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Abstract We extend the Born–Oppenheimer type of approximation scheme for the
Wheeler–DeWitt equation of canonical quantum gravity to arbitrary orders in the
inverse Planck mass squared. We discuss in detail the origin of unitarity violation in
this scheme and show that unitarity can be restored by an appropriate modification
which requires back reaction from matter onto the gravitational sector. In our analysis,
we heavily rely on the gauge aspects of the standard Born–Oppenheimer scheme in
molecular physics.

Keywords Canonical quantum gravity · Semiclassical approximation · Wheeler–
DeWitt equation · Born–Oppenheimer approximation

1 Introduction

In the search for a more fundamental theory, it is of the utmost importance to understand
the connection of the new theory with existing and empirically established theories.
This holds, in particular, for the goal of constructing a theory of quantum gravity. By
now, various approaches exist, but there is no agreement on which is the right one [1].
One necessary requirement for any approach is that its semiclassical limit contains
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classical gravity and quantum field theory in a background spacetime. Understanding
this limit could also enable one to go beyond it and calculate quantum gravitational
correction terms that can potentially be observed and could thus serve as a test for the
theory.

One conservative but promising approach is canonical quantum gravity in the met-
ric variables. Unlike, for example, string theory, this is not a unified theory of all
interactions. But it is still expected to give reliable information about gravity in the
quantum realm [2]: if one rewrites Einstein’s equations into Hamilton–Jacobi form
and formulates (in the spirit of what Schrödinger did for mechanics in 1926) quantum
wave equations from which the Hamilton–Jacobi form can be recovered in the WKB
limit, one necessarily arrives at the equations of quantum geometrodynamics. These
equations should thus hold, at least approximately, as long as the linear structure of
quantum theory remains valid. It should then be possible to extract meaningful pre-
dictions from this framework such as the ones discussed here, which concern quantum
gravitational corrections to the limit of quantum field theory in curved spacetime.

The central equations of canonical quantum gravity are four local constraints—
the Wheeler–DeWitt equation and three momentum (diffeomorphism) constraints.
Their semiclassical limit has already been studied in a variety of ways, see [1] and
the references therein. What we want to add here are essentially two things. First,
we want to extend the previous expansion scheme of [3] to arbitrary orders in the
appropriate parameters. And second, we want to comment on the issue whether quan-
tum gravitational correction terms break the usual unitarity of quantum theory or not.
The latter point is clarified by drawing an analogy with the gauge structure of the
Born–Oppenheimer approach in molecular physics.

To be more concrete, we consider the Wheeler–DeWitt equation in the following
form1:

[
− h̄2

2M

(
Gab

δ2

δhaδhb
+ ga

δ

δha

)
+ MV(ha) + Hm(ha, φ)

]
Ψ [ha, φ] = 0. (1)

Here, indices a, b, . . . represent a symmetric double index and ha denotes the spatial
three-metric; Gab is the DeWitt metric. The variable φ represents a (bosonic) matter
field with Hamiltonian Hm that only depends parametrically on ha . The parameter
M := c2/32πG ≈ 1.34 × 1025 kg/m is related to the square of the (reduced) Planck
mass MP = √

h̄c/8πG by M = cM2
P/4h̄; M resp. M/h̄ ≈ 1.27 × 1059 s/m3

will be the appropriate formal parameter for the Born–Oppenheimer scheme below.
Finally, V := −2c2√det ha R denotes the gravitational potential with R as the three-
dimensional Ricci scalar. The functions ga are introduced to parameterize factor
ordering ambiguities. In the arguments of the wave functionals, we will often sup-
press the indices of the three-metric for simplicity.

The limit of quantum field theory in curved spacetime has been derived by two
different but closely related expansion schemes. One is a direct expansion with respect
to the parameter M in (1) [3], the other is a more or less direct application of the

1 There is no need to address the momentum constraints here, because their sole purpose is to guarantee
the invariance of the wave functional under three-dimensional coordinate transformations.
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molecular Born–Oppenheimer scheme [4,5]; its main difference lies in the treatment
of back reaction on the gravitational sector and the preservation or violation of unitarity
in the matter sector. A recent comparison can be found in [6] and in the Appendix of
[7].

In the first approach, the correct limits of classical gravity and the functional
Schrödinger equation of quantum field theory in a fixed curved background can be
obtained from (1) by making the ansatz [1,3]

Ψ [h, φ] = χ [h]ψ[h, φ], (2)

together with a WKB-like expansion in M−1 for χ and ψ .2 For the Wheeler–DeWitt
equation, this approach resembles the traditional Born–Oppenheimer ansatz of molec-
ular physics with zero total energy.3 There is, however, an important difference to
molecular physics. We use the ansatz in (2) to derive a semiclassical limit for ψ alone,
accompanied by the recovery of a semiclassical (WKB) time parameter (more pre-
cisely, a local many-fingered time) through a corresponding functional χ . We also
want to interpret ψ by itself as a meaningful wave functional. We do so by deriving its
functional Schrödinger equation from (1), which results from a choice of functional
χ . We then face the problem of choosing a reasonable χ .

This problem becomes more apparent by noting that the solution of (1), Ψ , is
invariant under a rescaling of χ and ψ of the form χ → eAχ, ψ → e−Aψ for an
arbitrary complex valued functional A[h]. Since in the semiclassical approximation
to quantum gravity a time parameter is defined through a functional depending on h
(see below), the freedom to choose a “gauge” A[h] will influence the time evolution
of both χ and ψ and can thus have consequences for unitarity. By unitarity we here
mean the conservation of the standard Schrödinger inner product for the matter wave
function ψ with respect to semiclassical (WKB) time. Note that the gauge freedom
of A[h] is the same as the one that leads to the gauge theory of molecular physics
(see for example, [10,11]), although there one restricts to transformations that leave ψ

normalized to unity, that is, A is purely imaginary, and the gauge group is the unitary
group, see Sect. 2 for more details. As we want to interpret such a ψ and the equation
governing its evolution physically, we need a guiding principle for the choice of an
appropriate gauge A[h]. Such a principle will be proposed and applied in the present
paper.

Our paper is organized as follows. In Sect. 2, we outline the underlying gauge struc-
ture of the Born–Oppenheimer scheme, which is crucial for our discussion. In Sect. 3,
we follow the ansatz of [3] where χ is taken to be a solution to the vacuum Wheeler–
DeWitt equation. Within this framework, we derive a formal expression containing
all quantum gravitational corrections at successive orders of M−1. In Sect. 4, we then

2 Note that Born and Oppenheimer in their classic paper [8] did not perform a WKB-like expansion, but a

Taylor-series-like expansion in the small parameter κ = 4
√

melectron
mnucleus

.

3 An exact description would require in addition a sum over a complete set of eigenstates ψn , but we stay
in the regime of the adiabatic approximation where the off-diagonal terms of the Mead–Berry connection
are neglected, similar to the ansatz of Born and Oppenheimer [8]. This neglection can be justified by the
process of decoherence [9].
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show how to choose χ such that ψ obeys a unitary time evolution, and demonstrate
the similarity of the calculations in the functional Schrödinger picture for ψ to the
traditional Born–Oppenheimer approach, where one considers the equation for χ (the
“nuclear wave function”) after restricting the gauge group to the unitary group (i.e.
with A[h] purely imaginary). Both of these approaches will yield the correct limits
of classical gravity and quantum field theory in a fixed curved background spacetime,
but the quantum gravitational corrections will turn out to be different. The last section
contains a brief summary and an outlook on possible applications.

2 Lessons from molecular physics

In this section, we start by following the standard treatment presented, for example,
in [10,11] and continue by making further elaborations which are relevant for the
unitarity issue.

In the Born–Oppenheimer approximation of molecular physics, one considers
molecules which consist of interacting nuclei and electrons. Because the nuclei are
more massive and move slower than the electrons, one can divide the total system into
a slow part (nuclei) and a fast part (electrons). These two parts are only weakly cou-
pled and suitable for a perturbative treatment with a naturally arising small parameter
defined by the mass ratio of electrons and nuclei.4

The total Schrödinger equation for a molecule reads

ih̄∂t |Ψ 〉 = (Tnuc + Tel + V ) |Ψ 〉. (3)

Here, Tnuc and Tel denote the kinetic energy operators of nuclei and electrons,
respectively, and V stands for all nuclei-nuclei, electron-electron, and nuclei-electron
interactions.

For every fixed nuclear position R, we can choose a complete set |n(R)〉 , n = 1,

. . . , N ,5 for the electronic part of the quantum state. In these states, R appears as a
parameter only. To be more general, we should also include time t into this state. We
hence have a basis |n(R, t)〉 for each fixed nuclear configuration R and fixed time t .
Let us denote the nuclear configuration space as S, such that the whole ‘background
space’ is S ⊗ R.

By the assumption of completeness for every configuration R we can write for the
total state

|Ψ (t)〉 =
∑
n

∫
dR′χn(R′, t) |R′〉 |n(R′, t)〉 (4)

4 While the traditional Born–Oppenheimer approximation is based on this separation, there exist approaches
that treat nuclei and electrons on the same footing [12]. It would be interesting to apply them to quantum
gravity.
5 In realistic cases, N will be infinite.
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with a set of components χn(R, t). Defining

|ψ(R, t)〉 := 〈R|Ψ 〉 =
∑
n

χn(R, t) |n(R, t)〉, (5)

we get by multiplying (3) with 〈R| and using (4) the following Schrödinger equation
for |ψ(R, t)〉:

ih̄∂t |ψ(R, t)〉 =
(−h̄2

2M
∇2

R + H0(R, t)

)
|ψ(R, t)〉 , (6)

where
H0(R, t) := Tel(R) + V (R). (7)

The mass M denotes some average mass (e.g. the reduced mass) of the nuclei, and the
label R a vector of all nuclear coordinates, which are in general mass weighted. For
simplicity, we abbreviate the state |n(R, t)〉 by |n〉. If we define

χ =
(
χ1, χ2, . . .

)T
,

e = (|1〉 , |2〉 , . . . ) , (8)

we can write |ψ〉, Eq. (5), as
|ψ〉 = eχ. (9)

Like any such product, |ψ〉 possesses a GL(N ,C) invariance of the form

χ → C−1χ

e → e C (10)

for an arbitrary non-degenerate matrix C(R, t) ∈ GL(N ,C).
The gauge group of molecular physics is obtained by choosing {|n〉} to form a local

orthonormal basis; in this way, GL(N ,C) is reduced to the unitary group U(N ,C). The
usual Born–Oppenheimer approach uses for the {|n〉} the stationary6 orthonormalized
eigenstates of the ‘electronic’ Hamiltonian H0 defined in (7). This corresponds to
choosing a particular representative of the unitarily equivalent set of orthonormal
bases {|n〉}.

Let us consider the time-dependent Schrödinger equation (6). Inserting

|ψ〉 =
∑
m

χm |m〉

6 These are the states without the time-dependent phase e−
i
h̄ E(R)t .
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[which is a shorthand writing of (5)] and contracting with 〈n| from the left, we get by
the orthonormality of the |n〉 the following equations for the χn :

ih̄χ̇n + i h̄
∑
m

χm 〈n|∂t |m〉 =
∑
m

(
− h̄2

2M
〈n|∇2

R |m〉 + H n
0 m

)
χm, (11)

where the Laplacian ∇2
R acts on everything on its right, and H n

0 m := 〈n|H0|m〉. It is
appropriate to define the following quantities:

τ nim := 〈n|∂i |m〉
εnm := 〈n|∂t + i

h̄
H0|m〉 . (12)

The τ are the usual Mead–Berry connections [10,11].7 As we will show here, see (20)
below, τ and ε together lead to a single connection on S ⊗R. We note that both τ and
ε are skew-Hermitian; considered as a connection, they thus have the unitary group
as gauge group.

If we use again the column vector notation introduced in (8), we find for χ the
equation

ih̄(∂t + ε)χ =
(−h̄2

2M
(∇ + τ)2

)
χ. (13)

Note that τ and ε are now matrices that appear as connections onS⊗R.8 Equation (13)
is a consistency condition on the nuclear wave functions χ , which has to be satisfied
if the |n〉 are orthonormal for every point in S ⊗ R.

We note that in the usual Born–Oppenheimer framework, one chooses time-
independent eigenstates with H0 |n〉 = en |n〉 (without the factor e−i/h̄en(R)t ). For
these states ∂t |n〉 = 0, and hence εnm = i

h̄ δnmen . Equation (13) then reduces to the
time-dependent form of the Born–Oppenheimer approach:

ih̄∂tχ =
(−h̄2

2M
(∇ + τ)2 + e

)
χ, (14)

with e = diag(e1, e2, . . . ). One usually also considers the stationary Schrödinger
equation for the full state. In this case, the full eigenvalue E occurs on the left-hand
side of (11). Equation (13) then reduces to the well-known form [10,11]

Eχ =
(−h̄2

2M
(∇ + τ)2 + e

)
χ. (15)

One can interpret (14) and (15) as resulting from a choice of gauge in (13). All these
equations are unitarily related.

7 Sometimes the imaginary unit is included in the definition.
8 To our knowledge, one has in the literature so far only interpreted τ as a connection.
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Let us check that the connections defined in (12) indeed transform correctly under
a unitary transformation (as also done e.g. in [10] for τ alone). Writing again the basis
|n〉 as a row vector, and e = (|1〉 , |2〉 , . . . ), we have again |ψ〉 = eχ . The modified
Schrödinger equation (13) should be invariant under all transformations that leave e
orthonormal (in the quantum sense), that is, under unitary transformations depending
on nuclear coordinates and time. For a unitary transformation of the form

|k〉 → |k〉Uk
n , (16)

the corresponding bra transforms such that the orthonormality 〈n|m〉 = δnm is pre-
served:

〈k| → U∗k
n 〈k| = U †n

k 〈k| . (17)

In order for |ψ〉 to be invariant under such a transformation, we have to demand that
χ transforms just as 〈n|:

χk → U †n
k χk . (18)

In vector notation this reads

e → eU,

χ → U †χ.

Let us now see how the τ and ε-matrices transform under gauge transformations. We
find

τ nm → τ̃ nm = U †n
p 〈p(R)|∇|q(R)〉Uq

m

= U †n
p τ

p
q U

q
m +U †m

p ∇U p
m ,

εnm → ε̃nm = εnm +U †n
k ∂tU

k
n , (19)

which are the correct transformation laws for a connection. If we now define a ‘space-
time connection’ ω as

ωm
0n = εmn

ωm
in = τmin , (20)

we see that ω transforms as a connection on S ⊗ R. We note again that the gauge
group is the unitary group, as the connection ω is skew-Hermitian. This is the same
group that leaves the form of Eq. (13) invariant.

A natural question to ask is if the fibre bundle defined by the connection in (20)
is trivial, that is, if the theory defined by (13) is unitarily equivalent to a theory with
τ = ε = 0. It turns out that the answer is no. If we consider the curvature Θ associated
with the spacetime connection (20), we find after some calculations that its non-zero
components read

Θm
ni0 = i

h̄
Di H

m
0 n ,
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where Di denotes the covariant derivative with respect to the connection defined by
ω. Even if we choose a frame with τ = 0 (and thus have Di = ∂i ), we see that Θ

would only vanish if H0 was independent of R, which is clearly not the case.
How do we interpret the result Θ �= 0? It means that there is no choice of frame,

that is, of orthonormal bases |n〉, such that χ obeys the equation of free nuclei. This
is physically very natural: an interacting theory is not unitarily equivalent to a free
theory. With a view on quantum gravity, one should note, however, that we actually
started with a GL(N ,C) invariance, so using this larger invariance one can certainly
choose χ to obey a free Schrödinger equation. Yet this would spoil the normalization
of the |n〉. In other words: if we put χ in a state with τ = ε = 0, normalization of the
|n〉 cannot be imposed for all configurations on S ⊗ R. This will become important
for the situation in quantum gravity, to which we will now turn.

3 Semiclassical limit with vacuum gravity background

3.1 Quantum gravitational corrections to the functional Schrödinger equation

In this subsection, we will extend the scheme developed in [3] to higher orders. We
start by defining the quantity

ρχ := 1

χ

[
− h̄2

2M

(
Gab

δ2

δhaδhb
+ ga

δ

δha

)
+ MV

]
χ, (21)

which corresponds to the pure gravitational part in (1). The scheme employed in [3]
corresponds to choosing a wave functional χ (i.e. fixing a gauge) in (2) with ρχ = 0.
That is, the arising picture is one in which the semiclassical background is a solution
of the vacuum Einstein field equations on which the quantum matter fields described
by ψ propagate. One can, of course, generalize the scheme in order to accommodate
matter degrees of freedom that contribute to ρχ = 0 and thus represent a semiclassical
matter part. In such a case, the approximation scheme does not proceed with respect
to M−1, but with respect to another appropriate parameter; recent examples are the
cases of de Sitter inflation [13] and of slow-roll inflation [14].

It is important to note that even though ρχ = 0 resembles the vacuum Wheeler–
DeWitt equation, one has to be careful in interpreting this χ as a physically meaningful
functional within our framework. For example, it would be hard to interpret a similar
choice in molecular physics: without the interactions of electrons and nuclei, no stable
molecule could exist. For the gravitational case, the situation is not as severe: it is
certainly consistent to have a vacuum solution of the Einstein equations on which the
(metric-dependent) matter fields evolve. Still, the choice ρχ = 0 neglects possible
back reaction terms from the matter sector to the ‘background’ part.

If we make a WKB-like ansatz analogously to [3],

χ = exp

⎡
⎣ iM

h̄

∞∑
j=0

(
h̄

iM

) j

σ j

⎤
⎦ =: exp

[
iM

h̄
(σ0 + P)

]
, (22)
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Table 1 Equations for the σ j at consecutive orders of M−1

Order Equation for σ j

M 1
2Gab

δσ0
δha

δσ0
δhb

+ V = 0

M0 Gab
δσ0
δha

δσ1
δha

+ 1
2Gab

δ2σ0
δhaδhb

+ 1
2 ga

δσ0
δha

= 0

M−1 Gab
δσ0
δha

δσ2
δhb

+ 1
2Gab

δσ1
δha

δσ1
δhb

+ 1
2Gab

δ2σ1
δhaδhb

+ 1
2 ga

δσ1
δha

= 0

M−2 Gab
δσ0
δha

δσ3
δhb

+ Gab
δσ1
δha

δσ2
δhb

+ 1
2Gab

δ2σ2
δhaδhb

+ 1
2 ga

δσ2
δha

= 0

M−3 Gab
δσ0
δha

δσ4
δha

+ Gab
δσ1
δha

δσ3
δhb

+ 1
2Gab

δσ2
δha

δσ2
δhb

+ 1
2Gab

δ2σ3
δhaδhb

+ 1
2 ga

δσ3
δha

= 0

One recognizes that the highest order only enters via the τ -derivative

that is,

P :=
∞∑
j=1

(
h̄

iM

) j

σ j , (23)

we get at orders M1 and M0 of the equation ρχ = 0 the following equations, respec-
tively,

1

2
Gab

δσ0

δha

δσ0

δhb
+ V = 0, (24)

Gab
δσ0

δha

δσ1

δhb
+ 1

2
Gab

δ2σ0

δhaδhb
+ 1

2
ga

δσ0

δha
= 0. (25)

Equation (24) is the Hamilton–Jacobi equation for vacuum gravity and is equivalent
(because it is a functional equation) to all Einstein field equations [15]. Note, however,
that this equation only determines the magnitude of the gradient of σ0 (in terms of the
DeWitt metric), not its direction.

One can now define a local time derivative similar to [3] as9

δ

δτ
:= Gab

δσ0

δha

δ

δhb
. (26)

The many-fingered time τ(x) is not a scalar, but becomes one after spatial integration
[1]. With this definition, it follows from (24) that the τ–τ component of the DeWitt
metric becomes Gττ = −1/2V .10 It is interesting to note that all orders of ρχ = 0
will lead to equations that determine only the gradients of the other σ j ’s along the τ -
direction, δσ j/δτ , and not the other components; this can be seen from (25) and from
Table 1. The σ j for j > 1 are hence only defined up to the addition of an arbitrary τ -
independent functional. Such additional terms do not follow from the previous orders,
so their form depends solely on the boundary conditions [5].

9 This τ should not be confused with the Mead–Berry connection of the last section.
10 It should be noted that with this definition of the time derivative, (24) leads to σ0 = −2

∫
V dτ , which

differs from the usual WKB case by having V instead of its square root.
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Plugging (2) into (1), we find

h̄2

M

1

χ
Gab

δχ

δha

δψ

δhb
= Hmψ + ρχψ − h̄2

2M

(
Gab

δ2ψ

δhaδhb
+ ga

δψ

δha

)
. (27)

With the choice ρχ = 0, we can now obtain from (27) with the definition of the time
derivative in (26) and the definition of P in (22) an equation for the time evolution of
ψ :

ih̄
δψ

δτ
= Hmψ − ih̄Gab

δP

δha

δψ

δhb
− h̄2

2M

(
Gab

δ2ψ

δhaδhb
+ ga

δψ

δha

)
. (28)

One can proceed further by demanding that the gradient of ψ is proportional to the
gradient of σ0 as suggested in [3], which is some sort of adiabatic approximation in
superspace; that is,

δψ

δha
= α[h] δσ0

δha
, (29)

for some functional α[h]. Equation (24) then yields δψ
δτ

= −2Vα, and we can express
δα
δτ

in terms of τ -derivatives of ψ and V . We further assume that there is a total (not
necessarily Hermitian) Hamiltonian H such that we can write

ih̄
δψ

δτ
= Hψ. (30)

Using this definition together with (25) and expressing the second time-derivatives
in (28) with the Hamiltonian by using again (30), Eq. (28) reduces to the following
compact expression:

ih̄
δψ

δτ
= Hψ = Hmψ − 1

4MV

(
H2 + ih̄

δH

δτ
− ih̄K H

)
ψ, (31)

where

K := 1

V

δV

δτ
− 2iM

h̄

∞∑
j=2

(
h̄

iM

) j δσ j

δτ
. (32)

This equation is the full functional Schrödinger equation for ψ including all quantum
gravitational corrections within the vacuum gravity (ρχ = 0) approximation. Note
that the Hamiltonian H appears on both sides of (31), so it is also an implicit equation
for the Hamiltonian itself. As we see, it correctly reproduces the limit of quantum field
theory in a fixed curved background spacetime at zeroth order in M−1. The equations
at any other order in M−1 can be found from (31) in a straightforward way by iteration.

We see that this equation is not only an equation for the dynamics of ψ , but can also
be used for determining the Hamiltonian H itself. For simple cosmological models one
could try to solve (31) for H as a differential equation in time. Within a semiclassical
approximation, one could assume that H is a function of Hm alone, which resembles
a restriction to the one-particle sector of the theory [3], and further expand H and Hm
in M−1. This approach is in fact in the spirit of the traditional Born–Oppenheimer
approximation [8]. For instance, the first order correction to (31) is
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ih̄
δψ

δτ
= Hmψ − 1

4MV

(
H2

m + ih̄
δHm

δτ
− ih̄

V

δV

δτ
Hm

)
ψ + O(M−2)

= Hmψ − H2
m

4MV
ψ − h̄

4M

δ

δτ

(
iHm

V

)
ψ + O(M−2), (33)

as presented in [3]. It should be noted that (31) is independent of any factor ordering
ambiguities, as the ga-term has canceled due to (25). It is also interesting to note that
the same expression, Eq. (31), is obtained if we assume that all σi , V , and ψ only
depend on τ such that we consider only the τ and τ–τ components of ga and Gab and
drop all other components from the beginning in Eq. (1). This is at first glance rather
surprising, and seems to be a direct consequence of (25), whose form in either case
assures that all additional terms are canceled. However, we see that (24) has a solution
of the form τ = V and σ0 = − ∫

V 2d3x (recall that Gττ = −1/2V ). In this case, σ0
and V indeed only depend on τ .

3.2 Problems with unitarity

We recognize from (31) that the gauge choice ρχ = 0 leads to a non-unitary time
evolution for ψ at order M−1 and higher. In applications to cosmological models,
the unitarity violating terms have often been neglected as they are small compared
to the unitary terms [7,14,17]. We can see two reasons for the occurrence of non-
unitarity directly in this equation. First, the Wheeler–DeWitt equation is a Klein–
Gordon type of an equation, whose unitary time evolution (with respect to the usual
quantum mechanical inner product) is spoiled due to the second time derivatives,
giving rise to the term ih̄ δH

δτ
in (31); see equation (3.13) in [18]. Secondly, the choice

ρχ = 0 leads to the term ih̄K H .
The major problem at this stage is then the physical interpretation of ψ with a

non-unitary time evolution: is ψ really the physical quantity described by the func-
tional Schrödinger equation plus quantum gravitational corrections? If yes, the gauge
choice ρχ = 0 has physical meaning above all other physical requirements on our
semiclassical limit. Then unitarity violation is physical for ψ . Yet, the only important
guiding principles we have is to recover the correct classical limit (Hamilton–Jacobi
equation) and the functional Schrödinger equation in a fixed curved background. But
the condition ρχ = 0 leads to a set of additional equations at each order in M−1,
whose interpretation is not clear. In the next section we therefore show how one can,
in principle, render the theory unitary by modifying the gauge choice and allowing
ρχ �= 0.

4 Unitary functional Schrödinger equation and non-vacuum gravity
background (ρχ �= 0)

Following the standard Born–Oppenheimer approximation (see Sect. 2 and [5,6]),
we shall in this section demand unitary time evolution for the matter wave function
ψ , where unitarity is defined with respect to the standard Schrödinger inner product.
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Since the full wave functional is given as a solution to the Wheeler–DeWitt equation,
this will modify both ψ and the gravitational wave function χ compared to the last
section. We shall see that this leads to different quantum gravitational corrections at
order M−1.

The main procedure is simple: we adjust the matter wave functional such that we
get, order by order, a unitary evolution in WKB time. For simplicity, we will assume
in this section that V and the σi (and thus χ ) only depend on the WKB time τ defined
in (26), and that ψ = ψ(τ, φ), and Hm = Hm(τ, φ). This captures the essential point
of unitarity restoration; for the general case, one has to include the terms discussed in
[5]. In this section, we set h̄ = 1 for simplicity. The Wheeler–DeWitt equation then
reduces to the following equation:

[
− 1

2M

(
Gττ

δ2

δτ 2 + gτ

δ

δτ

)
+ MV(τ ) + Hm(τ, φ)

]
Ψ = 0. (34)

This form is obtained by an orthogonal decomposition of the DeWitt metric as pre-
sented in [16]. For the total wave functional, we make an ansatz similar to (2),

Ψ [τ, φ] = χ [τ ]ψ[τ, φ]. (35)

We assume Ψ to be of the form

Ψ = exp (iMσ0[τ ]) ψ0[τ, φ] =: χ0ψ0, (36)

and demand that ρχ0 = O(M0), where now, similar to the last section,

ρχ := 1

χ

[
− 1

2M

(
Gττ

δ2

δτ 2 + gτ

δ

δτ

)
+ MV(τ )

]
χ.

This leads to the Hamilton–Jacobi equation (24) for σ0 at order M ; it also allows us
to keep the definition (26) for τ ; hence, Gττ = −1/2V as before. With this new ρχ0 ,
we find instead of (31),

i
δψ0

δτ
≡ Hψ0 = Hmψ0−i

(
1

2V

δV

δτ
− Vgτ

)
ψ0− 1

4MV

(
H2 + i

δH

δτ
− 2iVgτ H

)
ψ0.

(37)
At this stage, ψ0 experiences a non-unitary time evolution as before. In order to

remedy this, we could split the Hamiltonian H into Hermitian and anti-Hermitian
parts, H = HH + HN, and redefine the wave functional such that the new one evolves
unitarily. In case that the Hamiltonian commutes at different times, this can be achieved
by ψ = exp(i

∫
dτHN)ψ0, leading to iδψ/δτ = HHψ . The wave functional ψ can

then be interpreted as a physical wave functional. This would, however, only be pos-
sible if we knew H , which is in general not the case. We will thus follow here an
alternative route and show how (37) can be solved iteratively by demanding unitarity
for the matter wave functions at each order.
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Let us define two functions E(τ ) and ε(τ ) such that Hψ0 = Eψ0 and Hmψ0 =
εψ0; E is in general complex, but ε is always real. The second equation means that
we have to solve the matter Schrödinger equation and take ψ0 as an eigenfunction of
Hm. Let us further expand these functions in the spirit of Born and Oppenheimer as

E = E (0) + M−1E (1) + M−2E (2) + · · · , (38)

and similarly for ε. Inserting these expansions into (37) yields for the first two orders:

E (0) = ε(0) − i

(
1

2V

δV

δτ
− Vgτ

)

E (1) = ε(1) − 1

4V

(
(E (0))2 + i

δE (0)

δτ
− 2iVgτ E

(0)

)
; (39)

in the last line, the expression for E (0) should be plugged in to get an expression for
E (1) in terms of ε(0) and ε(1). Next we define

ψ1 := exp

(
−

∫
�(E (0))dτ

)
ψ0 = exp

(∫ (
1

2V

δV

δτ
− Vgτ

)
dτ

)
ψ0, (40)

so that ψ1 obeys a unitary Schrödinger equation at order M0, that is, i δψ1
δτ

= Hmψ1 +
O(M−1). The total wave function thus reads

Ψ = χ0ψ0 = exp

(
iMσ0 −

∫ (
1

2V

δV

δτ
− Vgτ

)
dτ

)
ψ1 =: χ1ψ1. (41)

Note that if gτ = 0, one can integrate the exponent to yield χ1 = 1√
V

exp(iMσ0),
which is similar to the usual WKB case (except for the difference mentioned in
footnote 10). One can now compute ρχ1 and finds that the zeroth order of ρχ1 van-
ishes, ρχ1 = O(M−1). Hence, Eq. (25) (with only τ -derivatives) remains unchanged.
This could have been anticipated by noting that the unitary violating terms in (31)
are of order O(M−1) and higher. If we write, similar to our discussion above,
χ1 = exp(iMσ0 + σ1), we can read off (25) directly from the exponent of (41):

δσ1

δτ
= Vgτ − 1

2V

δV

δτ
.

In the next order, we define in an analogous way

ψ2 := exp

(
− 1

M

∫
�(E (1))dτ

)
ψ1

= exp

(
1

M

∫ (
−ε(0)

[
1

4V 2

δV

δτ
− 1

2
gτ

]
+ 1

4V

δε(0)

δτ
− 1

2
gτ ε

(0)

)
dτ

)
ψ1

= exp

(
1

4MV
ε(0)(τ )

)
ψ1, (42)
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where in the last step we have performed a partial integration and omitted a constant.
We see that the gτ -term has dropped out in this step. We hence get a new expression
for the total wave function:

Ψ = exp

(
iMσ0 −

∫ (
1

2V

δV

δτ
− Vgτ

)
dτ − 1

4MV
ε(0)(τ )

)
ψ2 =: χ2ψ2. (43)

If we define again χ2 = exp(iMσ0 + σ1 − iM−1σ2), we get for σ2 the surprisingly
simple result:

iσ2 = 1

4V
ε(0)(τ ), (44)

so σ2 is purely imaginary. This is different from the situation of the last section.
One can easily see that at this order M−1, ρχ2 does not vanish. Requiring unitary

time evolution for ψ2 leads to the occurrence of a back reaction of the matter part
onto the gravitational sector, cf. [5,6]. This is closer in spirit to the traditional Born–
Oppenheimer scheme than the approach discussed in the previous section, as we will
briefly discuss now.

Let us consider Eq. (34) with Gττ = −1/2V and Ψ = χ [τ ]ψ[τ, φ]. The original
approach of Born and Oppenheimer was to multiply this equation with ψ∗ from the
left and integrating over φ. We now require unitary time evolution for ψ . We define
a real-valued function Ē(τ ) by i δψ

δτ
= Ēψ , Ē being real as ψ is assumed to evolve

unitarily. This leads to the standard form for the ‘nuclear’ wave function:

[
1

4MV

(
δ

δτ
− iĒ

)2

− 1

2M
gτ

(
δ

δτ
− iĒ

)
+ ε + MV

]
χ = 0. (45)

At this stage, the large gauge group eA[τ ] has been reduced to the unitary group,
that is, A is purely imaginary. We see that Ē , which is the effective energy of the
matter degrees of freedom, assumes the role of the Mead–Berry connection in this
approach, which is different from the usual approach in molecular physics.11 Note
that, even though in general the Mead–Berry connection can be gauged away by a
unitary transformation (by switching to the diabatic picture, see e.g. [11]), this make
no sense here, for we want to determine Ē in this particular frame.

As above, we can now make an ansatz of the form (also compare [6] for such a
WKB-like ansatz within the traditional Born–Oppenheimer approach)

χ = exp
(

iMη0 + η1 + M−1η2 + . . .
)

, (46)

where η0,1 = σ0,1, η2 = −iσ2, etc., and all ηi are taken to be real; the phase of ψ is
hence influenced at the lowest order only. Expanding Ē in powers of M−1, plugging
this ansatz into (45), and matching the real and imaginary parts at each order, we find
at order M1 again the Hamilton–Jacobi equation (24). At the next order M0, the real

11 Hence, employing the Born–Oppenheimer approximation, i.e. dropping the Mead–Berry connection,
will not help us here.
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part of Eq. (45) yields Ē (0) = ε(0), while the imaginary part yields an equation for the
Van Vleck determinant similar to (25),

δη1

δτ
= gτV − 1

2V

δV

δτ
. (47)

At the next order, we find for the imaginary part Eq. (44), while the real part yields

Ē (1) = ε(1) − 1

4V
(ε(0))2 + 1

4V

(
3

4V 2

(
δV

δτ

)2

− V 2g2
τ−

1

2V

δ2V

δτ 2 +V
δgτ

δτ
+gτ

δV

δτ

)
,

(48)
which we would also get from (39) if we considered only the real part. Hence, as
expected, the two methods lead us to the same result if we require unitary time evolution
for ψ . At order M−1, the energy ε, introduced above as the eigenvalue corresponding
to Hm, is thus shifted by quantum gravitational corrections; this shift is given by (recall
that a factor M−1 must be added to the terms on the right-hand side in (48) to get the
energy)

Δε = 1

4MV

(
−ε2 + 3

4V 2

(
δV

δτ

)2

− V 2g2
τ − 1

2V

δ2V

δτ 2 + V
δgτ

δτ
+ gτ

δV

δτ

)

+O(M−2). (49)

The only relevant term is the contribution proportional to ε2, because the other terms
are matter-independent. This relevant term is, in fact, the term that was used to calculate
the quantum gravitational correction to the power spectrum of the cosmic microwave
background (CMB) anisotropies [7,14,17]. In these papers, the first method was used
and the unitarity-violating terms were neglected by hand. This procedure can be jus-
tified by the discussion presented here.

5 Discussion

Let us summarize the main results of our paper. We have investigated semiclassical
(Born–Oppenheimer type of) approximation schemes for the Wheeler–DeWitt equa-
tion of canonical quantum gravity. The analogous situation in molecular physics was
reviewed with an emphasis on the gauge freedom that arises within this framework.
Although the total entangled quantum state of electrons and nuclei is always the same,
this gauge freedom allows to shift terms between the electronic and nucleonic parts.
Requiring unitarity separately for the electronic part, we get a definite expression for
the back reaction onto the nuclei; this is the usual Born–Oppenheimer approximation.

The Born–Oppenheimer like ansatz for the total wavefunctional entails a similar
gauge freedom for the Wheeler–DeWitt equation. As in molecular physics, a straight-
forward expansion in terms of the inverse Planck-mass squared without back reaction
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of matter on gravity spoils unitarity in the matter sector.12 We have discussed this
scheme and extended it to all orders in the expansion parameter. We then have modi-
fied the expansion scheme by using the gauge freedom to guarantee unitary evolution
for the matter sector. This is closer in spirit to the standard Born–Oppenheimer scheme
and leads to back reaction terms for the gravitational part. This point of view was taken
in [4–6]. A concrete normalization of the matter states is not needed—the important
thing is the unitary development. We note that the issue of avoiding unitarity violating
terms also occurs when performing a non-relativistic expansion for the Klein-Gordon
equation in external electromagnetic and gravitational fields [19].

A good understanding of the semiclassical approximation to quantum gravity is
of fundamental importance for two main reasons. On the theoretical side, it provides
a bridge between full quantum gravity and established physics. One can apply this
scheme not only to quantum general relativity with minimally coupled fields, but also
to scalar-tensor theories [20], Weyl gravity [21], and others. On the observational side,
first tests of quantum gravity will most likely occur from small correction terms that
modify the usual limit of quantum field theory in curved spacetime [13,14]. For this
purpose, it is of great importance to develop and compare approximation schemes like
the ones discussed here and investigate their empirical consequences.
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Nikolić, Giovanni Venturi, and YiFan Wang for discussions and critical comments.

References

1. Kiefer, C.: Quantum Gravity. Oxford University Press, Oxford (2012)
2. Kiefer, C.: Gen. Relativ. Gravit. 41, 877 (2009)
3. Kiefer, C., Singh, T.P.: Phys. Rev. D 48, 1067 (1991)
4. Bertoni, C., Finelli, F., Venturi, G.: Class. Quantum Gravity 13, 2375 (1996)
5. Barvinsky, A.O., Kiefer, C.: Nucl. Phys. B 526, 509 (1998)
6. Kamenshchik, A., Tronconi, A., Venturi, G.: Class. Quantum Gravity 35, 015012 (2018)
7. Bini, D., Esposito, G., Kiefer, C., Krämer, M., Pessina, F.: Phys. Rev. D 87, 104008 (2013)
8. Born, M., Oppenheimer, R.: Ann. Phys. (Berlin) 389(20), 457 (1927)
9. Joos, E., et al.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer,

Berlin (2003)
10. Bohm, B., Mostafazadeh, A., Koizumi, H., Niu, Q., Zwanziger, J.: The Geometric Phase in Quantum

Systems. Springer, Heidelberg (2003)
11. Baer, M.: Beyond Born-Oppenheimer–Electronic Nonadiabatic Coupling Terms and Conical Intersec-

tions. Wiley, Hoboken (2006)
12. Mátyus, E.: (2018). arXiv:1801.05885
13. Brizuela, D., Kiefer, C., Krämer, M.: Phys. Rev. D 93, 104035 (2016)
14. Brizuela, D., Kiefer, C., Krämer, M.: Phys. Rev. D 94, 123527 (2016)
15. Gerlach, U.H.: Phys. Rev. 177, 1929 (1969)
16. Padmanabhan, T.: Pramana 35, L199 (1990)
17. Kiefer, C., Krämer, M.: Phys. Rev. Lett. 108, 021301 (2012)
18. Kiefer, C.: Lect. Notes Phys. 434, 170 (1994)
19. Lämmerzahl, C.: Phys. Lett. A 203, 12 (1995)

12 One should note, however, that the analogy between these two cases is limited, since we are dealing
with two fundamentally different equations—the Schrödinger equation and the Wheeler–DeWitt equation,
which is of Klein-Gordon type. The latter obeys a conservation law different from the former [18].

123

http://arxiv.org/abs/1801.05885


Semiclassical approximation of the Wheeler–DeWitt equation… Page 17 of 17 66

20. Steinwachs, C.F., van der Wild, M.L.: (2017). arXiv:1712.08543
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