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ABSTRACT

It is known that in the Bogdanov–Takens map there exists a zone
of transversal homoclinic intersections bounded by two curves
of homoclinic tangencies. In this paper, we derive an improved
asymptotic formula for the homoclinic parameter values of the BT
map. We compare two methods to approximate the Bogdanov–
Takens map by the time-1 flow of a vector-field, and find that they are
equivalent. We show that it is essential to include the second-order
terms w.r.t. the parameters to obtain a more accurate asymptotic
for the homoclinic zone. We show how to use this new homoclinic
asymptotic to compute branches of homoclinic tangencies in the BT
map numerically, obtaining the whole homoclinic structure of the
Bogdanov–Takens map.
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1. Introduction

The Bogdanov–Takens (BT) bifurcation plays an important role in the study of dynamical
systems since it implies a global (homoclinic) bifurcation [2]. Improved asymptotics of the
homoclinic bifurcation in a neighborhood of a BT bifurcation point for vector-fields have
been obtained recently [1,17]. In the present paper we discuss the homoclinic structure in
the two-parameter map

G(u, ν) :
(
u0
u1

)
�→

(
1 1
0 1

)(
u0
u1

)
+
(

0
ν1 + ν2u1 + au20 + bu0u1

)
, (1)

where u = (u0, u1) ∈ R
2, ν = (ν1, ν2) ∈ R

2 and (a, b) ∈ R
2. The map (1) (or simply the

BT map) is a truncated normal form of the 1:1 resonance bifurcation, see [2,16]. Several
analytic and numerical studies were devoted to this (or an equivalent) map, including
[3,7,9].

The map (1) can be approximated by the time-1 flow of a vector-field which has a BT
equilibrium at (0, 0) (the fixed point as for the map). The corresponding ODE system is
called the approximating system. The dynamic behavior of (1) is different from that of
the approximating system. In the approximating system, the parameters that correspond
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(a) (b)

Figure 1. The partial bifurcation diagram in the unfolding parameter space: (a) The homoclinic curve
ν2(ν1) of the approximating vector-field. (b) The homoclinic structure of the BT map. For points (ν1, ν2)
located between the lower and the upper curves (i.e. ν2(ν1)+ and ν2(ν1)

−), transversal homoclinic
orbits exist. These orbits collide on the curves of tangencies ν2(ν1)

+, ν2(ν1)−.

to the saddle homoclinic bifurcation form a curve, while a homoclinic zone bounded by
two curves corresponding to primary homoclinic tangencies exists in (1), see Figure 1.
If parameters (ν1, ν2) are located inside the homoclinic zone, then the BT map possesses
transversal homoclinic orbits.On the curves of the tangencies, the homoclinic orbits become
nontransversal.

A numerical method to continue branches of homoclinic orbits and homoclinic tan-
gencies, given a good starting point, was developed in [5,6] and implemented inMATLAB
[15]. This algorithm consists of finding a finite number of intersection points of the stable
and unstable manifolds of the saddle, i.e. the connecting orbit, by growing the manifolds
from linear approximations near the saddle [8]. These points can be continued in one
parameter until the limit point is detected, which corresponds to a tangency of the stable
and unstable manifolds. Continuation of such a limit point in two parameters gives the
homoclinic tangency curve. Therefore, if a good asymptotic for this parameter exists, one
can use known numerical methods to compute the homoclinic tangency.

Although the exact bifurcation structure is different for themap (1) and the approximat-
ing vector-field, the analysis of the vector field provides information that is hardly available
by considering the map alone. The approximating system allows to predict the homoclinic
structure that appears in the map, since this structure occurs near the saddle homoclinic
bifurcation in the approximating system. Our main goal throughout this paper is to derive
a better asymptotic formula for the homoclinic parameters of the BT map. We compare
two methods to approximate the BT map by a vector-field, namely, the interpolating
technique [7,9] and the method of Picard iterations [16,18]. We show the superiority of
the asymptotic based on the second method. The new asymptotic is derived by
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(a) considering all second-order terms w.r.t. coordinates and parameters in the app-
roximating system;

(b) using the accurate homoclinic asymptotic predictor from [1,17], instead of an
incorrect asymptotic from [4] (which is also used in [19]) or a rough Melnikov
approximation employed in [7,9,10].

The paper is organized as follows. In Section 2 we describe twomethods to approximate
the BT map by a vector-field. This gives two approximating systems. In Section 3 we
discuss asymptotics of the homoclinic parameter in both systems. Section 4 compares
both asymptotics with the actual homoclinic structure in the BTmap obtained by accurate
numerical continuation. The new asymptotic for the homoclinic parameters based on
Picard iterations proved to be the most accurate. Moreover, we show how to use this
asymptotic to compute branches of the homoclinic tangencies in the BT map.

2. Approximation by a flow

In this section we compare two methods used in the literature to approximate the map
(1) by a vector-field, namely, the formal interpolating technique and the method of Picard
iterations. The comparison demonstrates their formal equivalence.

2.1. Formal interpolationmethod

It is possible to formally interpolate the map G by a vector-field

Uν = P(u, ν)∂u0 + Q(u, ν)∂u1, (2)

where P and Q are formal power series in u0, u1, ν1 and ν2. Define the exponent,

eUν = I +
∑
n≥1

1
n!U

n
ν , (3)

where Un
ν stands for the vector-field Uν applied n-times. Generally speaking, we say that

Uν is the approximating vector-field of themapG if the time-1 shift along trajectories ofUν

(i.e. eUν
(
u0, u1

)
) coincides with G. Following [9], we say that the δ-order of the monomial

uk0 u
l
1 νm1 νn2 is given by the following weight function:

δ(uk0 u
l
1 νm1 νn2 ) = 2k + 3l + 4m + 2n. (4)

Thus the formal series P and Q can be expressed as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P =
∑
i≥3

pi(u0, u1, ν1, ν2),

Q =
∑
j≥4

qj(u0, u1, ν1, ν2),
(5)

where pi and qj are δ-homogenous polynomials of order i and j respectively, i.e.
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pi =
∑

2k+3l+4m+2n=i

cklmn uk0 u
l
1 νm1 νn2 ,

qj =
∑

2k+3l+4m+2n=j

dklmn uk0 u
l
1 νm1 νn2 .

(6)

with coefficients cklmn, dklmn ∈ R to be determined. We ignore the convergence question.
Then the vector-fieldUν can be expanded into a sum of δ-homogenous polynomial vector-
fields,

Uν =
∑
i≥1

Ui, Ui = pi+2∂u0 + qi+3∂u1. (7)

We note that when we apply Ui to a δ-homogeneous polynomial of δ-order n we obtain
a δ-homogenous polynomial of δ-order n + i, which explains the importance of the δ-
ordering. Moreover, the U1 vector-field happens to be Hamiltonian, which will be used
later on. Using the assumptions above, we are ready to reproduce for completeness the
proof of the following proposition from [10].
Lemma 1: For all sufficiently small ‖ν‖, there is a unique formal vector-field Z such that

(
G, ν

) = eZ
(
u, ν

)
. (8)

Proof: Assume that the vector-field Z can be expressed as

Z = P∂u0 + Q∂u1 + R∂ν1 + S∂ν2,

where P,Q, R and S are formal power series in u0, u1, ν1, ν2. Expand the vector-field Z into
a sum of δ-homogenous polynomial vector-fields

Z =
∑
i≥1

Zi.

Let πi denote the projection of a formal series onto the subspace of δ-homogenous
polynomials of δ-order i ≥ 1 and define⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi+2 = πi+2

(
u0 + u1 − eZu0

)
,

qi+3 = πi+3

(
u1 + g(u, ν) − eZu1

)
,

ri+4 = πi+4

(
ν1 − eZν1

)
,

si+2 = πi+2

(
ν2 − eZν2

)
.

(9)

where g(u, ν) := ν1 + ν2u1 + au20 + bu0u1. The right hand side of (9) are finite sums and
depend on pn1 with 3 ≤ n1 ≤ i − 2, qn2 with 4 ≤ n2 ≤ i − 1, rn3 with 5 ≤ n3 ≤ i and sn4
with 3 ≤ n4 ≤ i−2 as well as on the coefficients of the terms of

(
G, ν

)
. Define the equality

Zu0 =
∑
i≥3

pi, Zu1 =
∑
i≥4

qi, Zν1 =
∑
i≥5

ri, Zν2 =
∑
i≥3

si.
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Then by taking the leading order in (9), we obtain

Z1
(
u, ν

) = (
p3, q4, r5, s3

) = (
u1, ν1 + au20, 0, 0

)
. (10)

The polynomials p3, q4, r5 and s3 are uniquely defined and hence the recurrent polynomials
pi+2, qi+3, ri+4 and si+2, i ≥ 2 are also uniquely defined. Also, it is clear that the
polynomials ri+4, si+2 are equal to zero for all i ≥ 2. Thus we can write the δ-homogenous
polynomials vector-field Zi, i ≥ 2 as follows:

Zi = (
Ui, 0

)
,

where
Ui = pi+2∂u0 + qi+3∂u1, i ≥ 2. (11)

This vector-field Z satisfies (8).

With a suitable number of terms in (3) and solving (9) for i ≥ 2, we obtain

U1 = u1∂u0 + (
ν1 + au20

)
∂u1,

U2 = −1
2
(
ν1 + au20

)
∂u0 + (

ν2u1 + (
b − a

)
u0u1

)
∂u1,

U3 =
(

−1
2
ν2u1 +

(
2
3
a − 1

2
b
)
u0u1

)
∂u0 +

(
− 1

2
(
ν1ν2 + aν2u20

)
+ 1

2

(
1
3
a − b

)
u21 +

(
2
3
a − 1

2
b
)

ν1u0 +
(
a2 − 1

2
ab
)
u30

)
∂u1,

...

It follows from Lemma 1 that the map (1) can be formally interpolated by the autonomous
vector-field

Uν = U1 + U2 + U3 + . . . . (12)

2.2. Themethod of Picard iterations

Following [16], we start with writing (1) near the fixed point as a 4-dimensional map

(
G, ν

) : (u, ν) �→ A
(
u, ν

)+
(
F(2)

ν , 0
)
, (13)

where

A =

⎛
⎜⎜⎝
1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , F(2)

ν :=
(

0
ν2u1 + au20 + bu0u1

)
.

Assume that the approximating system to (13) has the same equilibrium (i.e. the fixed
point of (1)), and can be written as

(
u̇, ν̇

) = �
(
u, ν

)+
(
f (2)
ν (u, ν), 0

)
, (14)
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where � is a 4 × 4 matrix and the components of the two-dimensional vector f (2)
ν (u) are

smooth polynomials of order 2 in u0, u1, ν1 and ν2 with coefficients to be determined.
The flow ϕt

ν(u) generated from the component (u̇0, u̇1) in (14) can be seen as the first two
components of the flow (

u, ν
) �→ φt

ν(u) (15)

generated by (14), i.e. φt
ν(u) := (

ϕt
ν(u), ν

)T. The method of Picard iterations [18] can be
used to approximate the flowmap (15). If the corresponding terms in the generated time-1
flow, i.e. φ1

ν(u) and (13) coincide, then system (14) is said to be the approximating system
of the map (13). The solution of the linear part of (14) can be used as initial data for the
Picard iterations. Therefore, we set

U0(t) = e�t (u, ν) . (16)

Since we seek a flow whose time-1 orbits coincide with (13), we have

e� = A.

Solving for � gives

� =

⎛
⎜⎜⎝
0 1 − 1

2 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Now, we perform a Picard iteration to compute the second order terms to φ1:

U1(t) = e�t (u, ν)T +
∫ t

0
e�
(
t−τ

) (
f (2)
ν (U0(τ )), 0

)
dτ. (17)

Comparing the coefficients of the similar terms in (17) for t = 1 and (13) specifies the
components of f (2)

ν (u). Thus, we have the following extension of Lemma 9.8 from [16,
Section 9.5.2].
Lemma 2: For all sufficiently small ‖ν‖, the map (1) can be represented as

u �→ ϕ1
ν(u) + O (‖(u, ν)‖3) , (18)

where ϕt
ν(u) is the flow of a planar system

u̇ =
(
0 1
0 0

)
u +

(
−1
2
ν1

ν1

)
+ f (2)

ν (u), (19)

where

f (2)
ν (u) =

(
ξ00(ν)

ζ00(ν)

)
+
(

ξ10(ν)u0 + ξ01(ν)u1
ζ10(ν)u0 + ζ01(ν)u1

)
+
⎛
⎜⎝

1
2
ξ20u20 + ξ11u0u1 + 1

2
ξ02u21

1
2
ζ20u20 + ζ11u0u1 + 1

2
ζ02u21

⎞
⎟⎠
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with

ξ00(ν) = 1
20
(
2b − a

)
ν21 + 1

3
ν1ν2, ζ00(ν) =

(
1
30

a − 1
12

b
)

ν21 − 1
2
ν1ν2,

ξ10(ν) =
(
1
3
b − 1

2
a
)

ν1, ζ10
(
ν
) =

(
2
3
a − 1

2
b
)

ν1

ξ01
(
ν
) =

(
1
5
a − 5

12
b
)

ν1 − 1
2
ν2, ζ01

(
ν
) =

(
1
2
b − 1

6
a
)

ν1 + ν2,

ξ20 = −a, ζ20 = 2a,

ξ11 =
(
2
3
a − 1

2
b
)
, ζ11 = (

b − a
)
,

ξ02 =
(
2
3
b − 1

3
a
)
, ζ02 = 1

3
a − b.

Note that, if we reorder the terms of (19) according to (4), then up to the quadratic
terms in (u, ν), the corresponding terms of the systems (12) and (19) coincide. Adding
further steps in the interpolation method and in the Picard iterations will give us:

∞∑
i=1

Ui ≡
(
0 1
0 0

)
uT +

(
− 1

2ν1

ν1

)
+

∞∑
i=2

f (n)
ν (u).

Thus the interpolating technique and the method of Picard iteration are equivalent.
Nevertheless, truncations to the same iteration are different in the two methods, leading
to different predictors.

3. The homoclinic asymptotic

In this sectionwe derive an improved asymptotic formula for the borders of the homoclinic
zone in the BT map.

3.1. An asymptotic based onMelnikov integral

First we proceed as in [9] and consider the vector-field (12). The first order vector-fieldU1
defines a Hamiltonian system with the energy function

H = 1
2
u̇20 + V(u0, ν1) − k, k ∈ R, (20)

where u̇0 = u1 and the function V(u0, ν1) is given by

V(u0, ν1) = −
∫ u0

0

(
ν1 + au2

)
du = −

(
ν1u0 + au30

3

)
.

If −ν1
a ≥ 0 then equation (20) has a homoclinic loop defined by k = 2

3

√(−ν1
)3

a . The
function V(u0, ν1) and the phase portrait of the homoclinic solution of (20) are shown in
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Figure 2. The function V(u0, ν1) and the phase portrait of equation (20).

Figure 2. The solution curve in the
(
u0, u1

)
-plane satisfies the homoclinic condition i.e. the

phase point
(
u0, u1

)
approaches the saddle point

(
us0, u

s
1
) =

(√−ν1

a
, 0

)
, sign(ν1) = −sign(a), (21)

as t → ±∞. The related homoclinic solution can be found explicitly

L0(t) = (
u0(t), u1(t)

) =
(√−ν1

a

(
1 − 3 sech2

(
t

4√−aν1√
2

))
,
d
dt
u0(t)

)
. (22)

This solution persists for Uν ≈ U1 + U2 + U3 if the Melnikov integral

M(ν) =
∫ ∞

−∞

(
U2h + U3h

)∣∣∣
L0(t)

dt

= −24
7

(
b − 2a

)
a

ν21 + 24
5
√
a
( − ν1)

3
2 ν2

(23)

vanishes [13]. The functionM(ν) has zero along the curve

νM2 = 5
7
√
a
(
b − 2a

)√−ν1, (24)

which gives a rough asymptotic for the homoclinic curve in the parameter space obtained
in [9].

3.2. Asymptotic based on Picard iteration and a higher-order prediction

It is clear that system (19) has a BT point u = 0 at ν = 0. The Jacobian matrix of (19)
evaluated at the BT point is

A =
(
0 1
0 0

)
.
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At the BT point, the Taylor expansion of the R.H.S. of (19) can be expressed as

u̇ = Au+ J1ν + 1
2
B(u, u)+A1(u, ν)+ 1

2
J2(ν, ν)+ 1

6
C(u, u, u)+ 1

2
B1(u, u, ν)+ . . . . (25)

where

J1 =
(− 1

2 0
1 0

)
, B(u, v) =

(( 2
3a − 1

2b
) (
u1v0 + u0v1

)+ ( 2
3b − 1

3a
)
u1v1 − au0v0(

b − a
) (
u1v0 + u0v1

)+ ( 1
3a − b

)
u1v1 + 2au0v0

)
,

A1(u, ν) =
(( 1

3b − 1
2a
)
u0ν1 + ( 1

5a − 5
12b
)
u1ν1 − 1

2u1ν2( 2
3a − 1

2b
)
u0ν1 + ( 1

2b − 1
6a
)
u1ν1 + u1ν2

)
,

J2(ν,μ) =
(( 1

5b − 1
10a
)
ν1μ1 + 1

3ν2μ1 + 1
3ν1μ2( 1

15a − 1
6b
)
ν1μ1 − 1

2ν2μ1 − 1
2ν1μ2

)
, B1 = C =

(
0
0

)
.

The homoclinic solution of (25) then can be computed by the method described in
[17, Appendix B]. The homoclinic parameter of (25) is found as

⎛
⎝ ν1

ν2

⎞
⎠ = ε2

a

⎛
⎝ 0

10
7
(
b − 2a

)
⎞
⎠− ε4

a

⎛
⎝ 4

δ

⎞
⎠+ O (

ε5
)
, 0 < ε � 1, (26)

where

δ := 1
2401a2

(
b − 2a

) (
857a2 − 3650ab − 288b2

)+ 2a2 − 5ab + b2

a
. (27)

Using

ε ≈ 4

√
a
(−ν1

)
4

, (28)

we obtain the following improved approximation for the homoclinic bifurcation curve of
(19) in the parameter space (ν1, ν2):

ν2 = 5
7
√
a
(
b − 2a

)√−ν1 + 1
4
δν1 + O

(
|ν1| 54

)
, (29)

where δ is defined by (27). Note that the first term in (29) coincides with νM2 from (24), as
one could expect.

4. The homoclinic zone of the Bogdanov–Takensmap

To check whether the homoclinic asymptotic parameters (24) and (29) are located inside
the homoclinic zone of (1), we use the MATLAB interactive toolbox for numerical study
of smooth maps MatContM to compute the stable and unstable manifolds of the saddle at
the approximated homoclinic parameter. MatContM uses an algorithm originally adopted
from [8] (for details on the algorithm used see [14]). We set a = b = 1 and ν1 = −0.15.
Then we use the saddle fixed point (21) and the asymptotics of the homoclinic parameter
(24), (29) to obtain

(
us0, u

s
1
) = (0.387298, 0) and ν2 = −0.249762, νM2 = −0.276642.
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(a) (b)

Figure 3. The grown stable and unstable manifolds of (1) for a = b = 1, ν1 = −0.15, (us0, u
s
1) =

(0.387298, 0) and (a) νM2 = −0.276642, (b) ν2 = −0.249762.

The grown stable and unstable manifolds of the saddle (us0, u
s
1) at (ν1, ν

M
2 ) and (ν1, ν2) are

shown in Figure 3(a) and (b), respectively. For ν1 = −0.15, it is clear that the predicted
homoclinic parameter based on (24) is located outside the homoclinic zone of (1). The
result is not surprising because (24) is derived by the Melnikov method which gives the
zero-order approximation for the homoclinic parameter. In Figure 3(b) the stable and
unstablemanifolds of the saddle (us0, u

s
1) intersect transversally. This immediately indicates

the usefulness of the new asymptotic (29).
Using MatContM we compute the intersection points of the manifolds presented in

Figure 3(b). These points are continued in one parameter (ν1 freed while ν2 is fixed)
until two limit points are detected, which correspond to tangencies of the stable and
unstable manifolds, see Figure 4(a). Next, Figure 4(b) and (c) show the corresponding
tangential homoclinic orbit in the state space at the limit points LP1 and LP2 in Figure
4(a), respectively. Continuation of such limit points in two parameters (ν1, ν2) gives the
full homoclinic tangencies structure shown in Figure 4(d).

5. Discussion

Since we now have the whole homoclinic structure in the BT map, we can compare the
numerically computed tangency brancheswith the asymptotic of the homoclinic curve (29)
and the homoclinic curve obtained by (24) (see also [7,11]), see Figure 5. This comparison
demonstrates the advantage of the asymptotic (29) for bigger |ν1|. Far away from the BT
point, the predicted curve is not located in the homoclinic zone (i.e. between the homoclinic
tangencies). When we approach the BT point the prediction enters the homoclinic zone
and we believe that it stays there.

We have observed that accounting for cubic terms in the approximating system (14)
via one extra Picard iteration does not improve the accuracy of the prediction but rather
worsen it. This could be related to the fact that already the second Picard iterate employed
in Lemma 2 coincides with the BT map (1). Further investigation of this phenomenon is
required. Note also that the numerically computed homoclinic tangency curves deviate
from the “exact" ones due to the approximate boundary conditions used.
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(a) (b)

(c) (d)

Figure 4. (a) The limit points are computed by continuing the homoclinic points in Figure 3(b). During
continuation, ν1 is freed while ν2 is fixed, (b) Stable and unstable manifolds along the first homoclinic
tangential point (i.e. LP1), (c) Stable and unstable manifolds along the second homoclinic tangential
point (i.e. LP2), (d) Two branches of the tangential homoclinic orbits are computed by continuing both
of the LP’s on Figure 4(a) with ν1 and ν2 free. Upper (blue) is LP2, lower (black) is LP1.

The obtained asymptotic (29) predicts only the location of the homoclinic wedge in the
parameter plane. The problem to predict a homoclinic orbit in the BT map is much more
involved, since the time-1map of the approximatingODE system at homoclinic parameter
values has a continuous family of such orbits, while only two primary homoclinic orbits
exist in the map. A possible tool to deal with this problem is the Melnikov function for
planar maps [12]. This function has to be evaluated along the homoclinic orbit of the
approximating system, and its zeroes provide the asymptotic position of the homoclinic
orbits as intersections of the stable and unstable invariant manifolds of the saddle. In
principle, this allows to approximate both transverse and nontransverse homoclinic orbits.
This issue was ignored in [19], where an arbitrary point of the homoclinic orbit in the
approximating system was taken as a point in the homoclinic orbit of the map.

The analysis of the BT map is the first step towards developing a robust predictor for
homoclinic orbits bifurcating from a 1:1 resonance fixed point in generic n-dimensional
smooth maps. Such a predictor should combine correct asymptotics of the bifurcating
homoclinic orbits in the normal form with the parameter-dependent reduction to the
two-dimensional center manifold. The former would probably require to add some extra
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Figure 5. Numerically computed branches of homoclinic tangencies (solid blue curves, the upper is LP2,
the lower is LP1) of (1) are compared with: the asymptotic of the homoclinic curve (29) (dashed curve)
and the rough approximation (24) (dotted curve). The advantage of the proposed asymptotic is evident.

terms to the BTmap (1), while the latter can easily be done using the homological equation
technique applied in the ODE-case in [1,17].
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