
Artificial Intelligence 260 (2018) 42–50
Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Entropy-based pruning for learning Bayesian networks using

BIC

Cassio P. de Campos a,b,∗, Mauro Scanagatta c, Giorgio Corani c, Marco Zaffalon c

a Utrecht University, The Netherlands
b Queen’s University Belfast, United Kingdom
c Istituto Dalle Molle di studi sull’Intelligenza Artificiale (IDSIA), Lugano, Switzerland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 July 2017
Received in revised form 19 March 2018
Accepted 13 April 2018
Available online 18 April 2018

Keywords:
Structure learning
Bayesian networks
BIC
Parent set pruning

For decomposable score-based structure learning of Bayesian networks, existing approaches
first compute a collection of candidate parent sets for each variable and then optimize
over this collection by choosing one parent set for each variable without creating directed
cycles while maximizing the total score. We target the task of constructing the collection
of candidate parent sets when the score of choice is the Bayesian Information Criterion
(BIC). We provide new non-trivial results that can be used to prune the search space of
candidate parent sets of each node. We analyze how these new results relate to previous
ideas in the literature both theoretically and empirically. We show in experiments with UCI
data sets that gains can be significant. Since the new pruning rules are easy to implement
and have low computational costs, they can be promptly integrated into all state-of-the-art
methods for structure learning of Bayesian networks.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A Bayesian network [1] is a well-known probabilistic graphical model with applications in a variety of fields. It is
composed of (i) an acyclic directed graph (DAG) where each node is associated to a random variable and arcs represent
dependencies between the variables entailing the Markov condition: every variable is conditionally independent of its non-
descendant variables given its parents; and (ii) a set of conditional probability mass functions defined for each variable
given its parents in the graph. Their graphical nature makes Bayesian networks excellent models for representing the com-
plex probabilistic relationships existing in many real problems ranging from bioinformatics to law, from image processing
to economic risk analysis.

Learning the structure (that is, the graph) of a Bayesian network from complete data is an NP-hard task [2]. We are
interested in score-based learning, namely finding the structure which maximizes a score that depends on the data [3].
A typical first step of methods for this purpose is to build a list of suitable candidate parent sets for each one of the n
variables of the domain. Later an optimization is run to find one element from each such list in a way that maximizes the
total score and does not create directed cycles. This work concerns pruning ideas in order to build those lists. The problem
is unlikely to admit a polynomial-time (in n) algorithm, since it is proven to be LOGSNP-hard [4]. Because of that, usually
one forces a maximum in-degree (number of parents per node) k and then simply computes the score of all parent sets
that contain up to k parents. A worth-mention exception is the greedy search of the K2 algorithm [5].

* Corresponding author at: Utrecht University, The Netherlands.
E-mail addresses: c .decampos @uu .nl (C.P. de Campos), mauro @idsia .ch (M. Scanagatta), giorgio @idsia .ch (G. Corani), zaffalon @idsia .ch (M. Zaffalon).
https://doi.org/10.1016/j.artint.2018.04.002
0004-3702/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.artint.2018.04.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:c.decampos@uu.nl
mailto:mauro@idsia.ch
mailto:giorgio@idsia.ch
mailto:zaffalon@idsia.ch
https://doi.org/10.1016/j.artint.2018.04.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2018.04.002&domain=pdf

C.P. de Campos et al. / Artificial Intelligence 260 (2018) 42–50 43
A high in-degree implies a large search space for the optimization and thus increases the possibility of finding better
structures. On the other hand, it requires higher computational time, since there are �(nk) candidate parent sets for a bound
of k if an exhaustive search is performed. Our contribution is to provide new rules for pruning sub-optimal parent sets when
dealing with the Bayesian Information Criterion score [6], one of the most used score functions in the literature. We devise
new theoretical bounds that can be used in conjunction with currently published ones [7]. The new results provide tighter
bounds on the maximum number of parents of each variable in the optimal graph, as well as new pruning techniques
that can be used to skip large portions of the search space without any loss of optimality. Moreover, the bounds can be
efficiently computed and are easy to implement, so they can be promptly integrated into existing software for learning
Bayesian networks and imply immediate computational gains.

The paper is divided as follows. Section 2 presents the problem, some background and notation. Section 3 describes the
existing results in the literature, and Section 4 contains the theoretical developments for the new bounds and pruning rules.
Section 5 shows empirical results comparing the new results against previous ones, and finally some conclusions are given
in Section 6.

2. Structure learning of Bayesian networks

Consider the problem of learning the structure of a Bayesian Network from a complete data set of N ≥ 2 instances
D = {D1, ..., DN }. The set of n ≥ 2 categorical random variables is denoted by X = {X1, ..., Xn} (each variable has at least
two categories). The state space of Xi is denoted �Xi and a joint space for X1 ⊆ X is denoted by �X1 = ×X∈X1�X (and
with a slight abuse |�∅| = 1 containing a null element). The goal is to find the best DAG G = (V , E), where V is the
collection of nodes (associated one-to-one with the variables in X) and E is the collection of arcs. E can be represented by
the (possibly empty) set of parents �1, ...,�n of each node/variable.

Different score functions can be used to assess the quality of a DAG. This paper regards the Bayesian Information Criterion
(or simply BIC) [6], which asymptotically approximates the posterior probability of the DAG. The BIC score is decomposable,
that is, it can be written as a sum of the scores of each variable and its parent set:

BIC(G) =
n∑

i=1

BIC(Xi |�i) =
n∑

i=1

(LL(Xi|�i) + Pen(Xi |�i)) ,

where LL(Xi |�i) denotes the log-likelihood of Xi and its parent set:

LL(Xi |�i) =
∑

π∈��i

∑
x∈�Xi

Nx,π logb θ̂x|π ,

where the base b ≥ 2 is usually taken as natural or 2. We will make it clear when the result depends on such base.
Moreover, θ̂x|π is the maximum likelihood estimate of the conditional probability P (Xi = x|�i = π), that is, Nx,π /Nπ ; Nπ

and Nx,π represents, respectively, the number of times (�i = π) and (Xi = x ∧ �i = π) appear in the data set (if π is
null, then Nπ = N and Nx,π = Nx). In the case with no parents, we use the notation LL(Xi) = LL(Xi |∅). Pen(Xi |�i) is the
complexity penalization for Xi and its parent set:

Pen(Xi |�i) = − logb N

2
(|�Xi | − 1)|��i | ,

again with the notation Pen(Xi) = Pen(Xi |∅).
For completeness, we present the definition of (conditional) mutual information. Let X1, X2, X3 be pairwise disjoint

subsets of X . Then

I(X1,X2|X3) = H(X1|X3) − H(X1|X2 ∪X3)

(unconditional version is obtained with X3 = ∅), and (the sample estimate of) entropy is defined as usual: H(X1|X2) =
H(X1 ∪X2) − H(X2) and

H(X1) = −
∑

x∈�X1

Nx

N
logb

(
Nx

N

)
.

(x runs over the configurations of X1.) Since θ̂x = Nx/N , it is clear that N · H(X1|X2) = −LL(X1|X2) for any disjoint subsets
X1, X2 ⊆X .

The ultimate goal is to find G∗ ∈ argmaxG BIC(G) (we avoid equality because there might be multiple optima). We
assume that if two DAGs G1 and G2 have the same score, then we prefer the graph with fewer arcs. The usual first step
to achieve such goal is the task of finding the candidate parent sets for a given variable Xi (obviously a candidate parent set
cannot contain Xi itself). This task regards constructing the list Li of parent sets �i for Xi alongside their scores BIC(Xi |�i).
Without any restriction, there are 2n−1 possible parent sets, since every subset of X \ {Xi} is a candidate. Each score

44 C.P. de Campos et al. / Artificial Intelligence 260 (2018) 42–50
computation costs �(N · (1 + |�i |)), and the number of score computations becomes quickly prohibitive with the increase
of n. In order to avoid losing global optimality, we must guarantee that Li contains candidate parent sets that cover those
in an optimal DAG. For instance, if we apply a bound k on the number of parents that a variable can have, then the size of

Li = {〈�i,BIC(Xi |�i)〉 | |�i | ≤ k}
is �(nk), but we might lose global optimality (this is the case if any optimal DAG would have more than k parents for
Xi). Irrespective of that, this pruning is not enough if n is large. Bounds greater than 2 can already become prohibitive. For
instance, a bound of k = 2 is adopted in [8] when dealing with its largest data set (diabetes), which contains 413 variables.
One way of circumventing the problem is to apply pruning rules which allow us to discard/ignore elements of Li in such a
way that an optimal parent set is never discarded/ignored.

3. Pruning rules

The simplest pruning rule one finds in the literature states that if a candidate subset has better score than a candidate
set, then such candidate set can be safely ignored, since the candidate subset will never yield directed cycles if the candidate
set itself does not yield cycles [9,10]. By safely ignoring/discarding a candidate set we mean that we are still able to find an
optimal DAG (so no accuracy is lost) even if such parent set is never used. This is formalized as follows.

Lemma 1. (Theorem 1 in [7], but also found elsewhere [9].) Let �∗ be a candidate parent set for the node X ∈ X . Suppose there exists
a parent set � such that � ⊂ �∗ and BIC(X |�) ≥ BIC(X |�∗). Then �∗ can be safely discarded from the list of candidate parent sets
of X.

This result can be also written in terms of the list of candidate parent sets. In order to find an optimal DAG for the
structure learning problem, it is sufficient to work with

Li = {〈�i,BIC(Xi |�i)〉 | ∀�′
i ⊂ �i : BIC(Xi |�i) > BIC(Xi |�′

i)}.
Unfortunately there is no way of applying Lemma 1 without computing the scores of all candidate sets, and hence it
provides no speed up for building the list (it is nevertheless useful for later optimizations, but that is not the focus of this
work).

There are however pruning rules that can reduce the computation time for finding Li and that are still safe.

Lemma 2. Let � ⊂ �′ be candidate parent sets for X ∈ X . Then LL(X |�) ≤ LL(X |�′), H(X |�) ≥ H(X |�′) and Pen(X |�) >
Pen(X |�′).

Proof. The inequalities follow directly from the definitions of log-likelihood, entropy and penalization. �
Lemma 3. (Theorem 4 in [7].1) Let X ∈X be a node with � ⊂ �∗ two candidate parent sets, such that BIC(X |�) ≥ Pen(X |�∗). Then
�∗ and all its supersets can be safely ignored when building the list of candidate parent sets for X.

Proof. Let �′ ⊇ �∗ . By Lemma 2, we have Pen(X |�∗) ≥ Pen(X |�′) (equality only if �∗ = �′). Then BIC(X |�) ≥
Pen(X |�∗) ⇒ BIC(X |�) ≥ Pen(X |�′) ⇒ BIC(X |�) − BIC(X |�′) ≥ −LL(X |�′), and we have −LL(X |�′) ≥ 0, so Lemma 1 suf-
fices to conclude the proof. �

Note that BIC(X |�) ≥ Pen(X |�∗) can as well be written as LL(X |�) ≥ Pen(X |�∗) − Pen(X |�), and if �∗ = � ∪ {Y }
for some Y /∈ �, then it can be written also as LL(X |�) ≥ (|�Y | − 1)Pen(X |�). The reasoning behind Lemma 3 is that the
maximum improvement that we can have in BIC score by inserting new parents into � would be achieved if LL(X |�), which
is a non-positive value, grew all the way to zero, since the penalization only gets worse with more parents. If LL(X |�) is
already close enough to zero, then the loss in the penalty part cannot be compensated by the gain of likelihood. The
result holds for every superset because both likelihood and penalty are monotone with respect to increasing the number of
parents.

4. Novel pruning rules

In this section we devise novel pruning rules by exploiting the empirical entropy of variables. We later demonstrate that
such rules are useful to ignore elements while building the list Li that cannot be ignored by Lemma 3, hence tightening the
pruning results available in the literature. In order to achieve our main theorem, we need some intermediate results.

1 There is an imprecision in the Theorem 4 of [7], since ti as defined there does not account for the constant of BIC/AIC while in fact it should. In spite
of that, their desired result is clear. We present a proof for completeness.

C.P. de Campos et al. / Artificial Intelligence 260 (2018) 42–50 45
Lemma 4. Let � = �′ ∪ {Y } for Y /∈ �′ , with �, �′ candidate parent sets for X ∈ X . Then LL(X |�) − LL(X |�′) ≤ N ·
min{H(X |�′); H(Y |�′)}.

Proof. This comes from simple manipulations and known bounds to the value of conditional mutual information.

LL(X |�) − LL(X |�′) = N · (H(X |�′) − H(X |�)) ≤ N · H(X |�′) .

LL(X |�) − LL(X |�′) = N · I(X, Y |�′)
= N · (H(Y |�′) − H(Y |�′ ∪ {X})) ≤ N · H(Y |�′) . �

Theorem 1. Let X ∈X , and �∗ be a parent set for X. Let Y ∈X \�∗ such that N ·min{H(X |�∗); H(Y |�∗)} ≤ (1 −|�Y |)Pen(X |�∗).
Then the parent set � = �∗ ∪ {Y } and all its supersets can be safely ignored when building the list of candidate parents sets for X.

Proof. We have that

BIC(X |�) = LL(X |�) + Pen(X |�)

≤ LL(X |�∗) + N · min{H(X |�∗);H(Y |�∗)} + Pen(X |�)

≤ LL(X |�∗) + (1 − |�Y |)Pen(X |�∗) + Pen(X |�)

= LL(X |�∗) + Pen(X |�∗) − Pen(X |�) + Pen(X |�) = BIC(X |�∗) .

First step is the definition of BIC, second step uses Lemma 4 and third step uses the assumption of this theo-
rem. Therefore, � can be safely ignored (Lemma 1). Now take any �′ ⊃ �. Let �′′ = �′ \ {Y }. It is immediate that
N · min{H(X |�∗); H(Y |�∗)} ≤ (1 − |�Y |)Pen(X |�∗) ⇒ N · min{H(X |�′′); H(Y |�′′)} ≤ (1 − |�Y |)Pen(X |�′′), since �∗ ⊂ �′′
and hence −Pen(X |�′′) > −Pen(X |�∗). The theorem follows by the same arguments as before, applied to �′ and �′′ . �

The rationale behind Theorem 1 is that if the data do not have entropy in amount enough to beat the penalty function,
then there is no reason to continue expanding the parent set candidates. Theorem 1 can be used for pruning the search
space of candidate parent sets without having to compute their BIC scores. However, we must have available the conditional
entropies H(X |�∗) and H(Y |�∗). The former is usually available, since −N · H(X |�∗) = LL(X |�∗), which is used to compute
BIC(X |�∗) (and it is natural to assume that such score has been already computed at the moment Theorem 1 is checked).
Actually, this bound amounts exactly to the previous result in the literature (see for example [7]):

N · H(X |�∗) ≤ (1 − |�Y |)Pen(X |�∗) ⇐⇒
LL(X |�∗) ≥ Pen(X |�∗ ∪ {Y }) − Pen(X |�∗) ⇐⇒
BIC(X |�∗) ≥ Pen(X |�∗ ∪ {Y }) .

By Theorem 1 we know that �∗ ∪ {Y } and any superset can be safely ignored, which is the very same condition as in
Lemma 3. The novelty in Theorem 1 comes from the term H(Y |�∗). If such term is already computed (or if it needs to be
computed irrespective of this bound computation, and thus we do not lose time computing it for this purpose only), then we
get (almost) for free a new manner to prune parent sets. In case this computation of H(Y |�∗) is not considered worthwhile,
or if we simply want a faster approach to prune parent sets, we can resort to a more general version of Theorem 1, as given
by Theorem 2.

Theorem 2. Let X ∈ X , and �∗, �′ be parent sets for X with �′ ⊆ �∗ . Let Y ∈ X \ �∗ such that N · min{H(X |�′); H(Y |�′)} ≤
(1 −|�Y |)Pen(X |�∗). Then the parent set � = �∗ ∪ {Y } and all its supersets can be safely ignored when building the list of candidate
parents sets for X.

Proof. It is well-known (see Lemma 2) that H(X |�∗) ≤ H(X |�′) and H(Y |�∗) ≤ H(Y |�′) for any X, Y , �′ ⊆ �∗ as defined
in this theorem, so the result follows from Theorem 1. �

An important property of Theorem 2 when compared to Theorem 1 is that all entropy values regard subsets of the
current parent set at our own choice. For instance, we can choose �′ =∅ and so they become entropies of single variables,
which can be precomputed efficiently in total time O (N · n). Another option at this point, if we do not want to compute
H(Y |�∗) and assuming the cache of Y has been already created, would be to quickly inspect the cache of Y to find the most
suitable subset of �∗ to plug into Theorem 2. Moreover, with Theorem 2, we can prune the search space of a variable X
without evaluating the likelihood of parent sets for X (just by using the entropies), and so it could be used to guide the
search even before any heavy computation is done. The main novelty in Theorems 1 and 2 is to make use of the (conditional)
entropy of Y .

46 C.P. de Campos et al. / Artificial Intelligence 260 (2018) 42–50
This new pruning approach is not trivially achievable by previous existing bounds for BIC. It is worth noting the relation
with previous work. The restriction of Theorem 2 can be rewritten as:

N · min{H(X |�′);H(Y |�′)} ≤ (1 − |�Y |)Pen(X |�∗) ⇐⇒
N · min{H(X |�′);H(Y |�′)} + LL(X |�∗) ≤ −Pen(X |�∗ ∪ {Y }) + BIC(X |�∗).

Note that the condition for Lemma 3 (known from literature) is exactly −Pen(X |�∗ ∪ {Y }) + BIC(X |�∗) ≥ 0. Hence, The-
orem 2 will be effective (while the previous rule in Lemma 3 will not) when −Pen(X |�∗ ∪ {Y }) + BIC(X |�∗) < 0, and so
when N · min{H(X |�′); H(Y |�′)} + LL(X |�∗) < 0. Intuitively, the new bound of Theorem 2 might be more useful when the
parent set being evaluated is poor (hence LL(X |�∗) is low) while the result in Lemma 3 plays an important role when the
parent set being evaluated is good (and so LL(X |�∗) is high).

The result of Theorem 2 can also be used to bound the maximum number of parents in any given candidate parent
set. While the asymptotic result is already implied by previous work [7,12], we obtain the finer and interesting result of
Theorem 3.

Theorem 3. There is an optimal structure such that variable X ∈X has at most

max
Y ∈X\{X}

⌈
1 + log2

(
min{H(X);H(Y)}

(|�X | − 1)(|�Y | − 1)

)
+ log2 N − log2 logb N

⌉+

parents, where �·�+ denotes the smallest natural number greater than or equal to its argument.

Proof. If � = ∅ is the optimal parent for X , then the result trivially follows since |�| = 0. Now take � such that Y ∈ �

and �∗ = � \ {Y }. Since |�| = |�∗| + 1 and |��∗ | ≥ 2|�∗| , we have |�| ≤ log2 |��∗ | + 1. Now, if

log2 |��∗ | ≥ 1 + log2

(
min{H(X);H(Y)}

(|�X | − 1)(|�Y | − 1)

)
+ log2 N − log2 logb N ⇐⇒

log2 |��∗ | ≥ log2

(
2 min{H(X);H(Y)}

(|�X | − 1)(|�Y | − 1)
· N

logb N

)
⇐⇒

N · min{H(X);H(Y)} ≤ logb N

2
· |��∗ |(|�X | − 1)(|�Y | − 1) ⇐⇒

N · min{H(X);H(Y)} ≤ (1 − |�Y |) · Pen(X |�∗) ,

then by Theorem 2 (used with �′ = ∅) every superset of �∗ containing Y can be safely ignored, and so it would be �.
Therefore,

|�| ≤ 1 + log2 |��∗ | < 1 + 1 + log2

(
min{H(X);H(Y)}

(|�X | − 1)(|�Y | − 1)

)
+ log2 N − log2 logb N ,

and since |�| is a natural number, the result follows by applying the same reasoning for every Y ∈X \ {X}. �
Corollary 1 is demonstrated for completeness, since it is implied by previous work (see for instance [7]; a similar result

is implied in [12], but the last passage is flawed there and the presented bound is slightly better than it should be). The
result is presented here in more detailed terms.

Corollary 1. There is an optimal structure such that each variable has at most �1 + log2 N − log2 logb N� parents.

Proof. By Theorem 3, we have that � can be a parent of a node X only if

|�| ≤ max
Y ∈X\{X}

⌈
1 + log2

(
min{H(X);H(Y)}

(|�X | − 1)(|�Y | − 1)

)
+ log2 N − log2 logb N

⌉+

≤ max
Y ∈X\{X}

⌈
1 + log2

(
H(Y)

(|�X | − 1)(|�Y | − 1)

)
+ log2 N − log2 logb N

⌉+

≤ max
Y ∈X\{X} max

⌈
1 + log2

(
logb |�Y |

(|�X | − 1)(|�Y | − 1)

)
+ log2 N − log2 logb N

⌉+

≤
⌈

1 + log2

(
1

(|�X | − 1)

)
+ log2 N − log2 logb N

⌉+

≤ �1 + log2 N − log2 logb N�+

≤ �1 + log2 N − log2 logb N� ,

since it is assumed that N ≥ 2 and b ≥ 2. �

C.P. de Campos et al. / Artificial Intelligence 260 (2018) 42–50 47
Table 1
Maximum number of parents that nodes have using new (column 4) and previous
bounds (column 5). In column 4, we list the bound on number of parents followed by
how many nodes have that bound in parentheses (the new theoretical results obtain a
specific bound per node, while previous results obtain a single global bound).

Dataset n N Bound on number of parents

Theorem 3 Corollary 1

glass 8 214 6 (7), 3 (1) 6
diabetes 9 768 7 (9) 8
tic-tac-toe 10 958 6 (10) 8
cmc 10 1473 8 (3), 7 (7) 9
breast-cancer 10 286 6 (4), 5 (2), 4 (1), 3 (3) 7
solar-flare 12 1066 7 (4), 6 (1), 5 (5), 3 (1), 2 (1) 8
heart-h 12 294 6 (6), 5 (3), 4 (2), 3 (1) 7
vowel 14 990 8 (12), 4 (2) 8
zoo 17 101 5 (10), 4 (6), 2 (1) 5
vote 17 435 7 (15), 6 (2) 7
segment 17 2310 9 (16), 6 (1) 9
lymph 18 148 5 (8), 4 (8), 3 (2) 6
primary-tumor 18 339 6 (9), 5 (7), 4 (1), 2 (1) 7
vehicle 19 846 7 (18), 6 (1) 8
hepatitis 20 155 5 (18), 4 (2) 6
colic 23 368 6 (8), 5 (12), 4 (3) 7
autos 26 205 6 (16), 5 (3), 4 (1), 3 (5), 1 (1) 6
flags 29 194 6 (5), 5 (7), 4 (7), 3 (7), 2 (3) 6

Theorem 3 can be used to bound the number of parent sets per variable, even before computing parent sets for them,
with the low computation cost of computing the empirical entropy of each variable once (hence overall cost of O (n · N)

time). We point out that Theorem 3 can provide effective bounds (considerably smaller than �1 + log2 N − log2 logb N�) on
the number of parents for specific variables, particularly when number of states is high and entropies are low, as we will
see in the next section.

5. Experiments

We run experiments using a collection of data sets from the UCI repository [11]. Table 1 shows the data set names,
number of variables n and number of data points N . In the same table, we show the maximum number of parents that a
node can have, according to the new result of Theorem 3, as well as the old result from the literature (which we present in
Corollary 1). The old bound is global, so a single number is given in column 5, while the new result of Theorem 3 implies a
different maximum number of parents per node. We use the notation bound (number of times), with the bound followed by
the number of nodes for which the new bound reached that value, in parentheses (so all numbers in parentheses in a row
should sum to n of that row). We see that the gains with the new bounds are quite significant and can prune great parts of
the search space further than previous results.

Our second set of experiments compares the activation of Theorems 1, 2, and 3 in pruning the search space for the
construction of the list of candidate parent sets. Tables 2 to 4 (in the end of this document) present the results as follows.
Columns one to four contain, respectively, the data set name, number of variables, number of data points and maximum
in-degree (in-d) that we impose (a maximum in-degree is imposed so as we can compare the obtained results among
different approaches). The fifth column, named |S|, presents the total number of parent sets that need to be evaluated by
the brute-force procedure (taking into consideration the imposed maximum in-degree). Column 6 has the average time to
run the algorithms (there is actually no significant difference between the algorithms’ times in our experiments). Columns 7
to 13 present the number of times that different pruning results are activated when exploring the whole search space.
Larger numbers means that more parent sets are ignored (even without being evaluated). The naming convention for the
pruning algorithms as used on those columns is:

Alg1 Application of Theorem 1 using H(X |�∗) in the expression of the rule (instead of the minimization), where X is the
variable for which we are building the list and � is the current parent set being explored. This is equivalent to the
previous rule in the literature, as presented in this paper in Lemma 3.

Alg2 Application of Theorem 1 using H(Y |�∗) in the expression of the rule (instead of the minimization), where X is the
variable for which we are building the list and Y is the variable just to be inserted in the parent set �∗ that is being
explored. This is the new pruning rule which makes most use of entropy, but it may be slower than the others (since
conditional entropies might need to be evaluated, if they were not yet).

Alg3 Application of Theorem 2 using H(X) in the formula, that is, with �′ = ∅ (and instead of the minimization). This is a
slight improvement to the known rule in the literature regarding the maximum number of parents of a variable and is
very fast, since it does not depend on evaluating any parent sets.

48 C.P. de Campos et al. / Artificial Intelligence 260 (2018) 42–50
Table 2
Pruning results for multiple UCI data sets. Columns contain, respectively: data set name, number of variables, number of data points, maximum imposed
in-degree, size of search space, average time to run an algorithm (no significant different between them), followed by the number of pruned parent sets
when considering (a combination of) different pruning rules (see the list of pruning rules for more details).

Dataset n N in-d |S| Time (sec) Alg1 Alg2 Alg1 + Alg2 Alg3 Alg4 Alg3 + Alg4 Alg1 + Alg4

glass 8 214 3 504 1 0 0 0 0 0 0 0
4 784 1 114 66 154 0 0 0 114
5 952 1 240 192 280 105 126 126 240
6 1008 1 294 248 336 154 175 175 294
7 1016 2 302 256 344 162 183 183 302

diabetes 9 768 3 828 1 0 0 0 0 0 0 0
4 1458 2 0 0 0 0 0 0 0
5 1962 4 0 0 0 0 0 0 0
6 2214 6 0 0 0 0 0 0 0
7 2286 8 0 0 0 0 0 0 0

breast-cancer 10 286 3 1290 1 624 624 704 611 581 671 684
4 2550 4 1785 1804 1902 1765 1733 1855 1874
5 3810 14 3041 3061 3161 3017 2987 3109 3130
6 4650 30 3881 3901 4001 3857 3827 3949 3970
7 5010 48 4241 4261 4361 4217 4187 4309 4330

cmc 10 1473 3 1290 2 0 0 0 0 0 0 0
4 2550 9 30 81 106 7 27 34 53
5 3810 31 419 768 913 291 561 696 743
6 4650 53 1152 1592 1753 1002 1363 1520 1567
7 5010 91 1512 1952 2113 1362 1723 1880 1927

tic-tac-toe 10 958 3 1290 1 0 0 0 0 0 0 0
4 2550 5 0 0 0 0 0 0 0
5 3810 11 659 1114 1244 504 504 504 659
6 4650 23 1499 1954 2084 1344 1344 1344 1499
7 5010 39 1859 2314 2444 1704 1704 1704 1859

heart-h 12 294 3 2772 1 206 374 481 196 348 471 473
4 6732 5 1873 3016 3277 1696 2774 3156 3179
5 12276 16 6473 8404 8707 6250 8054 8506 8535
6 17820 45 11984 13947 14251 11709 13597 14050 14079
7 21780 123 15944 17907 18211 15669 17557 18010 18039

Fig. 1. Ratio between pruned candidates using Alg1 + Alg2 (which theoretically subsumes Alg3 and Alg4) divided by pruned candidates using prune
approach Alg1 alone (since it was the previous literature result), for different values of maximum in-degree. Greater than one means better than Alg1.
Results over 18 data sets. Averages are marked with a diamond. Whiskers are at min./max. and box has the 2nd and 3rd quartiles.

Alg4 Application of Theorem 2 using H(Y) in the formula, that is, with �′ = ∅ (and instead of the minimization). This is a
different improvement to the known rule in the literature regarding the maximum number of parents of a variable and
is very fast, since it does not depend on evaluating any parent sets.

We also present the combined number of pruning obtained by some of these ideas when they are applied together. Of
particular interest is column 8 with Alg1 + Alg2, as it shows the largest amount of pruning that is possible, albeit more
computationally costly because of the (possibly required) computations for Alg2 (even though we have observed no sig-
nificant computational time difference within our experiments). This is also presented graphically in the boxplot of Fig. 1,
where the values for the 18 data sets are summarized and the amount of pruning is divided by the pruning of Alg1, and so
a ratio above one shows (proportional) gain with respect to the previous literature pruning rule.

Column 13 of Tables 2 to 4 have the pruning results (number of ignored candidates) for Alg1 and Alg4 together, since
this represents the pruning obtained by the old rule plus the new rule given by Theorem 2 in such a way that absolutely no
extra computational cost takes place (and moreover it subsumes approach Alg3, since Alg1 is theoretically superior to Alg3).
Again, this is summarized in the boxplot of Fig. 2 over the 18 data sets and the values are divided by the amount of pruning
of Alg1 alone, so values above one show the (proportional) gain with respect to the previous literature rule.

As we can see in more detail in Tables 2 to 4, the gains with the new pruning ideas are significant in many circumstances.
Moreover, there is no extra computational cost for applying Alg3 and Alg4, so one should always apply those rules while
deciding selectively whether to employ prune Alg2 or not (we recall that one can tune that rule by exploiting the flexibility
of Theorem 2 and searching for a subset that is already available in the computed lists, so a more sophisticated pruning

C.P. de Campos et al. / Artificial Intelligence 260 (2018) 42–50 49
Table 3
Pruning results for multiple UCI data sets. Columns contain, respectively: data set name, number of variables, number of data points, maximum imposed
in-degree, size of search space, average time to run an algorithm (no significant different between them), followed by the number of pruned parent sets
when considering (a combination of) different pruning rules (see the list of pruning rules for more details).

Dataset n N in-d |S| Time (sec) Alg1 Alg2 Alg1 + Alg2 Alg3 Alg4 Alg3 + Alg4 Alg1 + Alg4

solar-flare 12 1066 3 2772 4 872 1476 1740 739 1295 1570 1626
4 6732 28 3817 5280 5634 3442 4929 5344 5426
5 12276 157 9150 10821 11178 8732 10461 10885 10967
6 17820 538 14692 16365 16722 14268 16005 16429 16511
7 21780 1389 18652 20325 20682 18228 19965 20389 20471

heart-h 12 294 3 2772 1 206 374 481 196 348 471 473
4 6732 5 1873 3016 3277 1696 2774 3156 3179
5 12276 16 6473 8404 8707 6250 8054 8506 8535
6 17820 45 11984 13947 14251 11709 13597 14050 14079
7 21780 123 15944 17907 18211 15669 17557 18010 18039

vowel 14 990 3 5278 4 288 500 614 132 132 264 400
4 15288 28 1718 2500 2854 1232 1232 1364 1830
5 33306 149 10257 13202 14247 8162 4994 9086 11161
6 57330 534 27608 31682 32727 24794 17930 27566 29641
7 81354 1491 47672 51746 52791 44066 37994 47630 49705

vote 17 435 3 11832 3 0 0 0 0 0 0 0
4 42772 17 0 0 0 0 0 0 0
5 117028 110 577 852 1429 0 0 0 577
6 253164 667 14939 39946 51968 0 0 0 14939
7 447644 3039 163532 234426 246448 11440 80080 91520 183677

segment 17 2310 3 11832 17 0 0 0 0 0 0 0
4 42772 112 201 309 506 0 0 0 201
5 117028 670 3983 7628 10674 0 0 0 3983
6 253164 2976 32679 69813 79254 0 0 0 32679
7 447644 11381 133330 226619 245782 0 0 0 133330

zoo 17 101 3 11832 2 1717 2396 2660 735 686 1337 2229
4 42772 12 14353 17076 20060 8015 9058 10437 14871
5 117028 58 76677 91222 94311 37226 50281 54663 81892
6 253164 215 212813 227358 230447 173362 186417 190799 218028
7 447644 539 407293 421838 424927 367842 380897 385279 412508

lymph 18 148 3 14994 3 3320 4680 5918 2892 3552 4874 5222
4 57834 28 34206 41374 45262 29982 35202 40208 42205
5 169218 187 140227 152420 156538 133806 144338 150656 153059
6 391986 1074 362942 375188 379306 355314 367101 373424 375827
7 742050 5016 713006 725252 729370 705378 717165 723488 725891

Fig. 2. Ratio between pruned candidates using Alg1 + Alg4 (which theoretically subsumes Alg3 and Alg4) divided by pruned candidates using prune
approach Alg1 alone, for different values of maximum in-degree. Greater than one means better than Alg1. Results over 18 data sets. Averages are marked
with a diamond. Whiskers are at min./max. and box has the 2nd and 3rd quartiles.

scheme is also possible – we experiment here with a simple idea that does not bring extra computational time, and leave
for future work the design of other strategies).

6. Conclusions

This paper presents new non-trivial pruning rules to be used with the Bayesian Information Criterion (BIC) score for
learning the structure of Bayesian networks. The derived theoretical bounds extend previous results in the literature and
can be promptly integrated into existing solvers with minimal effort and computational costs. They imply faster compu-
tations without losing optimality. The very computationally efficient version of the new rules imply gains of around 20%
with respect to previous work, according to our experiments, while the most computationally demanding pruning achieves
around 50% more pruning than before. Pruning rules for other widely used scores such as the Bayesian Dirichlet equivalent
uniform (BDeu) have been devised [13] and some researchers conjecture that they cannot be improved. Similarly, we con-
jecture that further bounds for the BIC score are unlikely to exist unless for some particular cases and situations. This can
be studied in a future work, as well as means to devise smart strategies to tune the theorem parameters and improve their
pruning capabilities.

50 C.P. de Campos et al. / Artificial Intelligence 260 (2018) 42–50
Table 4
Pruning results for multiple UCI data sets. Columns contain, respectively: data set name, number of variables, number of data points, maximum imposed
in-degree, size of search space, average time to run an algorithm (no significant different between them), followed by the number of pruned parent sets
when considering (a combination of) different pruning rules (see the list of pruning rules for more details).

Dataset n N in-d |S| Time (sec) Alg1 Alg2 Alg1 + Alg2 Alg3 Alg4 Alg3 + Alg4 Alg1 + Alg4

primary-tumor 18 339 3 14994 5 2202 2648 3097 2177 2293 3034 3049
4 57834 65 14518 19410 21237 14207 18682 20552 20827
5 169218 425 69480 102175 110881 66935 89698 100427 101894
6 391986 2419 262650 322756 333064 241655 306499 320211 322604
7 742050 9748 610976 672820 683128 581423 656563 670275 672668

vehicle 19 846 3 18753 8 3 3 6 0 0 0 3
4 76893 65 697 1111 1764 0 0 0 697
5 239685 422 10863 23352 32440 0 0 0 10863
6 592401 3330 104254 215785 258003 0 0 0 104254
7 1197057 10803 474794 787023 846604 222768 31824 254592 501193

hepatitis 20 155 3 23180 3 0 0 0 0 0 0 0
4 100700 26 0 0 0 0 0 0 0
5 333260 183 21692 64380 81809 0 0 0 21692
6 875900 1024 444629 606978 624448 217056 529704 537096 562889
7 1883660 3208 1452389 1614738 1632208 1224816 1537464 1544856 1570649

colic 23 368 3 41239 21 3108 4622 5896 2362 3515 4536 5067
4 209484 273 96090 110871 124974 85987 94637 111045 116851
5 815166 2512 657339 691757 715181 629257 653090 687159 698902
6 2531265 28377 2367440 2407325 2431074 2337376 2365549 2401648 2413789

autos 26 205 3 68250 20 20751 23699 27655 18178 18413 23162 25555
4 397150 229 246272 269886 292669 192752 213929 245722 280668
5 1778530 3792 1450595 1560143 1607068 1333004 1395969 1469070 1544272
6 6383130 42555 5964376 6164743 6211668 5622016 5839681 5937534 6113490

flags 29 194 3 106720 46 62817 69264 75214 60196 62868 70472 71892
4 700495 1240 593809 623134 636559 577776 596922 619080 624253
5 3550586 23605 3393251 3458658 3475307 3338989 3408696 3434987 3445679

Acknowledgement

Work partially supported by the Swiss NSF grant Nos. 200021_146606 /1 and IZKSZ2_162188.

References

[1] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann Publishers Inc., 1988.
[2] D.M. Chickering, D. Heckerman, C. Meek, Large-sample learning of Bayesian networks is NP-hard, J. Mach. Learn. Res. 5 (2014) 1287–1330.
[3] D. Heckerman, D. Geiger, D. Chickering, Learning Bayesian networks: the combination of knowledge and statistical data, Mach. Learn. 20 (1995)

197–243.
[4] M. Koivisto, Parent assignment is hard for the MDL, AIC, and NML costs, in: Proceedings of the 19th Annual Conference on Learning Theory, Springer-

Verlag, 2006, pp. 289–303.
[5] G.F. Cooper, E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Mach. Learn. 9 (4) (1992) 309–347.
[6] G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (1978) 461–464.
[7] C.P. de Campos, Q. Ji, Efficient structure learning of Bayesian networks using constraints, J. Mach. Learn. Res. 12 (2011) 663–689.
[8] M. Bartlett, J. Cussens, Integer linear programming for the Bayesian network structure learning problem, Artif. Intell. 24 (2017) 258–271.
[9] M. Teyssier, D. Koller, Ordering-based search: a simple and effective algorithm for learning Bayesian networks, in: Proceedings of the 21st Conference

on Uncertainty in Artificial Intelligence, 2005, pp. 584–590.
[10] C.P. de Campos, Z. Zeng, Q. Ji, Structure learning of Bayesian networks using constraints, in: Proceedings of the 26th Annual International Conference

on Machine Learning, ACM, 2009, pp. 113–120.
[11] M. Lichman, UCI machine learning repository, http://archive .ics .uci .edu /ml, 2013.
[12] J. Tian, A branch-and-bound algorithm for MDL learning Bayesian networks, in: Proceedings of the 16th Conference on Uncertainty in Artificial Intelli-

gence, 2000, pp. 580–588.
[13] C.P. de Campos, Q. Ji, Properties of Bayesian Dirichlet score to learn Bayesian network structures, in: Proceedings of the 24th AAAI Conference on

Artificial Intelligence, AAAI Press, 2010, pp. 431–436.

http://refhub.elsevier.com/S0004-3702(18)30167-X/bib706561726C31393838s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib636869636B6572696E6732303034s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib4847433935s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib4847433935s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib6B6F69766973746F32303036706172656E74s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib6B6F69766973746F32303036706172656E74s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib636F6F70657231393932626179657369616Es1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib7363687761727A31393738s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib646563616D706F733230313161s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib426172746C65747432303135s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib54657973736965722B4B6F6C6C65723A5541493035s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib54657973736965722B4B6F6C6C65723A5541493035s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib646543616D706F7332303039s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib646543616D706F7332303039s1
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib5469616E32303030s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib5469616E32303030s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib646563616D706F733230313063s1
http://refhub.elsevier.com/S0004-3702(18)30167-X/bib646563616D706F733230313063s1

	Entropy-based pruning for learning Bayesian networks using BIC
	1 Introduction
	2 Structure learning of Bayesian networks
	3 Pruning rules
	4 Novel pruning rules
	5 Experiments
	6 Conclusions
	Acknowledgement
	References

