be central for ABA signalling,

especially in the late phase of seed development [116]. In

particular, ABA insensitive 5/DPBF1 (ABI5) has been

extensively characterized with respect to its function in

ABA-dependent seed maturation and seed germination

[117] and might be prototypic for other DPBFs, such as

enhanced EM levels/DPBF4 (EEL), which also shows a

seed specific expression profile [118]. Developmentally

induced ABI5 activity is controlled by the ABA signalling

cascade [119] and, moreover was found to be modified

through several post-translational modifications such as

ubiquitination, sumoylation and S-nitrosylation [117]. Apart

from its impact on seed development, ABI5 has been found

to directly control genes involved in abiotic stress responses

[120], chlorophyll catabolism [121], lateral root develop-

ment and dark-induced leaf senescence (DIS) [117]. With

respect to DIS both ABI5 and ABFs seem to fulfil in part

redundant functions [122].

Moreover, it was demonstrated that ABI5 also participates

in plant floral transition control [123] by directly affecting

transcription of flowering locus C (FLC), which represses

the florigen gene flowering locus T (FT) [124]. Interest-

ingly, the highly related flowering locus D (FD) and FD

paralog (FDP) TFs, which form another subgroup of A-

bZIPs are required for FT function [125��]. Both regulators

are expressed in the shoot apex and are able to interact with

FT in the nucleus to promote transcription of pivotal floral

meristem identity genes such as APETALA1 (AP1) [124].

By these means, the bZIP factors FD and FDP promote

floral transition and flower development. Importantly,

recent findings in rice demonstrate that the homologs of

FT and FD also interact with 14-3-3 proteins to form a

ternary complex to control AP1 mediated flowering [126].

As the rice anti-florigen terminal flower 1 (TFL1) competes

for binding to the 14-3-3 protein partner these results

provide a molecular basis how flowering is controlled by

the balance of the florigen FT and the anti-florigen TFL1.

Concerning the last subgroup (bZIP13 and bZIP40) no

functional data are available, yet.

Concluding remarks
Since publication of the first classification of Arabidopsis
bZIPs around 15 years ago, a tremendous amount of
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functional data has accumulated, placing bZIPs at central

hubs in environmental and developmental signalling.

Indeed, novel genome-wide techniques have supported

TF research in general, for example, by using near-

complete yeast-one-hybrid TF-collections [1��],
genome-wide TF-binding studies [81��] or routine ChIP-

seq methods to unravel TF-hierarchies [127]. However,

future studies have to specify cellular TF-actions by

focusing analyses on defined tissues under selected

developmental and environmental conditions in prefer-

ence to whole seedling approaches.

A long-standing enigma in TF research is how specificity

is gained from limited cis-element sequence information

particular for bZIP and bHLH factors, which both pref-

erentially bind G-boxes. Flanking DNA sequences, TF-

heterodimerisation and complex formation as well as

accessibility to DNA due to chromatin modifications

provide explanations for in vivo G-box specificity.

Although recent bioinformatic attempts are straightfor-

ward [128], they did not yet gain a sufficient level of

insight. More striking, the complex regulation of promo-

ters with multiple binding sites is not unravelled for any

plant promoter, yet.

The bZIP family provides many examples how TF activity

is controlled on multiple levels, namely transcriptionally,

translationally (e.g. SIRT) or post-translationally (e.g. by

phosphorylation, nuclear translocation, protein stability). It

is self-evident, that insight in these regulatory mechanisms

is crucial for understanding bZIP function.

The impact of (partial) redundancies (e.g. group I) and

the functional importance of heterodimerisation remain

important research topics, particularly for bZIPs. Yet, only

a limited number of dimer interactions have been tested

experimentally, by using two-hybrid, BIFC or pull-down

approaches [30,59,82]. Although predictions of bZIP

dimerisation patterns have been conducted, they do

not sufficiently match experimental data [129]. Analysing

group-specific interactions, quasi-homodimers within

groups have frequently been found (e.g. within groups

G and H), which may partially explain functional redun-

dancies. Nevertheless, the importance of inter-group

heterodimerisation (e.g. C and S1, E and I) has been

demonstrated and a family-wide interaction matrix would

be straightforward. In human bZIP research large-scale

heterodimerisation and its consequence on DNA-binding

has been assessed [4��]. In this respect, detailed knowl-

edge on bZIP expression and protein distribution is

essential to predict in vivo heterodimerisation. Moreover,

tools to study dynamic (hetero)-dimerisation in a single-

cell or a single-promoter context (e.g. by using fluores-

cent-labelled TFs) yet need to be established.

Finally, approaches to define crucial TF protein interac-

tion partners and their structural properties are highly
www.sciencedirect.com 
important. In this respect, elucidating the mechanism

controlling co-activator and co-repressor function need

to be addresses, which appear to be highly regulated by

post-translational modifications, as demonstrated for

NPR1. Finally, the interplay between chromatin dynam-

ics and TF-action needs to be further elucidated. As

described for animal systems, ‘pioneer factor’ which

target and remodel silent chromatin to enable accessibil-

ity for other TFs to facilitate gene control may be impor-

tant research topics [130].
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mediated mechanisms regulate DNA binding activity of the G-
group of basic region leucine zipper (bZIP) transcription
factors in Arabidopsis. J Biol Chem 2012, 287:27510-27525.

69. Shaikhali J: GIP1 protein is a novel cofactor that regulates
DNA-binding affinity of redox-regulated members of bZIP
transcription factors involved in the early stages of
Arabidopsis development. Protoplasma 2015, 252:867-883.
Current Opinion in Plant Biology 2018, 45:36–49

http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0200
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0200
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0200
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0200
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0205
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0205
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0205
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0205
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0205
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0210
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0210
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0210
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0210
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0210
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0215
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0215
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0215
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0215
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0215
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0215
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0220
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0220
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0220
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0220
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0220
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0225
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0225
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0225
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0225
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0230
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0230
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0230
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0230
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0235
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0235
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0240
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0240
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0240
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0240
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0245
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0245
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0245
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0245
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0250
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0250
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0250
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0250
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0255
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0255
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0255
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0260
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0260
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0260
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0260
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0265
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0265
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0265
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0270
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0270
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0270
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0275
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0275
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0275
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0275
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0280
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0280
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0280
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0280
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0285
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0285
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0285
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0285
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0285
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0290
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0290
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0290
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0295
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0295
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0295
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0295
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0300
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0300
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0300
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0300
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0300
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0305
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0305
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0305
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0310
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0310
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0310
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0310
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0315
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0315
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0315
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0315
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0320
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0320
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0320
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0325
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0325
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0325
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0325
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0330
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0330
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0330
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0330
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0335
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0335
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0335
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0335
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0340
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0340
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0340
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0340
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0340
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0345
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0345
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0345
http://refhub.elsevier.com/S1369-5266(17)30215-7/sbref0345


48 Cell signalling and gene regulation
70. Smykowski A, Fischer S, Zentgraf U: Phosphorylation Affects
DNA-binding of the senescence-regulating bZIP transcription
factor GBF1. Plants 2015, 4:691-709.

71. Tzfira T, Vaidya M, Citovsky V: VIP1, an Arabidopsis protein that
interacts with Agrobacterium VirE2, is involved in VirE2
nuclear import and Agrobacterium infectivity. EMBO J 2001,
20:3596-3607.

72. Citovsky V, Kapelnikov A, Olie S, Zakai N, Rojas MR,
Gilbertson RL, Tzfira T, Loyter A: Protein interactions involved in
nuclear import of the Agrobacterium VirE2 protein in vivo and
in vitro. J Biol Chem 2004, 279:29528-29533.

73.
��

Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H: Trojan horse
strategy in Agrobacterium transformation: abusing MAPK
defense signaling. Science 2007, 318:453-456.

The authors link nuclear import of the group I bZIP VIP1 to its phosphor-
ylation by a MAPK pathway.

74. Shi Y, Lee L-Y, Gelvin SB: Is VIP1 important for Agrobacterium-
mediated transformation. Plant J 2014.

75. Pitzschke A, Djamei A, Teige M, Hirt H: VIP1 response elements
mediate mitogen-activated protein kinase 3-induced stress
gene expression. Proc Natl Acad Sci U S A 2009, 106:18414-
18419.

76. Lacroix B, Citovsky V: Characterization of VIP1 activity as a
transcriptional regulator in vitro and in planta. Sci Rep 2013,
3:2440.

77. Wu Y, Zhao Q, Gao L, Yu XM, Fang P, Oliver DJ, Xiang CB:
Isolation and characterization of low-sulphur-tolerant
mutants of Arabidopsis. J Exp Bot 2010, 61:3407-3422.

78. Tsugama D, Liu S, Takano T: VIP1 is very important/interesting
protein 1 regulating touch responses of Arabidopsis. Plant
Signal Behav 2016, 11:1-3.

79. Tsugama D, Liu S, Takano T: A bZIP protein, VIP1, is a regulator
of osmosensory signaling in Arabidopsis. Plant Physiol 2012,
159:144-155.

80. Tsugama D, Liu S, Takano T: Analysis of functions of VIP1 and
its close homologs in osmosensory responses of Arabidopsis
thaliana. PLoS ONE 2014, 9:e103930.

81.
��

O’Malley RC, Huang SC, Song L, Lewsey MG, Bartlett A, Nery JR,
Galli M, Gallavotti A, Ecker JR: Cistrome and epicistrome
features shape the regulatory DNA landscape. Cell 2016,
165:1280-1292.

Resource presenting a genome-wide data-set on in vitro DNA-binding
properties of roughly 500 TFs.

82. Van Leene J, Blomme J, Kulkarni SR, Cannoot B, De Winne N,
Eeckhout D, Persiau G, Van De Slijke E, Vercruysse L, Vanden
Bossche R et al.: Functional characterization of the
Arabidopsis transcription factor bZIP29 reveals its role in leaf
and root development. J Exp Bot 2016, 67:5825-5840.

83. Xu C, Cao H, Zhang Q, Wang H, Xin W, Xu E, Zhang S, Yu R, Yu D,
Hu Y: Control of auxin-induced callus formation by bZIP59–
LBD complex in Arabidopsis regeneration. Nat Plants 2018,
4:108-115.
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