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SUMMARY

Long noncoding RNAs (lncRNAs) are commonly dys-
regulated in tumors, but only a handful are known to
play pathophysiological roles in cancer. We inferred
lncRNAs that dysregulate cancer pathways, onco-
genes, and tumor suppressors (cancer genes) by
modeling their effects on the activity of transcription
factors, RNA-binding proteins, and microRNAs in
5,185 TCGA tumors and 1,019 ENCODE assays.
Our predictions included hundreds of candidate
onco- and tumor-suppressor lncRNAs (cancer
lncRNAs) whose somatic alterations account for the
dysregulation of dozens of cancer genes and path-
ways in each of 14 tumor contexts. To demonstrate
proof of concept, we showed that perturbations tar-
geting OIP5-AS1 (an inferred tumor suppressor) and
TUG1 and WT1-AS (inferred onco-lncRNAs) dysre-
gulated cancer genes and altered proliferation of
breast and gynecologic cancer cells. Our analysis in-
dicates that, although most lncRNAs are dysregu-
lated in a tumor-specific manner, some, including
OIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-
tically dysregulate cancer pathways inmultiple tumor
contexts.
INTRODUCTION

Most cancers exhibit long noncoding RNA (lncRNA) dysregula-

tion by copy number gains and losses (Yan et al., 2015; Berou-

khim et al., 2010). However, the consequences of lncRNA

dysregulation are known for only a few lncRNAs (Huarte,

2015). Some lncRNAs, including MEG3 in gastric cancer (Sun

et al., 2014) and NBAT1 in neuroblastoma (Pandey et al.,
This is an open access article under the CC BY-N
2014), function as tumor suppressors, while others, such as

HOTAIR in pancreatic cancer (Kim et al., 2013) and MALAT1 in

osteosarcoma (Tripathi et al., 2013), are onco-lncRNAs. lncRNAs

can alter angiogenesis, proliferation, andmetastasis (Yoon et al.,

2012; Hu et al., 2014). They are known to be key regulators of

chromatin structure and accessibility (Gupta et al., 2010; da

Rocha and Heard, 2017), but they also are known to modulate

transcriptional activity as co-factors and guides (Prensner

et al., 2013; Kim et al., 2013; Wang et al., 2017) and can

sponge and inhibit the activity of transcription (Kino et al.,

2010; Hung et al., 2011) and post-transcription factors (Hansen

et al., 2013; Donnelly et al., 2011; Lee et al., 2016; Rapicavoli

et al., 2013).

The number of predicted human lncRNA genes exceeds

10,000 (Djebali et al., 2012; Hon et al., 2017). Consequently, a

key open question in RNA cancer biology is: how many lncRNAs

have pathophysiologically relevant functions in cancer? Previous

efforts to address this question relied on clinical annotation (Yan

et al., 2015; Ching et al., 2016)—identifying lncRNAs whose

expression is predictive of overall survival and that are co-ex-

pressed with cancer genes (Liu and Zhao, 2016; Li et al.,

2017)—as well as on proximity to disease-associated genomic

polymorphisms, or on context-specific expression (Iyer et al.,

2015). All of these efforts identified lncRNAs that may be impor-

tant in cancer. However, their methodology either did not asso-

ciatemechanisms and functionswith the candidate lncRNAs or it

relied on correlations with complex outcomes (Shedden et al.,

2008). Our approach was to predict lncRNA targets using

models for lncRNA regulation that could be populated using

RNA expression profiles and then implicate dysregulated

lncRNAs in cancer-relevant activity based on their inferred

targets. Toward this aim, we reconstructed lncRNA regulatory

networks (lncNETs) using the molecular profiles of primary tu-

mors of The Cancer Genome Atlas (TCGA) and implicated

lncRNAs and alterations at their loci with the dysregulation of

cancer genes and pathways that are known to influence tumor

etiology.
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lncNET analysis suggested that hundreds of dysregulated

lncRNAs operate as ensembles to dysregulate cancer genes

and pathways by altering the activity of transcription factors

(TFs), RNA-binding proteins (RBPs), and microRNAs (miR-

NAs)—effectors or canonical regulators, for short—in each tu-

mor context. Analysis of our lncNETs suggested that many

lncRNAs are either transcriptional or post-transcriptional spe-

cialists, acting as decoys to titrate effectors (miRNAs, TFs, or

RBPs) from their targets, as cofactors or guides to alter TF-pro-

moter interactions, and as molecular switches to alter TF or RBP

activity across multiple targets (Figure 1A). Moreover, although

cellular localizations for lncRNAs have been determined for

<5% of human lncRNA species (Zhang et al., 2017), lncRNAs

that were enriched with transcriptional or post-transcriptional in-

teractions in our lncNETs were more likely to be previously clas-

sified as nuclear or cytoplasmic, respectively.

As a proof of principle, we used biochemical assays to test the

predictive effects of four lncRNAs, which were chosen to include

predicted pan-cancer lncRNAs, a tumor-suppressor lncRNA,

onco-lncRNAs, antisense lncRNAs, and intergenic lncRNAs.

These assays supported our predictions that OIP5-AS1 is a

pan-cancer tumor-suppressor lncRNA, that LINC01184 regu-

lates tumor suppressor genes in basal breast cancer tumors,

and that TUG1 and WT1-AS are onco-lncRNAs in ovarian can-

cer. Our results, although underpowered, suggest good accu-

racy for our inferred lncNETs, which provide a framework for

inferring trans effects for copy number gains and losses at

lncRNA loci in cancer.

RESULTS

Summary
We inferred context-specific lncNETs, composed of inferred

lncRNA regulatory interactions, for TCGA BLCA, BRCA, CESC,

HNSC, KIRC, KIRP, LGG, LIHC, LUAD, OV, PRAD, SKCM,

THCA, and UCEC. lncNET inference relied on sequence-based

predictions for lncRNA binding sites by Triplexator (Buske

et al., 2012) and expression-based evidence for lncRNAmodula-

tion of effectors (Sumazin et al., 2011; Wang et al., 2009). Evi-

dence for lncRNA modulation was based on observations from

context-specific TF, RBP, and miRNA interaction networks,

with lncRNAs modeled as modifiers of effector activity (Fig-

ure 1B). Figures 1C and 1D illustrate a key line of evidence for

the modulation of cancer genes by OIP5-AS1: distance correla-
Figure 1. lncNETs in Cancer

(A) LongHorn predicts lncRNA interactions using four models for lncRNA regulatio

and miRNAs (effectors), thus affecting their availability to regulate their targets;

(PCGs) and alter their regulation by TFs; and switches that alter the activity of TF

(B) Our models consider lncRNAs to be modulators of effector activity (i.e., the r

predicted to modulate effectors that target the preotein coding genes (PCGs) P

cinomas tumors.

(C) Activity modulation by OIP5-AS1 was observed when comparing distance cor

abundance. OIP5-AS1 was upregulated in luminal tumors, where it was predicted

of their common PCG targets PIK3R1, TCF4, and ZEB1.

(D) OIP5-AS1 was downregulated in basal-like tumors, where it was predicted to

to the dysregulation of their targets FOXA1, FOXP1, and PTEN; the top three e

****p < 1E�4, as estimated by bootstrapping.

miR, microRNA; PWM, position weight matrices; TSS, transcriptional starting sit
tion (Székely et al., 2007) estimates between effectors and

targets varied significantly when comparing breast adenocarci-

noma samples with low and high OIP5-AS1 abundance. For

example, this evidence suggests that OIP5-AS1 activates IRF4

and ETS1 regulation of PIK3R1 (Figure 1C) and inhibits FOXA1

regulation by TIA1 and RBFOX2 (Figure 1D).

To further test whether the expression of coding genes—and

cancer genes in particular—may be altered by the dysregulation

of their inferred lncRNA regulators, we tested whether lncRNA

expression and somatic copy number variations (CNVs) were

predictive of target dysregulation after accounting for both

CNVs at target loci and expression profiles of the target’s canon-

ical regulators. lncNET analysis suggested that hundreds of

lncRNAs regulate cancer genes in each context, most lncRNAs

affect transcription and that co-factor lncRNAs predominantly

inhibit transcription, transcriptional lncRNAs are enriched for

lncRNA-binding sites in core promoters, lncRNA-regulation mo-

dality is correlated with their observed cellular localization, and

cancer pathways are synergistically regulated by lncRNAs.

Finally, we selected four inferred cancer lncRNAs for biochem-

ical testing in breast and gynecologic tumor cell lines. OIP5-AS1

is a pan-cancer tumor suppressor lncRNA whose locus

frequently is lost in basal-like breast and gynecologic carci-

nomas; OIP5-AS1 was predicted to predominantly target tumor

suppressors post-transcriptionally and its silencing confirmed

predictions and phenocopied the effects of PTEN—a key tumor

suppressor—silencing in breast, ovarian, and endometrial can-

cer cell lines. LINC01184 is an example of an intergenic lncRNA

that targets cancer genes in breast adenocarcinomas. TUG1 and

WT1-AS were predicted onco- lncRNAs; their silencing in

ovarian serous carcinoma cell lines downregulated oncogenes

and reduced proliferation in vitro.

lncRNA Interaction Inference
We constructed tumor type-specific lncNETs using the Long

Noncoding RNA Heterogeneous Regulatory Network integrator

(LongHorn). LongHorn inferences relied on reverse-engineered

canonical interactions, which were predicted using published

methods and assays, including ENCODE enhanced version of

the crosslinking and immunoprecipitation assay (eCLIP) and

chromatin immunoprecipitation sequencing (ChIP-seq) data

(Van Nostrand et al., 2016; ENCODE Project Consortium,

2012), TF-promoter prediction methods (Zhou et al., 2010; Ban-

sal et al., 2015; Smith et al., 2005, 2007; ENCODE Project
n. These include lncRNA decoys that bind and inhibit the activity of TFs, RBPs,

co-factors and guides that bind proximal promoters of protein-coding genes

s and RBPs across multiple targets.

ole of lncRNAs is to alter regulation by effectors). For example, OIP5-AS1 was

IK3R1, TCF4, ZEB1, FOXA1, FOXP1, and PTEN in TCGA breast-invasive car-

relation between effectors and targets in samples with low and high OIP5-AS1

to enhance IRF4, ETS1, EOMES, and CREB5 activity, leading to dysregulation

inhibit the activity of regulators, including TIA1, MAX, and miR-769-3p, leading

ffectors are shown for each target. *p < 5E�2, **p < 1E�2, ***p < 1E�3, and

e.

Cell Reports 23, 297–312, April 3, 2018 299



A

B C

Figure 2. lncRNA Expression Profiles and Copy Numbers Account for Target Dysregulation

(A) The number of targets for which lncExPs and lncCNs were significantly predictive (p < 0.01 and FDR < 0.05) of target expression after accounting for the

potential effects of target copy numbers (PCGCN) and the influence of their canonical regulators TFexp, RBPexp, and miRNAexp (reduced model). p Values were

calculated by the F-test, comparing full models, which included either lncExPs or lncCNs, and the reducedmodel; FDRs were estimated using permutation tests.

We distinguished between lncRNA targets that are cancer genes and other PCGs; cancer gene counts are given as data labels. Both lncExPs and lncCNs

accounted for cancer gene expression variability for a median of 28 cancer genes per tumor context.

(legend continued on next page)
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Consortium, 2012; Lefebvre et al., 2010), and miRNA-target and

RBP-target predictionmethods (Chiu et al., 2015, 2017; Sumazin

et al., 2011). Data are provided in Tables S1, S2, S3, and S4,

and predicted canonical interactions are provided in Tables

S5, S6, and S7.

LongHorn interactions always include at least one lncRNA,

effector, and target (Figure 1B), with most predictions describing

interactions between multiple factors. For example, one lncRNA

may alter the activity of multiple effectors that target a promoter,

or an lncRNAmaymodulate the activity of an effector onmultiple

targets. LongHorn integrates RNA-RNA, RNA-DNA, RNA-pro-

tein, and DNA-protein-binding evidence with evidence that

lncRNAs statistically account for variability in the correlation be-

tween effectors and their targets (see detail in STAR Methods

and predicted targets in Table S8).

lncRNA Expression and Somatic CNVs Are Predictive of
Target Expression
Analysis of our lncNETs showed that although lncRNA-target co-

expressiondidnot feature in the constructionof lncNETs, lncRNA

expression profiles (lncExPs) and copy numbers (lncCNs) often

were correlated with the expression profiles of their targets. We

used nested regression models to test whether lncExPs and

lncCNs are predictive of target expression. Setting both false dis-

covery rate (FDR) < 0.05 and F-test p value < 0.01 cutoffs, we

testedwhether lncExPs and lncCNs improve our ability to predict

target expression after accounting for both target CNVs and the

expression profiles of their canonical regulators. Our results sug-

gest that for hundreds of targets in each tumor context, including

28 cancer genes, on average (Table S9), both lncExPs and

lncCNs were significantly predictive of target gene expression

(Figure 2A). Moreover, the proportion of target expression vari-

ability accounted for by lncExPs (Figure 2B) and lncCNs (Fig-

ure 2C) were, on average, greater than and nearly equal to the

proportions accounted for by target CNVs, respectively. These

data suggest that alterations at lncRNA loci account for a signif-

icant proportion of the observed dysregulation of dozens of can-

cer genes in most tested tumor contexts.

Enrichment of lncRNA Binding Sites in Core Promoters
Analogous to predicted TF binding sites (Long et al., 2004; Gotea

et al., 2010; Koudritsky and Domany, 2008), predicted lncRNA-

promoter binding sites (lncBS) were enriched in core pro-

moters—in other words, 50 bases upstream of transcription start

sites (Figure 3A); the position of lncBSs in proximal promoters

did not play a role in their prediction. Similar to observations

for TF binding sites (Zhou et al., 2010), lncBS multiplicity in

core promoters was an indicator of predicted interactions (Fig-

ure 3B) and was predictive of lncRNA-target co-expression (Fig-

ure 3C). When making these comparisons, we contrasted the

enrichment of lncRNA-target interactions with lncBSs outside

the core promoter to the enrichment of lncRNA-target interac-

tions with one or multiple binding sites in the core promoter.
(B) The proportion of expression variability (R2) of PCG targets whose expression w

well as expression profiles of their predicted canonical regulators, and lncExPs;

(C) Similarly, expression variability for targets whose expression was significantl

lators, and lncCNs. R2 for lncExPs and lncCNs are given as data labels; SEs are
Transcriptional and Post-transcriptional Specialists
A comparison of the transcriptional and post-transcriptional

components of LongHorn lncNETs suggested thatmost lncRNAs

are either guides or co-factors; it is interesting that the majority

of co-factor interactions were predicted to inhibit TF activity

(Figure 3D). The number of transcriptional interactions was

more than three times that of post-transcriptional interactions,

and, on average, 44% of lncRNAs were enriched for transcrip-

tional interactions, even after normalization to equate the sizes

of the transcriptional and post-transcriptional subnetworks

(Figure 3E).

Many lncRNAs were inferred as either predominantly tran-

scriptional or post-transcriptional regulators. To study these

further, we identified lncRNAs with a significant number of tran-

scriptional or post-transcriptional targets (FDR < 0.01); these

are highlighted in Figure 3F and Table S10. Transcriptional reg-

ulators included known nuclear lncRNAs—NEAT1, XIST, and

TSIX—and post-transcriptional regulators included known

cytoplasmic lncRNAs—OIP5-AS1, SNHG1, and SNHG12. To

evaluate the correspondence between predicted regulatory

modalities and observed localization, we indicated transcrip-

tional and post-transcriptional specialists based on target

enrichment (FDR < 0.01) and nuclear and cytoplasmic lncRNAs

as recorded by RNALocate (Zhang et al., 2017). A comparison

of these categories suggested that transcriptional and post-

transcriptional specialists were more likely to be nuclear

and cytoplasmic, respectively (p < 0.05 by Fisher extract test

[FET]).

Indirect Evidence for Altering Transcription Factor and
RBP Activity
We collected additional supportive evidence for the effect of

lncRNAs on TF and RBP abundance by testing for indirect

correlation between lncRNAs and targets of these canonical

regulators. lncRNAs that modulate effectors that target TFs

and RBPs are expected to be correlated with the targets of

these TFs and RBPs (Chiu et al., 2015). We tested indirect

regulation by lncRNA through gene set enrichment of targets

of these canonical regulators—the TFs and RBPs whose

effectors lncRNA modulates—by ordinally comparing their cor-

relations with lncRNAexp to lncRNAexp’s correlations with all

expressed genes. Full results are provided in Table S11, and

lncRNAs that modulated the regulation of the greatest number

of canonical regulators are presented in Figure 3G. Some of

these predictions, including modulation of FOXA1 and ZEB1

by OIP5-AS1, were biochemically verified in cell lines. Our

results suggest that modulation of TF and RBP targets is signif-

icantly more context independent than other lncNET interac-

tions (Figure 3H).

Pan-Cancer Pathway Regulation by lncRNAs
Inferred co-regulation by multiple lncRNAs in multiple tumor

types, as shown in Figure 3G, suggested that lncRNAs may
as significantly predicted by lncExPs that were accounted for by their CNVs, as

the x axis shows target counts for each tumor type.

y predicted by lncCNs that was accounted for by their CNVs, canonical regu-

shown.
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synergistically regulate cancer genes and pathways. We identi-

fied lncRNAs whose targets are enriched (FDR < 0.01 by

adjusted FET) in MSigDB’s Hallmark Gene Set (HGS) pathways

across multiple tumor contexts (Subramanian et al., 2005; Liber-

zon et al., 2015) (see Table S12). Some of these pathways

were enriched for lncRNA regulation in each tumor context. To

quantify pathway regulation by lncRNAs, we evaluated each

pathway by combining lncRNA regulation significance using

the method of Stouffer et al. (1949). The result (Figure 4A) sug-

gests that multiple pathways (40 of the 50 HGS pathways),

including proliferation, immune, and signaling pathways, as

well as the oxidative phosphorylation and epithelial-mesen-

chymal transition pathways, were targeted by lncRNAs in most

tumor contexts.

lncRNAs whose predicted targets were enriched in more than

10HGSpathways across tumor types are presented in Figure 4B;

this selection identified pan-cancer lncRNAs that potentially

affect multiple biological functions in tumors. These lncRNAs,

including MEG3, which was predicted to target epithelial-

mesenchymal transition in multiple tumor types (Cheng et al.,

2013), are identified in Table S12. Twenty-six lncRNA-pathway

interactions were inferred in at least 7 of our 14 tumor contexts,

and 96% (25 of 26) of these were associated with proliferation

(Figure 4B). Our results also suggest that some key pathways

are enriched for synergetic regulation by lncRNAs (Figure 4C;

FDR < 0.01, estimated by bootstrapping), while some lncRNAs

synergistically regulate multiple cancer pathways. Figure 4D

shows predicted synergy between lncRNAs with the greatest

number of co-regulated pathways from Figure 4B; these

lncRNAs target nine pathways in multiple tumor types (full

results provided in Table S13). Synergy predictions include

known cofactors MALAT1 and NEAT1 (West et al., 2014), as

well as post-transcriptional regulators OIP5-AS1, SNHG1, and

HNRNPU-AS1.

To test prediction accuracy at a genome-wide level, we

compared LongHorn predictions in BRCA to results from a

cell-growth CRISPRi screen in MCF7 and MDA-MB-231 (Liu
Figure 3. Transcriptional and Post-transcriptional Specialists

(A) Predicted TF binding sites (TFBSs) and lncBSs—both based on sequence ev

[�50,0] relative to TSSs. Random lncBSs were produced by di-nucleotide shuf

shown; 2-kb promoters were partitioned into 40 bins based on distance from the

p value estimated by chi-square test.

(B) More predicted interactions had multiple core-promoter binding sites. Predic

lncBS multiplicity in core promoters, respectively; LongHorn-predicted targets w

alone. p values estimated by chi-square test; SE relative to random shown.

(C) LongHorn-predicted interactions with more core-promoter lncBSs were mo

teractions whose correlation was significant at p values from 1E�2 to 1E�5. The n

between expression profiles of lncRNAs and their targets, irrespective of the pre

(D) The majority of predicted co-factor interactions showed inhibition of TF activit

shown.

(E) Most lncRNAs were enriched for TF modulation—these had transcriptional to

transcriptional to post-transcriptional specialists (given as data labels) for each tu

between transcriptional and post-transcriptional regulation; the x axis shows the

(F) lncRNAs that had an unusual number of predicted transcriptional or post-tra

agreement with known lncRNA localization as curated by RNALocate (p < 0.05,

(G) High-confidence interactions where lncRNAs, including OIP5-AS1, NEAT1, a

correlated with the expression of the targets of these TFs and RBPs. The 40 lncRN

RBPs were included; the total number of predicted interactions across the 14 tu

(H) These high-confidence interactions were enriched (p < 1E�16) for inference
et al., 2017). In total, Liu et al. identified 69 lncRNAs that are ex-

pressed in BRCA and found evidence for influencing cell growth

in either MCF7 or MDA-MB-231 (score >7). Of 6,435 candidates,

LongHorn inferred 353 (5%) lncRNA regulators of MSigDB prolif-

eration pathways (FDR < 0.01), including 14 of the 69 (20%) that

were identified by Liu et al. for an agreement p value <1.4E�5

(FET p value [pFET]).

OIP5-AS1 Is a Tumor-Suppressor lncRNA in Basal-like
BRCA and Gynecologic Tumors
To identify candidate pan-cancer lncRNAs, we selected

frequently altered lncRNAs with predicted cancer gene targets

in multiple lncNETs that were differentially expressed (FDR <

0.01 by U test comparing tumor and adjacent samples) in

the majority of tumor contexts and that had variable copy

numbers and expression profiles across tumors. Variable

copy numbers and expression profiles had median absolute

deviation scores >0 and >0.2, respectively (Rousseeuw and

Croux, 1993); selected lncRNAs were altered in %10% of the

samples and were enriched for cancer gene targets (FDR <

0.01 by FET). In total, 103 lncRNA species satisfied these

criteria and were selected as candidates (Figure 5A). When

compiling predicted targets across all tumor contexts, some

of these candidates, including OIP5-AS1, were predicted to

regulate hundreds of cancer genes (Figure 5B). Both OIP5-

AS1 expression and CNV profiles suggested that it is frequently

deleted (Figure 5C) and downregulated (Figure 5D) in basal-like

BRCA, OV, and serous-like UCEC. OIP5-AS1 was predicted to

target known tumor suppressors in these tumor types,

including FOXA1, GATA3, PTEN, and ZEB1; these and other

selected target cancer genes are downregulated in basal-like

BRCA in both TCGA and METABRIC (Curtis et al., 2012) data-

sets (Figure 5E).

To demonstrate the expression-based rationale for predicting

these interactions, we note that evidence for their regulation by

OIP5-AS1 is indirect: OIP5-AS1 is predicted to modulate the ac-

tivity of canonical regulators that target these genes. To observe
idence alone and according to LongHorn—were enriched in core promoters,

fling and reanalyzing proximal promoters 10 times, the standard deviation is

TSS, with binding sites assigned to bins based on the location of their center;

ted TF and lncRNA targets showed 9- and 4-fold enrichments for TFBS and

ere significantly more enriched than predictions based on sequence evidence

re significantly correlated. We mapped the proportion of lncRNA-target in-

umber of core-promoter lncBSs was predictive of distance correlations (dCors)

diction significance cutoff used; p values estimated by U test.

y by lncRNAs; ratios between the numbers of TF inhibitions and activations are

post-transcriptional log2 fold-change R0.5; the ratio between the number of

mor type are shown at the top of the figure—and the fewest showed a balance

number of tested lncRNAs for each tumor type.

nscriptional targets when compared to other lncRNAs; most of these were in

FET). lncRNAs with verified localization are marked with filled data points.

nd TUG1, were predicted to modulate regulators of TFs and RBPs and were

As with the most TF and RBP targets and the 40 most frequent target TFs and

mor types is given at right.

in multiple tumor types. Errors are shown as SEMs.
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modulation by OIP5-AS1, we compared distance correlations

between effectors and targets in tumors in which OIP5-AS1

expression is low and in tumors in which OIP5-AS1 expression

is high (Figures 1C and 1D). The correlation between OIP5-

AS1 expression and the expression of its targets but not

their effectors may be significant, but this is incidental

because these targets were not selected for co-expression

with OIP5-AS1 (see Figure 5F). OIP5-AS1 targets were enriched

for cancer genes in BRCA (Figure 5G), including targets that

were inferred in multiple breast and gynecologic tumors

(Figure 5H).

We selected seven predicted OIP5-AS1 cancer gene targets

that were inferred in BRCA, in OV, and in UCEC for perturbation

testing (Figure 5H). These targets, including PTEN, are known to

play key roles in each of the three tumor types, and they were

downregulated following RNAi-mediated silencing of OIP5-AS1

in premalignant (Figure 6A), claudin-low triple-negative (Fig-

ure 6B), and basal-like (Figure 6C) BRCA cell lines, and in ovarian

(Figures 6D and 6E) and endometrial (Figures 6F and 6G) cancer

cell lines. Primer sequences are provided in Table S15. Focusing

on PTEN, we showed that siRNA (si)OIP5-AS1 downregulated

PTEN-protein expression (Figures 6H–6J) and that siOIP5-AS1

phenocopied siPTEN transfections and upregulated cell growth

estimates of MDA-MB-231 (Figure 6K), OVCAR-3 (Figure 6L),

and ECC-1 (Figure 6M), supporting its effects on tumor prolifer-

ation in all three tumor contexts. To test our predictions on a

genome-wide scale, we profiled gene expression by total

RNA-seq following siOIP5-AS1 transfections in MDA-MB-231

and ECC-1. Our analysis, presented in Figure S1, suggested a

significant enrichment for predicted OIP5-AS1 post-transcrip-

tional targets among genes that were downregulated following

siOIP5-AS1 transfections.

LINC01184, WT1-AS, and TUG1 Regulate Cancer Genes
As was the case for OIP5-AS1, we selected TUG1 and WT1-AS

as examples of oncogene-like lncRNAs in OV based on their

predicted targets, including the oncogenic RAS/mitogen-acti-

vated protein kinase (MAPK) pathway (Zhang and Liu, 2002).

LINC01184 was selected as an example of an lncRNA that reg-

ulates cancer genes in BRCA. LINC01184 is downregulated in

basal-like BRCA (Figure 7A), and WT1-AS is dramatically upre-

gulated in OV (Figure 7B) in a cancer-specific manner. TUG1 is

predicted to regulate key members of the RAS/MAPK pathway

in OV (Figure 7C) and most other tumor types; all three lncRNA

species were enriched for cancer gene targets after multiple

testing corrections (Figure 7D). RNAi-mediated silencing of

LINC01184 downregulated its predicted targets in the breast

cancer cell lines MDA-MB-231 and MDA-MB-468 (Figures 7E

and 7F), and WT1-AS and TUG1 silencing in ovarian cell

lines downregulated their predicted targets in SK-OV-3 and

OVCAR-3 (Figures 7G–7J). Moreover, confirming our predic-
Figure 4. lncRNAs Are Predicted to Synergistically Target Regulatory

(A) lncRNAs are predicted to target most pathways inMSigDB’s HGS, including pr

tumor types. Regulation strength was calculated by combining z scores across e

(B) More than 40 lncRNAs were predicted, in >10 instances, to regulate pathway

(C) Pathways that were predicted to be targeted synergistically by lncRNAs (FDR

(D) The predicted synergy between the 25 lncRNAs (from [B] with the greatest n
tions, WT1-AS and TUG1 silencing reduced SK-OV-3 and

OVCAR-3 cell growth (Figures 7K–7N).

DISCUSSION

Here, we described LongHorn, a pipeline to reverse engineer

lncNETs and predict both targets and consequences of lncRNA

dysregulation. LongHorn relies on multiple algorithms to make

predictions about lncRNA, TF, and mRNA binding sites, and

these algorithms are known to be imprecise. To overcome

precision issues, LongHorn integrates predictions by multiple

methods across multiple interactions—(target, effector, lncRNA)

triplets—when inferring lncRNA modulation. Analysis of these

lncNETs in 14 tumor types identified lncRNAs whose dysregula-

tion altered cancer genes and pathways, and biochemical

assays confirmed the effects of predicted onco- and tumor-sup-

pressor lncRNAs on cancer cell proliferation. While only a hand-

ful of lncRNAs are known to be relevant in cancer (Schmitt and

Chang, 2016; Yan et al., 2015), our results suggest that the dys-

regulation of hundreds of lncRNAs may alter cancer pathophys-

iology in each tumor context. Our study was based on the

reasoning that lncRNA regulators of known cancer genes also

may play roles in cancer (Oliver, 2000) and that predictive

CNVs at the loci of these regulators may contribute to cancer

etiology. Consequently, we attributed oncogenic and tumor-

suppressive roles to lncRNAs that were predicted to target and

dysregulate cancer genes and pathways.

Our analysis suggests that extensive lncNETs are regulating

hundreds of genes, including dozens of cancer genes, in each

tumor context and that somatic CNVs at hundreds of lncRNA

loci contribute to cancer gene dysregulation and, by extension,

tumor pathology in each context. While the majority of cancer

lncRNAs were predicted to act in a context-specific manner,

dozens of lncRNAs, including OIP5-AS1, TUG1, NEAT1,

MALAT1, XIST, and TSIX, were inferred to synergistically regu-

late cancer genes and pathways acrossmultiple tumor contexts.

Further analyses of our lncNETs pointed to lncBS enrichment in

core promoters and suggested that lncBSmultiplicity in core and

proximal promoters are predictive of the magnitude of the regu-

latory effects of lncRNAs that regulate transcription. We inferred

some lncRNAs as transcriptional and others as post-transcrip-

tional specialists and found that inferred regulatory modalities

are consistent with known cellular localization for these lncRNAs.

These observations, particularly our interpretation of the function

of alterations that target lncRNA loci in cancer, suggest that

lncNETs can be a valuable resource for studying lncRNA regula-

tion and the effects of lncRNAs on tumor etiology in a multitude

of cancer contexts.

To test the pathophysiological relevance of predicted cancer

lncRNAs, we compared LongHorn predictions of lncRNAs tar-

geting proliferation pathways in BRCA to predictions from a
Pathways

oliferation, immune response, signaling, and DNA damage pathways inmultiple

nriched lncRNAs (FDR < 0.01); lncRNA identities are provided in Table S12.

s across tumor types.

< 0.01).

umber of co-regulated pathways).
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Figure 5. OIP5-AS1 Dysregulation Is Predicted to Alter Cancer Gene Expression in Multiple Tumor Types

(A) More than 100 lncRNAs were dysregulated in the majority of tumor types relative to tumor-adjacent samples, altered by copy number gains or losses in the

majority of tumor types, and targeted cancer genes in the majority of tumor types.

(B) Of these, averaging across the 14 tumor types, NEAT1, LINC00969, MALAT1, and OIP5-AS1 were predicted to have the most cancer gene targets (top), and

NEAT1, MALAT1, and OIP5-AS1 but not LINC00969 were highly expressed on average across tumor contexts (bottom); OIP5-AS1 and TUG1 (yellow highlight)

were predicted to be pan-cancer regulators and were biochemically evaluated.

(legend continued on next page)
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Figure 6. RNAi-Mediated Silencing of OIP5-AS1

(A–G) siOIP5-AS1 transfections downregulated OIP5-AS1 and LongHorn-inferred targets (green), but not controls (gray), in (A) premalignant, (B) claudin-low

triple-negative, and (C) basal-like BRCA cell lines, as well as in ovarian cancer cell lines (D) OVCAR-3 and (E) SK-OV-3 and endometrial cancer cell lines (F) ECC-1

and (G) Ishikawa. p values are estimated by t test.

(H–J) PTEN protein expression was downregulated in MDA-MB-231 (H), OVCAR-3 (I), and ECC-1 (J) cells 96 and 120 hr after siOIP5-AS1 and siPTEN

transfections.

(K–M) siOIP5-AS1 and siPTEN transfections upregulated (K) MDA-MB-231, (L) OVCAR-3, and (M) ECC-1 cell growth; proliferation fold changes were measured

as cell counts relative to counts before small interfering RNA (siRNA) transfection (day 0). p values were calculated using two-tailed Student’s t tests and

compared using Fisher’s exact test across days.

Representative images of tumor-cell growth assays are shown. Errors are shown as SEMs. n.e., not expressed. *p < 5E�2, **p < 1E�2, ***p < 1E�3, and

****p < 1E�4.
genome-wide CRISPRi screen in breast cancer cell lines (Liu

et al., 2017). Our results suggested a close concordance

(p < 1.4E�5) between LongHorn predictions in primary breast

cancer tumors and the genome-wide screen in breast cancer

cell lines. Furthermore, we biochemically tested the effects

of silencing each of three lncRNAs on both their target expres-

sion and cancer cell growth. RNAi-mediated silencing of OIP5-

AS1 in breast, ovarian, and endometrial cancer cell lines

downregulated tumor suppressors in these tumor contexts

and accelerated cell growth, supporting its predicted role as

a tumor suppressor. In contrast, TUG1 and WT1-AS were in-
(C) OIP5-AS1 was enriched for copy number losses in BRCA and gynecologic tu

(D) OIP5-AS1 expression was significantly lower in basal-like BRCAs and serous

(E) OIP5-AS1 targets were significantly downregulated in basal-like BRCAs acco

(F) OIP5-AS1 was predicted to modulate the activity of multiple effectors of a can

with the profiles of the effectors it modulates (gray), but they were correlated wit

nificant (p > 0.1) dCor with OIP5-AS1 expression.

(G) OIP5-AS1 predicted targets were enriched for cancer genes in BRCA (by Fis

(H) Some of these, including FOXA1, FOXP1, GATA3, PIK3R1, PTEN, TCF4, and

UCEC. Biochemically tested targets in boldface type.

RPKM, reads per kilobase per million.
ferred as pan-cancer and OV-specific onco-lncRNAs, respec-

tively, and their silencing downregulated oncogenes and

reduced ovarian cancer cell growth, supporting their predicted

roles in OV. We note that RNAi is more suitable for targeting

RNA in the cytoplasm and that not all lncRNAs will be effec-

tively downregulated by RNAi. Moreover, RNA-seq assays

confirmed the accuracy of OIP5-AS1-target predictions and

suggested that the majority of its predicted targets responded

to its silencing in each context. In total, we inferred hundreds of

thousands of lncRNA-target interactions in each context,

tested seven types of interactions in multiple tumor contexts,
mors (U test, red highlight).

-like UCECs, as was the copy number of its locus.

rding to both TCGA and METABRIC profiles (U test).

cer gene panel (Figures 1C and 1D). Its expression profiles were not correlated

h the profiles of their targets (red); control (black) included genes with no sig-

her’s exact test).

ZEB1, were predicted in at least three tumor types, including BRCA, OV, and
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Figure 7. RNAi-Mediated Silencing of LINC01184, TUG1, and WT1-AS

(A and B) (A) LINC01184 was significantly downregulated in BRCA by U test, and (B) WT1-AS was upregulated in OVs.

(C) TUG1 was predicted to target RAS/MAPK pathway genes and was a predicted onco-lncRNA in OV and other tumor contexts.

(D) LINC01184 (in BRCA) and TUG1 and WT1-AS (in OV) predictions were enriched for cancer gene targets (FDR < 0.01, FET).

(E and F) LINC01184 silencing in (E) BRCA MDA-MB-231 and (F) BRCA MDA-MB-468.

(G–J) WT1-AS (G, SK-OV-3; H, OVCAR-3) and TUG1 (I, SK-OV-3; J, OVCAR-3) silencing in OV cell lines downregulated the expression of their predicted targets

(green).

(K–N) WT1-AS (K, SK-OV-3; L, OVCAR-3) and TUG1 (M, SK-OV-3; N, OVCAR-3) silencing in OV cell lines decreased cell growth, in contrast to PTEN silencing,

which increased cell growth. Proliferation fold changes were measured as cell counts relative to counts before siRNA transfection (day 0). p values were

calculated using two-tailed Student’s t tests and compared using Fisher’s exact tests across days.

Representative images of tumor-cell growth assays are shown. Errors are shown as SEMs.; n.e., not expressed. *p < 5E�2, **p < 1E�2, and ***p < 1E�3.
and supported the majority of tested interactions with biochem-

ical evidence based on lncRNA perturbations in multiple cell

lines.

Our pan-cancer effort identified hundreds of candidate cancer

lncRNAs based on reconstructed lncNETs that included interac-

tions, binding sites, and modulated regulators. lncNETs provide

a resource for studying cancer lncRNAs and their potential to

dysregulate cancer pathways and influence tumorigenesis as

onco- and tumor-suppressor genes. Candidate cancer lncRNAs

include predictive biomarkers and may include candidate thera-
308 Cell Reports 23, 297–312, April 3, 2018
peutic targets for gene editing and RNA therapeutic strategies

(Sullenger and Nair, 2016).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

TaqMan probes

GAPDH Applied Biosystems Hs02786624_g1

GATA3 Applied Biosystems Hs00231122_m1

PTEN Applied Biosystems Hs02621230_s1

FOXA1 Applied Biosystems Hs04187555_m1

Critical Commercial Assays

TruSeq RNA Access Library Prep Kit Illumina RS-301-2001

RNeasy Plus Micro kit QIAGEN 74034

KiCqStart SYBR green primers

Primers for 22 target genes Sigma-Aldrich Table S15

Deposited Data

CancerGenes Database Higgins, et, al. 2007 http://cbio.mskcc.org/CancerGenes/

Chen et al. Chen et al., 2008 Chen et al., 2008

ENCODE Encode consortium https://www.encodeproject.org/

Factorbook Wang et al., 2012 Wang et al., 2012

Frederic Bushman’s cancer gene set Frederic Bushman http://www.bushmanlab.org/links/genelists

HOCOMOCO Kulakovskiy et al., 2013 autosome.ru/hocomoco

HTRIdb Bovolenta et al., 2012 https://omictools.com/htridb-tool

HumanTF Jolma et al., 2013 Jolma et al., 2013

JASPAR 5.0 Sandelin et al., 2004 http://jaspar.genereg.net/

Lawrence et al. Lawrence et al., 2014 Lawrence et al., 2014

METABRIC Curtis et al., 2012 http://molonc.bccrc.ca/aparicio-lab/research/

metabric/

miRBase R21 Kozomara and Griffiths-Jones, 2014 http://www.mirbase.org/

miRecords Xiao et al., 2009 http://c1.accurascience.com/miRecords/

MSigDB in 09/04/2016 Liberzon et al., 2015 http://software.broadinstitute.org/gsea/msigdb/

collections.jsp

Network of Cancer Genes 5.0 An et al., 2016 http://ncg.kcl.ac.uk

Rahman Rahman, 2014 Rahman, 2014

RNA-seq fastq files This paper ENA PRJEB21799

Sanger Cancer Gene Census Futreal et al., 2004 http://cancer.sanger.ac.uk/

SwissRegulon 3/18/2014 Pachkov et al., 2007 http://swissregulon.unibas.ch/sr/

Tamborero et al. Tamborero et al., 2013 Tamborero et al., 2013

TANRIC. 1.0.6 based on Gencode

Release 19

Li et al., 2015 http://bioinformatics.mdanderson.org/main/

TANRIC:Overview

TarBase Vlachos et al., 2015 http://diana.imis.athena-innovation.gr/DianaTools/

index.php?r=tarbase/index

TCGA miRNA-seq Firehose 2015_04_02 stddata Run

TCGA RNA-seq, May 12th 2015 TCGA TCGA data portal

TCGA SNP Array, May 14th 2015 TCGA TCGA data portal

TRANSFAC, February 2013 Matys et al., 2006 http://gene-regulation.com/pub/databases.html

Tumor-Associated Gene Database TAG http://www.binfo.ncku.edu.tw/TAG

Waldman gene set Waldman lab NA

Whitfield et al. Whitfield et al., 2012 NA
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Cell Lines

ECC-1 BCM’s Tissue Culture advance core facility ECC-1

Ishikawa BCM’s Tissue Culture advance core facility Ishikawa

MCF10-A BCM’s Tissue Culture advance core facility MCF10-A

MDA-MB-231 BCM’s Tissue Culture advance core facility MDA-MB-231

MDA-MB-468 BCM’s Tissue Culture advance core facility MDA-MB-468

OVCAR-3 BCM’s Tissue Culture advance core facility OVCAR-3

SK-OV-3 BCM’s Tissue Culture advance core facility SK-OV-3

Oligonucleotides

siLINC01184 Dharmacon (GE) R-036670-00-0005

siOIP5-AS1 Dharmacon (GE) R-181553-00-0005

siTUG1 Dharmacon (GE) R-018202-00-0005

siWT1-AS Dharmacon (GE) R-013209-00-0005

Software and Algorithms

Birdsuite Korn et al., 2008 https://www.broadinstitute.org/birdsuite/birdsuite

Cufflinks v2.02 Trapnell et al., 2012 http://cole-trapnell-lab.github.io/cufflinks

Cupid Chiu et al., 2015 http://cupidtool.sourceforge.net/

Glmnet Friedman et al., 2010 https://web.stanford.edu/�hastie/glmnet_matlab/

GSEA Subramanian et al., 2005; Mootha

et al., 2003

http://software.broadinstitute.org/gsea/index.jsp

LIBSVM (ver.3.20) Chang and Lin, 2011 https://www.csie.ntu.edu.tw/�cjlin/libsvm/

Molecular Devices StainFree Cell

Detection Algorithm

Molecular Devices NA

phastCons Siepel et al., 2005 https://genome.ucsc.edu/goldenPath/help/

phastCons.html

Picard tools v1.54 broadinstitute http://picard.sourceforge.net/

SAMtools Li et al., 2009 http://samtools.sourceforge.net/

STAR v2.3.0e Dobin et al., 2013 https://github.com/alexdobin/STAR

Triplexator Buske et al., 2012 http://bioinformatics.org.au/tools/triplexator/

ushuffle Jiang et al., 2008 http://digital.cs.usu.edu/�mjiang/ushuffle/

Birdsuite Korn et al., 2008 https://www.broadinstitute.org/birdsuite/birdsuite
CONTACT AND REAGENT RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Pavel

Sumazin (sumazin@bcm.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
Cell lines, includingMCF10-A, MDA-MB-468, MDA-MB-231, OVCAR-3, SK-OV-3, ECC-1, and Ishikawawere purchased frozen from

BCM’s Tissue Culture advance core facility. These were cultured in tiny flasks, split, tested for mycoplasma contamination, and

transfected with NT or lncRNA-targeting siRNAs. ECC-1 cells were cultured in DMEM F-12 Ham’s (1:1) Mixture + 10% FBS-Heat

Inactivated + Penicillin/ Streptomycin; OVCAR3 cells in RPMI + 10% FBS; SK-OV-3 in RPMI + 10% FBS; Ishikawa in MEM (1X) +

10% FBS; MDA-MB-231 in DMEM with 10% FBS; MDA-MB-468 in Leibovitz’s (1X) with 10% FBS; and MCF-10A in DMEM/

Ham’s F-12 with 5% Horse Serum, 5mg/ml Insulin, 1X Penicillin/ Streptomycin, 100ng/ml Cholera Toxin, 20 ng/ml EGF, 0.5mg/ml

Hydrocortisone. Cell lines were chosen from those profiled byCCLE (Barretina et al., 2012), when possible, with availability and trans-

fection efficiency taken in consideration; CCLE was used to identify cell lines that express lncRNAs and target of interest. Conse-

quently, while the cell lines chosen here are commonly used models for studying cancer, they may not necessarily be the best avail-

able molecular models for their corresponding tumor types or subtypes.
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siRNAs identities
We used ON-TARGETplus siRNAs from Dharmacon (GE) to target OIP5-AS1, TUG1, WT1-AS, and LINC01184.

Primers and probes used
We used both TaqMan probes and SYBR green primers for estimating gene expression by qPCR. Probes for estimating GAPDH,

FOXA1, PTEN and GATA3 expression were purchased from Applied Biosystems. KiCqStart SYBR green primers for real-time

qPCR were purchased from Sigma-Aldrich; their identities are given in Table S15. SYBR green primers were also used to estimate

expression for GAPDH.

Cell growth assays
To test the effect of siRNA-mediated lncRNA silencing on cell growth we plated OVCAR-3, SK-OV-3, MDA-MB-231 and ECC-1 cells

in 96-well plates using either 1,000 cells per well (OVCAR-3 and SK-OV-3) or 3,000 cells per well (MDA-MB-231 and ECC-1). Cells,

using 3 biological replicates, were cultured for two days before transfection and then counted on a daily basis using a SpectraMax

i3/i3xMulti-ModeDetection Platform. Cells were counted immediately before transfection (day 0) and for up to 6 days following trans-

fection usingMolecular Devices StainFree Cell Detection Algorithm for bright field cell segmentation. Cells, grown and counted in the

same wells through the duration of the experiment, with media unchanged following siRNA transfection (media was changed once,

one day after transfection), were photographed covered once per day and counted using Molecular Devices pre-set cell-recognition

settings, including the cell type A setting for OVCAR-3 and ECC1, and the cell type D setting for SK-OV-3 and MDA-MB-231.

OVCAR-3 cells proliferated faster than ECC1 and MDA-MB-231, and the assay was stopped after four days instead of six. Growth

fold change of OVCAR-3 cells after four days was comparable to that of MDA-MB-231 cells after six days. Representative plate im-

ages, which were used to estimate cell counts, were also used to visualize cell growth at each day.

Western blot analysis
Cells were washed with cold PBS and lysates were prepared by homogenization of cells in cells lysis buffer (Sigma) and supple-

mented with protease and phosphatase inhibitors (Sigma). The protein concentrations were determined by using a BCA Protein

Assay Reagent Kit (Thermo Scientific). Lysates were boiled in Laemmli buffer for 5 minutes. An appropriate amount of protein sample

was separated by SDS-PAGE and transferred to nitrocellulose membrane. After blocking with 5% nonfat milk, the membranes were

incubated overnight at 4�C in 5% BSA with the respective primary antibodies: PTEN, 1:250 (#9188, Cell Signaling) and b-Tubulin

1:5000 (#SC246854, Invitrogen). The corresponding horseradish peroxidase-linked secondary antibodies (1:5000) were obtained

from Jackson Immuno Research. Membranes were developed by Pierce ECL Western Chemiluminescent Substrate from Thermo

Scientific. Protein loading was normalized to endogenous b-Tubulin levels, and quantitated with ImageJ (Schneider et al., 2012);

p values estimated using Student’s t test.

RNA-Seq preparation
Cells were transfected in 96-well plate, with 4 wells pooled to produce each sequenced sample. Each well was seeded with 10,000

cells. Total RNA samples were extracted using RNeasy Plus Micro kit (catalog: 74034) from QIAGEN INC. Total RNA concentrations

were verified byNANODROP 2000C (Thermo Scientific). Each sample that was submitted for sequencing included 20 ml RNA solution

at 10ng/ml. Samples were submitted for library preparation and sequencing at UH Seq-N-Edit Core, University of Houston, Science &

Engineering Research Center, 3517 Cullen Blvd, Room 4008, Houston, Texas 77204-5061. Samples were prepared using Takara

SMARTer Stranded Total RNA-Seq Kit v2 - Pico Input Mammalian (Pico v2) Library Prep Kit and sequenced on an Illumina

NextSeq500 to produce over 20M 75bp pair-end reads per sample.

RNA-Seq analysis
RNA-Seq reads were aligned using STAR v2.3.0e (Dobin et al., 2013) to an index of hg19 that included GENCODE v16 gene anno-

tation (http://www.gencodegenes.org/archive_stats.html). Alignment files were processed using Picard tools v1.54 (http://picard.

sourceforge.net/), and the final BAM files indexed using SAMtools index v0.1.11.(Li et al., 2009) Transcript quantification was

performed using Cufflinks v2.02 running in quantification mode against the GENCODE v16.gtf file (Trapnell et al., 2012). FPKM (Frag-

ments Per Kilobase of Exon Per Million Fragments Mapped) values were used for relative abundance estimation. The uniquely

mapped reads rate was �75% per sample.

Our analysis focused on post-transcriptional decoy targets because these formed the bulk of the predicted OIP5-AS1 targets in

BRCA and UCEC: 67% and 97%, respectively (Figure S1A). While the majority of protein-coding genes did not respond to OIP5-AS1

(Figure S1B), gene set enrichment analysis (Subramanian et al., 2007) showed significant enrichment of predicted targets among

genes that were downregulated following siOIP5-AS1 transfections in both MDA-MB-231 (Figure S1C) and ECC-1 (Figure S1D);

here, we compared fold changes of all expressed post-transcriptional decoy target genes versus all expressed genes. The majority

of the predicted and expressed targets in MDA-MB-231 and ECC-1—including FOXA1, GATA3, PTEN, and ZEB1 transcripts—were

dysregulated by at least 50% (p < 4E-32 by U test when compared to non-targets) and 60% (p < 4E-48 by U test), respectively,

following siOIP5-AS1 transfection; see Table S16 for predicted-target fold-change data.
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METHOD DETAILS

Data collection
LongHorn and the analysis described in this manuscript relied onmultiple types of data: 5,667 TCGA tumor and adjacent normal pro-

files in 14 tumor types, and specifically, RNA-Seq, miRNA-seq and SNP Arrays from each sample; 1,293 RNA-Seq samples from

METABRIC; tumor suppressor and oncogene (cancer gene) predictions frommultiple sources; sequence data for regulatory regions

including proximal promoters and 30 UTRs; previously validated TF and miRNA binding sites; large-scale binding assays including

751 ChIP-Seq for 108 TFs and 268 eCLIP data for 96 RBPs from ENCODE; 1,634 binding motifs for 642 transcription factors; and

the identification of phastCons46way cross-species conserved regions. These, including sources, are given below.

Data collection

LongHorn and the analysis described in Chiu et al. relied on multiple types of data: TCGA tumor profiles, and specifically, RNA-Seq,

miRNA-seq and SNP Arrays from each sample; tumor suppressor and oncogene (cancer gene) predictions from multiple sources;

sequence data for regulatory regions; previously validated binding sites; large-scale binding assays; transcription factor binding mo-

tifs; and the identification of cross-species conserved regions. These, including sources, are described below.

TCGA tumor profiles

We used RNA- and miRNA-expression and copy number profiles of TCGA tumors from 14 types. RNA, including both mRNA and

lncRNA, and miRNA expression was profiled using RNA-Seq and miRNA-Seq, while copy numbers were estimated using SNP

Arrays. All included tumor was profiled by each of these assays. The number of profiled tumors is given below; we considered tumor

types with at least 190 samples that were profiled by the three assays. This requirement was necessary to ensure sufficient power for

conditional multi-variate analyses (Chiu et al., 2015). When available, tumor subtypes, including UCEC subtypes, were obtained from

TCGA phenotype descriptions; BRCA subtypes for TCGA and METABRIC were based on PAM50 inference.

d Bladder urothelial carcinoma (BLCA): 251 tumors

d Breast invasive carcinoma (BRCA): 835 tumors

d Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC): 192 tumors

d Head and neck squamous cell carcinoma (HNSC): 423 tumors

d Kidney renal clear cell carcinoma (KIRC): 437 tumors

d Kidney renal papillary cell carcinoma (KIRP): 197 tumors

d Brain lower grade glioma (LGG): 498 tumors

d Liver hepatocellular carcinoma (LIHC): 196 tumors

d Lung adenocarcinoma (LUAD): 488 tumors

d Ovarian serous cystadenocarcinoma (OV): 261 tumors

d Prostate adenocarcinoma (PRAD): 371 tumors

d Skin cutaneous melanoma (SKCM): 225 tumors

d Thyroid carcinoma (THCA): 502 tumors

d Uterine corpus endometrial carcinoma (UCEC): 309 tumors

In addition, when estimating gene-expression dysregulation, we compared the expression of a gene in tumor samples to tumor-

adjacent samples. In total, 9 of the tumor types above had ten or more tumor-adjacent samples that were profiled by RNA-Seq. Cod-

ing genes and lncRNAs were identified as ‘‘expressed’’ if they had a nonzero median absolute deviation (MAD) score. The number of

profiled tumor adjacent samples for these 9 tumor types is given below.

d Bladder Urothelial Carcinoma (BLCA): 19 tumor adjacent samples

d Breast invasive carcinoma (BRCA): 105 tumor adjacent samples

d Head and neck squamous cell carcinoma (HNSC): 42 tumor adjacent samples

d Kidney renal clear cell carcinoma (KIRC): 67 tumor adjacent samples

d Kidney renal papillary cell carcinoma (KIRP): 30 tumor adjacent samples

d Liver hepatocellular carcinoma (LIHC): 50 tumor adjacent samples

d Lung adenocarcinoma (LUAD): 58 tumor adjacent samples

d Prostate adenocarcinoma (PRAD): 52 tumor adjacent samples

d Thyroid carcinoma (THCA): 59 tumor adjacent samples

RNA-Seq

RNAs were profiled using Illumina Genome Analyzer or HiSeq. Level 3 data, to estimate expression of 17,792mRNAs, was download

from TCGA Data Portal on 05/12/2015. Expression was estimated as log2(normalized count+1), where multiple transcripts are

summed to produce gene-level expression estimates. We only usedmRNAswith a single Entrez ID, andwhere all associated RefSeq

had one and only one predicted location in chr1-22, chrX, or chrY. Expression profiles for a total of 12,677 lncRNAs were estimated

using TANRIC. 1.0.6 based onGencode Release 19 (Li et al., 2015); these were represented as RPKM (Reads Per Kilobase perMillion

mapped reads). Note that these lncRNAs do not overlap other lncRNAs or mRNAs included in the RNA-Seq data.
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miRNA-seq

A total of 2,588 miRNAs were profiled using Illumina HiSeq 2000. Level 3 expression estimates by Firehose, log2-transformed reads

per million miRNA mapped (https://confluence.broadinstitute.org/display/GDAC/Dashboard-Stddata), used release 2015_04_02

(std data Run), utilizing miRBase R21 as of June 2014. To facilitate large-scale computational analysis we replaced all ‘‘NA’’ values

were replaced by ‘‘0’’s.

Copy number estimates

Copy number variations (CNVs) were estimated for bothmRNAs and lncRNAs based on Affymetrix Genome-Wide Human SNP Array

6.0 using Birdsuite (Korn et al., 2008), with Level 3 segmentation data downloaded from TCGAData Portal on 05/12/2015. The values

are represented as a log2 ratio between tumor and normal samples.

In addition to TCGA, 1293 breast patient samples fromMETABRIC (Curtis et al., 2012) were included for subtype analysis of OIP5-

AS targets (Figure 5E). METABRIC profiled 18,674 genes using Illumina HumanHT-12 v3.0 Gene Expression BeadChip. Expression

values were log2-transformed and normalized.

Cancer-gene curation

Cancer genes were collected by taking the union of cancer genes identified by multiple sources, including:

d The Sanger Cancer Gene Census (http://cancer.sanger.ac.uk/census): 480 genes

d The Memorial Sloan Kettering Cancer Center (MSKCC) CancerGenes Database (Higgins et al., 2007)

d (http://cbio.mskcc.org/CancerGenes/): 937 genes based on Cancer Cell Map Pathway and Cancer Review genes sets.

d Dr. Frederic M Waldman lab (http://waldman.ucsf.edu/GENES/completechroms.html): 413 genes

d The Tumor-Associated Gene Database (TAG; http://www.binfo.ncku.edu.tw/TAG/): 674 genes

d Table S2 of Chen et al. (Chen et al., 2008): 766 genes

d Table S2 of Lawrence et al. (Lawrence et al., 2014): 260 genes

d Table S1 of Rahman et al. (Rahman, 2014): 114 genes

d Network of Cancer Genes 5.0 (An et al., 2016) (http://ncg.kcl.ac.uk/): 1,571 genes

d Dr. Frederic Bushman’s Lab (http://www.bushmanlab.org/links/genelists): 2,125 genes

d Table S2 of Tamborero et al. (Tamborero et al., 2013): 435 genes

In total, there are 3,233 predicted cancer genes from these sources were profiled in TCGA RNA-Seq V2. They are listed in the

Table S9.

Subtype prediction for breast tumor samples

We relied on published TCGA subtypes, based on the PAM50 gene set, to identify subtypes for 825 TCGA breast tumor samples,

including LumA, LumB, Her2, and Basal subtypes. In order to estimate subtypes in METABRIC and other TCGA BRCA data, we

trained an SVM classifier using LIBSVM v3.20 in 10-fold cross-validation scheme for each subtype. We used RBF (radial basis func-

tion) kernel and searched for its parameters, i.e., cost and gamma, between 2̂ -10 and 2̂ 10 with a geometric increment of 2. The

parameter set with the best accuracy on TCGA samples was selected for building the final classifiers. Each TCGA BRCA and

METABRIC sample was assigned probability scores from all 4 binary classifiers. The subtype call is assigned to the one with the high-

est probability score. We used breast cancer sample classification to estimate the significance level of dysregulation between basal

and non-basal samples. In total, our process suggested the following classification for TCGA and METABRIC. Table S14 includes all

final subtype calls.

TCGA: 553 LumA, 203 LumB, 84 HER2-enriched, and 174 Basal-like

METABRIC: 833 LumA, 204 LumB, 51 HER2-enriched, and 205 Basal-like

Transcriptional and post-transcriptional canonical networks
LongHorn predicts lncRNA interactions using statistical evidence from transcriptional and post-transcriptional networks with TF-,

RBP-, andmiRNA-target interactions. Thesewere reverse engineered using collected data from high-throughput assays and curated

interactions from multiple databases and using previously published tools. Analyses of ChIP-seq data and using position weight

matrices identified putative binding sites for each TF (Lefebvre et al., 2010, Zhou et al., 2010, Smith et al., 2006, Bansal et al.,

2015). miRNA networks were reversed engineered using Cupid (Chiu et al., 2015), and RBP-networks based on ENCODE eCLIP

datasets (Li et al., 2015). Details below.

Regulatory regions

Proximal Promoters and 30 UTRwere used when predicting transcription factor (TF), RNA-binding protein (RBP), and miRNA binding

sites. Binding site evidence acrossmultiple promoters and 30 UTRs associatedwith the same genewas aggregated to produce gene-

level binding evidence. We used 2kbps promoters: [-1000, 1000] relative to the transcription start sites.

When predicting TF binding sites in proximal promoters using position-weight matrices, motif scores were compared to 50-flanking
regions of length 2kbps of their cognate proximal promoters; the methodology is detailed at ‘‘TF-target prediction’’ section. When

scoring TF binding sites in lncRNAs, comparisons were made relative to di-nucleotide preserved shuffled promoters. Binding sites

for RBPs and miRNAs were identified in 30 UTRs, as evidence suggest that sites that are more likely to alter RNA stability and
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degradation are located in these regions (Hausser et al., 2013). Please see sections ‘‘TF-target prediction’’ and ‘‘RBP-target predic-

tion’’ for details. Both 30 UTRs and proximal promoters were extracted based on hg19 RefSeq annotation. Note that there are 22388

proximal promoters and 38,669 30 UTRs corresponding to 17,792 PCGs. Their 30 UTR lengths were between 1 to 25,393bps with a

median length of 999bps. All these regulatory regions are included in Tables S1-3.

lncRNAs counts

We studied 12,677 lncRNA candidate genes with 22,339 transcripts. Their length ranged between 48 and 37,027bps with a median

length of 601bps. These lncRNA transcripts could be classified into the following groups, based on their location relative to coding

genes: 11,099—nearly a half—were intergenic (lincRNAs), 13 overlapped 30 UTRs, 8,296 were antisense to a coding gene, 779 were

intronic, 286 overlapped coding genes and 1,866 were the product of other post-transcriptional processing. This classification is pro-

vided by GENCODE Release 19.

Verified TF-target interactions

Focusing on TFs and targets with profiles in TCGA RNASeqV2 data, we collected a total of 6,566 non-redundant and experimentally-

verified human TF-target interactions for 557 TFs and 2528 targets from 3 sources; of these 388 have characterized motifs. Interac-

tions were collected from the following sources:

d HTRIdb (Bovolenta et al., 2012) build dating 03/20/2014: 2209 interactions involving 277 TFs and 1381 targets that were verified

by small and mid-scale techniques. These excluded interactions detected by ChIP-chip or ChIP-seq due to their lower

confidence.

d Table 3 of Whitfield et al. (Wang et al., 2012, Whitfield et al., 2012) which included 63 interactions between 7 TFs and 54 target

genes.

d TRANSFAC Professional,(Matys et al., 2006) from February 2013, 4,888 interactions between 501 TFs and 1669 targets. We

excluded interactions involving more than one TF per target to avoid non-specific binding by co-factors.

All these interactions are included in the Table S4.

Verified miRNA-target interactions

miRNA-target interactions were compiled frommiRecords, TarBase, TRANSFAC, andmiRTarBase (v4.5 in 11/01/2013). Only human

miRNA-target gene interactions with strong experimental evidence, i.e., reporter assay or western blot, were selected. In addition, we

included validated targets from the Table S2 of Grosswendt et al. (Grosswendt et al., 2014), which included interactions between 359

miRNAs and 2463 genes, where both were included in our TCGA profiles. In total, these 4,696 interactions were used to train clas-

sifiers and predict miRNA-target interactions genome-wide. All these interactions are included in Table S4.

Predicted interactions from ENCODE data

We used ENCODE (ENCODEProject Consortium, 2012) data to predict TF and RBP targets based on ChIP-Seq and eCLIP, including

108 TFs that were profiled in 37 cell lines, with the majority of assays performed in replicates. ChIP-seq data were downloaded from

the UCSC genome browser, using hg19 annotation. Included eCLIP data profiled targets for 96 RBPs in 2 cell lines (HepG2 and

K562), with each assay performed in duplicates. Transcription factor binding sites in proximal promoters and RBP sites in

30 UTRs were selected as sequence-based targets and used in the subsequent expression-based analysis.

Transcription factor binding motifs

In total, we collected 1634 position weight matrices (PWMs) for 642 human TFs with expression in TCGA RNASeqV2 from 5 sources.

To avoid matrix entries of value 0, a pseudo-count 1 was added to each entry before calculating the relative occurrence frequencies

(%) of nucleotides at each position. We used this frequency table to scan TF binding sites from the proximal promoters and lncRNA

transcript sequences. Sources include the following:

d JASPAR (Sandelin et al., 2004) version: 5.0_ALPHA: 104 PWMs for 100 TFs.

d SwissRegulon (Pachkov et al., 2007) downloaded on 03/18/2014: 353 PWMs for 340 TFs.

d HumanTF (Jolma et al., 2013), downloaded from Table S3 in their paper: 661 PWMs for 365 TFs. Only higher-confidencemotifs

were included (motifs indicated in orange or green were not included).

d HOCOMOCO (Kulakovskiy et al., 2013) version: 9.0: 430 PWMs for 402 TFs. Only motifs of quality A, B, C, or D were extracted.

d Factorbook (Wang et al., 2012), downloaded from Table S2 in their paper: 86 PWMs for 76 TFs. These excluded unannotated

motifs in their publication.

PWMs were used to predict TFBS in proximal promoters, 50-flanking regions, and lncRNA transcripts.

Cross-species conservation

Cross-species conservation estimates by phastCons (Siepel et al., 2005) was used for predicting miRNA binding sites. Both com-

plete hg19 human genome and genome-wide phastCons46way conservation scores for vertebrate were downloaded from UCSC

Genome Browser annotation. All scores were normalized between 0 and 1.

Transcriptional and post-transcriptional networks

LongHorn predicts lncRNA interactions using statistical evidence from transcriptional and post-transcriptional networks. These are

described below. We first describe the methodology for estimating Spearman’s correlation and distance correlation, which are used

to reverse engineer these networks.
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Spearman’s correlation and distance correlation (dCor) estimates. Spearman’s correlation was used to estimate the directionality

of regulatory interactions: e.g., TFs that are anticorrelated with their targets were predicted to inhibit their expression, while positive

correlation indicates activation. Distance correlation (dCor) between a regulator, including TF, RBP,miRNA, and lncRNA, and a target

was estimated using their expression profiles, in each tumor type independently. We used permutation testing to estimate dCor sig-

nificance by comparing it to dCor estimates computed after shuffling the regulator’s expression. In some instances, comparisons

using 100k randomized computation could achieve up to a p < 1E-5 resolution, and in other cases, dCor values from randomized

tests were then used to fit parameters for a generalized extreme value (GEV) distribution using the MATLAB gevfit routine to achieve

a p value lower than 1E-5. This allows a nonparametric p value calculation from the cumulative density of the resulting GEV distribu-

tion. Distance correlation was computed as described by Székely et al. (Székely et al., 2007).

TF-target prediction

TF-target predictions were based on combining evidence from verified interactions, ChIP-Seq assays, sequence-based motif anal-

ysis and co-expression networks (Lefebvre et al., 2010, Zhou et al., 2010, Margolin et al., 2009, Smith et al., 2006). Predictions are

given in Table S5. We used ENCODE ChIP-Seq datasets to select candidate TF-target interactions based on significant peaks

(Q value < 1E-10) in proximal promoters of coding genes. In addition, 1634 PWMs for 642 TFs were used to infer binding sites on

proximal promoters and their corresponding 50-flanking regions. Only significant binding sites per PWM (p < 1E-5, when compared

to control flanking regions) were included. Here, for every PWM, every potential binding site in promoter-flanking regions was scored

using CREAD tools (Smith et al., 2007) to establish a null distribution of PWM scores; scores in promoters were then assessed with

p values according to these distributions. Because a TF could havemultiple binding sites—with different binding strength onmultiple

promoters for the same gene—we integrated binding strength and relative position to TSSs of all sites for the same TF-promoter pair

into a single weighted score S using the following formula to estimate the binding likelihood for this TF-promoter pair. Here, di is the

distance between the TSS and the binding site (with the mid-point of the binding site used to compute distance), L is the length of

promoter, i.e., 2000 bps, M is the total number of binding sites associated with this TF-promoter pair, Pmin is the minimal attainable

p value genome-wide, and Pi is the binding significance for site i (Sikora-Wohlfeld et al., 2013).

S=
XM
i = 1

�log10ðPiÞ
�log10ðPminÞ � f1� ½di=ðL=2Þ�g

If an expressed TF-target pair of was either (1) experimentally verified, (2) had significant (q < 1E-10) evidence for binding on the pro-

moter of any transcript from at least one ENCODE ChIP-Seq data, or (3) had a nonzero S score, as predicted by at least one PWM on

either forward or reverse strand of the promoter of any transcript, we tested its significance of correlation using dCor (described in the

following section) to reverse-engineer tumor type-specific TF-target interactomes. Spearman’s correlation was also calculated to

determine the sign of the correlation, which indicates whether the TF is activating or repressing the target. TF-target pairs with ev-

idence for sequence binding and significant expressionmeasured by dCor (p < 1E-3) were included in the transcriptional interactome

(Zhou et al., 2010).

RBP-target prediction

RBP-binding sites on 30-UTRs of protein-coding genes and lncRNA transcripts were inferred based on ENCODE eCLIP datasets

exclusively, and using a q < 1E-10 cutoff. If multiple peaks are mapped to the same 30 UTR/lncRNA transcript, the best q value is

assigned to determine the strength of association. Similar to TF-target prediction, we required p < 1E-3 for the significance of

dCor between RBP and target. We predicted RBP-targets via integrating both sequence binding and co-expression evidence. All

predicted interactions are included in the Table S6.

miRNA-target prediction

All miRNA targets—in 30 UTRs and lncRNAs—were inferred using Cupid (step 2 and without computing step 3) with standard param-

eters (Chiu et al., 2015). All predicted interactions are included in the Table S7. Note that both RBP-targets and miRNA-targets form

the post-transcriptional network.

Multiple testing corrections

To address multiple testing, ChIP-Seq and eCLIP prediction cut-offs were set to FDR < 0.01, or p < 1E-10, following ENCODE

recommendations. Predictions of TF binding sites using PWMs—comparing sites in proximal promoters to those in 50-flanking
regions—used an FDR < 0.01 cutoff; this cutoff accounted for the number of PWMs and the number of binding sites tested. Expres-

sion predictions using regression analysis were selected using FDR < 0.01 or a p < 1E-8 cutoff, which accounts for the number of

lncRNAs tested times the number of targets.

LongHorn
LongHorn predicts modulation of TFs, RBPs, and miRNAs by lncRNAs. We modeled lncRNAs as Decoys, Co-factors, Guides, and

Switches (Figure 1A). Decoys bind regulators and inhibit their activity, co-factors alter the regulation of TFs by binding TFs or/and their

DNA targets, guides facilitate regulation by TFs, and switches alter the activity of effectors on multiple targets. lncRNA decoys that

inhibit TF activity include Gas5 (Kino et al., 2010), while NORAD (Lee et al., 2016) and linc-MD1 (Cesana et al., 2011) inhibit RBP and

miRNA activity, respectively. lncRNAs that act as co-factors to alter regulation by TFs include GASL1 (Gasri-Plotnitsky et al., 2017)

and PANDA (Hung et al., 2011), and lncRNAs that are known to guide TFs to promoters include HOTAIR (Gupta et al., 2010, Kim et al.,
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2013), SChLAP1 (Prensner et al., 2013), and PTCSC2 (Wang et al., 2017). Finally, while some lncRNAs may have one or few targets,

multiple lncRNAs, including PANDA, linc-MD1, NORAD, and SChLAP1 have been shown to alter the activity of effectors by guiding

them to or inhibiting their regulation acrossmultiple targets; these aremodeled as Switches by LongHorn. LongHorn predictionswere

based on evidence for RNA-DNA, RNA-RNA, and RNA-protein binding sites, as well as expression-based evidence for modulation of

canonical (TF-, RBP-, or miRNA-target) interactions.

Binding site evidence for TF binding DNA or RNAs was based on ENCODE ChIP-Seq assays and analyses using curated TF bind-

ing-site motifs frommultiple sources including TRANSFAC (Matys et al., 2006) and HTRIdb (Bovolenta et al., 2012); evidence for RBP

binding sites on RNAs from eCLIP assays; evidence for miRNA binding sites in RNAs using Cupid; and lncRNAs binding DNA using

Triplexator (Buske et al., 2012). We note that evidence for the predictive ability of Triplexator is given in Figure 3A.

Evidence for modulation or conditional regulation, as depicted in Figures 1B-D, was estimated using delta distance correlation

(delta dCor) (Bowman and Azzalini, 1997). Briefly, given X—a candidate lncRNA modulator of a canonical effector Y and its target

Z—samples were partitioned into quartiles according to the expression profile of X; and distance correlation estimates between Y

and Z were computed in each quartile as described by Székely et al. (Székely et al., 2007). The delta distance correlation was the

difference between estimated distance correlations in the bottom and top quartiles.

More specifically, we asked if the dCor values between Y and Z are significantly different across the two sets of samples:

DdCorðY ;ZjXÞ=dCorðYbottom;ZbottomÞ � dCorðYtop;ZtopÞ
Where Ybottom and Zbottom describe the expression profiles of Y and Z in 25%of the samples with the lowest expression of X (bottom),

while Ytop and Ztop are the expression profiles of Y and Z in top. The DdCor (Bottom 25% - Top 25%) can be positive or negative,

indicating modulation that amplifies or inhibits effector activity, respectively. As dCor is always within 0 and 1, the DdCor will be

within �1 and 1.

We used permutation testing to estimate nonparametric p values for DdCor:

(1) For each effector type, classify all effector-target pairs into 100 bins according to their dCor values.

(2) For each bin, randomly selected 100K pairs and shuffle both effector and target expressions. If the number of pairs in a bin is

smaller than 100K, each pair can be selected multiple times. Calculate the randomized DdCor.

(3) The resulting 100K DdCor values form the null distribution for each bin

(4) Each null distribution is fitted to a logistic distribution which is symmetric. The parameters, i.e., mu and sigma, of a logistic

distribution were estimated by a MATLAB routine fitdist (Bowman and Azzalini, 1997). The two-tailed p values are estimated

analytically based on the fitted distribution.

To avoid circularity, for each triplet, we required the lncRNA have nonsignificant (p > 0.1) dCor with the effector (independence

constraint) (Wang et al., 2009). In addition, the expression fold change between the top and the bottom 25% of samples in respect

to lncRNA abundance were required to be at least 2-fold (range constraint) to ensure that there is sufficient variability to test the

lncRNA as a modulator. Note that X, Y, and Z each were required to be expressed in the dataset (i.e., nonzero MAD score).

The four models for lncRNA regulation were used to identify Decoy, Co-factor, Guide, and Switch candidates. Decoy predictions

required evidence for modulation, lncRNA-effector binding, and effector-target binding; co-factor predictions required evidence for

modulation, lncRNA-promoter, and TF-promoter binding; guide predictions required evidence for modulation, TF-lncRNA, and

lncRNA-promoter binding; and finally, switch predictions required evidence for modulation of TF or RBP activity across a multiplicity

of targets.

lncRNA-promoter binding

We predicted lncRNA-promoter binding using Triplexator (Buske et al., 2012), requiring that RNA-DNA triplex sites are at least 12bp

long. Triplexator was used to predict triplex-forming oligonucleotides (TFO) in single-stranded lncRNA sequences and the triplex

target sites (TTS) on both strands of double-stranded promoter sequences that are able to accommodate a third strand according

to the canonical triplex formation rules. In total, 21,432/22,388 (95.7%) of promoter sequences had at least one TTS and 15,024/

22,339 (67.3%) lncRNA transcripts had at least one TFO. On average, each promoter has 36.4 TTSs and each lncRNA transcript

has 15.5 TFOs; note that two consecutive TTSs or TFOs will be counted twice, and that lncRNA transcriptional regulation prediction

via triplex formation is relatively more selective than their binding substrates (67.3% for lncRNAs versus 95.7% for promoters).

Promoter binding was taken as evidence for lncRNA-promoter interactions, but this purely sequence-based evidence was always

integrated with expression-based evidence, i.e., DdCor, when making lncRNA-target predictions. Note that the location of lncBSs

relative to the TSS does not influence lncBS prediction.

Decoy lncRNAs

Any lncRNAs to inhibit effector regulation and have evidence for lncRNA-effector interaction are referred to as decoys. Decoys can

inhibit transcriptional regulation by TFs, or post-transcription regulation bymiRNAs or RBPs. Belowwe describe themethodology for

predicting decoys based on a 1-1-1 model: one effector, one target, and one lncRNA; this 1-1-1 model is later generalized to the

many-1-1 or 1-many-1 models that are often required for predicting lncRNA interactions. In all cases, we expect to have positive

DdCor for the target, effector, and lncRNA, and required that the lncRNA satisfies both independence and range constraints.
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TF decoys

TF decoys required evidence for lncRNA-TF binding, evidence for TF-promoter targeting, and positive DdCor. Evidence for TF-

lncRNA binding was compiled based on binding sites predicted using PWMs, analogously to predicting TF-promoter binding. We

search for binding sites on lncRNA transcript sequences and compared scores to top scores in permuted sequences while maintain-

ing di-nucleotide frequencies by uShuffle (Jiang et al., 2008, Weirauch et al., 2013), accepting binding sites with p < 1E-5 relative to

permuted transcripts and a nonzero S score. Each lncRNA was shuffled one and only one time. Evidence for TF-target binding was

taken from transcriptional networks, andDdCor was computed as described above. Then, for each triplet selected, we compiled a list

of lncRNA-target pairs and the common TF-program associated with each pair. For each pair, we then integrated significant DdCor

(p < 0.05) using Fisher’s method. If a lncRNA-target pair had a significant adjusted integrated p value with p < 0.01, this lncRNA was

predicted to be a TF decoy for this target.

RBP decoys

Similarly, these required lines of evidence for lncRNA-RBP binding, evidence for RBP-mRNA targeting, and positiveDdCor. Evidence

for lncRNA-RBP and for RBP-mRNA targeting was derived from eCLIP data, as previously described. Here we used Cupid Step 3,

adapted to include both miRNA and RBP, as an additional requirement for predicting miRNA and RBP lncRNA decoys. Note that

Cupid Step 3 uses weighted Brown’s method to generalize DdCor for triplets over multiple RBP, computing p values for modulation

of multiple RBPs that target a mRNA by any given lncRNA decoy candidate.

miRNA decoys

Similarly, these required lines of evidence for lncRNA-miRNA binding, evidence for miRNA-30 UTR targeting, and positive DdCor.

Evidence for lncRNA-miRNA and mRNA-miRNA binding was derived from Cupid, as described above. Here we used Cupid Step

3 as an additional requirement for predicting miRNA lncRNA decoys. As noted for RBPs, Cupid Step 3 uses weighted Brown’s

method to generalize DdCor for triplets over multiple miRNAs, computing p values for modulation of multiple miRNAs that target

a mRNA by any given lncRNA decoy candidate.

Co-factor lncRNAs

Co-factor lncRNAs can alter the activity of a TF on their common target. When predicting co-factor lncRNAs, we required evidence

for lncRNA-promoter (Triplexator) and TF-promoter (transcriptional regulation networks) binding based on PWMs, as well as signif-

icant DdCor. A significant DdCor can be either positive or negative depending on the role of TF, i.e., activator or inhibitor. For each

lncRNA-target pair, we then integrated significant DdCor (p < 0.05) using Fisher’s method across common TF program. If a lncRNA-

target pair had a significant adjusted integrated p value with p < 0.01, this lncRNA was predicted to be a TF co-factor for this target.

Guide lncRNAs. Guide lncRNA can help deliver TFs to lncRNA targets. They are required to bind promoters and TFs but not alter TF

expression. Consequently, when predicting guide lncRNAs, we required binding-site evidence for lncRNA targeting the TF—pre-

dicted PWM sites on the lncRNA as previously described; Triplexator-derived evidence for lncRNA-promoter binding; co-expression

evidence for TF targeting—p value associated with the dCor(TF, target) set to p < 1E-3. The DdCor is always negative for guide

lncRNA.

For each lncRNA-target pair, we then integrated significant DdCor (p < 0.05) using Fisher’s method across common TF program. If

a lncRNA-target pair had a significant adjusted integrated p value with p < 0.01, this lncRNA was predicted to be a TF guide for this

target.

Switch lncRNAs

Switch lncRNAs were predicted using a uniformity test over DdCor p values to identify lncRNAs that alter TF or RBP activity across a

multiplicity of targets. Here, for each effector, we sought to identify lncRNAs so that inferred modulation by these lncRNAs is more

significant than by other lncRNAs when accounting for variability across targets. To accomplish this, we constructed a DdCor rank

matrix for each effector candidate, which included the rank of DdCor p values for each effector’s target across all lncRNAs which

satisfy both independence and range constraints. Ranks for a given lncRNA-target pair were computed by comparing this DdCor

p value to DdCor p values for this target against all other lncRNAs. One-sample Kolmogorov–Smirnov test was used to determine

whether the rank vector across all effector’s targets associated with this lncRNA was different from the uniform distribution. If a

lncRNA-effector pair had a significant adjusted one-tailed p value with p < 0.01, this lncRNA was predicted to be a Switch for this

effector. In addition, we note that as a consequence of our predictions methodology, Switch lncRNAs had consistently better DdCor

p values than other lncRNAs for the same effector. All the lncRNA-target interactions are included in Table S8.

Indirect regulation by lncRNAs

We identified lncRNA modulation of TF and RBP expression as an opportunity to further improve lncRNA-target prediction. Namely,

when a lncRNAwas predicted tomodulate an effector that regulates a TF or an RBP, we testedwhether its expression is predictive of

dysregulation of the targets of this TF or RBP as previously described for Cupid (Chiu et al., 2015). Simply put, the idea is the reg-

ulatory effect will propagate to effector’s targets and even show a stronger signal. We compiled TF-targets and RBP-targets from

transcriptional and post-transcriptional networks described before. For TFs or RBPs with more than 500 targets, only the top 500

targets, in terms of dCor were included for this analysis. Indirect lncRNA regulation of TF or RBP targets required an adjusted p value

with p < 0.01. Table S11 includes all predicted lncRNA-target pairs with evidence for indirect regulation. In Figure 3H we compared

the number of shared tumor types for interactions with evidence for indirect regulation, and all tested interactions. The result sug-

gested dramatic enrichment for pan-cancer interactions with evidence for indirect regulation. P values were calculated using chi-

square test, with a p value lower than machine recognition (p < 1E-16).
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Multiple testing corrections

Binding site predictionswith Triplexator were identified at p < 1E-10 to account for the number of lncRNA-target combinations tested.

In addition, we verified that Triplexator predictions are significantly enriched in promoters by shuffling promoter sequences 100,000

times while maintaining dinucleotide frequencies, and verifying that all predicted lncRNA binding sites were more abundant in pro-

moters that in shuffled sequences at a 100x enrichment. We used permutation testing to estimate nonparametric p values for DdCor,

these were based on shuffling effector and target expression profiles and repeating the process. To avoid circularity when evaluating

each triplet, we required the lncRNA have non-significant (p > 0.1) dCor with the effector (independence constraint) (Wang et al.,

2009). In addition, the expression fold-change between the top and the bottom 25% of samples in respect to lncRNA abundance

were required to be at least 2-fold (range constraint) to ensure that there is sufficient variability to test the lncRNA as a modulator.

When integrating p values across multiple effectors—to predict lncRNA regulation of a target—p value cutoffs were corrected for

the number of tested triplets using Bonferroni correction.

lncRNA predictive ability
We used stepwise ridge regression with 10-fold cross-validation to test the predictive ability of CNV and regulator-lncRNA expres-

sion profiles over target expression. Briefly, to test whether lncRNA expression and CNV profiles were predictive of the expression

variability of gene X, we tested whether its lncRNA-regulator profiles can account for X’s expression variability after accounting for its

CNV profiles and the expression profiles of its canonical regulators. These tests compared the residual sum of squares (RSSs) of

regression models using features that include X’s CNV and canonical-regulator expression profiles based on cross-validation testing

errors, and RSSs based on these features in addition to lncRNA expression or CNV profiles. Candidates with p < 0.01 by F test were

included. Details are given below.

We used stepwise ridge regression with 10-fold cross-validation to test the predictive ability of CNV profiles as well as regulator

expression profiles over target expression. Namely, ridge regression (Zou and Hastie, 2005, Tibshirani, 1996) using Glmnet for

MATLAB was used to predict the expression of each lncRNA target from its CNV profiles and the expression of its inferred tumor-

type-specific regulators, including TFs, RBPs, miRNAs, and lncRNAs. For each target, in each 10-fold cross-validation step, Glmnet

constructs a regression model using training samples to fit an estimate by for the target expression profile y. The test-set residual sum

of squares (RSS) are then compiled across the 10 testing sample sets by summing the square of differences between the target

expression profile y and the fitted estimate by to prduce the total RSS. To evaluate the added predictive ability of lncRNA regulators,

we used an F test for nestedmodels to compare RSSwith andwithout inferred regulator lncRNA expression or CNV profiles. Namely,

for each target, we compiled the target expression profiles Y, it’s CNV profile YCNV, and the expression profiles of all of its predicted

and verified TF, RBP, miRNA and, lncRNA regulators (TFy, RBPy,miRNAy and lncRNAy). We then trained regression functions using

three sets of features to estimate Y using: (1)YCNV, TF
y
exp,RBP

y
exp,miRNAy

exp, (2) YCNV, TF
y
exp,RBP

y
exp,miRNAy

exp, lncRNA
y
exp, and

(3) YCNV, TF
y
exp, RBP

y
exp, miRNAy

exp, lncRNA
y
cnv. RSS were computed for each set of features: RSS1, RSS2, and RSS3; and these

were compared using an F test to produce a p value for the added predictive benefit of inferred lncRNA regulators: comparing RSS2

and RSS3 to RSS1, the number of added parameters for the latter two is equal to the number of predicted regulators. Note that the

lncRNA-targets were taken from all models together, including decoy, co-factor, guide, and switch regulation; TF-targets had a dCor

p < 1E-8 rather than 1E-3 to reduce false positive predictions; and RBP-targets and miRNA-targets were taken from Cupid Step3.

This F test produced a highly conservative evaluation of the predictive ability of lncRNAs. To ensure that we do not overestimate the

number of targets with significant lncRNA predictive ability, we used a permutation test to estimate FDR. Here, lncRNA expression or

CNV profiles were shuffled 100 times per target, and the process was repeated to compute FDR, comparing RSS of the true and

shuffled profiles. We ensured each selected target had both p < 0.01 by F test, and FDR < 0.05 by permutation testing.

To estimate the proportion of target expression variability that is accounted for by YCNV, TF
y
exp, RBP

y
exp, miRNAy

exp, lncRNA
y
exp

and lncRNAy
cnv, we compared R2, as estimated by ridge regression to approximate Y using (1) YCNV alone, (2) YCNV, TF

y
exp, RBP

y
exp,

and miRNAy
exp, (3) YCNV, TF

y
exp, RBP

y
exp, miRNAy

exp, and lncRNAy
exp, and (4) YCNV, TF

y
exp, RBP

y
exp, miRNAy

exp, and lncRNAy
cnv.

Computing R2 for (1) produced an estimate for the variance accounted for by YCNV. The difference in R2 between (1) and (2) estimated

the added variance accounted for by TFs, RBPs, and miRNAs, and the variance accounted for by lncRNA expression and CNVs was

estimated by the difference between (3) and (2), and (4) and (2), respectively. Note that reduction in variance reported in Figures 2B

and 2C pertained only for targets that were predicted significantly (p < 0.01) in 2A, focusing on targets predicted by lncRNAexp and

lncRNAcnv, respectively.

Multiple testing corrections

Significance required FDR < 0.05 by permutation testing for each target.

lncRNA occupancy in proximal promoters (Figure 3A-C)
To compare the positional distribution of inferred transcription factor and lncRNA binding sites in proximal promoters, we binned pro-

moters into 50-base fragments and counted the number of predicted binding sites in each bin. These were compared to lncRNA

binding-site predictions in shuffled promoters with preserved di-nucleotide frequencies uShuffle (Jiang et al., 2008). The significance

of the difference between sequence-based and LongHorn predictions at the core promoter was estimated by a Chi-square Test. To

test whether core-promoter binding sites were more enriched in predicted co-factor interactions, we compared the probability that a

candidate lncRNA-target interaction with no-, one-, and multiple-core-promoter binding sites were selected, to the probability that
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TF-target interactions with no-, one-, and multiple-core-promoter binding sites are selected. The significance of the difference be-

tween sequence-based and LongHorn predictions was estimated by a Chi-square Test, and error bars are derived from random pre-

dictions, which were generated in 10 replicates.

The significance of the difference between zero and non-zero binding sites in LongHorn predictions was estimated by comparing

two distributions of -Log10 p values of dCor via a U-test. The dCor values and their significance levels for sequence-based predic-

tions were aggregated from all 14 tumor types, so the same pair could have 14 dCor values in sequence-based predictions.

lncRNA occupancy in proximal promoters

To compare the positional distribution of inferred transcription factor and lncRNA binding sites in proximal promoters, we binned pro-

moters into 50-base fragments and counted the number of predicted binding sites in each bin. These were compared to lncRNA

binding-site predictions in shuffled promoters with preserved di-nucleotide frequencies uShuffle (Jiang et al., 2008). In total, each

promoter was shuffled 10 times and lncRNA targets were predicted for each promoter, producing 10 random binding site estimates

for each bin. These could then be compared with counts for inferred PWM-based transcription factor and lncRNA binding sites.

LongHorn predictions in Figure 3 are the union of triplex binding sites associated with lncRNA-target triplex interactions, i.e., cofactor

targets, selected in each tumor type. Note that LongHorn predictions are a subset of sequence-based prediction with expression-

based evidence from LongHorn. The significance of the difference between sequence-based and LongHorn predictions at the core

promoter was estimated by a Chi-square Test. Comparing with random predictions, sequence-based, LongHorn, and TFBS predic-

tions have 1.2x, 1.6x, and 2.9xmore binding sites within the core promoter. In our study, the core promoter is defined as the region up

to 50 bps upstream of the TSS.

To test whether core-promoter binding sites were more enriched in predicted co-factor interactions, we compared the probability

that a candidate lncRNA-target interaction with no-, one-, and multiple-core-promoter binding sites are selected, to the probability

that TF-target interactions with no-, one-, and multiple-core-promoter binding sites are selected. We evaluated 4 prediction

methods:

d Random, predicts lncRNA binding sites in di-nucleotide preserved shuffled promoters. Random was run 10 times and the rep-

licates were used to produce a null distribution.

d Sequence-based, uses lncBSs that were predicted by Triplexator.

d Pan14 prediction, uses the union of LongHorn co-factor predictions in 14 tumor types with Triplexator binding sites.

d TFBS, uses PWM-based TFBS predictions as previously described.

For each method, we compared the frequency that predicted targets with lncBSs or TFBSs had core-promoter binding sites. We

report on the fold change in this frequency relative to the frequency based on Random. The results reported in Figure 3B suggest an

enrichment of lncRNA and TF targets with one or multiple binding sites in core promoters. The significance of the difference between

sequence-based and LongHorn predictions was estimated by a Chi-square Test. The error bars of each method are from for 10 rep-

licates in random prediction and they are error-propagated after normalization.

Similarly, using multiple significance cutoffs for dCor between lncRNAs and their co-factor targets, we compared the dCors be-

tween predictions with zero, one, or multiple core promoter lncBSs. The significance of the difference between zero and non-zero

binding sites in LongHorn prediction was estimated by comparing two distributions of -Log10 p values of dCor via a U-test. The

dCor values and their significance levels for sequence-based predictions were aggregated from all 14 tumor types, so the same

pair could have 14 dCor values in sequence-based predictions.

Focusing on co-factor lncRNAs, where both TF effectors and lncRNAs have binding sites on the target promoter, and their DdCor

was significant with p < 0.05, we compared the number of co-factor predictions with negative and positive DdCor; these model

lncRNA activators and inhibitors, respectively. The same lncRNA was permitted to act as an inhibitor to this TF and its target in

one tumor and an activator in another tumor.

Transcriptional and post-transcriptional lncRNAs (Figure 3D-E)
Predicted transcriptional and post-transcriptional specialist lncRNAs had more than 50 targets. Their target number was normalized

to equate the total number of transcriptional and post-transcriptional interactions in order to eliminate our bias toward transcriptional

interactions. In a tumor type, if a lncRNA has x transcriptional and y post-transcriptional targets, and in total there are X transcriptional

and Y post-transcriptional interactions. The log2 fold change was calculated as

log 2
�h

x �
�y
x

�i.
y
�

For each lncRNA considered, we calculated the z-transformed average number of transcriptional and post-transcriptional targets

across all 14 tumor types for which they have at least 10 targets. We selected lncRNAs with significant z-scores in either side; pre-

dictions are given in Table S10.

To identify lncRNAs with unusually many transcriptional or post-transcriptional targets, we compared the normalized number of

predicted transcriptional and post-transcriptional targets per lncRNA in tandem: the number of transcriptional targets did not

influence calculations about post-transcriptional targets for each lncRNA and vice versa. Only lncRNAs with targets in more than

half the tumor types were included in this analysis. For each of these lncRNAs, we calculated the z-transformed average number
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of transcriptional and post-transcriptional targets across all 14 tumor types for which they have at least 10 targets. For example,

assume a lncRNA has x transcriptional and y post-transcriptional targets averaged across LongHorn. The mean and standard de-

viation for the number of transcriptional and post-transcriptional targets across all 2801 lncRNAs are ðm1;s1Þ and ðm2;s2Þ, respec-
tively. The z-scores of the number of transcriptional and post-transcriptional targets for this lncRNA is calculated as ðx � m1Þ=s1
and ðx� m2Þ=s2, respectively. We selected lncRNAs have significant z-scores in either side. The one-tailed p value cutoff with

FDR < 0.01 was calculated as 0.01/2801 = 3.57E-6, which is roughly equal to Z = +/�4.48946. We used this z-score cutoff to deter-

mine the regulatory role of each of these 2801 lncRNAs.

Indirect regulation by lncRNAs (Figure 3G-H)
We identified lncRNA modulation of TF and RBP expression to further improve lncRNA-target prediction. Namely, when a lncRNA

was predicted to modulate an effector that regulates a TF or an RBP, we tested whether its expression is predictive of dysregulation

of the targets of this TF or RBP as previously described for Cupid (Chiu et al., 2015). Table S11 includes all predicted lncRNA-target

pairs with evidence for indirect regulation. In Figure 3Hwe compared the number of shared tumor types for interactions with evidence

for indirect regulation, and all tested interactions.

Multiple testing corrections

Prediction of indirect lncRNA regulation of TF or RBP targets required an adjusted p < 0.01, as previously described (Chiu et al., 2015).

Gene set enrichment (Figure 4)
We sought to identify lncRNAs that target key pathways, on their own and synergistically with other lncRNAs. To simplify this task, we

chose to focus onMsigDB’s fifty hallmark gene sets (Liberzon et al., 2015). These pathways were designed to highlight gene sets that

were repeatedly included in thousands of MsigDB’s curated sets, and by limiting the scope of our study to these 50 gene sets we

hoped to provide the most focused and biologically useful resource. Moreover, MsigDB’s grouping of gene sets based on eight pro-

cess categories further allowed the identification of lncRNAs that were focused on few regulatory categories (Liberzon et al., 2015).

We downloaded these gene sets from MSigDB in 09/04/2016 and the size of gene sets is ranging from 32 to 200; gene sets are

included in Table S12.

When identifying lncRNAs whose targets are enriched in hallmark gene sets, we estimated gene set enrichment using Fisher’s

Exact test between predicted lncRNA targets of each lncRNA and expressed gene set members in each of 14 tumor types using

adjusted pFET < 0.01;(Chiu et al., 2015) each test was adjusted for the total number of lncRNAs, lncRNA targets, and gene set tested.

In Figure 4A, the regulation strength of each gene set was represented as the integrated pFET by Stouffer’s Z-score method; white

spaces meant that no significant lncRNA is selected.

To identify synergistic lncRNAs that target a gene set, we evaluated the number of overlapping lncRNA targets in this gene set

using the Jaccard’s Index. Namely, given two lncRNAs a and b, with targets A and B, and gene set s with members S. We specified

two indicator vectors of the same length la and lb, i.e., the total number of mRNAs profiled in TCGA RNASeq V2, where la indicates

mRNAs in A and lb indicates mRNAs in B. We shuffled la and lb 100K times and each time calculated the Jaccard’s indices using the

first s bits to form a nonparametric null distribution. The p value was the number of Jaccard’s index values higher than or equal to the

observed one. We used p < 1E-5 as a cutoff to determine synergistic pairs of lncRNAs for a gene set in a tumor type. The predictions

of synergistic lncRNAs in each tumor type is included in Table S13.

When producing Figure 4C, for each pathway-tumor type pair in Figure 4A, all possible lncRNA pairs that were selected for p value

integration in Figure 4A were tested for Jaccard Index and its p value. If there are X out of Y pairs passed the cutoff p < 1E-5, we

combined p values using Stouffer’s method, as described above.

Multiple testing corrections.

Gene set enrichment used an adjusted pFET < 0.01;(Chiu et al., 2015), correcting for the number of lncRNAs, targets, and gene sets

tested. The total set of synergistic lncRNAs was identified based on a null distribution of Jaccard indices, which did not require mul-

tiple-testing correction.

DATA AND SOFTWARE AVAILABILITY

RNA-Seq data are available for download from The European Nucleotide Archive project PRJEB21799. Database: https://www.ebi.

ac.uk/ena/data/view/PRJEB21799. An implementation of LongHorn is available from SourceForge at http://longhorntool.

sourceforge.net.The accession number for the data analyzed in this paper is dbGaP: phs000677.v1.p1.
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