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ABSTRACT

The distribution of marine species is often modeled using Eulerian approaches, in which changes to population
density or abundance are calculated at fixed locations in space. Conversely, Lagrangian, or individual-based,
models simulate the movement of individual particles moving in continuous space, with broader-scale patterns
such as distribution being an emergent property of many, potentially adaptive, individuals. These models offer
advantages in examining dynamics across spatiotemporal scales and making comparisons with observations
from individual-scale data.

Here, we introduce and describe such a model, the Individual-based Kinesis, Advection and Movement of Ocean
ANimAls model (Ikamoana), which we use to replicate the movement processes of an existing Eulerian model for
marine predators (the Spatial Ecosystem and Population Dynamics Model, SEAPODYM). Ikamoana simulates the
movement of either individual or groups of animals by physical ocean currents, habitat-dependent stochastic
movements (kinesis), and taxis movements representing active searching behaviours.

Applying our model to Pacific skipjack tuna (Katsuwonus pelamis), we show that it accurately replicates the
evolution of density distribution simulated by SEAPODYM with low time-mean error and a spatial correlation of
density that exceeds 0.96 at all times. We demonstrate how the Lagrangian approach permits easy tracking of
individuals’ trajectories for examining connectivity between different regions, and show how the model can
provide independent estimates of transfer rates between commonly used assessment regions. In particular, we
find that retention rates in most assessment regions are considerably smaller (up to a factor of 2) than those
estimated by this population of skipjack’s primary assessment model. Moreover, these rates are sensitive to ocean
state (e.g. El Nino vs La Nina) and so assuming fixed transfer rates between regions may lead to spurious stock
estimates. A novel feature of the Lagrangian approach is that individual schools can be tracked through time, and
we demonstrate that movement between two assessment regions at broad temporal scales includes extended
transits through other regions at finer-scales.

Finally, we discuss the utility of this modeling framework for the management of marine reserves, designing
effective monitoring programmes, and exploring hypotheses regarding the behaviour of hard-to-observe oceanic
animals.

1. Introduction Ocean (IATTC, 2016; Williams and Terawasi, 2016). Current assess-
ments of this species suggest that Pacific stocks are not overfished, but

Skipjack tuna (Katsuwonus pelamis) is the third most exploited wild that catches are approaching a fully exploited state (Maunder, 2014;
fish species in the world (FAO, 2016), with around 70% of the esti- McKechnie et al., 2016a). However, considerable uncertainty exists
mated three million tonnes landed globally originating from the Pacific regarding the spatial parameters of the stock assessment models, such
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as movement rates and recruitment distribution, with models known to
be highly sensitive to these parameters (McKechnie et al., 2016a,
2016b).

Gaining a greater understanding of these processes in free-ranging
marine predators such as tunas is non-trivial. The behaviour of these
animals is a result of many ecological interactions among individuals
and their conspecifics (Parrish, 1999), the animals they prey upon
(Bertrand et al., 2002; Lander et al., 2011), and abiotic factors asso-
ciated with their environment (Evans et al., 2013). Technological de-
velopments have provided an increased ability to investigate the be-
haviour of individual marine animals in-situ. However, the lack of
concurrent information on the local biotic and abiotic environmental
conditions means that hypothesis-testing based on data gained from
observations such as tagging experiments is difficult (Dagorn et al.,
2001; Kirby, 2001). In such situations, the use of simulation models as
quantifiable thought-experiments can be a useful tool in exploring hy-
potheses and bracketing uncertainty (Bélisle, 2005; Di Paolo et al.,
2000; Rykiel, 1996).

Current spatial population dynamics models for skipjack and other
tunas typically employ state variables of biomass or density, assuming
an abstraction at the level of the individual. Most also calculate changes
in a population through time in a single fixed location or across fixed
points in space (Fournier et al., 1998; Hampton and Fournier, 2001;
Lehodey et al., 2008). This approach offers robust parameter optimi-
sation from data, and computational efficiency once these parameters
have been estimated. In contrast, Lagrangian framework models ex-
amine the evolution of properties following the trajectory of discrete
individuals. In an ecological context, these are usually termed in-
dividual-based models (IBMs). The IBM approach has a number of
benefits over Eulerian and state variable models when simulating the
movement and behaviour of animal populations (Grimm and Railsback,
2005); stochasticity in behaviours across individuals can be easily in-
corporated; simulated individuals can exhibit or adapt their behaviours
separately, including in response to other individuals; and the state and
position of individuals can be tracked throughout a simulation, making
IBMs particularly well-suited to examining connectivity and variability
of habitat-use for highly mobile animals. Modelled individuals have
trajectories consisting of continuous positions in time and space, and
when moved by purely deterministic processes, these trajectories can be
simulated backwards in time (Paris et al., 2013). Such individual-scale
analysis is not possible using the tracer outputs from Eulerian models.
While a number of Eulerian stock assessment and ecosystem models
exist for tropical tunas (Hampton and Fournier, 2001; Maury, 2010;
Senina et al., 2008), there are few tools to examine movement in the
context of tagging, mixing and connectivity.

IBMs simulating the dynamics of oceanic animals have been out-
lined or developed in a number of studies for both population dynamics
(e.g. Brochier et al., 2008; Kirby et al., 2003; Okunishi et al., 2012) or to
examine specific questions surrounding movement (e.g. Dagorn et al.,
2000; Fore et al., 2009; Huse and Fiksen, 2010). Due to the nature of
the pelagic environment, fisheries-independent surveys are usually not
feasible, and much of the data obtained on wild animal populations is
sampled from observations at the individual level through mark-re-
capture tagging, biologging, sightings, and catch sampling (Ford et al.,
2013; Hare et al., 2015; Leroy et al., 2013a; Scutt Phillips et al., 2017).
However, because population dynamics models typically consider
large-scale ecological phenomena through mathematical abstractions of
these individual-scale processes, informing such models with observa-
tions obtained at the individual level remains a challenge (Dagorn et al.,
2001; Freon and Misund, 1998; Sippel et al., 2014).

In Eulerian population dynamics models of exploited fish popula-
tions, parameters such as catchability, inter-region migration coeffi-
cients, and habitat preference aim to encompass the emergent large-
scale effect of many small- and individual-scale mechanisms. These
assumptions can be tested using IBMs that are informed directly by
individual-level observations incorporated into the behaviour of
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individuals in the model. The emergent properties of the IBM can be
examined at a relevant scale for comparison with the population model,
identifying if current parameters or model structure are appropriately
encompassing dynamics as well as bracketing the uncertainty around
such processes.

Here, we introduce an IBM suited to the purpose of testing the as-
sumptions of Eulerian models regarding connectivity and movement
dynamics of animal populations: the Individual-based Kinesis,
Advection and Movement of Ocean ANimAls model (Ikamoana),
parameterised for skipjack tuna in the Pacific Ocean. Simulating a
single cohort (fish of a single age class) through time using physical
ocean circulation and skipjack tuna habitat fields derived from a tuna-
forage sub-model, we replicate the predicted distribution of this cohort
from an existing Eulerian numerical ecosystem model parameterised for
the same species: the Spatial Ecosystem And POpulation DYnamics
Model (SEAPODYM: Lehodey et al., 2008; Senina et al., 2008). We first
detail the movement assumptions of SEAPODYM, before describing
how they are implemented in a Lagrangian framework within our
Ikamoana model. Two simulations using forcing fields from different
temporal scenarios are carried out, one during a largely ENSO neutral
period (2003-2007), the other during a period of large variations in
ENSO phase (1997-2001). We then show how individual trajectories
can be used to examine movement and connectivity between stock
assessment regions used for fisheries management, and compare these
results to connectivity estimates from a second Eulerian model (MUL-
TIFAN-CL: Fournier et al., 1998; Hampton and Fournier, 2001;
McKechnie et al., 2016a), used by the Pacific Community for assessing
the impact of fishing on the western and central Pacific ocean (WCPO)
skipjack tuna stock. Finally, our results and approach are discussed in
the context of further informing stock assessment of tropical tuna spe-
cies, and examining assumptions on movement behaviour in free-
roaming oceanic animals.

2. Materials and methods
2.1. Movement model

Here, we briefly describe the movement model of SEAPODYM,
alongside the calculation of forcing components and key equations,
before detailing the required individual-based reformulation of these
terms in Ikamoana.

2.2. SEAPODYM

SEAPODYM is based on a Eulerian advection-diffusion-reaction
approach to modelling the distribution of pelagic fish, as if the density
of the fish were a continuous tracer in a two-dimensional (longitude,
latitude) field. The reaction component governs the change in abun-
dance of fish through recruitment and mortality at different life stages.
However, for comparison with our movement IBM, we focus only on the
movement of young and adult tuna in SEAPODYM by following a
single, unfished cohort through time with natural mortality set at zero.

Three distinct processes are assumed in order to simulate the
movement of young and adult tuna in SEAPODYM. First, physical ocean
currents (derived from the Nucleus for European Modelling of the
Ocean, NEMO) provide velocity fields for the passive advection of tuna.
Second, an active taxis represents directed movements following the
gradient of an age-dependent habitat field derived from a tuna forage
sub-model (see below), thus driving fish density towards more fa-
vourable areas (Griinbaum, 1999). Finally, a non-directional kinesis
component accounts for small scale and assumed random movements
characteristic of searching behaviour (Okubo and Levin, 2001; Turchin,

1 A word existing across several Polynesian languages meaning ‘ocean fish’, from ika
‘fish’ + moana ‘ocean’.



J. Scutt Phillips et al.

1997). By diffusing tuna density at a rate that is inversely proportional
to the quality of local habitat, diffusion is greater in regions of poor
habitat and vice versa. Detailed information on the modelling as-
sumptions and functional forms of movement parameters can be found
in Lehodey et al. (2008) and Senina et al. (2008). The SEAPODYM
model parameters were fitted using maximum likelihood estimation
(MLE) on catch and effort data, size data, and information from tag
returns. Model evaluation included examination of spatial residuals and
cross-validation using proportions of these data not used in fitting. Full
details of these evaluations can be found in Senina et al. (2008, 2016).

The change in density N of a cohort at age a over time, excluding
recruitment and mortality, is therefore described in a Eulerian frame-
work by:

ON,
ot

= —V-(UN, + U!N,) + V-(K,VN,) (1)
Here, U° is a vector of zonal and meridional ocean current velocities
averaged over upper ocean model layers accessible to tuna (which is an
age dependant function of oxygen and temperature). U is a vector of
directed zonal and meridional velocity (taxis). K, is a spatially and
temporally varying diffusion coefficient (Eq. (3)). Eq. (1) is approxi-
mated in SEAPODYM as a discrete-continuous system on a regular grid
of cells at a given spatial resolution, and a discretised time step of At
(see Lehodey et al., 2008).

Both K, and U} depend on spatially and temporally varying age-
dependent habitat. This habitat field is related to the biomass of forage
species derived from a mid-trophic micronekton sub-model (Lehodey
et al., 2010). The habitat index is a function of the forage biomass ac-
cessible to tuna of age a, and is represented as an index, H,, which
varies between zero and one. Accessibility to forage depends on ocean
temperature and dissolved oxygen. All parameters of the habitat index
are estimated in MLE approach (Senina et al., 2016, 2008).

The vector of directed taxis from Eq. (1), U%, represents the directed
movement of tuna towards more favourable habitat. It is proportional
to age, maximum sustainable swimming speed, V4, and the change in
H, in the zonal (x) or meridional (y) direction and is calculated using
central differencing with forward or backward differencing at the
boundaries such that,

t Vmax (La)bVHa

 max(||VH,|) (&)

where Vo is the maximum swimming speed in body lengths per
second, L, is the mean fork-length-at-age in meters per body length, as
predicted by a von Bertalanffy growth curve for Pacific skipjack tuna
(Rice et al., 2014), and b is a constant slope parameter. Taxis velocity
therefore tends towards the maximal sustainable speed of a fish at a
given length where the habitat gradient also tends towards its max-
imum value.

The final term in Eq. (1) (V-(K,VN,)) represents the stochastic
movement of tuna sampling their environment, with searching distance
becoming larger as the habitat becomes less favourable. The diffusion
coefficient, K, of tuna is spatially varying and is non-linearly related to
the age-dependant tuna habitat quality index. This causes tuna to dif-
fuse at their maximum rate, 0D,,y,, Where habitat quality is minimal
(H, = 0), and at their minimum rate, (1—c)oD,,., where the habitat
quality is maximal (H, = 1). The diffusion is given by:

Ka = UDmaxa(l_CHap) (3)

where p, ¢ and o are positive constants estimated using a MLE approach
based on observed catch and mark-recapture tagging data (Senina et al.,
2016).
Maximal diffusivity is given by
VE, At
4 “4)

where Vi, is an age-dependent velocity fixed at one body length-at-age

Dmaxu =
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per second, and At is the time step of the discretised model.

For conditions that result in a combined velocity from advection and
taxis exceeding two degrees per two days, velocity is set at two degrees
per two-days. No corresponding limit is set on large movements re-
sulting from diffusion.

2.3. Tkamoana

In an individual-based, or Lagrangian, framework, we do not con-
sider the density of tuna within a particular area, but rather the
movement of ‘particles’ representing individual or cohesive groups of
animals occupying continuous positions in space. For our application to
skipjack tuna these individual particles represent small, discrete schools
of animals (see Model Implementation below), which are referred to
using the term ‘school’.

The x, y position of an individual particle representing a school of
skipjack tuna p, over the discretised time step dt, is given by:

% = D)g(xps yp’ [) + D)lc(xps yp’ [) + D;[ci (xp’ yp’ t)

d;
o = D5 (g, Yo ) + Dy (%, Yy 1) + Dy (xp, s 1) )

where D¢, Df and D? are the x and y displacements related to the ocean
currents, active taxis, and diffusion terms, respectively. To the extent
that it is possible, these terms are the Lagrangian reformulation of the
SEAPODYM advection, taxis and diffusion terms. In a Lagrangian fra-
mework, the interpretation of these terms must be reconsidered. At the
temporal scale of our model, the effect of physical ocean currents can be
assumed to act on a cohesive school of fish homogenously. Similarly,
the phenomena of diffusion is known to emerge from the random
movements of many individual agents (see below). The taxis behaviour
of SEAPODYM implies knowledge of the underlying habitat gradient.
Schooling is known to provide more effective environmental sampling
and information transfer for fishes (Pitcher and Parrish, 1993). Our
Ikamoana implementation for skipjack tuna is structured at the ecolo-
gical scale of the school, and so we may assume that some environ-
mental sampling and information exchange between individuals occurs
that is not explicitly simulated as part of the SEAPODYM movement
model replicated here.

The physical ocean advection components (D) are calculated using
velocity fields at the position (x,, y,) of a school over the time step.
Similarly, the distance moved via taxis is the product of the velocity
field given by U4 (Eq. (2) over the time step. A fourth order Runge-
Kutta scheme is used to integrate both of these deterministic advection
terms through time (Butcher, 2016; van Sebille et al., 2017).

In an individual-based framework, Eulerian diffusion can be ap-
proximated by a simple random walk with step length proportional to
diffusivity, K, when the diffusivity is spatially uniform. However, in the
case of a non-uniform diffusivity field this approach leads to the spur-
ious accumulation of schools (particles) in areas of low diffusivity
(Spagnol et al., 2002). To correct for this, the pure random walk must
include an additional deterministic term that moves schools away from
these low diffusion areas (Visser, 1997).

The movement of schools associated with a non-uniform diffusivity
is given by (from Ross and Sharples, 2004):

9Kq
ox

D = §;32KAt/r + Z2at

DY = £32KAL/r + Z2At

(6)

where &; and &, are random numbers drawn from a uniform distribution
with zero mean and variance r (e.g. r = 1/3 when £ is drawn from a
uniform distribution, £ € [—1, 1]). The first term on the right-hand side
represents an unbiased random walk, while the second term is the ad-
ditional deterministic advection correction that counters the accumu-
lation of schools in regions of low K,. This stochastic diffusion com-
ponent of equation (5) is numerically integrated using a simple Euler-
forward scheme. The values of all constant parameters are given in
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Table 1
List of parameters and values estimated from catch, effort and tagging data
(Senina et al., 2016).

Parameter  Value Description

Vinax 2.226 ~ Maximum sustainable swimming speed (body lengths/
second)

b 0.834 Slope parameter for maximum sustainable swimming speed
to fish length relationship

o 0.176  Scaling parameter for maximum diffusivity, Dyax

c 0.662  Diffusivity function habitat coefficient

P 3 Exponent parameter for diffusivity function

r 1/3 Variance of random uniform probability distribution

Habitat Index

4°8

6°S

04

Latitude

8°S

0.2

10°S

Currents

Currents
Diffusion

Currents
Diffusion
Taxis

Longitude

Fig. 1. Movement trajectories from three individual schools initialised at the
same point and simulated for three months: one representing a school solely
under the influence of physical ocean currents, one moved by both currents and
diffusive behaviours, and one combining advection, diffusion, and an active
taxis that follows the gradients of favourable habitat. Skipjack tuna habitat
index is plotted by cell underneath.

table 1.

An example of the effect of ocean advection, active taxis and biased
random walk on the trajectory of a single school is shown in Fig. 1.
After the addition of taxis behaviour the school quickly moves to the
centre patch of consistently high habitat.

2.4. Model implementation

Ikamoana is built upon the recently developed open-source
Lagrangian particle simulation framework Parcels (Lange and van
Sebille, 2017). In this study, we used physical ocean current and habitat
forcing fields identical to those driving recent SEAPODYM solutions for
skipjack tuna (detailed below). To replicate the same methodology as
SEAPODYM, we used nearest-neighbour interpolation when sampling
advection and habitat fields at school locations, and no temporal in-
terpolation between time steps was undertaken. The habitat field was
bounded by missing values at the edge of the model domain, pathways
to the Indian Ocean through the Timor and Andaman Seas and the
Southern Ocean, and large landmasses. In the Lagrangian formulation,
if the random, ‘diffusive’ movements resulted in individuals moving
outside of these boundaries, the probability distribution of potential
displacements was randomly searched by recursively re-drawing the
stochastic component of equation (6) until a valid move kept the in-
dividual inside the domain.

Like many pelagic fishes, skipjack tuna are known to school, and so
it is not necessary to simulate each individual fish. For our study, we
assume that the simulated cohort can be packaged into ‘super-
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individuals’, representing the minimum number of fish that naturally
form a school. This is appropriate when these super-individuals share
homogenous properties (Hellweger et al., 2016), which in this case is
school behaviour and position in space. Although multiple schools may
move to the same location in the model to simulate the formation of
temporary large schools, which persist for as long as conditions drive
these schools to the same location before reforming, it is important that
the total population is not packaged into super-individual schools of
sizes that would overestimate density projections due to an erroneous
school-size assumption. We therefore required an estimate of the ap-
proximate minimum number of fish that might form a school of age
five-month skipjack tuna.

A representative number of fish within a school can be estimated
from observer sampling of catch in the WCPO purse seine fishery.
Estimated total tonnage by species and length-frequency sampling are
available for each purse seine set made during the period 2004-2016.
However, skipjack tuna of five-months age are ‘pre-recruits’ and only
incidentally caught by purse seine gears. In order to provide an in-
dicative estimate of a minimum number of fish of this age that could
form a cohesive school, we examined mono-specific sets containing
only adult skipjack tuna of narrow length distribution ( = 2 cm fork
length). We used the observer-estimated weight and length of fish in
each of these sets to calculate the approximate age and number of fish
that would have been present in the school at time of capture, using
established length-at-age and weight-at-length relationships (Rice et al.,
2014), respectively. The number of fish from a school that had con-
tained this many fish at time of capture was reduced using an inverse
natural mortality function (McKechnie et al., 2016a) to estimate the
number of fish present when aged five months. This approach makes a
somewhat simplistic assumption that natural mortality was the only
mechanism responsible for changing school size prior to entry into the
purse seine fishery. The smallest 5th percentile in this distribution of
projected school-sizes was around 1000 fish, which we assumed to be
an appropriate estimate for a minimum super-individual size within our
simulation.

We replicated the simulated skipjack tuna distribution from a recent
SEAPODYM solution estimated using fisheries and mark-recapture
tagging data (Senina et al., 2016). Physical and biogeochemical forcing
fields were used, taken from the NEMO-PISCES ocean model (Aumont
et al., 2015), with at-age skipjack tuna habitat fields calculated from a
tuna-forage sub-model (Lehodey et al., 2010). Forcing fields were at a
1° X 1° resolution and updated at monthly intervals assumed to be
30 days, beginning in February and running for five years. The move-
ment behaviours of a single cohort of SEAPODYM-defined young to
adult skipjack tuna were simulated through time from five months of
age, with no natural or fishing mortality included as we wished to ex-
amine only the “pristine” distribution of this cohort as an emergent
property of our movement model.

The total number of individuals in the cohort was packaged into a
smaller number of ‘super-individuals’, which we define here as in-
dividual schools. Movements of these schools were calculated at two-
day time steps, resulting in 15 positions each monthly period. The ages
of skipjack tuna schools were incremented at the end of each month,
when school density by grid cell was also calculated.

2.5. Simulation experiments

The distribution of simulated skipjack tuna cohorts was examined
across two five-year periods with contrasting environmental conditions:
the period 2003-2007, representing a relatively neutral period with
respect the El Nifio Southern Oscillation (ENSO, the largest driver of
inter-annual ocean changes in the tropical Pacific region), and
1997-2001, which includes both a strong El Nifio (1997/98) event and
La Nina (1998/99) event. The initial distribution of five-month old
skipjack tuna was obtained by Monte Carlo sampling the spatial dis-
tribution of SEAPODYM projected density for tuna at the same age.
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Spearman rank correlation coefficient
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Fig. 2. Spearman’s rank correlation coefficient between SEAPODYM and
Tkamoana 1° X 1° cell relative density at time 0.

Each school was placed at a random location within a cell, which was
selected with probability equal to the relative proportion of the cohort
population present in that cell as simulated by SEAPODYM. Comparing
density values of a Eulerian field with an approximation of the same
solution using a finite number of individual schools in a Lagrangian
model necessarily results in some discrepancies. Even at the time of
initialisation there were small differences in the distribution of densities
for the two models, when by definition the distribution of individual
schools in Ikamoana is a direct function of the distribution of density in
SEAPODYM. The Spearman rank correlation coefficient between the
density distribution of this initial time step between SEAPODYM and
Ikamoana was calculated for increasing numbers of schools (Fig. 2).
Correlation between the two models increased sharply until 10,000
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schools, and began to asymptote after 1 million.

In the current SEAPODYM solution for skipjack tuna, there are no
density-dependent mechanisms for young and adult life-stages. The
estimate of the total abundance of the five-month-age cohort obtained
as a result of MLE procedure is around 2.5 billion individual fish. Using
both an assumed minimum school size of 1000 fish aged five months,
and accurate representation of fish density at 1° grid cells after 1 million
schools, we therefore ran full simulations consisting of 2.5 million in-
dividual schools, using school density evolution through time to com-
pare to SEAPODYM.

Tkamoana monthly cohort density was compared to those simulated
by SEAPODYM without natural or fishing mortality for the same period
at 1° x 1° resolution. For comparisons we used root mean square error
and correlation metrics between the relative density of skipjack tuna
simulated by each approach, through time. The individual-based fra-
mework then allowed us to examine connectivity between commonly
used assessment regions for skipjack tuna by analysing the simulated
trajectories of individual schools. Connectivity was quantified through
regional transition matrices, which are comparable to estimated re-
gional ‘block transfer’ rates used in the existing stock assessment model
for skipjack tuna in the WCPO: MULTIFAN-CL (Hampton and Fournier,
2001; McKechnie et al.,, 2016a). Changes to these movement con-
nectivity measures were also examined across varying ENSO condi-
tions. Finally, trajectories were examined individually to demonstrate
how broad movements may involve significant movement through
other regions for a quantifiable proportion of the population.

Spearman rank
correlation coefficient
Quiside
Asssssment
T T
200 250
Longitude

SEAPODYM
lkamoana

Percentage cohort density
8

0.0005 0.0010 0.0015 0.0020

0.0000

—— SEAPODYM
‘ ===~ lkamoana

T
30 40

Simulation month

20

T T T T T T T
20 30 40 50 60

Simulation month

Fig. 3. Plots comparing the relative density evolution of skipjack tuna simulated by SEAPODYM and Ikamoana. (A) Root mean square error through time for each
cell, with mean relative density from SEAPODYM contoured. (B) Spearman rank correlation through time for each cell, with recent skipjack tuna assessment regions
overlaid. (C) Simulated relative density through time for an example cell in the western warm pool (gold circle in panels A & B). (D) Simulated relative density from a
cell in North East Pacific (blue circle in panels A & B). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)
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Ikamoana 2003 (ONI -0.2)
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MF-CL Assessment Ikamoana 1997 (ONI 0.6)
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Fig. 4. Comparison of Ikamoana estimated transition matrices for two different age classes and quarterly periods (left and right columns), with temporally matching
movement rates between different skipjack tuna assessment regions estimated using MULTIFAN-CL. Colours represent larger (red) and smaller (blue) transition
coefficients than those from MULTIFAN-CL rates. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

3. Results
3.1. Model validation

To test the accuracy of our model in correctly formulating the
movement assumptions of SEAPODYM, the relative density distribution
of all schools simulated at each time step in Ikamoana was compared
with relative density distribution simulated by SEAPODYM, ata 1° X 1°
grid resolution.

Both root mean square error (RMS) and Spearman rank correlation
coefficients were calculated for each cell through time (Fig. 3a and b,
respectively, shown for 2003 scenario). As expected, RMS was greater
where mean cohort density through time was also greater, in particular
within the western warm pool region. Conversely, correlation was
consistently higher in areas with a high mean cohort density, and 95%
of cells had correlation coefficients greater than 0.72. Correlation was
poorest in areas where density of skipjack tuna was low, and some land-
boundary cells.

Changes in skipjack tuna density, relative to density of the entire
cohort, are shown for two contrasting example cells in Fig. 3c and d.
Fig. 3c shows a cell of fluctuating but generally high relative skipjack
tuna density (mean SEAPODYM cohort density = 0.057%), for which
RMS was moderate but correlation was high (Spearman’s rank coeffi-
cient = 0.92). Predicted density by Ikamoana tracked that of SEAPO-
DYM well, overestimating relative density over the course of the si-
mulation (mean Ikamoana cohort density = 0.061%). Fig. 3d shows a
cell of low skipjack tuna density (mean SEAPODYM cohort den-
sity = 0.0013%), for which correlation with Ikamoana was poor
(Spearman’s rank coefficient = 0.33). Due to low density, the relative
density simulated by Ikamoana fluctuated as small numbers of in-
dividual schools moved in and out of the cell, and the density evolution
did not track that of SEAPODYM. However, the time-mean relative
density was similar (0.0012%).

Temporally, the Spearman rank spatial correlation coefficient over
the whole domain at each timestep remained stable throughout the
simulation, with a mean of 0.98, and never fell below 0.96.

3.2. Tracking school trajectories

Using IBMs, it is possible to track the trajectories of individuals
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throughout the simulation, quantifying the environment experienced
and movement across a variety of temporal and spatial scales (Video 1).
Connectivity of Pacific skipjack tuna can be examined using our
Ikamoana simulation. Here we examine movement between five spatial
regions defined in recent stock assessments for WCPO skipjack tuna
(McKechnie et al., 2016a), and a sixth region constituting that part of
the Pacific Ocean outside WCPO convention area. These regions form
the spatial stratification of another Eulerian state variable model,
MULTIFAN-CL (Fournier et al., 1998), used for stock assessment of
many tuna species in the WCPO. In this model, tuna biomass present in
each region is transported to other regions over quarterly time periods
using estimated stock transfer movement parameters, which vary each
quarter and by age-class, but do not exhibit inter-annual variability.

These stock transfer parameters can be arranged in a transition
matrix, representing the proportion of the biomass in each region that
moves to each other region over each three-month time step. In an IBM
context, transition matrices can be thought of as describing the prob-
ability that an individual school present in one region will move to
another region over the given period of time. Regional persistence,
which is the probability of beginning and ending a period in the same
region, is given by the diagonal of this matrix.

In Ikamoana, it is possible to calculate comparable transition ma-
trices by summarising the trajectories of all schools as they move be-
tween region boundaries over a three-month period. To appropriately
compare to MULTIFAN-CL, the region occupied at the start and end of a
quarterly period by each school is used to populate the transition ma-
trix, which is then compared to the MULTIFAN-CL stock transfer
movement parameters for the same age-class of skipjack tuna. Here, we
compare transition matrices across two quarterly periods from both our
temporal scenarios, for fish aged between 7 and 12 months (Fig. 4).

The connectivity between assessment regions, simulated by
Ikamoana is greater than that recently estimated in MULTIFAN-CL (MF-
CL) for skipjack tuna in most cases. Regional persistence during quar-
terly periods was lower than in MF-CL across all regions, that is,
Ikamoana simulates greater movement of schools away from their
starting regions for a given quarterly period. In particular, skipjack tuna
in the western warm pool (region 2) showed far less persistence and
greater movement into the central tropical Pacific (region 3), and to the
east of Papua New Guinea and northern Australia (region 5) than in MF-
CL. This movement rate was strongest during quarter three for skipjack
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Fig. 5. Proportion of skipjack tuna by region, of age ten-months (i.e. at entry
into the purse seine fishery), which originated from each other region at the
start of the 2003 simulation scenario, when tuna are age five months.

tuna aged 10-12 months, when the probability of schools beginning
and ending the quarter in region 2 was 0.54 and 0.39, compared to 0.91
estimated by the assessment model, for the 2003 and 1997 scenarios,
respectively. The quarterly transfer of fish from region 5 to regions 2
and 3 was also greater than that of the MF-CL assessment.

Ikamoana can also be used to determine the locations of schools at
previous time steps (Video 1, Fig. 5). For instance, where ten-month
skipjack tuna (a typical age at which they recruit into the purse seine
fishery) in each region were located five months earlier. Specifically, in
the north-western Pacific (region 1), 74% of ten-month old tuna were
located within region 1 at age five-months, with 15% coming from
region 4, 6% coming from region 2, and 4% from region 3. Region 5
received the largest influx of fish from another region, with 26% of fish
at entry into the purse seine fishery coming from region 2 and most of
the remainder coming from region 3. Overall, the majority of individual
schools began and ended the five-month purse seine recruitment period
in the same region (mean 63%, s.d. 19%), although this did not ne-
cessarily mean that schools remained in the region during the entirety
of this period.

We also examined broad environmental drivers on regional con-
nectivity by constructing movement transition matrices from the
movement of schools between the beginning of October and the end of
the year, during which a strong El Nifio and moderate La Nifia event
began to build during separate years of our 1997 scenario. We com-
pared the regional transition matrices to the same age fish from the
same period in our 2003 scenario, where ENSO phases were more
neutral (Fig. 6).

During the El Nino period, skipjack tuna had a much lower prob-
ability of remaining in region 2, which lies in the western warm pool
area, instead moving east into region 3 and north into region 1, when
compared to the ENSO neutral period. Similarly, for tuna that were
already present in region 3, there was less movement west into region
2, and greater movement further east into the region outside the as-
sessment area. In contrast, during the La Nifa event schools showed far
greater persistence in region 2, and skipjack tuna outside the assess-
ment area had a greater probability of moving into the central Pacific
region 3. Interestingly, during both the El Nifio and La Nifia periods,
there was greater exchange of fish from the archipelagic region 5 into
the more oceanic region 2, when compared to ENSO neutral periods.

As with our comparison of quarterly movement probabilities with
MULTIFAN-CL, these transition probabilities do not capture potential
short-term movements through other regions, nor multiple exchanges
between regions. Using the individual school trajectories output from
Ikamoana, we are able to quantify inter-region movements that may be
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occurring at higher temporal resolutions. An example is given in Fig. 7,
which describes the movement of all schools that moved from region 4
to region 2 over the three-monthly period 1st October 1997 to 1st
January 1998 (i.e. the period of strong El Nifio).

This movement was undertaken by 0.5% of the cohort, and from the
transition matrix in Fig. 6, it can be seen that schools moving from
region 4 to region 2 accounted for about 7% of all skipjack tuna in that
region. However, individual pathways indicate that this set of quarterly
movements also included schools which moved into other regions.
Three school trajectories are highlighted as examples, each of which
undertook contrasting routes during this period. Summarising across all
schools that made this movement from region 4 to region 2, we can
calculate that during this three-month period, 53% of the time was
spent in the original region 4 and 37% in the destination region 2.
However, 9% and 1% of time was also spent in regions 5 and 1, re-
spectively.

4. Discussion
4.1. Replication of SEAPODYM

In this study, we have outlined an approach for an IBM equivalent to
the established SEAPODYM Eulerian movement model for skipjack tuna
in the Pacific Ocean. Our results show that the Ikamoana IBM can ac-
curately reproduce the evolution of the skipjack tuna density distribu-
tion simulated by SEAPODYM. Moreover, the individual-based frame-
work means that it is possible to track individual school trajectories to
quantitatively answer questions on movement and connectivity that are
difficult to answer using the Eulerian approach. Our simulation of
skipjack tuna density exhibits low deviation, both spatially and tem-
porally, with those of SEAPODYM. Unsurprisingly, model differences
are highest in areas where skipjack tuna density is low, and at certain
land-boundary cells. When density is low, deviations to SEAPODYM are
driven chiefly by the stochastic nature of small numbers of individuals
moving in and out of areas of consistently low density. This could be
improved by increasing the number of individuals in the simulation.
The numerical diffusion implicit in the advection-diffusion-reaction
solver of SEAPODYM may also account for some discrepancies between
our models. This diffusion represents a spurious additional term in the
Eulerian model (Sibert et al., 1999). Greater deviations from SEAPO-
DYM in land-boundary cells are likely due to the boundary conditions
of our IBM, which randomly searches for legal moves from the prob-
ability distribution of habitat-dependant diffusion. This approach dif-
fers from the Neumann boundary condition implemented in SEAPO-
DYM. Alternative boundary conditions for Ikamoana, such as reflective
edges (e.g. North et al., 2011), are being explored.

4.2. Comparison to skipjack tuna assessment models

It is non-trivial to quantify the connectivity of continuous tracer
within a Eulerian model, when the aim is to identify the conditional
route of that tracer over multiple time steps. For population dynamics
models of exploited marine species, this tracer represents a number of
individual mobile animals, which move through a habitat in which they
may be exposed to a spatially-varying mortality, either natural or from
fishing. Quantifying the trajectories of these movements is important to
accurately capture the likely exposure of individuals to these habitat
and mortality fields, which are assumed to be homogenous below the
spatial stratification of a Eulerian or state variable model.

Our ability to structure a transition matrix from the simulated
movements in Ikamoana, with the appropriate spatial and temporal
framework from another model (MULTIFAN-CL), demonstrates another
useful application of our approach. By tracking school trajectories, we
have shown that the simulated connectivity between skipjack tuna as-
sessment regions is far greater with the SEAPODYM estimated move-
ment than that estimated in a recent stock assessment using
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Fig. 6. Comparison by monthly age class of estimated transition matrices between assessment regions for periods of contrasting Oceanic Nifio Index (ONI). Top row:
Neutral (left) and strong el nifio (right). Bottom row: Neutral (left) and moderate la nina (right).

MULTIFAN-CL. In particular, Ikamoana simulates more movement be-
tween region 5, around the Solomon Sea and Papua New Guinea, and
region 2, in the western equatorial Pacific. While around 15-30% of the
schools simulated in our experiments moved from the archipelagic
waters of region 5 to the more oceanic region 2, regardless of age or
simulation period, a counter-movement of only 12-20% occurred from
region 2 to region 5. It may be that while the two sub-populations are
well mixed, the relatively small region 5 seeds the larger region 2 with
juvenile skipjack tuna newly recruited in the population. It is also im-
portant to note that regional movement rates in MULTIFAN-CL do not
contain inter-annual variation. During the parameter estimation pro-
cess, contrasting movements such as those associated with El Nifio and
La Niha conditions, may lead to averaging of contrasting en-
vironmentally driven connectivity.

In contrast, schools present in the large domain outside the assess-
ment area showed more consistent residence within this region. For the
time during which the cohort aged from five-months to entry into the
purse seine fishery, the largest exchange of fish with the non-assessment
area was a result of fish leaving region 3 at the start of the simulation
until they recruit into the purse seine fishery at ten-months of age
(< 5%, Fig. 5.). Immigration into assessment regions from the non-as-
sessment area was minimal for all regions except region 3 (> 20%).
Although our IBM is driven by a different movement model to that used
for stock assessment of WCPO skipjack tuna, this presents independent
justification for the appropriateness of the spatial boundary used in the
MULTIFAN-CL assessment model.

However, we have also shown that during the movements between
regions at broad time-scales there can exist potentially significant de-
tours through other regions, which may be subject to different fishing
mortality and other forcings. Using the IBM approach, we can quantify
this for a cohort or population of individuals. Understanding the pro-
portion of a sub-population that is exposed to differing mortality rates
during broad scale movements has considerable implications for mod-
elled population dynamics in stock assessment.

It is important to stress that while both SEAPODYM and

MULTIFAN-CL use the same catch data (at different spatial aggrega-
tions) to estimate their parameters, they have fundamentally different
approaches to modelling the spatial distribution of skipjack tuna.
Furthermore, we do not include any spatially-varying mortality as a
result of fishing, which alters the emergent connectivity of our simu-
lated tuna. As some areas are subject to a greater depletion of fish, the
relative transfer of individuals between regions will result in different
transition matrices than those we have calculated here. However, in the
majority of regions, the fishing mortality for skipjack tuna peaks for fish
aged nine to 15 months (McKechnie et al., 2016a), and so the transition
matrices for young fish presented here should be approximately com-
parable to those of MULTIFAN-CL.

4.3. Environmental drivers

Simulated connectivity associated with different ENSO phases on
skipjack tuna schools of comparable age was consistent with previous
literature and SEAPODYM experiments examining the effect of climate
on skipjack tuna (Lehodey et al., 2013, 2008). During El Nifio, waters of
the warm pool region in the west expand eastward as trade winds re-
duce and currents from the eastern Pacific weaken or reverse. In the
context of tropical tuna ecology, this results in changes in distribution
via two processes: changes in cold water boundaries and associated
habitat that cause nektonic tunas to generally move eastward to follow
productive waters (Lehodey et al., 1997) and changes to spawning
habitat and associated larval success which results in generally in-
creased and spatially-differential recruitment of juveniles (Lehodey,
2006; Lehodey et al., 2003). Our application includes only young and
adult tuna and so the changes to connectivity we present during the
strong 1997/98 El Nifio are due solely to the former process of nektonic
tunas actively following positive habitat, and showing increased
movement eastwards, across region 5, 2 and 3. Residence times de-
creased across all regions when compared to the ENSO-neutral period,
except for the north Pacific region 1 and the area outside the WCPO
assessment.
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Fig. 7. Example school trajectories from 500 simulated schools that moved from assessment region 4 to region 2 during the period October 1997 to January 1998
(N = 14628). Three individual schools are highlighted, each taking contrasting routes. Assessment regions are coloured by the total proportion of time spent by all
individual schools transferring from region 4 to region 2 during the period. The density of region 4 schools prior to moving is contoured in white.

During La Nifa, contrasting oceanographic conditions occur, with
increased trade wind and intensified westward currents, compressing
the warm pool region into a more confined area with a deeper ther-
mocline. Our results during this period show that the principal change
is greater westward movement from outside the assessment region, and
greater persistence in region 2. These ENSO-driven changes to con-
nectivity are reflected in observed changes to catch distribution data
(Lehodey et al., 2003), on which SEAPODYM parameters have been
estimated, and here we see this consistently reproduced in the dis-
tribution of skipjack tuna simulated by SEAPODYM (Senina et al.,
2008) and Ikamoana.

It is interesting to note that during both strong ENSO phases there
appeared to be increased movement from the archipelagic waters of
region 5 into the oceanic waters of region 2 when compared to more
ENSO neutral periods. It appears that, over a quarterly time-scale,
skipjack tuna leave the area around Papua New Guinea and the
Solomon Sea for oceanic habitats during these El Nifo and La Nina
events. In the case of the 1997-98 El Nifo period, this movement ap-
pears to be driven by more heterogeneous habitat quality in region 5
compared to the ENSO neutral period, with high habitat gradients
moving individual schools east into region 2 via taxis. For the 1998-99
La Nifa, a consistent area of high quality habitat is present during the
ENSO-neutral period in the south of region 5 does not develop. As a
result, diffusion drives more schools to leave this region into region 2
during the La Nifia period.
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4.4. Fisheries applications and further development

In this study, we have demonstrated a number of uses of the
Ikamoana model, chiefly in the context of connectivity and current
stock assessment spatiotemporal stratification. The strength of our ap-
proach is in the IBM’s ability to examine these dynamics at varying
spatial (from regions to individual school positions) and temporal scales
(from years to days). In particular, extension of the examples that we
have presented would inform stock assessment model parameters and
help in quantifying the uncertainty regarding the movement of sub-
populations.

As regional transfer rates are estimated parameters in MULTI-
FAN-CL, the transition matrices describing assessment region con-
nectivity, based on the movement assumptions formulated in SEAPO-
DYM, may be best incorporated as prior values for the estimation of
those parameters during optimisation of MULTIFAN-CL. The need for
greater understanding of skipjack tuna movements in the WCPO, and
potential for new assessment region definitions or protected areas, has
been identified as a critical area of improvement for stock assessment in
the WCPO (Evans et al., 2015; Kiyofuji and Ochi, 2016; PTTP, 2015),
and other regions (Fonteneau, 2015; Kaplan et al., 2014). Given the
expense in undertaking tagging studies, and the uncertainty present in
the resulting data (Leroy et al., 2013a), use of simulation models to
examine differing scenarios would appear to be a useful tool in the
optimisation of such tagging experiments. This could take form of
providing independent prior values for stock assessment model para-
meter estimation, or providing movement input to alternative operating
models in management strategy evaluations.
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Such tuna tagging programmes are designed to obtain information
on not only movement, but also mortality and fleet-specific catch rates
(Leroy et al., 2013a). Conventional mark-recapture tagging experiments
assume that a tagged group of individual fish are representative of the
wider population at some spatial scale, after fully mixing with this
population after a period of time. As we have shown here, movement
and residence may be highly variable within and between broad-scale
regions, and reviews of tagging data suggest that such mixing may vary
greatly or even never occur in reality (Kolody and Hoyle, 2013; Sippel
et al., 2014). Ikamoana provides an intuitive framework to simulate
how tagged individuals may distribute in relation to an untagged po-
pulation over varying temporal and spatial scales. The examples we
have given here would necessarily use the movement model of SEAP-
ODYM, but alternative behaviours could be used in an ensemble sen-
sitivity approach.

Such alternative behaviours could be informed from ecological
theory, hypotheses, or patterns in real-world data. Information across
the individual-, group- and population-level on the behaviour and dis-
tribution of oceanic animals such as tuna is increasingly being obtained
through electronic tagging studies (Block et al., 2011; Leroy et al.,
2010; Schaefer et al., 2009), genomics (Grewe et al., 2015; King et al.,
2015; Wu et al., 2014), trophic analysis (Young et al., 2015), micro-
chemistry and isotope studies (Carlisle et al., 2012; Graham et al.,
2006), acoustic monitoring (Bertrand, 2003; Lopez et al., 2017) and
integrated analysis of fisheries data (Evans et al., 2008). IBMs are
particularly well-suited to integration across data sources because they
can be examined at variable scales. For example, quantitative models of
individual behaviour in both horizontal and vertical dimensions (e.g.
Patterson et al., 2009; Scutt Phillips et al., 2015) can be used to drive
simulated individuals movement, the emergent distributions of which
are then examined in relation to an identified or potential genetic
subpopulation (e.g. Dammannagoda et al., 2011). The taxis behaviour
of SEAPODYM, here replicated in a Lagrangian framework for skipjack
tuna, requires that these animals have a perfect knowledge of habitat
distribution in their local area. In a Eulerian approach, assuming that a
cell of tracer represents a sufficiently high density of individuals over a
large enough area, movement in the direction of the favourable habitat
emerges as result of the collective movements of individuals to local
cues (Griinbaum, 1999). For our study, we have described how the
schooling nature of our simulated skipjack permits similar assumptions
of environment sampling and knowledge of the underlying distribution
of habitat over our two-day temporal time step. However, in reality no
individual or group of animals has perfect knowledge of their en-
vironment. Using kamoana, habitat gradient fields could be removed
and replaced with habitat distribution information gathered at the in-
dividual-scale from a random walk behaviour. Similarly, alternative
age, spatial and temporal structuring via the implementation of con-
tinuous ageing, spatial interpolation schemes, and arbitrary time steps
are already complete in Ikamoana, built on the Parcels framework. The
effect on the emergent distribution of skipjack tuna from these many
differing approaches should be examined.

Such applications will also allow the impacts of alternative as-
sumptions regarding mixing and connectivity on emergent distribution
to be realised during the course of a simulation. In studies of exploited
marine species, fishing mortality is generally aggregated at fixed spatial
scales. However, like animal movement, real fishing operations occur at
the scale of individual boats and fleets that also have their own in-
dividual behaviours. While spatial and temporal aggregation may be
sufficient to capture the experienced mortality in some cases, feedbacks
between fishers and fish, such as occur with the use of free-floating fish
aggregating devices in tuna fisheries, may cause significant local-scale
changes to both fleet and tuna behaviour (Dagorn et al., 2013; Leroy
et al., 2013b; Maufroy et al., 2016). More broadly, the incorporation of
IBMs alongside Eulerian models as two components of a hybrid-ap-
proach that have the flexibility of robust parameter estimation, yet can
examine dynamics across varying spatiotemporal scales should be
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developed for modelling of marine species distribution (Rose et al.,
2015; Tyutyunov and Titova, 2017). We suggest that Ikamoana pro-
vides an ideal framework for such further work.
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