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SUMMARY

Objective: Automated seizure detection and alarming could improve quality of life

and potentially prevent sudden, unexpected death in patients with severe epilepsy. As

currently available systems focus on tonic–clonic seizures, wewant to detect a broader

range of seizure types, including tonic, hypermotor, and clusters of seizures.

Methods: In this multicenter, prospective cohort study, the nonelectroencephalographic

(non-EEG) signals heart rate and accelerometry were measured during the night in

patients undergoing a diagnostic video-EEG examination. Based on clinical video-EEG

data, seizures were classified and categorized as clinically urgent or not. Seizures

included for analysis were tonic, tonic–clonic, hypermotor, and clusters of short myoclo-

nic/tonic seizures. Features reflecting physiological changes in heart rate and movement

were extracted. Detection algorithms were developed based on stepwise fulfillment of

conditions during increases in either feature. A training set was used for development of

algorithms, and an independent test set was used for assessing performance.

Results: Ninety-five patients were included, but due to sensor failures, data from only 43

(of whom 23 patients had 86 seizures, representing 402 h of data) could be used for analy-

sis. The algorithms yield acceptable sensitivities, especially for clinically urgent seizures

(sensitivity = 71–87%), but produce high false alarm rates (2.3–5.7 per night, positive predic-

tive value = 25–43%). There was a large variation in the number of false alarms per patient.

Significance: It seems feasible to develop a detector with high sensitivity, but false

alarm rates are too high for use in clinical practice. For further optimization, personal-

ization of algorithmsmay be necessary.

KEY WORDS: Epilepsy, Seizure monitoring, Heart rate, Accelerometry, Sudden

unexpected death in epilepsy.

Despite rapid expansion of pharmaceutical and surgical
treatment options, approximately 30% of epilepsy patients
continue to have seizures.1 In an unsupervised environment,
seizures can be dangerous due to falls, harm from violent
movements, confusional wandering, or status epilepticus.
The situation is especially delicate during the night, when
supervision is difficult. Seizures during sleep often go unno-
ticed, especially in patients who sleep alone. Sudden unex-
pected death in epilepsy (SUDEP) occurs most often during
the night, and unsupervised patients are at risk.2

Automated seizure detection and alarming of a caregiver
could improve quality of care of patients with severe epi-
lepsy and potentially prevent SUDEP.3 Application in a
home setting can also guide patient care through evaluation
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of therapy, and improve the quality of clinical trials where
seizure frequency is used as an outcome. Patient diaries are
generally unreliable.4

Whereas (video)-electroencephalography (EEG) is used
clinically to detect seizures, EEG is not suitable for long-
term use in institutions or at home. Non-EEG signals such
as heart rate (HR) and motion are more patient-friendly and
easier to measure and use for automatic detection.5 Several
systems are available, but independent validation of detec-
tion algorithms is often lacking, and sensitivity and false
alarm rates (FARs) are not sufficient for monitoring.6,7

Audio systems that are often used at night detect only a
minority of the seizures.7,8 Many systems focus on specific
seizure types, mainly generalized tonic–clonic (GTC) sei-
zures. Detection of a broader range of seizure types could be
more clinically relevant. When considering patient safety,
the main seizure types where patients would need caregiver
attendance are: (1) tonic–clonic seizures, as these are associ-
ated with SUDEP9; (2) generalized tonic (GT) seizures,
where respiratory distress can occur; (3) hypermotor (HM)
seizures, where there is a high risk of injury; and (4) clusters
of myoclonic and/or short tonic seizures, where intervention
medication and comforting is often provided.

In this article, we describe changes in non-EEG signals
during nocturnal seizures and nonseizure periods. We
describe a universal, multimodal seizure detection algo-
rithm, using real-time data from on-body sensors measuring
HR and movement. We describe shortcomings, and discuss
potential value in various clinical and home settings.

Methods
Study design and participants

This multicenter, prospective cohort study was approved
by the Medical Ethics Committee of the University Medical
Centre Utrecht and the institutional review boards of the
Stichting Epilepsie Instellingen Nederland (SEIN), Heem-
stede and Zwolle, the Netherlands and Kempenhaeghe epi-
lepsy centers in the Netherlands. All participants and/or
legal guardian(s) provided written informed consent. The
study population consisted of adults and children older than

2 years, with a history of nocturnal seizure frequency
>1 seizure/week, admitted to one of the centers for long-
term (>24 h) video-EEG monitoring between March 2012
and March 2014. HR and accelerometry were obtained sep-
arately. The clinical video-EEG was used as a gold standard
to assess occurrence of seizures. Measurements were per-
formed during the night.

Data collection
Accelerometry and electrocardiography (ECG) signals

were measured with a Shimmer sensor (Shimmer, Ireland)
worn in an armband around the upper arm. The Shimmer
combines three-dimensional accelerometers with chest
leads for ECG recording, and has a wireless transmitter to
send signals to a personal computer. A trained EEG techni-
cian, blinded to the seizure detector data, retrospectively
analyzed the video-EEG and marked the occurrence of sei-
zures. Ictal video-EEG was then annotated by two indepen-
dent clinical neurophysiologists blinded to the seizure
detector data. They classified the seizures as GTC, GT,
HM,10 or seizure cluster, defined as a series of at least five
tonic or myoclonic spasms within 3 min. Seizures were also
labeled “clinically urgent” when attendance or intervention
was deemed necessary, based on seizure severity, postictal
arousal state, breathing difficulties, and distress. A final
classification was made through consensus discussion. Sei-
zures shorter than 10 s and seizures classified as “other”
were annotated as nonseizure data for the development of
the seizure detector.

Signal preprocessing
HR was extracted from the ECG data using a MATLAB

implementation by Afonso et al.11 The data were split into
two equal parts to create a training and a test set (Fig. 1). A
seizure was considered detected when, within 5 min before
and 5 min after the seizure, a detection was recorded by the
algorithm. Detections >5 min after a seizure were consid-
ered false positives. False positive detections <5 min apart
were scored as one. Average sensitivity and FAR per patient
and time from start of seizure until detection (detection
delay) were calculated to assess performance (response
time). FAR was calculated as FAR per standardized night
(number of false alarms per 8 h).

Seizure detection: physiological characterization of ictal
HR andmovement

HR as beats per minute and summed waveform length of
the accelerometry signal were used to detect seizures. The
sum of the waveform lengths of acceleration in all three
axes was taken as a measure for total amount of movement.
HR and total movement were used to detect seizures. Both
HR and summed waveform lengths were resampled at 1 Hz
to allow easier interpretation of the results. Many authors
have shown that HR increases can precede motor phenom-
ena in several types of seizures.12–14 This relation is not

Key Points
• Nocturnal seizure detection devices are badly needed
for intractable patients and their caregivers

• Nocturnal seizure alarms should be limited to clini-
cally urgent seizures

• Combined sensors have high sensitivity
• The number of false positive alarms in the current gen-
eral system is still too high

• To lower false positives, algorithm optimization will
require some degree of personalization
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fixed in time, and the delay between an HR increase and
motion activity varies among patients and with seizure
type. Three algorithms were explored: (1) one based on
movement, (2) one based on HR, and (3) one combining
both modalities. Algorithms were optimized in the training
set and evaluated on the test set.

For algorithm 1, the number of seconds in which summed
waveform length was higher than a fixed threshold within a
fixed window was counted. A detection was recorded when
this number was higher than the window length divided by
four. For example, when using a window length of 30 s,
eight or more counts of summed waveform lengths higher
than the fixed threshold will generate a detection. Window
length (range = 8–35 s) and threshold (range = 5–35) were
optimized in the data of the patients with seizures from the
training set. The combination of window length and thresh-
old with the highest sensitivity and positive predictive value
(PPV) was used to test the final performance of the algo-
rithm in the test set.

For algorithm 2, HR at the beginning and at the end of a
set window length (8–35 s) was calculated. If the HR had
risen by a predefined factor, or if the HR exceeded a prede-
fined “extreme” threshold, a detection was made. The factor
and the extreme threshold depended on the baseline HR at

the start of the window length. A low baseline HR required
a lower factor and a lower extreme threshold. Window
length, factors, and extreme thresholds were again opti-
mized in the data of patients with seizures from the training
set, whereas the sensitivity and PPV of these optimized
combinations were assessed in the test set.

The last algorithm (3) combined the optimized algo-
rithms for summed waveform length and HR. A detection
was made when at least one of the algorithms fulfilled the
set conditions. This “either HR or accelerometry” approach
was chosen because seizures with a lot of motion may not
trigger the algorithm based on HR because of the motion-
induced artifacts in the HR signal.

A more detailed description can be found in the
Appendix S1.

The funding source had no role in the study design, data
collection, data analysis, preparation of this article, or deci-
sion to submit this article for publication.

Results
Data were collected in 95 patients from three different

centers. Due to failures in the wireless connection between
sensors and recording software and internal sensor failures,
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Figure 1.

Boxplots showing median, 25th percentile, 75th percentile, and range of maximum heart rate (A), maximum slope of the heart rate (B),

maximum summed waveform length (C), and maximum of spectral contrast (Kalitzin et al.25) in accelerometry (D) of included patients

during seizure and nonseizure periods. Variation among patients is generally high, which can be seen in the wide range of maximum values

found during seizures as well as during nonseizure periods. Maximum of the heart rate shows the most distinction for generalized tonic–
clonic (GTC) seizures. GT, generalized tonic; HM, hypermotor.
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data from 52 patients could not be used (median age = 14
years, range = 4–63, 48% male, six patients with seizures;
Table 1). For eight patients, recorded data could only partly
be used due to temporary sensor failure during the night.
This resulted in a dataset of 43 patients with 402 h of
recorded data. Major motor seizures were recorded in 23
patients. The other 20 patients were used to include extra
seizure-free data to train the algorithms and to test perfor-
mance for occurrence of false alarms. Median age of
included patients was 15 years (range = 2–65), 30 patients
were male (70%), and 15 patients had intellectual disability
(35%). In patients with seizures, the median number of sei-
zures was two, ranging from one to 15 seizures per night
(Table 2).

Seizures and nonseizure episodes
Fig. 1 shows maximum HR, slope of HR, movement, and

spectral contrast of movement during seizure and non-
seizure periods. When considering all seizure types
together, there is large overlap between maximum values
during seizures and nonseizure periods. Maximum HR is
generally higher for GTC seizures, much less so for GT sei-
zures, and unremarkable for HM seizures. Slope of the HR
and summed waveform length show less distinct patterns.
Spectral contrast is higher for GTC and HM seizures,
although the range of values is wide for seizures as well as
for nonseizure periods. Variation among patients is large for
all signals. In Fig. 2 and Fig. S1–S3, examples are shown.
GTC seizures show the most distinct patterns of HR and
motion. In some cases, it is difficult to distinguish GT and
HM seizures from nonseizure activity.

Performance of algorithms
Table 3 shows the performance of the three algorithms.

Their average sensitivity and FAR based on stepwise

fulfillment of conditions are shown in Fig. S4. Sensitivity is
much higher when only clinically urgent seizures are con-
sidered, with a marginal increase in FAR. The highest sensi-
tivity (87%) is reached in clinically urgent seizures based on
both HR and movement. One GTC seizure and one HM sei-
zure are missed with this algorithm; all other seizures (23)
are detected. However, this comes with a high FAR of 6.3.
Detection of clinically urgent seizures based only on motion
has the lowest FAR of 2.3 false alarms/night. In this scenar-
io, one extra GTC seizure, one GT seizure, two HM sei-
zures, and three seizure clusters are missed (sensitivity =
71%). The algorithm based on only HR yields more false
alarms (4.6), but only misses two extra GT seizures and one
cluster of seizures and detects five of six GTC seizures (sen-
sitivity for all seizures = 84%). Most seizures (90%) were
detected within 30 s after or even before seizure onset. Only
two seizures (5%) were detected >1 min after seizure onset.
The average delay in detection was 13 s.

The number of false alarms generated by the algorithms
varied highly between patients. In eight of 22 patients in the
test set, FAR was below two. Fig. S5 shows a patient with
one GTC seizure. The seizure was detected early through
motion detection and rise in HR. One false alarm was gener-
ated by the algorithm based on motion at the beginning of
the night, when the patient was still awake and interacting
with a caregiver. In some patients, HR or movement pat-
terns were erratic, causing many false alarms (Fig. S6–S7).
Fig. S6 shows a patient with three GT seizures. All were
detected, but many false alarms were generated by restless
movement during the night. In this patient, an HR-based
detector seems more suitable. Fig. S7 shows a patient with
five single and five clusters of short GT seizures. In this
case, not enough motion is generated to measure significant
increases through accelerometry. HR-based detection gen-
erates many false alarms, because signal quality is subopti-
mal and there are many arousals. Extra sensors or more
sophisticated features may be necessary in this patient.

Discussion
Based on our findings, it does not seem feasible to

develop a “one-algorithm-fits-all” universal seizure detec-
tor. Sensitivities are good, especially for clinically urgent
seizures (71–87%), but come with a high FAR (2.3–5.7).
There was a large variation in number of false alarms, indi-
cating that for some patients a one-algorithm-fits-all system
is suitable, whereas in others it is not. Particular weaknesses
in our study are the reliability of HR detection in the face of
movement, and the stability of wireless transmission of the
Shimmer sensor.

Our findings are in line with other studies of automatic,
non–EEG-based detection of motor seizures.7 Most studies
do not aim for a universal detector, but focus on, for
exampe, GTC seizures for which new algorithms15 and vali-
dation of existing devices16,17 show promising results, with

Table 1. Number and type of seizures in patients not

included in the dataset (six patients with seizures)

Seizure type Seizures, n (patients, n) Clinically urgent seizures, n (%)

Tonic–clonic 7 (3) 7 (100%)

Tonic 5 (2) 3 (60%)

Hypermotor 1 (1) 1 (100%)

Cluster

Total 13 (6) 11 (85%)

Table 2. Number and type of seizures included in the

dataset (23 patients with seizures)

Seizure type Seizures, n (patients, n) Clinically urgent seizures, n (%)

Tonic–clonic 18 (7) 17 (94%)

Tonic 41 (12) 22 (54%)

Hypermotor 18 (5) 13 (72%)

Cluster 9 (5) 7 (78%)

Total 86 (23) 59 (69%)
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sensitivities around 90% and FARs < 1/24 h. We also found
the highest sensitivity of detection for GTC seizures and
could, by raising detection thresholds, lower the number of
false alarms. The focus on GTC seizures is understandable,
as they are usually clinically urgent, with high rises in HR
and distinct rhythmic movements. However, other seizure
types can also be clinically urgent, or important for diagnos-
tic purposes. Caregivers expect a detection system to alarm
in any motor seizure that would require attendance, because
it poses risks or major discomfort. This is different from
using a system that would inform a neurologist about the
actual number of seizures during the night. Restricting
detection to GTC seizures would substantially improve per-
formance of our system, but we considered this incompati-
ble with what caregivers would want.18 Studies on detection
of multiple seizure types until now show poor overall
results. Evaluation of three types of mattress sensors did not
yield sensitivities of >30%.19,20 The use of HR to detect

tonic, myoclonic, and GTC seizures yielded variable results,
with a best performance (in one patient only) of 90% and
PPV of around 50%. A more recent study in complex partial
seizures before secondary generalization and GTC, using
HR variability, also suggests that either individualization of
algorithms or selection of patients based on previous video-
EEG and ECG findings is necessary.21

Methodological considerations
We need to consider the missing data in our study. Due to

information transport issues and sensor failure, data from 52
of 95 patients were not usable for analysis. The main rea-
sons were the sensor not being connected to the base station
via Bluetooth, a bad connection between the ECG leads and
the Shimmer sensor, and human error in handling hardware
or data. Missing data seemed to occur in a random fashion,
although sensor failure could sometimes be related to speci-
fic movements and therefore have led to a selection bias. In
patients with seizures and failure of the ECG sensor, ECG
data from the video-EEG were used. This was not done in
patients without seizures.

Even with less data than expected, we stuck to the princi-
ple of splitting data in an independent training and test set,
instead of using double cross-validation,15 which leads to
less generalizable results. Our goal was a proof-of-concept
for development of a universal seizure detector; therefore,
we wanted to test performance of the algorithm in an inde-
pendent test set.

We tried to build an alternative algorithm using HR and
accelerometry parameters at the same time (switching from

Figure 2.

Heart rate and accelerometry data in a patient with three generalized tonic–clonic seizures. The clinical seizures occur between the gray
vertical lines. The top panel shows heart rate (HR) and summed waveform length (WL), and the bottom panel shows spectral contrast

(SC) of the accelerometry. The black circles highlight non–seizure-related rises in HR. All seizures come with a high rise in HR, an increase

in summed waveform length, and high spectral contrast in the range of 2–6 Hz. In all three seizures, the rise in HR is visible before seizure

onset. Also, HR has reached high levels before movement is registered, which is due to the tonic phase, which starts the seizure and in

which amplitude of movement is very low.

Epilepsia Open ILAE

Table 3. Overview of sensitivity and false alarm rate

(number of false alarms per night) for evaluated

algorithms

All seizures

Clinically urgent

seizures

Sensitivity FAR Sensitivity FAR

Stepwise algorithm, HR 60% 4.3 74% 4.6

Stepwise algorithm, Mvt 56% 2.3 71% 2.3

Stepwise algorithm, HR/Mvt 71% 5.9 87% 6.3

FAR, false alarm rate; HR, heart rate; Mvt, movement.
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an OR to an AND paradigm). The problem is that both sig-
nals are not relevant at the same time during a seizure. Dur-
ing a convulsive seizure, the accelerometer signal shows
good features, but the HR signal is too noisy due to motion
artifacts. During a seizure with a minor motor component,
the accelerometer signal has no variation, whereas the HR
signal might show significant changes. If technology can
provide a portable and noninvasive HR sensor that is not
sensitive to motion artifacts, then we can use both signals
for alarming. In this case, the false positives will be lower
than in the current approach. We recently changed to the use
of photoplethysmography as a sensor for HR, with much
better results.

The assumption in the algorithms are all based on obser-
vations of physiological changes during nocturnal seizures,
making them easily generalizable to other patients and lead-
ing to a low computational load. Adding other features with
physiological rationale, such as electromyography (EMG)
to measure the high-frequency muscle activity during tonic
seizures, may improve these algorithms.

A major strength of our study is the inclusion of children
and adults with intellectual disability, who are most in need
of automatic seizure detection.

Seizures versus arousals
We wonder whether physiological differences between

short tonic and HM seizures and normal arousals during the
night are large enough to allow automatic detection. For
HM seizures, studies have shown that similar cortical pat-
tern generators are involved as in arousals.22 Sympathetic
activation is similar before clinical onset of HM seizures
and of periodic limb movements.14,23

Practical issues in seizure detection
Technical failures make the sensors used in this study

unsuitable for long-term, in-home use. More robust sensor
design and transmission need to be developed. The rela-
tively high sensitivity of detection algorithms is promising,
especially in clinically urgent seizures, and compares favor-
ably with other devices.24 However, the FAR is currently
prohibitive. Especially in the home-based and institutional
setting with alarm, tolerance for false alarms will be low. At
home, this means unwanted interruption of much needed
sleep. In institutions, where one caregiver often cares for
many patients, if all these patients have a seizure detector
yielding four to five erratic false alarms per night, the care-
giver will be continuously attending to false alarms. In a
diagnostic in-hospital or research setting, the high number
of false alarms is perhaps less bothersome, and results can
be corrected for a known FAR.

Future directions
To bring automatic seizure detection another step further,

we gain several suggestions from our study. First, in some
patients distinguishing nocturnal HM and GT seizures from

arousals is difficult when only accelerometer and HR data
are used. Use of video/audio automated analysis is promis-
ing25 and has the advantage of not requiring something
attached to the body. EMG-based analysis shows promise
for detection of the tonic phase of GTC seizures26 and to
improve detection of GT seizures. Another interesting
modality concerns autonomic imbalance before, during, and
after seizures. Although cortical arousal mechanisms for
HM seizures and nocturnal nonseizure events are probably
very similar, differences in the timing and degree of sympa-
thetic activation were found.14 HR variability is not a robust
indicator of sympathetic activity,27 but electrodermal activ-
ity may be used instead.15

Second, performance of algorithms varies between
patients. This is dependent on the dominant seizure type,
but also on their HR and movement patterns during noctur-
nal arousals. As suggested by other researchers, personal-
ized detection algorithms could improve performance of a
detector in these patients.6,21 To develop these, more data
per patient are necessary to identify patterns in arousal-like
episodes and during several seizure types.

Lastly, further validation of algorithms in long-term data
is needed to assess their true performance. This requires
measurements, preferably in a home setting, with very
robust sensors. This may also give insight in the practical
role of a seizure detector. This is essential, as a detector that
is not accepted by patients or caregivers is of no value.18

Conclusion
It seems feasible to develop a detector with a high

sensitivity for clinically relevant seizure types, including
GT seizures, seizure clusters, and HM seizures besides
tonic–clonic seizures. A physiological approach with step-
wise fulfillment of conditions was used to develop these
algorithms. Current FARs, however, are too high for use in
clinical practice. Further optimization and personalization
of algorithms in long-term data from a home setting could
solve this issue. Also, new generations of (lead-indepen-
dent) devices, new sensor modalities, and new methods of
wireless transmission will lead to improvements. These next
steps in development of automatic seizure detection at home
will ultimately help improve the quality of care of patients
with persistent seizures.
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Supporting Information
Additional Supporting Information may be found in the

online version of this article:
Appendix S1. Specification of methods.
Figure S1. Heart rate and accelerometry data in a patient

with two generalized tonic seizures. The seizures occur
between the vertical gray lines. The top panel shows heart
rate and summed waveform length of accelerometry, and
the bottom panel shows spectral contrast of the accelerome-
try. Around the occurrence of the seizures, a small rise in
heart rate (HR) is visible. Between seizures, shorter and
longer rises in HR occur. The accelerometer is not sensitive
enough to pick up the low-amplitude and high-frequency
motion occurring during these tonic seizures.
Figure S2. Heart rate and accelerometry data in a patient

with three hypermotor seizures. The seizures occur between
the vertical gray lines. The top panel shows heart rate and
summed waveform length of accelerometry, and the bottom
panel shows spectral contrast of the accelerometry. Two
sudden rises in heart rate occur in this patient during the
night, unrelated to seizures (black circles). Distinct
increases in summed waveform length and spectral contrast
are visible only during seizure periods.
Figure S3. Heart rate (HR) and accelerometry data in a

seizure-free period. The top panel shows HR and summed
waveform length, and the bottom panel shows spectral con-
trast in accelerometry. The black circles highlight non–sei-
zure-related rises in heart rate and movement. In this
patient, three arousal-like events are seen with a high
increase in summed waveform length and an increase in
HR. This pattern can be difficult to discern from, for
instance, hypermotor seizures. The third arousal-like event
seems to give rise to a more permanent state of arousal, with
a shift in baseline HR.
Figure S4. Sensitivity and false alarm (FA) rate (number

of FAs per 8-h night) of three tested algorithms in all sei-
zures and in clinically urgent seizures. The algorithm based
on heart rate and movement has the highest sensitivity but
also generates many false alarms. HR, heart rate; Mvt,
movement.
Figure S5. Performance of the stepwise fulfillment of

condition-based algorithms in a patient with one general-
ized tonic–clonic seizure (between blue bars in upper
panel). One false alarm was generated by the algorithm
based on motion at the beginning of the night. HR, heart
rate; Mvt, movement.
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Figure S6. Performance of the stepwise fulfillment of
condition-based algorithms in a patient with three tonic sei-
zures. Seizures are indicated in the top panel with blue verti-
cal lines. All three seizures are detected; however, many
false alarms are generated by increases in summed wave-
form length due to restless movement during the night. HR,
heart rate; Mvt, movement.

Figure S7. Performance of the stepwise fulfillment of con-
dition-based algorithms in a patient with five tonic seizures
and five clusters of short tonic seizures (seizures indicated
with blue bars in upper panel). Heart rate–based detection
generates many false alarms, partly because of suboptimal
quality of the signal and partly because of many arousal-like
events in nonseizure periods. HR, heart rate; Mvt, movement.
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