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Introduction

Opportunistic behavior (or opportunism) is a selfish behavior that intention-
ally takes advantage of relevant knowledge asymmetry to achieve own gain,
regardless of other agents’ value. In the context of multi-agent systems, know-
ledge is distributed among different agents, which creates the opportunity for
agents to perform opportunistic behavior to other agents. Since opportunistic
behavior has undesirable results for other agents in the system, the aim of
this thesis is to eliminate such a selfish behavior from the system. In order to
reach this goal, we will perform the investigation of opportunism with the

notion of values for different issues.

1.1 Motivation

Consider a common social scenario. In a market a seller is trying to sell a
cup to a buyer and it is known only by the seller beforehand that the cup
is actually broken (e.g. there is a crack at the bottom of the cup). The
buyer finally buys the cup for its good appearance, but immediately gets
disappointed when he fills it with water. In this example, the seller earns
money from the buyer by exploiting the opportunity of having more knowledge
about the transaction than the buyer, while the buyer didn’t know the quality
of the cup before he buys it. Such a behavior intentionally performed by the

seller is first named opportunistic behavior (or opportunism) by economist
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1 Introduction

Williamson [Williamson, 1975], which is a selfish behavior that takes advant-
age of knowledge asymmetry and results in promoting agents’ own value but
demoting other agents’ value. Opportunistic behavior commonly exists in
business transactions and other types of social interactions in various forms
such as deceit, lying and betraying. This is because individuals working in
different positions are capable to have access to different amounts of informa-
tion, which provides the opportunity for them to gain personal advantage,
regardless of the consequences to others. Since it has negative results for other
individuals involved in the relationship and strongly affects the cooperative
relationship once it is unveiled, it is prevented or eliminated by social laws
and norms. In the next chapter we will give a brief review of opportunism in
social science.

Is the investigation of opportunism of interest to AI? Social concepts are
often used to construct artificial societies. Viewing individuals as agents,
we might have similar phenomena in the context of multi-agent systems.
Interacting agents were designed to behave in a human-like way with char-
acteristics of self-interest. When such agents possess different amounts of
relevant information about a specific transaction and try to maximize their
own benefits, those who are more knowledgeable might perform opportunistic
behavior to other agents in their own interest, which is against others’ benefits.
It is important to design mechanisms to eliminate opportunism in multi-agent
systems, as it has undesirable results for other agents in the system.

In this thesis, we use logic-based formal approaches to investigate oppor-
tunism with the notion of values. Many logic-based formal approaches have
been developed in the agent community, such as logics for knowledge and
belief and logics for mental states (see [Van Ditmarsch et al., 2007] and [Cohen
and Levesque, 1990]). With logic-based formal approaches we can specify
and reason about multi-agent systems. Typically we can prove properties of
systems that we are intended to have after implementing the system with
respect to the specification. The first reason why we use logic-based formal
approaches in this thesis is that they allow us to understand more clearly the
elements that construct opportunism and how they relate to each other. Lots
of work has been done on the logics of action and the logics for agents’ mental
states since last century (see [McCarthy and Hayes, 1969] and [Bratman,
1987]), which turn them into two mature research areas. Based on those
logics we can have a formal definition of opportunism. The second reason for

the use of logic-based formal approaches is that they allow us to specify our
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1.2 Research Questions

monitoring and eliminating mechanisms for opportunism. The interesting
properties we prove based on the formal approaches show the characteristics of
our mechanisms. The third reason why we use logic-based formal approaches
in this thesis is that it is possible to combine it with other formal approaches
and theories. For example, in order to reason about agents’ opportunistic
propensity, we combine logic with decision theory in the way that agents
determine their preferences over different states by evaluating state proper-
ties. Logic-based formal approaches are commonly used in the research of
Artificial Intelligence and can be seen as appropriate for the investigation of

opportunism from different perspectives.

1.2 Research Questions

The aim of this thesis is to eliminate opportunism in multi-agent systems. In
order to reach this goal, it is of great importance to understand opportunistic
behavior in the context of multi-agent systems. Namely, what kind of actions
can be categorized as opportunistic behavior? In the logic of action, people
represent an action by specifying its pre- and post-condition: the precondi-
tion specifies the scenario where the action can be performed, whereas the
postcondition specifies the corresponding scenario resulting from performing
the action with the precondition. Besides, it is also important to interpret an
action by considering its mental state when the action is performed, typically
because intentionality is used to distinguish opportunistic behavior from other
behaviors. Therefore, we need to define opportunism in a formal way to
capture its pre- and post-condition and the mental state of opportunistic

agents.

Research Question 1. How can we formally define opportunistic behavior

in the context of multi-agent systems?

Norms have been commonly used to regulate and control the behavior of
the agents or the system. As opportunistic behavior has undesirable results
for other agents in the system, norms can be used to prescribe forbidden
actions that are opportunistic, or forbidden states that opportunistic behavior
results in. Typically we want to use enforcement norms, which are norms
that can be violated and lead to sanctions once the violation is detected.
But then there has to be a monitoring mechanism to detect norm violations.

On the one hand, it is important to detect it, as it has undesirable results

13



1 Introduction

for the participating agents and we want to impose sanction to the agent
who was opportunistic. On the other hand, since opportunism is always in
the form of lying, deception and betrayal, meaning that the system does
not know what the agent performs or even the motivation behind it (for
example, in a distributed system), opportunistic behavior cannot be observed
directly. Thus, there has to be a monitoring mechanism that can detect the

performance of opportunistic behavior in the system.

Research Question 2. How can we develop a mechanism for monitoring
opportunism even though the system is not able to see its performance object-

wely?

In the investigation of opportunism, it is also important to predict and
specify when an agent will perform opportunistic behavior so that the ap-
propriate amount of monitoring and eliminating mechanisms can be put in
place. Evidently, not every agent is likely to be opportunistic. An agent will
perform opportunistic behavior when he has the ability and the desire of
doing that. Based on this assumption, can we design a framework to reason
about agents’ opportunistic propensity? Once we know when an agent is
inclined to perform opportunistic behavior, we know when an agent will not
perform opportunistic behavior by making the ability and the desire of being
opportunistic unsatisfied. In other words, this framework can also be used to

design a mechanism for eliminating opportunism.

Research Question 3. How can we develop a framework that allows us not
only to reason about agents’ opportunistic propensity but also to design a

mechanism for eliminating opportunism?

The first question will be explored in Chapter 3, the second question will
be explored in Chapter 4, and the third question will be explored in Chapter
5 and Chapter 6. Before we start our exploration, it is important to clarify
that we have different definitions of opportunism in different chapters. We
propose a formal definition of opportunism in Chapter 3, which forms a solid
foundation for our future research. However, we find that it is difficult to
apply this thorough definition to every research issue. For example, even
though we do define the mental state of opportunistic agents in Chapter 3,
it is impossible for monitors to detect any mental states. Thus, we remove
all the references to mental states (knowledge, intention) for the definition

of opportunism in Chapter 4. For Chapter 5 and Chapter 6, we define
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1.8 Thesis Outline

opportunistic propensity based on the definition of opportunism in Chapter 3.

Moreover, even though in Chapter 3 we define opportunism that consists of

multiple actions and is situated in a system with norms, in the later chapters

we only tackle the kind of opportunism that contains only one action and

happens between two agents for simplification, which influences the way we

define norms, rational alternatives and so on. To summarize, we will look at

opportunism from different perspectives to explore different research issues.

1.3 Thesis Outline

We will give a brief outline of the thesis:

Chapter 2: We give a brief overview on the topics of opportunism, multi-
agent systems, values and action theory.

Chapter 3: We propose a formal definition of opportunism with the notion
of values based on the situation calculus. This chapter is based on our
paper [Luo and Meyer, 2017].

Chapter 4: We propose a formal framework based on the specification of
actions to specify monitoring approaches for opportunism. This chapter
is based on our paper [Luo et al., 2016].

Chapter 5: We introduce a formal framework to reason about agents’
opportunistic propensity. This chapter is based on our paper [Luo et al.,
2017].

Chapter 6: We propose a formal framework that allow us to design two
mechanisms for eliminating opportunism. This chapter is based on our
paper [Luo et al., 2018].

Chapter 7: We summarize this thesis.

15






Background

In this chapter, we will briefly review the concepts of opportunism, multi-
agent systems and values, and the logic of action upon which we conduct this

research.

2.1 Opportunism

Opportunism is a economic concept proposed by economist Williamson [Wil-
liamson, 1975]. In his theory of transaction cost economics, he has proposed
that economic agents be described as opportunistic where this means self-
interest seeking with guile [Williamson, 1993]. Even though it provides the
original definition of opportunism, so far there is no general and agreed
definition or theory of opportunism. The main reason is that sometimes
opportunism is assessed against some norms and principles, and controversy
about what that norm or principle should be makes a general definition diffi-
cult [Chen et al., 2002]. However, because of the word “guile”, it is commonly
accepted that opportunism involves deliberate deceit, betrayal, or deliberately
withholding, shirking or distorting important business information, which
have been later referred to taking advantage of information asymmetry. Since
it was proposed by economist Williamson, scholars have studied this typical
social behavior of economic players from various perspectives i.e. transaction
cost economics [Williamson and Mueller, 1986], resource-based view [Conner

and Prahalad, 1996], game theory [Cabon-Dhersin and Ramani, 2007], agency
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2 Background

theory [Jiraporn et al., 2008] and strategic management [Yaqub, 2011]. For
example, transaction cost economics propose to expand the boundary of a
firm such that both parties have common interests involved in the transaction.

The investigation of opportunism is new in Artificial Intelligence. Even
though work about opportunism in social science is indeed all worthwhile, it is
difficult to directly apply their conclusions to multi-agent systems for improv-
ing the system’s behavior because most of them are informal, which makes
reasoning about this behavior in multi-agent systems impossible, and also not
commonly accepted even in their own area as we commented above. However,
there is some work on logic of lying, deception and dishonesty [Sakama et al.,
2010] [Sakama et al., 2015] [Van Ditmarsch et al., 2012], which are forms of
opportunism. In their work, modalities for belief and intention are commonly
used for formalizing different types of dishonest communication, which is
similar to our work. However, Sakama’s work [Sakama et al., 2010] [Sakama
et al., 2015] only formalizes one agent’s communication to another agent and
his mental states, regardless of the effect on another agent, which means that
we cannot reason about the state transition based on the approach. The
primary goal of van Ditmarsch’s work [Van Ditmarsch et al., 2012] is to model
lying by modeling how agents’ believes change from the communications. It
analyses the effect of lying in public discourse, and explains how lying can
be used as an optimal strategy through a game-theoretical analysis. For
providing a formal model of opportunism, we not only need to formalize the
mental states of interacting agents, but also need to reason about how the
physical situations are changed by opportunistic behavior, both of which are

related to the above work.

2.2 Multi-agent Systems

Multi-agent systems (MAS) are systems that consist of multiple interacting
computing elements, known as agents, within an environment [Wooldridge,
2009]. Examples of multi-agent systems can be electronic markets where
sellers and buyers can perform transactions, energy systems to supply energy-
services to end-users and so on. Agents are computer systems that are
capable of autonomous actions in an environment in order to meet their
delegated objectives [Wooldridge, 2009]. Agents are reactive in the reveal that
they are able to perceive their environment and respond timely to changes,

proactive in the reveal that they take the initiative to satisfy their design
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2.2 Multi-agent Systems

objectives, and social in the reveal that they are capable of interacting with
other agents. Since [Dennett, 1971] put forward the notion of the intentional
stance, people started to study an agent’s choice of action by considering its
beliefs and desires. [Bratman, 1987] incorporates the notion of intention for
describing agent behavior, building the foundation of the BDI (belief, desire
and intention) approach to artificial agents. After Bratman’s philosophy was
published, researchers tried to formalize this theory using logical means. Three
well-known approaches are [Cohen and Levesque, 1990], [Rao and Georgeff,
1991] and [Meyer et al., 1999]. An agent will have a set of actions available
to it. This set of possible actions represent the agent’s ability to modify its
situated environment. Depending on the system, the environments where
agents find themselves in might have different properties. The environments
of the systems we will consider in this thesis have the following properties
[Wooldridge, 2009]:

e Inaccessible: It is impossible for agents to gather complete and accurate
information about the environment. Namely, agents have partial views
about the environment.

¢ Deterministic: An action has a single definite effect and there is no
uncertainty about the state that will result from performing an action.

e Dynamic: The environment can be changed beyond agents’ control.

¢ Discrete: There are a fixed, finite number of actions in the environment.

In this thesis, we use transition systems to represent the underpinning
semantics of multi-agent systems, which consist of agents, states, actions and
transitions between states by actions. When an action is performed in a
certain state, the system might progress to a different state in which different
propositions might hold. A lot of work on logic formalism has been designed
for representing and reasoning about the dynamic of the systems such as the
situation calculus [McCarthy and Hayes, 1969], the event calculus [Kowalski
and Sergot, 1989] and most commonly used modal logic [Blackburn et al.,
2002]. As we will see, we use different logic-based frameworks in different

chapters:

e We will use the situation calculus, which is dialect of first-order logic,
to define opportunism in Chapter 3, typically because it is designed to
represent and reason about actions.

e We will use modal logic in Chapter 4. In order to investigate the monitor-

ing issue that the system cannot directly detect opportunistic behavior,
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2 Background

we will develop a framework where an action is specified through its pre-
condition and its effect (postcondition), and where every state transition
in the system is defined based on action specification.

e We will use modal logic in Chapter 5 and Chapter 6. Because these two
chapters are closely related to opportunistic propensity, agents in the

system will have their own preferences over states and actions.

To summarize, we use different logic-base frameworks for different pur-
poses. Even though they are different, the definitions of opportunism we
will use based on our frameworks are consistent in the reveal that the same
properties can be proved. Another issue we would like to stress here is about
the access to the internal architecture of agents. In this thesis, we will have
various access to the internal architecture of agents, depending on from which
perspective we study an issue: In Chapter 3, we will define opportunism
with an agent’s knowledge and intention from the internal perspective. In
Chapter 4, we will remove all the references to mental states (knowledge,
intention) for the definition of opportunism because monitors have no access
to any mental states, but we assume that the system can reason whether an
agent’s value gets promoted or demoted along a state transition based on the
corresponding value systems. In Chapter 5, the system will predict whether
an agent will perform opportunistic behavior with an assumed value system;
while in Chapter 6 agents’ value systems are unknown to the mechanism

system designer.

2.2.1 Norms

Norms have their origins in social science. Sociologist Gibbs defined norms
in [Gibbs, 1965] as “a collective evaluation of behavior in terms of what it
ought to be; a collective expectation as to what behavior will be; and/or
particular reactions to behavior, including attempts to apply sanctions or
otherwise induce a particular kind of conduct”. In short, norms are the
prescriptions of desirable/undesirable states of affairs with concepts such
as obligations, permissions and prohibitions. An example can be that a
seller shouldn’t sell a broken cup to a buyer. Since last century norms have
been commonly used to regulate and coordinate agents’ behavior in order
to achieve the overall objectives of multi-agent systems. [Therborn, 2002]
distinguishes among three kinds of norms. Constitutive norms define a system

of action and an agent’s membership in it, requlative norms describe the
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2.2 Multi-agent Systems

expected contributions to the social system, and distributive norms defining
how rewards, costs, and risks are allocated within a social system. All the
norms we will use in this thesis are regulative norms and agents in the system
are able to decide whether to comply with them. Norms can be explicitly
represented, for example in deontic logic [McNamara, 2014]. Deontic logic
studies logical relations among obligation, permission, and related concepts.
Among various systems of deontic logic, Standard Deontic Logic (SDL) is the
most cited and studied one, mainly because it builds upon propositional logic,
and is a distinguished member of modal logics.

The investigation of opportunism cannot be done without norms. Agents
in multi-agent systems are residing in a normative context which provides
obligations, permissions and other types of norms for guiding agents’ behaviors.
In this thesis, those norms are enforcement norms that agents can obey or
violate, and that lead to sanctions when they are violated. The setting of
those norms reflect the values of the system. We can consider the system as
an entity, agents can perform opportunistic behavior to the system through
violating norms secretly. We will tackle this issue in Chapter 3 and Chapter
4. When we look for ways to eliminate opportunism in multi-agent systems,
removing knowledge asymmetry between agents might contradict the privacy
norms in the system, and norms with enforcement policies can be used to
switch agents’ opportunistic choices. We will tackle this issue in Chapter 6.

Moreover, we will use the following types of norms in different chapters:

o State-based norms: State-based norms prescribe the state properties that
should/shouldn’t be achieved. An example is [Lomuscio and Sergot, 2002]
which uses green and red to color allowed and disallowed states respectively.
We will use state-based norms as our enforcement norms in Chapter 6 to

simply the semantics of system update via norms.

e Action-based norms: Action-based norms prescribe the particular actions
that should/shouldn’t be executed rather than the state properties to be
achieved. They are well studied in [Fiadeiro and Maibaum, 1991]. The
norms we use in Chapter 3 and Chapter 4 are action-based norms, and we
represent the ones in Chapter 3 in deontic logic, whereas the other ones

in a tuple form.

Notice that in this thesis we will not study how norms are to be perceived by

agents or to be implemented in the system. We simply assume that there are
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2 Background

a set of norms that are enforced by the system designer and agents in the

system are able to decide whether to comply with them.

2.3 Values

Values are the perspective from which we study opportunism in this thesis.
Compared to values, goals are more commonly used in logical formalization
(e.g. [Cohen and Levesque, 1990] and [Rao and Georgeff, 1991]), so are utilities
in decision theory and game theory (e.g. [Steele and Stefdnsson, 2016] and
[Von Neumann and Morgenstern, 2007]), for expressing similar idea. However,
the concept of value has been recently discussed in the logical literature,
especially some work in the area of argumentation practical reasoning that
reasons about agents’ preferences and decision making by values (e.g. [Bench-
Capon et al., 2012], [Van der Weide, 2011], [Pitt and Artikis, 2015], [Zurek,
2017] and [Lorini, 2014]). For example, [Zurek, 2017] discusses the issue of
modeling of values and goals in reasoning and argumentation, and in [Lorini,
2014] a logical theory exploring the connections between the concepts of value,
preference, knowledge and rationality is provided. Even though goals, utilities
and values can be used to represent agents’ preferences about situations, they

have different features.

e Goals and Values: Goals are concrete and should be specified with time,
place and objects. For example, to earn 1000 euro next month is a
goal. If one agent’s goal is achieved in one situation, then he has high
evaluation on that situation. Value is described by Schwartz as trans-
situational [Schwartz, 1992], which means that value is relatively stable
and not limited to be applied in a specific situation. For instance, if
honesty is a value of somebody, he will be honest for a long period of time.
Since state transitions are caused by the performance of actions, we can
evaluate actions by whether our value is promoted or demoted in the state
transition, as what we do in this thesis.

« Utilities and Values: For representing agents’ evaluation on states, Keeney
and Raiffa proposed Multi-Attribute Utility Theory (MAUT) in which
states are described in terms of a set of attributes and the utilities of the
states are calculated by the sum of the scores on each attribute based on
agents’ value system [Keeney and Raiffa, 1993]. Apparently, not everything
can be evaluated with numbers, which is one of the reasons why people

consider using value systems as an alternative. A value system is like a box

22



2.4 Logic of Action

that allows us to define its content as we need. In Chapter 3 and Chapter
4, situations/states are represented through propositions and agents refer
to a specific proposition based on their value systems to evaluate a state
transition. Starting from Chapter 5, we will open up the black box of
value systems. A value is modeled as a formula in our language and a
value system is constructed as a total order over a set of values. Instead
of calculating the utility of states, agents specify their preferences over

states by evaluating the value change that they most care about.

We will prove that the state preferences we define with value systems obey

the standard properties we expect from a preference relation.

2.4 Logic of Action

In computer science, people realize that computers perform actions in the
reveal that executing program statements change computer internals and
outside world. Hence, a logic of action provides a means to verify programs
[Segerberg et al., 2016]. Historically, different ways of program verification
have been proposed. In Hoare logic [Hoare, 1969], the execution of a program
is described through a Hoare triple { P}C{Q}, where C' is a program, P is the
precondition and @ is the postcondition, which is quite close to our approach
of action specification (15, ¢) in Chapter 4.

Representing and reasoning about actions is one of the central topics
in artificial intelligence, particularly in knowledge representation. One of
the main problems that one encounters when reasoning about actions in
Al is frame problem [McCarthy and Hayes, 1969], namely the challenge of
representing the effects of action in logic without having to represent explicitly
a large number of intuitively obvious non-effects. Reiter proposed a solution
within a framework, which is called the situation calculus [Reiter, 2001]. The
situation calculus is a dialect of first-order logic especially designed to reason
about actions. Its idea is that we can represent any reachable states in terms
of actions that are required to reach them, and that the reachable states are
called situations. There are three elements: actions Act that can be performed
by agents, situations S that represent a history of action occurrences, and
fluents F' that describe the properties of the situation. Situation Sy represents
the initial situation that no action can result in. The properties of situations
are specified through relational and functional fluents taking a situation term

as their last argument, which means their truth value may vary from situation
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to situation. Based on the situation calculus, Reiter’s Basic Action Theory is

defined as a set of axioms:
D:ZUDaPUDSSUDsoUDuna

3.: the set of foundational axioms,

e do(ai1,s1) = do(az,s2) — a1 = a2 A s1 = s2; Two situations are the
same if and only if they are the same sequence of actions.
(VQ)Q(So) A (Vs,a)[Q(s) — Q(do(a, s))] — (Vs)Q(s); This is a second-
order induction axiom saying that for any property Q, if Q(So) and,

for any situation s and action a, property @ remains the same, then
we have (Vs)Q(s).

—s C So; The relation C provides an ordering relation on situations.

s C s’ means that the action sequence s is a sub-sequence of that of s’.
Thus, s is a sub-sequence of do(a, s’) if and only if s is a sub-sequence
of s’ or they have the same action sequence. And no situation is before
initial situation Spy.

esCdo(a,s)=sCs’;

Dgp: the set of actions preconditions,
Poss(a(z),s) = w(z, s)

where 7(x, s) is a formula uniform in s and whose free variables are among
x and s. Thus, whether a(z) can be performed in situation s depends
entirely on s.

Dss: the set of successor state axioms,
F(do(a, s)) = v (a,5) V (F(s) A ~vp(a,s))

Here v} (a,s) and v5(a,s) are two formulas expressing the conditions
for the fluent F' becoming true and false, respectively; the effect of ac-
tion is specified through successor state axioms, which consist of positive
consequences and negative consequences.

Dso: the sentences uniform in Sy describing the initial situation;

Dyna: the unique name axioms for actions.

The situation calculus is the technical framework of next chapter, where we
will formally define opportunistic behavior based on our understanding of the

concept from social science.
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2.5 Possible-world Structure

2.5 Possible-world Structure

Possible-world structure (or Kripke structure) is the model that people ad-
opt to formalize knowledge, belief, intention and obligation in the situation
calculus and modal logic. Therefore, we will briefly introduce this model
before we use those modalities in our later chapters. A Kripke structure is
proposed by Saul Kripke [Kripke, 1963] and has become the standard type
of the models in modal logic and related non-classical logics. Basically it is
a graph whose nodes represent the possible states of the system and whose
edges represent accessibility relations. A valuation function maps each node
to a set of properties hold in the corresponding state. Formally, let ® be a
set of atomic propositions. A Kripke structure over ® is defined as a tuple
M = (S,R,n), where

e S denotes a set of states (or situations);
e R C S x S is a set of accessibility relations;

o7 : S — 2% denotes a valuation function, meaning that for each state
s € S the set m(s) of atomic propositions hold in s. Therefore, fluents in
the situation calculus can be interpreted as: given a proposition p, fluent
p(s) holds iff p € w(s).

By means of a Kripke structure we can represent exactly an agent’s mental
state in a certain state (or situation). Figure 2.1 is an example of a Kripke
structure. Suppose that our underlying logical framework is the situation
calculus. The actual situation where p is true and q is false, represented by
situation s € S for which it holds that p(s) and —¢(s). Now the model can be
represented by S = {s,s’,s”}, where s is as above, s’ is p(s’) and ¢(s’), and

"

s is =p(s”) and q(s”). The accessibility relation R is illustrated as Figure
2.1.

Kripke structures are adopted by the situation calculus and modal logic to
represent agents’ mental states (knowledge, belief, intention and obligation)
and transition systems . Taking knowledge as an example, we assume that
there is an accessibility relation over states, where state s’ is accessible from
state s if an agent residing in state s thinks he might be in state s’. So
something is known in state s if it holds in state s and every state s’ accessible
from s, and something is not known if it doesn’t hold in at least one accessible

state.
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2 Background

Figure 2.1. Example of a Kripke structure.

2.6 Neighborhood Semantics

Neighborhood semantics [Pacuit, 2007], also known as Scott-Montague se-
mantics, is another formal semantics for modal logics compared to nor-
mal possible-world semantics. It is developed by Dana Scott and Richard
Montague. The basic idea behind a neighborhood model is that: at each
situation, list all the sets that are considered “necessary”. That is, given a
non-empty set of situations S, each situation s is assigned a set of subsets of
S (these subsets are called neighborhoods). Formally, let ® be a set of atomic
propositions. A neighborhood model over ® is defined as tuple M = {S, N, v},

where

e S denotes a set of situations;

e N is a neighborhood function N : S — 92° which assigns a collection of
sets of situations to each situation in S;

e v: ® — 2% denotes a valuation function assigning a set of possible worlds
to each atomic proposition. Therefore, fluents in the situation calculus

can be interpreted as: given a proposition p, fluent p(s) holds iff s € v(p).

Similar to Kripke structures, we can represent exactly an agent’s mental
state in a certain situation by neighborhood semantics. Fig. 2.2 is an example
of a neighborhood model. Suppose that s is the actual situation and S con-
sists of the following situations: S = {(p, ¢,7), (p, ~q,7), (p, ¢, =7), (—p, —gq,7)}.
Neighborhood function N(s) returns a set of subsets of S that are the neigh-
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2.6 Neighborhood Semantics

borhoods in s. Set {(p,q,7), (p,q,7), (p,q,—7)} is called the truth set of
p and it is a neighborhood in s. The same with —¢ and r. The model is

illustrated as below:

N(s)
N .
P r

Figure 2.2. Example of a neighborhood model.

In Chapter 3, we adopt neighborhood semantics to define Intention. Sup-
pose we have a set of situations labeled with propositions. Proposition p is
intended to be in the actual situation s if and only if the truth set of p is an

intentional neighborhood in s.
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A Formal Definition of
Opportunism

In this chapter, we introduce formal definitions of opportunism with the
notion of value based on the situation calculus. We first propose a model
of opportunism that only considers a single action between two agents, and
then extend it to multiple actions and incorporate normative context in
the model. A simple example of selling a broken cup is used to illustrate
our models. Through our models, we can have a thorough understanding
of opportunism, which provides a solid foundation for the investigation of

predicting, monitoring and eliminating opportunism.

3.1 Introduction

In order to perform the investigation of opportunism, we first need to have a
formal specification of opportunism with a widely applicable generalization.
Through the specification, we can understand more clearly the elements in
the definition, how they relate to each other, and derive interesting properties
that are useful for our future research. We believe that such a research
perspective can ease the debates about opportunism in social science (for
instance, is the intention of opportunistic agents to harm other agents? What
is the asymmetric knowledge that enable the performance of opportunistic

behavior?). Moreover, future work on its emergence and constraint mechanism
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8 A Formal Definition of Opportunism

can be conducted based on our formal definition, rendering our study relevant
for multi-agent system (MAS) research.

In this chapter, we take the initiative to propose formal models of op-
portunism. We integrate the notion of value in our models to represent
agents’ preference on different situations before and after the performance of
opportunistic behavior. We then formalize opportunism using the situation
calculus [McCarthy, 1963] and [Reiter, 2001] as our technical framework based
on our extended definition. We first propose a model of opportunism that
only considers a single action between two agents, indicating three basic
concepts knowledge asymmetry, value opposition and intention in the model,
and then extend it to multiple actions and incorporate a normative context
in the model. A simple example of selling a broken cup is used to illustrate

our models.

3.1.1 Chapter Outline
The rest of the chapter is organized as follows.

e In Section 3.2 we have an informal definition of opportunism extended
from Williamson’s, highlighting the key elements we need to model.

e In Section 3.3 our technical framework of the situation calculus is briefly
introduced.

e In Section 3.4 we propose a preliminary model of opportunism, which
serves as a basis for the following extensions.

e In Section 3.5 we extend our model to multiple actions

e In Section 3.6 we incorporate in our model a normative context.

e Section 3.7 illustrates our models by a simple example.

e Section 3.8 discusses this chapter.

e Section 3.9 summarizes the chapter.

3.2 Defining Opportunism with Value

In this section, we extend Williamson’s definition of opportunism and suggest
a more explicit one as a prelude and basis to proposing a formal model in the
next section. The classical definition of opportunism is offered by Williamson
as “self-interest seeking with guile” [Williamson, 1975], where guile means the
use of clever but usually dishonest methods. While this definition has been

used in a large amount of research, it only mentions two attributes, self-interest
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3.2 Defining Opportunism with Value

and guile, explicitly, leaving other attributes for researchers to interpret from
different perspectives. For example, Das defined partner opportunism as “a
behavior by a partner firm that is motivated to pursue its self-interest with
deceit to achieve gains at the expense of the other alliance members” [Das and
Rahman, 2010]. In a game-theoretical setting, Seabright defines opportunism
as "the behavior of those who seek to benefit from the efforts of others
without contributing anything themselves" [Seabright, 2010]. Even though
those definitions are elaborated enough, they come from different theoretical

settings.

The example about hiding important information from peers that we
encountered in Chapter 1 is opportunistic behavior, since it is against others’
benefits or not allowed by the system. However, if hiding is not forbidden
by the system, the agent could not be said to have done anything wrong.
Or if hiding is accepted by peers, it may not be against their interest. We
can see that both the system and the agents’ perspectives can influence the
judgment of opportunism, and they are the representation of value systems at
the collective level and individual level respectively, which might be different

among systems and agents.

Value is something abstract that we think is important, and various types
of values together with their orderings form a value system, which is the
basis of our decision-making. By integrating the notion of value into our
model, the result of performing opportunistic behavior is represented as
promoting opportunistic agents’ own value and demoting other agents’ value.
Furthermore, even though a value system is relatively stable within individuals,
it may differ across different individuals and societies. For different societies,
each has its own value system as part of the context and it serves as the
basis for any judgment within the society. In this sense, some behaviors
which are regarded as opportunistic in one society may not be considered as
opportunistic in another society, if the two societies do not share the same
value system. A similar idea, although more centering around opportunistic
propensity, can be found in [Chen et al., 2002]. Given the value system
of the society, opportunistic behavior promotes the self-interest which is in

opposition with others’ value.

In this thesis, based on the definition of Williamson, we compare oppor-
tunistic scenarios with non-opportunistic ones, and then redefine this behavior

in a more explicit way with the notion of value:
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8 A Formal Definition of Opportunism

Opportunism is a behavior that intentionally takes advantage of relevant
knowledge asymmetry * to achieve own gain, regardless of other agents’ value.

First of all, there has been reached consensus that opportunistic behavior
is performed with self-interest intention [Das and Rahman, 2010]. We admit
that self-interested pursuit is the natural property of human beings, but
opportunism is more than that: agents with opportunistic behavior do not care
about the negative effects on others. Secondly, relevant knowledge asymmetry
provides the chance to agents to be opportunistic. Opportunistic agents may
break the contracts or the relational norms using the relevant knowledge that
others do not have. It is important for opportunistic agents to use lying,
deceit or infidelity for hiding their self-interest motive. Therefore, agents with
more relevant knowledge will have more potential for being opportunistic.
Thirdly, principles are ignored by opportunistic agents. The reason to use
“ignore” here is to distinguish opportunism from accidentally bringing harm
to others. Opportunistic behavior is performed intentionally without any
compensation to the victims. Other agents’ value can be represented by the
contract rules or the relational norms that are used for balancing various
interests and already agreed to by a majority of the agents. Fourthly, even
though we do not explicitly declare the result of performing opportunistic
behavior in our extended definition, such a behavior must result in gains at
the expense of others. Any self-interested behavior that does not end up in
affecting other agents should not be considered as opportunism. Last but not
least, Wathne and Heide [Wathne and Heide, 2013] clarify that situations
where one agent receives compensation in some forms should not be considered
as opportunism. Since we have to consider whether the agent who got harmed
receives any compensation later on, we discuss the issue of compensation for
opportunism for the case with multiple actions.

From the above elaboration, we can derive something interesting and
important about opportunism: opportunistic agents ignore the interest of
others, which means that it is already known by them that the behavior
will cause harm to others; as opportunistic agents intend to gain personal
advantage, can we say that it is also their intention to cause harm to others?

We will investigate this problem through our formal models of opportunism.

1 Many papers in social science use information asymmetry to represent the situation
where one party in a transaction knows more compared to another. We argue that once
the information is stored in our mind and can be used appropriately it becomes our
knowledge. For this reason, we would rather revise the term as knowledge asymmetry in
the whole thesis, which is also consistent with our technical framework.
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3.3 Technical Framework: Situation Calculus

The situation calculus provides a formal language for representing and reas-
oning about dynamical worlds based on first-order logic. Its idea is that we
can represent any reachable states in terms of actions that are required to
reach them, and that the reachable states are called situations. There are
three elements: actions Act that can be performed by agents, situations S
that represent a history of action occurrences, and fluents F' that describe the
properties of the situation. Situation Sy represents the initial situation that
no action can result in. The properties of situations are specified through
relational and functional fluents taking a situation term as their last argument,
which means their truth value may vary from situation to situation. The
relational fluents can be true or false, while the functional fluents can take
a range of values. For instance, ontable(z, s) is a relational fluent which is
true in situation s where object z is on the table, and temperature(s) is a
functional fluent whose value in situation s is an integer representing the
temperature of the environment.

To represent how situations change, one has to specify in which situation
an action can be performed and how to reason about the changes in the world
by performing an action. In the situation calculus, we use predicate symbol
Poss(a, s) to denote the set of preconditions that action a is executable in
situation s, and a distinguished binary function do(a, s) to denote the unique
successor situation that results from the performance of action a in situation
s. For example, in order to pick up object x one must have an empty hand

and object  must be on the table in situation s:
Poss(pick(x), s) = handempty(s) N ontable(x, s).

And do(pick(z), s) represents the situation that results from the performance
of action pickup(z) in situation s. One more example: in order to repair
object x in situation s, the object x must be broken and there must be a glue

available in situation s:
Poss(repair(z), s) = broken(z, s) A hasglue(s).

Other special predicates and functions can be introduced as needed. For
instance, propositions P can be used as assertions from classical proposition

logic instead of fluents, that is, their truth values are not dependent on the
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8 A Formal Definition of Opportunism

situation but consistent throughout all the situations.

With the situation calculus, we can reason about how the world changes
as the result of the available actions. The effects of actions are specified
through successor state azioms. For example, the effect on fluent broken of

object x is:
broken(z,do(a, s)) = broken(z, s) V (3r) fragile(x, s) A a = drop(r, x),

which is saying that object « will be broken in the successor situation do(a, s)
if and only if = is fragile in s and the action that takes us to the successor
situation is someone r dropping x, or x is already broken in s.

This is a brief overview of the situation calculus, which is the technical
preliminary of our formalization. However, this language can only provide
information about the history of a situation and there is no way to represent
the future of a situation. For example, propositions like “I shall sell the cup
now” cannot be represented by situation calculus. Since this representation is
of great importance to our formalization, we extend the situation to one-step
further in the future. An extended situation is a pair (s, s’) such that s is a
situation and s’ is the next situation of s connected with an action, and occur

is a relation between actions and situations. Here is the semantics of occur:

(s,s") F occur(a, s) iff s’ = do(a,s). That is, occur(a, s) holds if action a

occurs in situation s.

From now on, the situation calculus we are using as our technical framework
will be extended with the semantics above.

After John McCarthy’s introduction of this theory, people made extensions
capable of representing knowledge, belief, intention and obligation in order
to better reason about actions and their effects on the world [Shapiro et al.,
2000] [Scherl and Levesque, 2003] [Demolombe and Parra, 2009]. We will
introduce and adopt those extensions in the following sections as appropriate.
Since in the situation calculus the last argument is always a situation, we
will follow this convention in this chapter for any definition of fluents and

predicates.

3.4 Formalizing Opportunism

For better understanding, we first propose a preliminary model of opportunism

that only considers a single action between two agents, without any legal or
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moral evaluation. It serves as a basis for the extensions of multiple actions and
a normative context in the following sections. We will use normal possible-
world semantics to define knowledge and neighborhood semantics to define
intention. Ones who are unfamiliar with the two types of semantics can refer
to [Chellas, 1980] and [Montague, 1970] [Scott, 1970] for their introductions.

3.4.1 Knowledge Asymmetry

We adopt the approach of Scherl to formalizing knowledge, which is to add an
agents’ possible-world model of knowledge to situation calculus [Scherl and
Levesque, 2003]. To treat knowledge as a fluent, we have a binary relation
K(s', s), reading as situation s’ is epistemically accessible from situation s. It
is reflexive (K (s, s) holds for all s € S), transitive (K (s,s")AK(s',s") implies
K(s,s") for all s,5",s" € S) and symmetric (K(s,s’) implies K (s, s) for all
s, €9).

Definition 3.4.1 (Knowledge).
. def / / /
Know(i, 9, ) < (¢/)Ki(',5) > ol

This definition shows that agent ¢ has knowledge about ¢ if and only if ¢
holds in all the epistemic possible situations of the agent. Then we can have

the definition of knowledge asymmetry.

Definition 3.4.2 (Knowledge Asymmetry).

Knowasym (3, 7, ¢, s) =

Know(i, ¢, s) A =" Know(j, ¢, s) A Know (i, = Know(j, ¢, s), s)

Knowasym is a fluent in situation s where agent ¢ has knowledge about
¢ while agent j does not have it and this is also known by agent ¢. The
asymmetric situation can be the other way around with ¢ and j. But for

simplicity of our model, we limit this definition to one case.

3.4.2 Value Opposition

From the definition of opportunism, we know that agents have different eval-
uations on the same state transition. For agent ¢ who performs opportunistic
behavior, his value gets promoted, while the value of agent j gets demoted.

We argue that this is because agents always have the evaluation from their
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perspective, which is part of their value system. This property of state trans-
ition is named value opposition in this study. In order to extend our technical
framework with value theory, we define a symbol V' to represent agents’ value
system and a binary relation < over situations to represent agents’ preference,

where s <y s’ denotes “s’ is preferred to s based on value system V.

In the situation calculus, situations can be described in terms of fluents
F, which are structured with objects and their properties. For having prefer-
ences on situations, we argue that agents evaluate the truth value of specific
propositions, which are called perspectives in this study, based on their value
systems. For instance, the buyer tries to see if the cup has good quality or not
in order to have a preference on the situations before and after the transaction.
In order to specify agents’ preference on situations, we first define a function

Evalref that represents agents’ perspective for evaluation:

Definition 3.4.3 (Evaluation Reference).

Evalref: V x S xS — F.

It returns a proposition that an agent refers to for specifying his preference
on two situations based on his value system. It is worth noting that in real life
agents’ specification of preferences on situations is based on a set of fluents
2F rather than a single fluent. For instance, both whether the cup has good
quality and appearance are important to the buyer. For simplicity, here we

restrict the return value to only one proposition without loss of generality.

We then specify agents’ preferences on situations, where V' is restricted to

perspective-based value:
s <y, s = —p(s) Ap(s), where p = Evalref(V;, s, s').

s >v, s = p(s) A —p(s), where p = Evalref(V;, s, s").

It means that agent 7’s value gets promoted/demoted from s to s’ when the
truth value of the proposition p that he refers to based on his value system V;
changes. As for the example about selling the broken cup, the seller’s value
gets promoted when he has earned money from the transaction, whereas the
buyer’s value gets demoted when the cup he bought is broken. Because of
having different value systems, they refer to different propositions and thereby

evaluate different propositions for specifying their preferences. Similar to
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knowledge asymmetry, we only limit the specification to one case in terms of

the truth value of p.

Definition 3.4.4 (Value Opposition).
.o 7\ def / ’
Valueopp(i, j,5,8") = s <v, 8 As>v; s

We define value opposition as a property of a state transition where a
state transition from s to s’ can promote the value of agent i but demote
the value of agent j. In other words, agent ¢ has positive effects from the
state transition, while agent j has negative effects. Again, we only limit the

definition to one case for simplicity.

3.4.3 Intention

Opportunistic behavior is performed by intent rather than by accident. In or-
der to suggest this aspect in our formal model, we adopt the logic of intention
to do something for being something in our framework. Do something refers
to an action and being something refers to a state of affairs represented by
propositional formula. The notion of Intend is defined through neighborhood
semantics instead of Kripke semantics. This is because agents need not intend
all the expected side-effects of their intentions as Bratman argued [Bratman,
1987]. For example, an agent has a toothache and is going to see the dentist
with intention to get his tooth fixed. Although the agent believes that it will
cause him much pain, we surely cannot say that he intends to get the pain.

The formal definition of Intend to be ¢ by doing a is given as followed:
Definition 3.4.5 (Intention).
. def .
Intend(i, a, ¢, 5) "< [|A]l € N1(i, 9),
where
1]l = {' € S | occur(a, s') A ls', do(a, s')]}

Ni(i,s) is an intentional neighborhood function of agent ¢ that returns
a set of subsets of S, meaning that what is the case in the neighborhood
is intended to have in situation s. occur(a,s’) is true when action a is per-
formed in situation s’, and ¢ is true in the state transition. An intention of

agent i Intend(i, a, ¢, s) holds if and only if the truth set of occur(a,s’) and
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p|[s’,do(a, s")] is an intentional neighborhood in s. Notice that o[s’,do(a, s")]
means  is true in the transition from s’ to do(a, s"). Based on this definition of
intention, we have two instances for value promotion pro(j) = s’ <v; do(a, s")
and value demotion de(j) = s" >v, do(a,s) by action a, which will be later

used for providing the final definition and proving its properties

Intend(i, a, pro(j), s) = [|Al| € N1(i, s),

where
Al = {s" € S| occur(a,s') A's" <y, do(a,s)}

and

Intend(i, a, de(j), s) < ||Al| € Ni(i, ),

where
[|A]] = {s" € S | occur(a,s’) A's" >v, do(a,s")}

Intend(z, a, pro(j), s) denotes that agent ¢ intends to promote the value of
agent j by action a in situation s. Similar for Intend(i,a,de(j),s). When

1 = j, agent ¢ intends to promote/demote his own value by action a.

3.4.4 Opportunistic Behavior

The above definitions are basic ingredients that we need for having the formal
model of opportunism: knowledge asymmetry as the precondition, value
opposition as the effect, and intention as the mental state. Besides, based on
the informal definition we gave in Section 3.2, there are two more aspects that
should be suggested in the definition. Firstly, the knowledge that the per-
former has while others do not have should be relevant to the state transition.
Secondly, the performer is aware of value opposition for the state transition

beforehand but still ignores it. Opportunism is defined as follows:

Definition 3.4.6 (Opportunism). Let D be a Situation Calculus BAT %, K
and I be the axioms for knowledge and intention representation in the Situation
Calculus respectively, V' be the value system of agents, Evalref be the reference

function representing the object for an agent’s evaluation on situations, and

2 See Chapter 2 for an introduction of Reiter’s Basic Action Theories.
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<y be a preference ordering on situations. Then (DU K UI,V, Evalref, <v)
is a situation calculus BAT extended with knowledge, intention, value and

preference. Within this system, we have

Opportunism(z, j, a, s) et Poss(i, 7, a, s) A Intend(4, a, pro(i), s) A ¢
where

Poss(i, 7, a, s) = Knowasym(i, j, ¢, s)

¢ = Valueopp(4, 4, s,do(a, s)).

This formula defines a predicate Opportunism where action a is oppor-
tunistic behavior by agent 7 to agent j in the situation s. In this concise
formula, the precondition of action a is knowledge asymmetry about the state
transition from s to do(a, s), and action a is performed by intent and results
in value opposition.

One observation from the model is about the subjectivity of opportunism.
We can see through the functional fluent Evalref that agents always evaluate
the situations and consequently the state transition from their own perspect-
ives, which are part of their value systems. If the value systems upon which
they have evaluation change to other ones, the property of value opposition
may become false. Opportunism is presented as a “problem” in most social
science work. However, the above formal model of opportunism implies that
it depends on from which perspective, or more generally, value system, we
evaluate the state transition. It is positive from the perspective of agent i,
while it is negative from the perspective of agent j. In multi-agent systems,
people usually take the established norms into consideration when they decide
whether it should be prevented, and the result may be different from society
to society and from system to system.

After having the formal model of opportunism, we show how the pro-
positions we informally suggest in text at the beginning is captured by our

formalization.

Proposition 3.4.1. Given an opportunistic behavior a performed by agent
i to agent j, each agent evaluates the behavior from a different perspective,

which is formalized as:

E Opportunism(s, j, a, s) — Evalref(V;, s,do(a, s)) # Evalref(V}, s, do(a, s))
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Proof. If Opportunism(z, j, a, s) holds, the property Valueopp(s, j, s, do(a, s))

also holds. Following the definition of value opposition, we have

s <y, do(a,s) As >y, do(a, s).
The specification of s <v, do(a, s) is

—p(s) A p(do(a, s)), where p = Evalref(V;, s,do(a, s)) (3.1)
The specification of s >v; do(a, s) is

q(s) A =g(do(a, s)), where ¢ = Evalref(Vj, s,do(a, s)) (3.2)

Sentence (1) and (2) hold together. Since any formula has only one truth

value given a situation, we have p # q, that is
Evalref(V;, s,do(a, s)) # Evalref(V}, s,do(a, s)).

Proposition 3.4.2. Given an opportunistic behavior a performed by agent i
to agent j, agent i knows the performance of this behavior demotes agent j’s

value, but needs not intend to get this result for agent j, which is characterized

by:
= Opportunism(i, j, a, s) — Know(i, s >v, do(a, s), s)

¥ Opportunism(i, j, a, s) — Intend(s, a, de(j), s)

Proof. The first formula is already in the definition of opportunism, so we
are going to prove the second one. In our model, opportunistic behavior is
performed with intention and Opportunism(s, j,a,s) — de(j), then definitely
de(j) holds in agent i’s intentional neighborhood where Opportunism(z, j, a, s)
holds (denoted as set O). In meighborhood semantics, if Intend (i, a, de(j), s)
holds, then the truth set of de(j) (denoted as set D) must be an intentional
neighborhood of agent i. However, we only know that O is an intentional
neighborhood of agent i and D might be bigger than O (O C D) so that
D might not necessarily be an intentional neighborhood. Therefore, we can

theoretically conclude that agent i might not intend to demote agent j’s value.

We can also give intuition to this proof. Free riding is one of the clas-
sic models about opportunism, and it occurs when someone benefits from

resources, goods, or services but does not contribute to them, which results
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in either an under-provision of those goods or services, or in an overuse or
degradation of a common property resource [Baumol, 2004]. Suppose agent 4
is a free rider, it is rather weird to say that agent i intends to reduce others’
share of public goods.

The proposition shows that it is not the intention of opportunistic agents
to harm others even though opportunism is deliberate with self-interest motive.
The ignored principles are a specific kind of knowledge about the interest of

others that cannot be considered as an intention to be opportunistic.

3.5 Opportunistic Behavior for Multiple Actions

In the previous section, we only consider one single action as opportunistic
behavior. But in more realistic scenario one can imagine that opportunistic
behavior consists of multiple actions. For instance, unlike the simple selling
example at the beginning of this thesis, commerce transactions between busi-
nesses usually consist of a sequence of actions, each of which ends up in a
situation. In this case, the whole sequence of actions could be regarded as
opportunistic behavior instead of any single action individually. Of course, a
sequence of actions can be seen as one action if we only look at the precon-
dition of the first action and the effect of the last action, but we might also
be interested in what properties we can derive from opportunistic behavior
when considering multiple actions instead of a single action. For instance,
is it necessary for the individual actions to be opportunistic behavior in
order for the whole sequence of actions to be opportunistic behavior? How
can we interpret the property of non-compensation for opportunism that
we encountered in Section 3.27 We will study the above issues considering
multiple actions for opportunism.

In situation calculus, a binary function do(a,s) is used to denote the
situation resulting from performing action a in situation s, so for a finite
sequence of actions a1, ..., an, the situation resulting from performing the
sequence of actions in situation s is denoted as do(an,do(an—1,...do(a1,s))).
FEach action within the sequence brings about a new situation that satisfies
certain properties. Formally, based on Definition 3.4.6, opportunism for

multiple actions is defined as below:

Definition 3.5.1 (Opportunism for Multiple Actions). Let D be a Situation
Calculus BAT, K and I be the axioms for knowledge and intention repres-

entation in the Situation Calculus respectively, V be the value system of

41
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agents, Evalref be the reference function representing the object for an agent’s
evaluation on situations, and <v be a preference ordering on situations.
Then (DU K UI,V, Evalref, <v) is a situation calculus BAT extended with
knowledge, intention, value and preference. Within this system, we have

L d
Opportunism(i, j, a1, ..., an, s1) e/

/\ Poss(i, 7, ax, sk) A Intend(i, ax, pro(i), sk) A ¢
1<k<n

where
Poss(i, J, ax, s, ) = Knowasym(i, 5, ¢, sk),

¢ = Valueopp(4, 7, s1, do(an,do(an—1,...do(a1,s1)))),
sk = do(ag—1,...do(a1,s1))(1 < k < n).

Because each action in the sequence must be possible to be performed
and it is the property of intention to be persistent along the whole sequence
of actions [Bratman, 1987], knowledge asymmetry and intention is true in
sk for 1 < k < n. Value opposition is the property of the state transition
by the sequence of actions. A finite sequence of actions a1, ..., an, which is
performed by agent i to agent j in situation si, is opportunistic behavior
if and only if each action is possible to be performed with the intention to
promote agent i’s value and the whole sequence results in value opposition
for agent ¢ and j.

Regarding the effects of opportunistic behavior, agent j’s value gets de-
moted by the behavior, which can be permanent or repairable. In the former
case, it is impossible to compensate the negative effect on agent j (e.g. some-
body dies from it); while in the latter case it is possible in some forms (e.g. a
broken cup can be returned). Since opportunistic behavior is performed by
intent, we argue that agent ¢ will not actively compensate agent j’s loss, no
matter whether it is permanent or repairable. For this reason, we introduce
the following definition non-compensation for agent j, which is an essential

property of opportunism:
Definition 3.5.2 (Non-compensation). Given a sequence of actions Seq =

ai,...,an as opportunistic behavior Opportunism(i,j, Seq,s1) and ¢ =

Evalref(V}, s,do(Seq, s)), we say that Seq is non-compensated for agent j
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3.5 Opportunistic Behavior for Multiple Actions

iff 3k : ar, € Seq such that for the subsequence of actions Seqp = a1, ..., ak
q(s1) A —q(do(Segs, s1))

and for the subsequence of actions Seqr = ak41,...,0n, VM : am € Seqr

q(do(am; sm)) = q(sm)-

By this definition, we separate the sequence of actions into two parts:
Seqp that brings about —¢, and Seqr that retains —q. Note that Seqr can
be empty, which implies that the whole sequence brings about —¢ and the
situation transition is permanent and irreversible. Moreover, as the whole
sequence of actions is performed by agent i, the compensation for agent j’s
loss comes from agent i rather than agent j itself or someone else.

Definition 3.5.1 together with its property of non-compensation captures
some interesting properties, which cannot be derived from Definition 3.4.6.
First of all,

Proposition 3.5.1. For a sequence of actions Seq = a1, ..., an being oppor-

tunistic behavior Opportunism(i, j, Seq, s), we have
F Opportunism(i, j, Seq, s) = (Ja &€ Seqr)—(s >v,; do(Seqn, do(a, 5)))

It implies that the negative effect of opportunistic behavior on agent j could
have been compensated but is not done by agent ¢. Typically when Seqr is
empty, it is meaningless to talk about action a, because the negative effect is

permanent.

Proposition 3.5.2. Given a finite sequence of actions ai,...,an as oppor-

tunistic behavior, we can prove that

E Opportunism(z, j, a1, ..., an, $1) —

Knowasym(i, 7, ¢, s) A Knowasym(4, 7, ¢, do(ak, sk))(1 < k < n)
Proof. Each action in the sequence is possible to be performed and also
Poss(i, 7, ak, sg) = Knowasym(z, j, p, s5)(1 < k < n)

sk = do(ag—1,...,do(a1,s1))(1 <k <n)

Combining these two formulas, we can easily get
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Knowasym(%, j, ¢, s) A Knowasym(z, j, ¢, do(ak, sk))(1 < k < n).

This proposition shows that, when opportunistic behavior consists of a se-
quence of actions, the property of knowledge asymmetry is preserved through-

out the whole sequence.

Proposition 3.5.3. Given a finite sequence of actions ai,...,an as oppor-
tunistic behavior, we can prove action a; needs not be opportunistic, which is

characterized by

¥ Opportunism(i, j,a1,...,an,s1)(n > 1) —

Opportunism(z, j, ak, sx)(1 < k < n)

Proof. In order to prove this proposition, we are going to find a counter-
ezample of opportunistic behavior which satisfies condition n > 1 but each
action does not satisfy all the properties of opportunism.

Freeriding is still a suitable model to prove this property. Since freeriding
is one form of opportunistic behavior, Opportunism(z, others, freeride, s1) is
true in our model. Now we are going to split it into a sequence of actions
ai,...,an and suppose a free rider exist in a society with a large population
and benefits from the public goods without paying. Since the amount that the
free rider is supposed to pay is shared by a large population, other agents do
not notice (or even not care about) the small change of the current situation
thus not getting their value demoted for little amount of freeriding. That is,

for action ay,
Evalref (Vothers, Sk, do(ak, sk)) = T

so that s <v, do(a, s) does not hold any more. Therefore, it is not true

that

thers

Opportunism(i, j, ar, sk)(1 < k < n).

However, once the amount that the free rider is supposed to pay accu-
mulates to be large enough for getting other agents’ value demoted (the
whole sequence of actions is considered), it will be regarded as opportunistic
behavior. By theoretical comparison, this example is quite similar to Sorites
paradox, where grains are individually removed from a heap of sands and the

heap stops being a heap when the process is repeated for enough times [Hyde,
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2014]. So it is also interesting to think about when the behavior starts to be
regarded as opportunistic. In next section, we start to assume a normative
context for the study of opportunism. We consider a set of agents as a system
with norms representing their collective value system. Opportunism is defined

with respect to an agent and a system with norms.

3.6 Opportunistic Behavior with a Normative Context

In the previous sections, we made an assumption for the sake of simplicity that
there is no legal or moral evaluation being made or implied to opportunistic
behavior such that we cannot necessarily evaluate it as good or bad. However,
agents in MAS are residing in a normative context which provides obligations,
permissions and other types of norms for guiding agents’ behaviors. The
setting of those norms reflect the value system of a MAS. To have a formal
model of opportunism with a normative context, we can of course replace the
agent j in our previous models with a system (in this way, we see the whole
system as an agent) and get similar properties as in last two sections, but now
we are more interested in putting opportunism in a deontic-based normative
context to see how it relates to norms. Thus, in this section, we are going to
place opportunistic behavior into a normative context and propose a formal
model of opportunism from this perspective.

For defining opportunistic behavior with a normative context, we adopt
the definition of knowledge asymmetry and intention in previous sections but
redefine value opposition. Firstly, we have three normative statuses, which

are similar to deontic logic.

« it is obligatory that (OB)
e it is permissible that (PE)
« it is forbidden that (FO)

Secondly, we define the above deontic notions for specifying the normative

propositions II.

Definition 3.6.1 (Obligatory, Permissible and Forbidden).
OB(i,a, s) et (Vs")Ri(s',s) — occur(a, s')

PE(, a, ) =4 (3s")Ri(s', s) A occur(a, s")

FO(i,a, s) = (Vs")Ri(s',s) — —occur(a, s')
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In the definition, R;(s’,s) denotes the deontic accessibility relation of
agent 4, meaning that what is the case in situation s’ is ideal for situation
s, and occur(a, s’) is true when action a is performed in situation s’. R-
relation is serial, which means for all situations s there is at least one possible
situation s’ such that R;(s’,s) holds. This property of R-relation ensures the
validity F OB(%, a, s) — PE(i,a, s) to be hold, which is also consistent with
our intuition. Each modality can be taken as a basic to define the other two
modalities.

We then specify the preference of the system on situations, where V is

restricted to deontic-based social value.
s <y, s = (Ja,i)s’ = do(a, s) A OB(4,a, s)

s>y, 8 = (3a,i)s’ = do(a, s) AFO(i, a, s)

Here symbol A represents the whole system, which is a set of agents. The
first equivalence means that the social value gets promoted if there exists
an action whose performance complies with the norm, while the second one
means that the social value gets demoted if there exists an action whose
performing violates the norm.

Together with the specification of agents’ preferences on situations, we

have the definition of value opposition between an agent and the whole system.

Definition 3.6.2 (Value Opposition with a Normative Context).
. / def / !
Valueopp(i, 4, s,8) = s<y, s As>v, s

For the state transition from s to s’, the value of agent i gets promoted
whereas the social value gets demoted. Again, we only limit the definition to
one case excluding the other way around for simplicity.

Therefore, similar to Definition 3.4.6, we have the definition of opportun-

istic behavior with a normative context.

Definition 3.6.3 (Opportunism with a Normative Context). Let D be a Situ-
ation Calculus BAT, K and I be the arioms for knowledge and intention
representation in the Situation Calculus respectively, V' be the value system of
agents, Evalref be the reference function representing the object for an agent’s
evaluation on situations, I1 be a finite set of normative propositions, and <v
be a preference ordering on situations. Then (DU K U1,V, Evalref,1I, <v)

is a situation calculus BAT extended with knowledge, intention, value, norms
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and preference. Within this system, we have

Opportunism(z, A, a, s) def Poss(i, A, a, s) A Intend(i, a, pro(i), s) A ¢
where

Poss(i, A, a, s) = Knowasym(i, 4, ¢, s)

© = Valueopp(i, A, s,do(a, s)).

Action a performed by agent i is regarded as opportunistic behavior if
and only if it is performed with the asymmetric knowledge ¢ about the state
transition from s to do(a, s) and the intention of self-interest, and results in
value opposition against the system A where agent i is.

The definition of opportunistic behavior with a normative context shows
that, given the value system of a system, opportunistic behavior is considered
to be bad since its performance results in demoting the social value. Further,
it implies the moral dilemma concerning the conflict between desire and
obligation. More precisely, an agent has the desire “to do what he wants”,
while the normative context where the agent is residing gives the obligation
“to do what one ought to do”. Opportunistic agents follow their desire but
ignore the obligation. Hence, it is prohibited by laws or norms from the
perspective of the whole system.

Since we assume a normative context in this section, it is worth invest-
igating the relation between deontic notions and mental states. Our model
governs Proposition 3.6.1 regarding opportunistic agents having knowledge
about the relevant norms, and Proposition 3.6.2 and Proposition 3.6.3 about

the intention of opportunistic behavior not being derived from the obligation.

Proposition 3.6.1. Let action a be opportunistic behavior performed by
agent i within system A in situation s, for the normative proposition associ-

ated with action a FO(i,a,s) € II we have
E Opportunism(z, 4, a, s) — Know (i, FO(i, a, s), s)

Proof. Since Opportunism(i, A, a, s) holds, by Definition 3.6.3, agent i must
have knowledge about the effect of performing action a, that is, Know(i, ¢, s)
holds, where ¢ = Valueopp(i, A,s,do(a,s)). By Definition 3.6.2, ¢ =
(s <v, do(a,s) A s >v, do(a,s)). Therefore, Know(i,s >v, do(a,s),s)

holds. Because V is restricted to deontic-based social value in our model,
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(s >v, do(a,s)) = FO(i,a,s) holds, thereby Know(i, FO(i,a, s),s) holds as

well.

Agents have the knowledge about the relevant norms in the system and
decide whether and which to comply with based on their own analysis. Typ-
ically, opportunistic agents behave in their interest, regardless of the norms
they are supposed to follow.

Moreover, as Broersen and his colleagues indicate in their BOID architec-
ture [Broersen et al., 2005], intention might be derived from obligation (e.g.,
T ought to go to work this morning, so I intend to go to work this morning),
or might just come from agents’ own desire (e.g., I feel thirsty, so I intend to
get some water). In a given situation, agents intend to perform opportunistic
behavior, which is motivated by self-interest. In order to prove this property
rigorously, we first prove what opportunistic agents care about is not the

norm they have to comply with.

Proposition 3.6.2. Let action a be opportunistic behavior performed by
agent © within system A in situation s, and V; be agent i’s value system, for

the norm associated with action a FO(i,a, s) € II, we have
E Opportunism(i, A, a, s) — (Evalref(V;, s,do(a, s)) # FO(4, a, s))

Proof. By contradiction, we assume that Evalref(V;, s, do(a, s)) = FO(3, a, s),
which means that what agent ¢ cares about is the norm he has to comply
with. Because of that, he is not performing action a in order to promote his
value, and if that is the case, the system value will not get demoted. That
is, s <v, ' ANs >y, s does not hold. Consequently, Opportunism(i, A, a, s)
does not hold, either. Therefore, Evalref(V;, s,do(a, s)) = FO(4, a, s) is false

for opportunistic behavior.

Using Proposition 3.6.2, we are going to prove it is not the case for

opportunistic behavior that the intention is derived from the obligation.

Proposition 3.6.3. Let action a be opportunistic behavior performed by
agent i within system A in situation s, for the norm associated with action a
OB(i,a, s) € II, we have

E Opportunism(z, 4, a, s) — —(Intend(z, a, pro(i), s) — OB(i, a, s))
Proof. Because formula —(Intend(i, a, pro(i),s) — OB(i,a, s)) is equivalent

to Intend(i, a, pro(i), s) A =OB(i,a, s), we need to prove that it is always the
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case that Opportunism(i, A, a, s) — Intend(, a, pro(i), s) A—OB(%, a, s). From
Definition 8.6.8 we have Opportunism(z, 4, a,s) — Intend(i, a,pro(i), s) A
FO(i,a,s). Because FO(i,a,s) — —OB(i,a,s), Opportunism(i, A, a,s) —
Intend(i, a, pro(i), s) A =OB(i, a, s) holds.

3.7 Example: Selling a Broken Cup

Recall the example that we used to introduce opportunism at the beginning
of the thesis. The scenario is simple but sufficient to illustrate our formal
specification of opportunism. We label the seller and the buyer as s and
b, who can be in one of the situations: Sy (the initial situation, before the
transaction) and do(a, So) (after the transaction). The seller can either sell
the cup (a = sell(z)) or keep it. If the seller performs the action sell(z) in
So, then situation will go to do(sell(z), So).

In situation Sp, the asymmetric knowledge owned by the seller but not the
buyer is not only about the broken cup, but also the state transition: once the
transaction finishes, the situation will go from Sp to do(sell(zx), So), which
gets the value of the seller promoted whereas the value of the buyer demoted.
That is, the precondition Knowasym(s, b, , So) holds. Now consider the
value for both parties. In this example we assume that both parties go for
economic value. However, they have different and contradictory perspect-
ives about the economic value. What the seller cares about is how much
money he earns from the transaction. When the broken cup has already
been sold, his value gets promoted (So <v, do(sell(x),So) holds). Con-
versely, what the buyer cares about is whether the cup has good quality or
not. So once the buyer knows the cup is broken, his value gets demoted
(So >v, do(sell(x),So) holds). The above two sentences ensure sentence
Valueopp(s, b, So, do(sell(x), So)) holds. Further, since it is the seller’s inten-
tion to sell the broken cup to the buyer for promoting his value, sentence
Intend(s, sell(z), pro(s), So) also holds. With the above formalization, the
formula for this example Opportunism(s, b, sell(z), So) holds.

We now discuss two interesting situations extended from the simple ex-
ample. Firstly, if the buyer buys the cup only for decoration without using
it, he will never know the cup is broken or even cares about it. That is, the
buyer’s perspective is revised to Evalref(V, So, do(sell(z), So)) = appearance
and then sentence So >v, do(sell(x), So) does not hold any more. In this

case, because the two perspectives are not contradictory, the seller’s behavior
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is not opportunistic from the perspective of the buyer, if the norms are not
taken into account. It is already proved in Proposition 3.4.1 that agents must
have different perspectives about the same state transition if there is oppor-
tunistic behavior between those two agents. But the above discussion shows
that having different perspectives does not necessarily lead to opportunistic
behavior: they must be contradictory. The subjectivity of opportunism is

reflected by the different judgments on the same action.

Secondly, if there is nothing the seller can do except selling the broken
cup when being in state Sp, it will still be regarded as opportunistic behavior
based on Definition 3.4.6, which might be allowed by the system. It is because
there is no moral or legal evaluation in this definition thus no matter whether
the behavior is good or bad. However, it will be different if we analyze it with
Definition 3.6.3. Suppose it is allowed by the system (i.e., PE(%, a, So)). Then
So >v, do(sell(z),So) does not hold, and then selling a broken cup is not
opportunistic behavior from the perspective of the system. In our example,
the options available to the buyer in state So are {sell, keep}, which means it
is not the only choice for the seller to sell the broken cup. Moreover, sometimes
it is our intention to put ourselves in a situation where we only have one
option to choose. In this case, the whole sequence of actions that illustrates

how the situation arrives in one option available might be opportunistic.

Further, with the help of our model, we can gain practical insights into
eliminating opportunism. In our case, one important reason why the seller’s
behavior is seen as opportunistic is that the seller and the buyer evaluate the
state transition from two opposed perspectives based on their value systems.
In other words, even though they both go for economic value, they evaluate
the action from different perspectives. When applying this approach in
collaborative relationships, it is much easier to understand how a relationship
can end up in defection. Therefore, one way of eliminating opportunism
is to avoid having contrasted value systems in the relationship. As for the
precondition of opportunism, even though it is difficult to prevent knowledge
asymmetry in business transactions, we still need to think about how much
information we can provide to our collaborating agents, especially during

negotiation, and how they are going to use the information.
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3.8 Discussion

In this chapter we attempted to propose a simple but elegant model of
opportunism for different context settings, our specification might not manage
to capture every possible scenario. For instance, in Section 3.4 we only talk
about the interaction between two agents and investigate the evaluation on
the state transition based on the value system of the two agents who are
involved in the transaction. But actually such evaluation can also be done by
others. This is because in the specification of value promotion and demotion
the proposition evaluated based on an agent’s value system is not necessarily
related to the transactions the agent is involved. Assume that a friend of the
buyer knows the story about the broken cup. He may get angry with the seller
for the unfair transaction and then the behavior performed by the seller is
regarded as opportunistic from his perspective, even though he is not involved.
In other words, the judgment of opportunism is subjective not only for the
agents involved, but also for anybody who evaluate the action based on his or
her own value system. Further, our models only consider intentional actions.
However, opportunistic behavior can also be intentional inactions such as
withholding information. In this case, the social value gets demoted for agent
i’s not performing an obligatory action instead of performing a forbidden
action. Of course, our models can capture this scenario in a way that doing
nothing can be seen as a particular way of doing something. Interesting
insights can be gained from further study on this part.

We also propose that the asymmetric knowledge obtained by opportunistic
agents is value opposition about the state transition, which is out of our
intuition. The reason can be shown by the example in Section 3.7. Intuitively
the asymmetric knowledge that the seller has is about the broken cup. Now
we assume that both the seller and the buyer know the cup is broken and the
seller sells it with a high price. Once the buyer knows that the broken cup is
not worth that price, his value will get demoted. From that, we can conclude
that it does not matter whether the fact about the broken cup is only known
by one party beforehand, but whether value opposition about the transaction
is only known by one party beforehand. In other words, the asymmetric
knowledge is not about the objective fact, but about agents’ evaluation on
the state transition.

The definition of non-compensation is introduced for opportunism with

multiple actions, based on the fact that the negative effect of opportunistic
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behavior can be repairable or permanent. Given a normative context, the
norm that opportunistic behavior triggers (violates) can be repaired or not
based on the same fact. In the former case, we can eliminate opportunistic
behavior by imposing punishments or sanctions on the norm. For instance,
in the case of free riding, reparation of opportunism can be handled through
fine. Opportunistic agents may be forced to repair the norm by regimented
norms after the opportunistic behavior is detected. When the norm cannot be
repaired once being violated, such an opportunistic behavior is supposed to be
prevented from happening. In other words, the norm should be implemented

in the environment or by designing norm-abiding agents.

3.9 Chapter Summary

Agents with knowledge asymmetry might perform opportunistic behavior
to others in their interest. Numerous works about such a selfish behavior
have been done in social science due to its negative effect on the relationship
between people. However, most conclusions are based on a given form of op-
portunism, making it hard to build a fundamental theory that can be applied
in any context. This chapter took the initiative to propose a formal model
of opportunism in the multi-agent system context based on the extended
informal definition from Williamson. The modeling work was done based on
the situation calculus integrating the notion of values. We first proposed a
preliminary model that only considers a single action between two agents, and
then extended it for multiple actions with a normative context. Each model
captured interesting properties that were useful for our future research. It is
important to keep in mind that the aim of this chapter is not to find out where
opportunistic behavior comes from and how to eliminate it, but rather to
have a thorough understanding of the nature of opportunism before exploring
those issues. Therefore, the main strength of this chapter is defining such
a behavior from our specific perspective in a formal way, so as to represent
the elements in the definition and their relations and reason about the state
transition by the behavior.

Based on our understanding of the concept of opportunism, we can study
where and when opportunism arises in a social setting. Evaluation based on
different value systems is the reason for value opposition of a state transition.
So considerable insights can be achieved from the investigation of the compat-

ibility of different value systems and the co-evolution of agents’ value systems

52



3.9 Chapter Summary

with a normative context or environmental changes. Further, as opportunism
is a self-interested behavior that may conflict with norms, its emergence
might come from the way in which agents resolve the conflicts between beliefs,
obligations, intentions and desires. For instance, an agent whose desires
always overrule obligations might behave opportunistically. Those conflicts
and their resolutions corresponding to different agent types are investigated
in the BOID architecture [Broersen et al., 2001] and [Broersen et al., 2005].
A well-designed monitoring mechanism can be used to automatically detect
opportunism in (computer-based) human interactions, providing ways to pro-
tect agents’ values from being demoted. Another important topic is designing

mechanisms to eliminate opportunism in the system.
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Monitoring Opportunism

Opportunism is a behavior that causes norm violation and promotes agents’
own value. In the context of multi-agent systems, we want to eliminate such
a selfish behavior through setting enforcement norms. Because opportunistic
behavior cannot be observed directly, there has to be a monitoring mechanism
that can detect the performance of opportunistic behavior in the system. This
chapter provides a logical framework based on the specification of actions
to specify monitoring approaches for opportunism. We investigate how to
evaluate agents’ actions to be opportunistic with respect to different forms
of norms when those actions cannot be observed directly, and study how to

reduce the monitoring cost for opportunism.

4.1 Introduction

Consider a common scenario. A seller sells a cup to a buyer and it is known by
the seller beforehand that the cup is actually broken. The buyer buys the cup
without knowing it is broken. The behavior results in promoting the seller’s
value but demoting the buyer’s value. Such a selfish behavior intentionally
performed by the seller is first named opportunistic behavior (or opportunism)
by economist Williamson [Williamson, 1975]. It is a typical behavior that is
motivated by self-interest and takes advantage of knowledge asymmetry about
the behavior to promote an agent’s own value, regardless of the other agent’s

value (Chapter 3). In the context of multi-agent systems, we want to constrain
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such a selfish behavior through setting enforcement norms, in the reveal that
opportunistic agents receive a corresponding sanction when they violate the
norm. On the one hand, it is important to detect it, as it has undesirable
results for the participating agents and we want to impose sanction to the
agent who was opportunistic. On the other hand, since opportunism is always
in the form of cheating, deception and betrayal, meaning that the system
does not know what the agent performs or even the motivation behind it (for
example, in a distributed system), opportunistic behavior cannot be observed
directly. Therefore, there has to be a monitoring mechanism that can detect
the performance of opportunistic behavior in the system.

This chapter provides a logical framework based on the specification of
actions to monitor opportunism. In particular, since monitors cannot read
agents’ mental states and it is demotivated to perform opportunistic behavior
from the perspective of the system, we define opportunism as a behavior
that causes norm violation and promotes agents’ own value. Based on this
definition, we investigate how to evaluate agents’ actions to be opportunistic
with respect to different forms of norms when those actions cannot be observed
directly, and explore how to reduce the monitoring cost for opportunism based
on the monitoring approaches we proposed. We study formal properties of
our monitoring approaches in order to determine whether they are effective
in the reveal that whenever an action is detected to be opportunistic, it was
indeed opportunistic, and that whenever an action was opportunistic, it is
indeed detected.

4.1.1 Chapter Outline
The rest of the chapter is organized as follows:

e Section 4.2 introduces the logical framework, which is a transition system
specified based on the specification of actions;

e Section 4.3 defines opportunism from the perspective of monitors;

e Section 4.4 proposes our monitoring approaches for opportunism with
respect to different forms of norms, each following a discussion of formal
properties;

e Section 4.5 investigates monitoring cost for opportunism based on our
monitoring approaches;

e Section 4.7 summarizes the chapter.
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4.2 Framework

In this section we introduce the models and the logical language we use, and

define the concept of norms by means of our language.

4.2.1 Monitoring Transition Systems

Monitors cannot observe the performance of opportunism directly. However,
actions can be represented and identified through the information about the
context where the action can be performed and the property change in the
system. Those kinds of information is called action specification [Reiter,
2001] or action description [Fiadeiro and Maibaum, 1991]. Usually an action
can be specified through its precondition and its effect (postcondition): the
precondition specifies the scenario where the action can be performed whereas
the postcondition specifies the scenario resulting from performing the action.
For example, the action, dropping a glass to the ground, can be specified as
holding a glass as its precondition and the glass getting broken as its effect.
In this chapter, we assume that every action has a set of pairs of the form
(¥p,e), where vy is the precondition of action a and ¢ is the effect of
action a performed in the context of v, both of which are propositional
formulas. Sometimes a particular action a can have different effects depending
on the context in which it is performed. Based on this idea, we argue that
action a can be represented through a set of pairs D(a) = {(¢5,v¢), ...},
each element indicating its precondition and its corresponding effect. The
absence of a preconditioon means that the performance of the action is not
context-dependent.

In this chapter, the models that we use are transition systems, which
consist of agents Agt, states S, actions Act and transitions R between states
by actions. When an action a € Act is performed in a certain state s, the
system might progress to a different state s’ in which different propositions
might hold. Such a state transition is defined based on action specification.
Namely, given a state transition from state s to state s’ by action a, the
precondition of action a is satisfied in state s and the effect of action a is
satisfied in state s’. We also extend the standard framework with an observ-
able accessibility relation M. The restriction on the R and the extension of
M make our models different from the standard ones in [Keller, 1976] [Baier
et al., 2008]. Note that in this chapter we don’t talk about concurrent actions

for simplifying our model, meaning that we assume there is only one action
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to execute in every state. Moreover, actions are deterministic; the same
action performed in the same state will always result in the same new state.

Formally,

Definition 4.2.1. Let ® = {p,q,...} be a finite set of atomic proposi-
tional variables. A monitoring transition system over ® is a tuple T =
(Agt, S, Act,m, M, R, s0) where

e Agt is a finite set of agents;

e S is a finite set of states;

e Act is a finite set of actions;

e m:8 = P(D) is a valuation function mapping a state to a set of proposi-
tions that are considered to hold in that state;

e M C Sx S is a reflexive, transitive and symmetric binary relation between
states, that is, for all s € S we have sMs; for all s,t,u € S sMt and
tMu imply that sMu; and for all s,t € S sMt implies t Ms; sMs' is
interpreted as state s’ is observably accessible from state s;

e R C S x Act x S is a relation between states with actions, which we
refer to as the transition relation labeled with an action; since we have
already introduced the notion of action specification, a state transition
(s,a,s") € R if there exists a pair (5, ¥e) € D(a) such that 1y is satisfied
in state s and ¢ is satisfied in state s', and both ¥y and ¢ are evaluated
in the conventional way of classical propositional logic; since actions are
deterministic, sometimes we also denote state s’ as s{a) for which it holds
that (s,a,s{a)) € R; for convenience, we use R(p,¥) = {(s,a,s’) € R |
M, s = and M, s’ =1} to denote the transitions going from a p-state
to a -state;

e 5o € S denotes the initial state.

Norms are regarded as a set of constraints on agents’ behavior. More
precisely, a norm defines whether a possible state transition by an action is
considered to be demotivated or not. The same as [Agotnes et al., 2007], we
simply consider a norm as a subset of R that is decided by the designers of

the system. Formally,

Definition 4.2.2 (Norm). A norm n is defined as a subset of R, i.e. n C R.
Intuitively, given a state transition (s, a,s'), (s, a,s’) € n means that transition
(s,a,s") is forbidden by norm n. We say (s,a,s’) is an n-violation if and only

if (s,a,s") € n. Otherwise, (s,a,s’) is an n-compliant.
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From the way that we define a norm, we can realize two extreme cases: if
norm 7 is an empty set, all the possible state transitions are n-compliant; and
it is also possible that a norm leads to states with no legal successor, which

means that agents can only violate the norm.

4.2.2 Logical Setting

The logical language we use in this chapter is propositional logic Lpr0p exten-
ded with action modality, denoted as Liodai. The syntax of Ly,04a1 is defined

by the following grammar:

pu=ploe e Ve | (@)

where p € ® and a € Act. The semantics of L,0da1 are given with respect to
the satisfaction relation “F”. Given a monitoring transition system 7 and a
state s in T, a formula ¢ of the language can be evaluated in the following

way:

e T,sEpiff pen(s);

o T,sE @ iff T,sH p;

o T,sE@1Vpaiff T,sE @1 or T,sE pa;

e T,sF (a)y iff 3s’ such that (s,a,s’) € R and T, s F ¢;

Other classical logic connectives (e.g.,“A”, “—7) are assumed to be defined
as abbreviations by using — and V in the conventional manner. We write
TE@if T,sEpforall s e S, and E ¢ if T E ¢ for all monitoring transition
systems T.

Given the language L,0dai, @ norm 7 can be defined in a more specific way
such that it contains all the state transitions that are forbidden by norm 7.
Norms are described in various ways so that they can represent the forbidden
behaviors explicitly. Below we define three forms of norms: n(¢, ), n(¢, a)
and n(p, a, 1), each following an example for better understanding. Notice
that it is only a choice in this chapter and more forms of norms can be

described and constructed based on our logical framework.

e Norm 7(p,1) Let ¢ and ¥ be two propositional formulas and T be
a monitoring transition system. A norm 7(y, ) is defined as the set
n7r(p,v) = {(s,a,8") € R | T,s E ¢ A{a)}. In the rest of the chapter,
we will write n(p, ) for short. This is the most simple form of norms.

The interpreted meaning of a norm 7(¢p, 1) is simply that it is forbidden to
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achieve 1 in the states satisfying ¢ (p-state) by any actions. The forbidden
actions are implicitly indicated in this type of norms. For example, it is
forbidden to keep the light on when everybody is sleeping, no matter you
turn on the flashlight or the lamp or lighten the candle.

o Norm 7(p,a) Let ¢ be a propositional formula, a be an action, and T
be a monitoring transition system. A norm (p,a) is defined as the set
nr(p,a) = {(s,a’,s’) € R | T,s E ¢ and ' = a}. In the rest of the
chapter, we will write n(p, a) for short. The interpreted meaning of a
norm 7(p, a) is that it is forbidden to perform action a in a ¢-state. This
is the most common form in which the action and the context where
the action is forbidden are explicitly represented, regardless of the effect
that the action brings about. For example, it is forbidden to smoke in a
non-smoking area.

e Norm n(p,a,9) Let ¢ and ¥ be two propositional formulas, a be an
action, and 7 be a monitoring transition system. A norm (p,a,) is
defined as the set n7(p,a,v) = {(s,a’,s') e R | T,s E oA {a') and o' =
a}. In the rest of the chapter, we will write n(¢,a,) for short. The
interpreted meaning of a norm (g, a, ) is that it is forbidden to perform
action a in @-state to achieve ¢. In this type of norms, the action, the
context where the action is forbidden and the effect that the action will
bring about are all represented explicitly. For example, in China it is

forbidden to buy a house based on mortgage when you already own one.

Sometime propositional formula ¢, which is indicated in three types of norms
above, is called the precondition of an action for action prescription [Fiadeiro
and Maibaum, 1991]. It should be distinguished from the precondition 1}
we introduced in action specification. Formula ¢ is used to characterize the
context where the action(s) is forbidden to perform by the system, whereas v,
is used to represent in which situation the action can be physically performed.
Certainly there are relationships between ¢ and ;. For instance, ¢ A v,
should be satisfied for the validity of norm n(p,a). We will take it into

consideration when investigating monitoring approach for opportunism.

4.3 Defining Opportunism

Before we propose our monitoring approach for opportunism, we should
formally define opportunism from the perspective of the system so that the

system knows what to detect for monitoring opportunism. In our previous
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chapter 3 we emphasize opportunistic behavior is performed by intent rather
than by accident. However, monitors cannot read agents’ mental states, so
for the issue of monitoring we assume that agents violate the norms always
by intention from a pragmatic perspective. For example, we always assume
that speeding is performed with intention. In this paper we remove all the
references to the mental states from the formal definition of opportunism in
our previous chapter 3, and also assume that the system can tell whether a
state transition can promote or demote an agent’s value through the facts that
have been detected. In a sentence, from the perspective of the system, since
it is demotivated to perform opportunistic behavior, opportunistic behavior
performed by an agent in a normative context can be simply defined as a
behavior that causes norm violations and promotes his own value.
Opportunistic behavior results in promoting agents’ own value, which
can be interpreted as that opportunistic agents prefer the state that results
from opportunistic behavior rather than the initial state. As what we did in
Chapter 3, we argue that agents always have preferences over two different
states through evaluating the truth value of specific propositions in those
states based on their value systems. For instance, the seller tries to see whether
he gets the money from selling a broken cup in order to have a preference over
the states before and after the transaction. After the transaction, the seller’s
value gets promoted, because the proposition he verifies (whether he gets the
money) based on his value system becomes true. Based on this interpretation,
we first define a function Evalref that points to the proposition an agent cares

about:

Definition 4.3.1 (Evaluation Reference). Let V be a set of agents’ value
systems, S be a finite set of states, and ® be a finite set of atomic propositions,
EvalRef : V xS xS — ® is a function named Evaluation Reference that
returns a proposition an agent refers to for specifying his preference over two

states.

This function means that the proposition that an agent cares about is depend-
ent on his value system and the two differnt states. Note that it is an abstract
way to have what agents care about in a state transition through function
Evalref. For a more concrete way, one can refer to function Mpreferred in
Chapter 5 where we define a value system as a linear order over a set of
formulas. For simplicity, we assume that for value promotion the truth value

of the proposition that agents refer to changes from false to true in the state
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transition. For example, assuming that proposition p represents the seller
earns money, the seller promotes his value in the way of bringing about p
through selling a broken cup. Based on this assumption, we define Value

Promotion, which is an important element of opportunistic behavior.

Definition 4.3.2 (Value Promotion). Given two states s and s', and an
agent’s value system V;, his value gets promoted from state s to s', denoted

as s <y, s, iff sE —p and s’ F p, where p = Evalref(V, s, s’).

As we already introduced the notion of value for defining opportunism,
we extend our logical setting with value systems. We define a tuple of the
form V = (V1,Va, ..., Viag) as agents’ value systems. A multi-agent system
is a combination of a monitoring transition system and value systems, one
for each agent, representing the evaluation basis of the agents in the system.

Formally, a multi-agent system, 901, is a tuple:
Mm=(T7,V)

where 7 is a monitoring transition system and V' is a set of value systems for
the agents in Agt. Now the syntax of Li,dai still follows the one we defined
above, and the semantics with respect to the satisfaction relation become of
the form 9N, s F ¢ but is still defined in the same way as above.

Now we are ready to formalize opportunism from the perspective of the
system. Again, comparing to the definition of opportunism in our previous
work, we remove all the references to mental states (knowledge, intention)
because it is impossible for monitors to detect any mental states, but we
assume that the system can reason whether an agent’s value gets promoted
or demoted along a state transition based on the corresponding value systems.
Firstly, we extend our language to also include Opportunism(n, a), and then

we extend the satisfaction relation such that the following definition holds.

Definition 4.3.3 (Opportunism). Given a multi-agent system M and a
norm m, an action a performed by agent i in state s being opportunistic
behavior is defined as follows: M, s E Opportunism(n, a) iff state transition
(s,a,s{a)) € n and s <y, s{a).

Intuitively, opportunism is a state transition which is an n-violation. Besides,
the state transition also promotes the value of the agent who performs action
a (agent 7) by bringing about p, which is the proposition that the agent refers

to for having preference over state s and s(a). Action a performed in state s,
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more essentially state transition (s, a, s(a)), is opportunistic behavior from the
perspective of the system. We illustrate this definition through the following

example.

Example 4.1 (Selling a Broken Cup). Consider the example of selling a
broken cup in Figure 4.1. A seller sells a cup to a buyer. It is known only
by the seller beforehand that the cup is actually broken. The buyer buys the
cup, but of course gets disappointed when he uses it. Here the state transition
is denoted as (s, sell(brokencup),s’). Given a norm n(T,sell(brokencup))
interpreted as it is forbidden to sell broken cups in any circumstance, the
seller’s behavior violates norm n. Moreover, based on the value system of
the seller, his value gets promoted after he earns money from the transition
(Evalref(Vs, s, s') = hasmoney(seller), M, s E —hasmoney(seller), M, s’ F
hasmoney(seller)). Therefore, the seller performed opportunistic behavior to

the buyer from the perspective of the system.

n(T,sell(brokencup))

sell(brokencup)

’

s s
./_\.
-hasmoney(seller) hasmoney(seller)

Figure 4.1. Opportunistic behavior of selling a broken cup.

4.4 Monitoring Opportunism

We propose monitoring approaches for opportunism in this section. A monitor
in this chapter is considered as an external observer that can evaluate a state
transition with respect to a given norm. However, a monitor can only verify
state properties instead of observing the performance of actions directly. Our
approach to solve this problem is to check how things change along a given
state transition and reason about the action taking place in between. Here we
assume that our monitors are always correct, which means that the verification
for state properties can always be done perfectly. One who doubts that this

assumption is too ideal can refer to [Bulling et al., 2013] for the investigation
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of correctness of monitors, and we don’t discuss this issue in this chapter. In
general, we consider monitoring as a matter of observing the system with
an operator m such that m(p) is read as “p is detected” for an arbitrary
property ¢. Multiple monitors can be combined together in order to deal
with a monitoring issue.

We first define a state monitor msiate, which can evaluate the validity of
a given property in a given state. We define state monitors in this chapter in
a similar way to we define knowledge in epistemic logic. This is because a
monitor can be seen as an external observer that observe the behavior of the
system objectively. Sentence “p is detected to be true” can be interpreted

“p is not detected to be true” can

in the way “¢ is known” by the monitor;
be interpreted in the way “p is unknown” by the monitor in the reveal that
the monitor cannot distinguish ¢ and —¢. We extend our logical language to
also include mstate(¢) and the satisfaction relation such that the following

definition holds.

Definition 4.4.1 (State Monitors). Given a propositional formula ¢, a
multi-agent system M, a state monitor Msiqte over ¢ is defined as follows:
M, s F Mstate (@) iff for all ' sMs' implies M, s' E p. Sometimes we will

write Mstate (@) for short if clear from the context.

Because state monitors are defined in a similar way to knowledge in epistemic

logic, they correspondingly adopt the S5 properties of knowledge.

Proposition 4.4.1 (Properties of State Monitors). Given a multi-agent sys-

tem M, and a state monitor Mstate OVET ©, Mstate 1S

e ME msmte(go) — ¢, meaning that what the state monitor detects is always
considered to be true;

o M E Mstate(©) = Matate(Mstate(¥)), meaning that the fact that something
is detected to be true is always detected to be true;

e ME "Mistate(p) = Mstate("Mstate(9)), meaning that the fact that some-

thing is not detected to be true is always detected to be true.

This proposition holds since our binary relation R is equivalence relation (re-
flexive, transitive and symmetric). We omit the proof for the space limitation.

State monitors are the basic units in our monitoring mechanism. We can
combine state monitors to check how things change in a given state transition
and evaluate it with respect to a given set of norms. In Section 4.2, we

introduced three forms of norms through which certain agents’ behaviors
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are forbidden by the system. As we defined in Section 4.3, opportunistic
behavior performed by an agent is a behavior that causes norm violations and
promotes his own value, that is, opportunism is monitored with respect to a
given norm and a given value system of an agent. Based on this definition, we
design different monitoring opportunism approaches with respect to different
forms of norms and discuss in which condition opportunism can be perfectly
monitored. It is worth stressing that one important issue of this chapter is to

have an effective monitoring mechanism for opportunism in the reveal that

e whenever an action is detected to be opportunistic, it was indeed oppor-
tunistic;
e whenever an action was opportunistic, it is indeed detected.

We will discuss these two issues every time we propose a monitoring approach.

Definition 4.4.2 (Monitoring Opportunism with Norm 7n(¢,v)). Given a ..
multi-agent system M and a norm n(p, ), whether an action a’ performed
by agent i in state s is opportunistic behavior can be monitored through a

combination of state monitors as follows:

mOPP((@? w)v a,) = mstate(ip) A <a/>mstute(w)

where
ME @ — —p, MEY — p, and p = Evalref(V;, s, s{a’))

In order to check whether action a’ is opportunistic behavior in state s, we
check if the state transition (s, a’, s(a’)) is forbidden by norm n(p,): because
the interpreted meaning of norm 7(ip, 1) is that it is forbidden to achieve
in @p-state by any actions, we check whether propositional formulas ¢ and
1) are successively satisfied in a state transition. Moreover, we assume the
following implications in our model that ¢ implies —p and v implies p, where
proposition p is the proposition that agent ¢ cares about along the transition.
Since state s and s{(a’) are not given and our monitors can only have partial
information about the two states, we have a candidate set of states for state
s and a candidate set of states for state s(a’) and any two states from them
satisfy the resulting property of function Evalref, which means that given the
partial information the execution of action a’ in state s brings about p thus
promoting agent i’s value. The forbidden actions are not explicitly stated in

the norm. Therefore, although the monitors cannot observe the performance
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of opportunistic behavior, it still can be perfectly detected with respect to

norm 7(g, 1), which can be expressed by the following proposition:

Proposition 4.4.2. Given a multi-agent system M and a norm n(p, 1), an
action a' performed by agent i is detected to be opportunistic with respect to

n(p, ) over M if and only if action a’ was indeed opportunistic:

M E Opportunism((, ), a’) > mopp((0, %), a’)

Proof. It trivially holds because the monitors detect exactly what the norm

indicates and they are assumed to be correct.

Definition 4.4.3 (Monitoring Opportunism with Norm 7(p,a)). Given a ..
multi-agent system M, a norm n(p,a), and a pair (p,ve) of action a
((W5,92) € D(a) and ¢ A g is satisfiable on M), whether action a’ per-
formed by agent i in state s is opportunistic behavior can be monitored through

a combination of state monitors as follows:

Mopp (9, @), (U5, 9¢), ') := Mistare (0 A ) A (@) Mstare (V)

where
ME o Ay — —p, MEYS — p, and p = Evalref(V;, s, s(a’))

In order to check whether action a’ is opportunistic behavior (violates norm
n(p,a) and promotes own value), we verify if action a’ is performed in a
p-state. Besides, we check if action a’ is the action that the norm explicitly
states. Since the monitors cannot observe the performance of action a’, we
only can identify action a’ to be possibly action a by checking if formulas 15
and ¢ are successively satisfied in the state transition by action a’, where
1y is action a’s precondition and ¢ is the corresponding effect. Similar to
norm 7(p, 1), we assume that ¢ A, implies —p and ¢ implies p, where p is
the proposition that agent i cares about along the transition. Again, with
this approach we have a candidate set of states for state s and a candidate
set of states for state s(a’) and any two states from them satisfy the resulting
property of function Evalref, which means that given the partial information
the execution of action a’ in state s brings about p thus promoting agent i’s
value.

Given a norm and an agent’s value system, we can evaluate whether a

state transition by an action is opportunistic behavior. However, since the
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monitors can only verify state properties instead of observing the performance
of the action directly, we cannot guarantee that an action that is detected to
be opportunistic was indeed opportunistic, which is given by the following

proposition:

Proposition 4.4.3. Given a multi-agent system M, a norm n(p,a), a pair
(g, 02) of action a ({(Yg,¥e) € D(a) and ¢ Ay is satisfiable on M), let o’
be an action performed by agent i, action a’ that is detected to be opportunistic

was possibly opportunistic, which is characterized as

m jé mOPP((Q% (1), (1/};7 ?/1:>7 LL/) — Opportunism((cp, a)7 al)

Proof. This is because pair {1y, ve) might not be unique for action a within
the actions that are available in a @-state. That is, we have a set of actions
Act’ = {a’ € Act | M, s F Mstate( A hy) A (@' )Mistate(¥E)}, and both action

. ’ .
a and action a’ are in Act’.

Given this problem, we want to investigate in which case or with what
requirement the action that is detected by the opportunism monitor was
indeed opportunistic behavior. From the proof of Proposition 4.4.3 we see that
(¢p,%¢) in D(a) has to be unique for action a. However, such a requirement
is quite hard to satisfied in reality. For example, we can design multiple
(probably infinite) computer programs with the same input and output. One
possible way to solve this problem is to limit the set of actions that might
have occurred through the context where the action is performed and the
result that the action brings about. Recalling that we have defined R(¢, ¥)
for the transitions going from a @-state to a i-state, we have the following
proposition:

Proposition 4.4.4. Given a multi-agent system M, a norm n(p,a), a pair
(g, e) of action a (g, 9e) € D(a) and ¢ Ay is satisfiable on M), let o
be an action performed by agent i, the following statements are equivalent:
1. ME mopp((, a), (5, ¥e), a’) «» Opportunism((¢p, a), a’);

2. there exists only one action a that has pair (Yy,yc) within the set of

transitions R(p, T).

Proof. 1= 2: Statement 1 implies that action o’ that is detected to be oppor-
tunistic was indeed opportunistic. If it holds, then a’ = a. Because we identify

action a with pair (Y, ¥e), a’ = a implies that pair (Y3, ¥2) is unique for
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action a within the set of transitions R(p, T). In other words, we cannot find
one more action in transitions R(p, T) that also has a pair (Y5, ¥e). 2= 1:
If action pair (5, e) is unique for action a within transitions R(p, T), then
once the pair is detected in the state transition we can deduce that ' = a.
Hence, action a' is indeed opportunistic behavior. And from the proof of
proposition 4.4.3 we can see that action a is within the set of actions that are
detected to be opportunistic, so if action a' was opportunistic behavior then it

is indeed detected.

We can also derive a practical implication from this proposition: in order
to better monitor opportunistic behavior, we should appropriately find an
action pair (¢p,%¢) such that the possible actions that took place can be
strongly restricted and minimized. Assuming that we use monitoring approach
Mopp((p,a), (T, T),a’), the possibility that the opportunism monitor makes
an error is extremely high, because every action that is available in ¢-state

will be detected to be opportunistic behavior given the action pair (T, T).

Definition 4.4.4 (Monitoring Opportunism with Norm 7(p, a,v)). Given a
multi-agent system M, a norm n(p,a,), and a pair (Py,Ye) of action a
(W5, 9g) € D(a) and o A5 and P A2 are satisfiable on 9M), let @’ be an
action performed by agent i in state s, whether action a' is opportunistic

behavior can be monitored through a combination of state monitors as follows:

Mopp (9, 0,), (P, ¥2), @) =
mstute(@) A <a/>mstate(w) A mstate(wz) A <a,>mstate (w:)

where
ME o Ay — —p, MEYAYE — p, and p = Evalref(V;, s, s(a’))

In order to check whether action a’ is opportunistic behavior (violates norm
n(p, a, ) and promotes own value), we verify if action a’ is performed in a -
state and secondly verify if action a’ brings about 1. Besides, as the forbidden
action a is explicitly stated in norm 7, we only can identify action a’ to be
possibly action a by checking if formulas v and )¢ are successively satisfied
in the state transition by action a’, where vy is action a’s precondition and ¢
is the corresponding effect. Similar to norm 7n(¢, ) and n(p, a), we assume
that ¢ A1), implies —p and ¥ A 1p¢ implies p, where p is the proposition that
agent i cares about along the transition. Again, with the partial information
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our monitors have detected we have a candidate set of states for state s
and a candidate set of states for state s{a’) and any two states from them
satisfy the resulting property of function Evalref, which means that given the
partial information the execution of action a’ in state s brings about p thus
promoting agent i’s value.

The same as we do with n(p, a), we cannot guarantee that an action that
is detected to be opportunistic was indeed opportunistic, which is given by

the following proposition:

Proposition 4.4.5. Given a multi-agent system M, a norm n(p,a, V), a pair
(y,0e) of action a ((Y5,ve) € D(a) and ¢ Ay and o Ap¢ are satisfiable
on M), let a’ be an action performed by agent i, action a' that is detected to

be opportunistic was possibly opportunistic, which is characterized as

m E mOPP((@a a, d))a <¢Z7 1/Jg>, a,) — Opportunism((ﬂpa a, 1/))7 a/)

Proof. Similar to proposition 4.4.3, it is because pair (Yy, e ) might not be
unique for action a within the actions that can be performed in p-state to

achieve 1, and action a indicated in norm n is one of those actions.

Because the set of state transitions is finite in our framework, we can
assume that all the possible state transitions are known beforehand. As all the
state transitions in our framework are labelled with an action, we introduce a
function called Al(a), which maps each action to a non-empty subset of state
transitions, denoting all the transitions labelled with action a. Thus we have

Al(a) € P(R). And then we have the following proposition:

Proposition 4.4.6. Given a multi-agent system M, a value system set V,
a norm n(p, a, ), a pair (W5, 62) of action a (¥, %) € D(a) and @ A
and 1 A ¢ are satisfiable on 9M), let a’ be an action performed by agent i,

the following statements are equivalent:

1.ME mOPP((SDv a, ¢)» Wg, WS)» a/) A Opportunism((go, a, w)a al);
2. there exists only one action a that has a pair (V¥y,)¢) within the set of

transitions R(p,¢);
3. R(p ANy, Ape) € Al(a).

Proof. The proof for 1 = 2 is the same as the proof of proposition 4.4.4, so
we are going to prove 2 = 8 and 8 = 1. We can consider v, and ¢ as two

normal propositional formulas. From statement 2 it is clear that o Ay, and
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P A e are successively satisfied in the state transition. From this we can
divide the transitions into two classes: one for the transitions that ¢ Ay and
Y AYe are successively satisfied (denoted as R(p Ay, Ae)), and the other
do not. Since pair (Yy,e) is unique to action a within R(e Ay, ¥ ANg),
all the transitions in R(¢ A ¥y, Ag) are labeled with action a. Therefore,
R(p Ay, ANpe) is a subset of Al(a). From 2 = 3 is concluded. From 3 =
1, if all the transitions in R(p Ay, Apg) are labeled with action a, then

a' = a and we can guarantee that action a’ is indeed opportunistic behavior.

Example 4.1 (continued). We still use the example of selling a broken cup
Figure 4.2 to illustrate our monitoring approach. Here the state transition
is denoted as (s,a’, s') instead of (s, sell(brokencup),s’) because the monitor
cannot observe the action directly. Given a norm n(T, sell(brokencup)) and
the seller’s value system Vs, the system checks whether the seller performed
opportunistic behavior. Firstly, the monitor doesn’t need to check the context
where action @’ is performed because action sell(brokencup) is forbidden in any
context as norm n says. Secondly, the monitor tries to identify if action a’ is
indeed sell(brokencup) as norm n indicates: assuming that (hascup(seller) A
—hasmoney(seller), hascup(buyer) A hasmoney(seller)) is the pair we find
for action sell(brokencup), we check if both M, s E msiate (hascup(seller)) A
—hasmoney(seller) and M, s’ E msiate (hascup(buyer) A hasmoney(seller))
hold. Moreover, the information we had for state s and s’ implies that the
seller’s value gets promoted, as Evalref(Vs, s,s’) = hasmoney(seller). If they
all hold, action a’ is detected to be opportunistic behavior. As the action pair
we find is unique to action sell(brokencup), action a’ is indeed sell(brokencup)
thus being opportunistic.

However, if (hascup(seller), hascup(buyer)) is the pair that we find for ac-
tion sell(brokencup), then action a’ is not necessarily sell(brokencup) because
possibly a’ = give(brokencup), meaning that (hascup(seller), hascup(buyer))

is not unique to action sell(brokencup).

We proposed three approaches to monitor opportunistic behavior with
respect to three different forms of norms. Based on the definitions of three
approaches, the following validities hold: given a multi-agent system 9t and

an action a’,

m ': mOPP((@? CL, 1/})7 <wngg>a al) — mOPP((Qov ¢)7 al)
M E mopp (0, a, 1)), (ﬂ’;ﬂb@: a/) — Mopp((; a), <7/)Z:¢Z>7 a/)
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n(T,sell(brokencup))

’

a
s s’
./\
hascup(seller) hascup(buyer)
-hasmoney(seller) hasmoney(seller)

a’={sell(brokencup), give(brokencup)}

Figure 4.2. Monitoring opportunism of selling a broken cup.

The interpreted meaning of the first validity is that, if action a’ is detected to
be opportunistic behavior with respect to norm (g, a, v), then it will be also
detected to be opportunistic behavior with respect to norm 7(p, ). Similar
with the second validity. This is simply because, the less information the
norm gives, the more actions are forbidden to perform. The state transitions
that violate norm 7(p, a, ) is the subset of the state transitions that violate
norm 7(p, ) or n(p,a). This gives us an implication that the approach to
monitor opportunistic behavior with respect to n(p,a,) can be used to
monitor the other two ones, because 7(p, a) can be represented as n(p, a, T)
and 7(p, 1) can be represented as n(y, a,¥)(Va € Act). However, we have to
consider monitoring cost when choosing a monitoring approach. Apparently
the approach with respect to n(y,a,) is the most costly one because we
need to verify more things compared to the other two ones. We will study

our monitoring mechanism with cost in the next section.

4.5 Monitoring Cost for Opportunism

We investigate monitoring cost for opportunism in this section based on the
monitoring approaches we proposed in the previous section. For designing
a monitoring mechanism, we not only think about whether it can perfectly
detect agents’ activities, but also consider if it is possible to decrease the
cost involved in the monitoring process. We first propose several ideas about
how to reduce monitoring cost in general, and then discuss them with our

monitoring approaches for opportunism.
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4 Monitoring Opportunism

4.5.1 Monitoring Cost

There is always cost involved when we monitor something, and the cost
depends on what we want to check and how accurate the result we want to
get. For example, recording a video is more expensive than taking a photo.
We would like to use a monitoring approach which can accomplish our task
and is cost-saving as well. Our basic idea in this chapter is that a monitor
is considered as an external observer to verify state properties, and that
given a set of propositional formulas X as state properties, we verify the
conjunction of all the formulas from X through combining state monitors.
We first define the monitoring cost of a state property through a function
¢ : Lprop — RT. Intuitively, given a state property denoted by a propositional
formula ¢, function c(¢) returns a positive real number representing the cost
that it takes to verify . Such costs can be deduced from expert knowledge

and are assumed to be given.

Definition 4.5.1 (Monitoring Cost for State Properties). Cost ¢ over state
properties Lprop is a function ¢ : Lprop — RT that maps a propositional
formula to a positive real number. Given a set of propositional formulas X,

we also define c(X) := ZwGX c(p) for having the cost of monitoring a set X.

Given a set of propositional formulas X, the cost of monitoring X is the
sum of the monitoring cost for each element in X. However, those elements
in X might have some properties that can help us save the monitoring cost.
The first property we investigate is inference relation. Basically, if it holds for
v, " € X that ¢ # ¢’ and ¢ — ¢’, then monitoring X\{y’} is actually the
same as monitoring X: when ¢ is detected to be true, ¢’ is also true; when ¢
is detected to be false, ¢’ is also false. But ¢(X\{¢'}) is less than c(X) if we
logically assume that there is no inference cost '. This leads us to have the

following definition Largest Non-inferential Subset:

Definition 4.5.2 (Largest Non-inferential Subset). Given a monitoring trans-
ition system 9 and a set of formulas X, let Xon be the largest non-inferential
subset such that for all ¢ € Xon there is no ¢’ € Xon with ¢ # ¢’ such that
ME @ — .

Proposition 4.5.1. Given a monitoring transition system M, a set of formu-
las X and its largest non-inferential subset Xon, it holds that c(Xm) < ¢(X).

1 It is logical to assume that inference cost is lower than monitoring cost, as we only

need to compute the inference relation among formulas in the machine while monitoring
usually requires setting up costly hardwares (such as cameras).
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4.5 Monitoring Cost for Opportunism
Proof. It holds obviously because Xon is a subset of X.

Therefore, given a set of propositional formulas we want to verify, we always
look for its largest non-inferential subset before checking anything in order
to reduce the monitoring cost. Certainly, there are more properties among
those formulas but we leave them for future study.

For reducing monitoring cost, it is also important to verify a set of pro-
positional formulas X = {¢1, ..., on} in a certain order instead of checking
each formula ¢;(1 < i < n) randomly. Besides, given the truth property of
a conjunction that a conjunction of propositions returns false if and only if
there exists at least one false proposition, we can stop monitoring X once a
proposition is detected to be false because it has already made the conjunction
false, regardless of the truth value of the rest of the propositions. Therefore,
it is sensible to sort the propositions in X in ascending order by cost before
checking anything, when the sorting cost is much lower than the monitoring
cost. In order to introduce this idea, we first define the function of monitoring
cost for a sequence and the notion of cost ordered sequence. In total, we have
n! sequences over X. A sequence over X is denoted as A(X) and the set of
all the sequences over X is denoted as L(X). The function of monitoring cost

for a sequence and the notion of cost ordered sequence are defined as follows:

Definition 4.5.3 (Monitoring Cost for Sequences). Given a set of proposi-
tional formulas X = {1, ..., on} and a sequence A\(X), the monitoring cost
of AM(X) is defined as follows:

n

c(AX)) =Y elpi)ds,

=1

where

4 0  ifm(pic1) = false ordi—1 =0 (i > 1);
1  otherwise.

With this function of monitoring cost for a sequence, the monitoring process
will stop and no more monitoring cost will arise after a false proposition is
detected. Given a random sequence A\(X) for monitoring, each proposition
formula in X is likely to be true or false. We call each combination about the
truth value of the formulas a scenario. Since there are | X| = n propositions

in X, there are in total 2" scenarios about the truth value of the propositions
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in X. If the probability of each scenario to present is p;(i = 1,...,2"), the ex-
pected value of the monitoring cost of A(X) can be computed in the following
way:

n n

B(e(M(X))) = p1 Y eAX)[i]) +p2 Y e(AX)[i]) + ... + pane(A(X)[1])

=1 =1

Formula > ¢(A(X)[:]) represents the monitoring cost for the scenario where
i=1

all the propositions are detected to be true, and formula Xn: c(AN(X)[i]) rep-
resents the monitoring cost for the scenario where all thel_plropositions are
detected to be true except the last one,..., ¢(A(X)[1]) represents the monitor-
ing cost for one scenario where the first proposition is detected to be false.
The expected value of the monitoring cost of A(X) is the finite sum of the
probability of each scenario to present timing the monitoring cost for the
scenario.

Typically, when the priori probability for each formula ¢ € X to be true
is the same and all the formulas are independent to each other, it is more
cost-saving to first verify the formulas with low monitoring cost from the
perspective of statistic. In order to propose this idea, we first introduce the

notion Cost Ordered Sequence.

Definition 4.5.4 (Cost Ordered Sequence). Given a set of propositional for-
mulas X, a cost ordered sequence \(X). is a sequence over X ordered by the
monitoring cost of each element in X such that X, € L(X) and for 0 <i<j
we have c(AN(X)c[i]) < c¢(A(X)c[7]). In general, such a sequence is not unique
because it is possible for two propositions to have the same monitoring cost;

in this case we choose one arbitrarily.

A cost ordered sequence A(X). represents the monitoring order over X: we
follow the order in A(X). to check the elements in X one by one. Statistically
speaking, we can reduce the monitoring cost if we follow the cost ordered

sequence, which is represented by the following proposition:

Proposition 4.5.2. Given a set of propositional formulas X and a cost
ordered sequence A\(X). over X, if the priori probability that each formula
¢ € X is true is 1/2, the expected value of the monitoring cost of X. is the
lowest in that of any sequence over X, that is, E(c(A(X).)) < E(c(A(X))),
where A\(X) € L(X).
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Proof. Because the priori probability that each formula ¢ € X is true is 1/2,
the probability of each scenario to present is 1/2". As we discussed above,
since there are | X| = n propositions in X and each proposition can be detected
to be true or false, there are in total 2" scenarios about the truth value of the
propositions in X, and the monitoring cost for each scenario can be calculated
according to Definition 4.5.8. Let us use Scen(X) to denote the set of all the
scenarios about the truth value of the propositions in X, and each scenario
from Scen(X), denoted as @, contains for each proposition ¢ € X either true
or false. Therefore, the expected value of the monitoring cost of any A\(X) is

formalized as

B =5 3 D elpnd

pEScen(X) =1

2% (Z A+ 2"jc()\(X)[i})>

j=1 i=1

= (Z X)) + Y 2" " e(AX)i]) + -+ 2”1c<A(X>[11>> :

where Y ¢(A(X)[i]) represents the monitoring cost for the scenario where
i=1

all the propositions are detected to be true, and Y c(A(X)[i]) represents the

monitoring cost for the scenario where all the p;o_plositions are detected to be
true except the last one, ..., and ¢(A\(X)[1]) represents the monitoring cost
for the scenarios where the first proposition is detected to be false. From
this equation we can see that the monitoring cost of the propositions at the
front of the sequence strongly influence the value of E(c(A(X))): the lower
monitoring cost the propositions at the front have, the less value E(c(A(X)))
returns. Thus, the expected value of the monitoring cost of A(X)., where all
the formulas are sorted in ascending order by monitoring cost, is the lowest

in all the sequences over X.

4.5.2 Reducing Monitoring Cost for Opportunism

Until now we investigated how to reduce monitoring cost for any given finite
set of formulas generally. In this subsection we will apply the above ideas

to monitoring opportunism. Recall that opportunism is monitored with
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respect to a norm and a value system. Given a norm n(y,a, ) and a value
system V;, we evaluate a state transition (s,a’, s’) by checking whether set
X1 = {¢, ¥y, p} hold in state s, and whether Xo = {¢,9¢,p} hold in state
s', where (¢5,9¢) € D(a) and p = Evalref(V;, s,s’). Note that we cannot
combine set X1 and X5 into one set because we verify the two sets of formulas
in different states. The inference relation among the formulas give rise to the

relation between different monitoring approaches.

Proposition 4.5.3. Given a multi-agent system M, a norm n(p, a, V), a pair
(p,e) of action a ((Yp,ve) € D(a) and ¢ Ay and 1 ANpg are satisfiable
on M), and an action a’, if

ME (o = p) A = ),
then
M E Mopp((p,1),a") > Mopp((p,a,9), (Y5, 92),a');
if
ME e — P,
then
M = mopp((; @), (Y, e ), a') > mopp (9, a,9), (W, 92), a').

Proof. If M E (¢ — ¢p) A (¥ — v¢) holds, we have the largest non-
inferential subset of X1, (X1)m = {¢}, and the largest non-inferential subset
of X2, (X2)m = {¥}, which means that we only need to verify ¢ in the
initial state and v in the final state of any state transition. Thus, monit-
oring approach Mopp((p,1),a’) has the same result as monitoring approach

Mopp (0, a, ), (Y5, ¥E),a"). We can prove the second statement similarly.

This proposition implies that when the above inference holds we can monitor
opportunism with the approach mopp ((p, %), a’) (or maopy (¢, a), (¥, 92),a’))
rather than mopy((¢, a, ), (W5, ¥2),a’) for saving monitoring cost.
Together with our general ideas about monitoring cost, we propose the
following steps to monitor opportunism: given a multi-agent system 90, a

norm n(y, (a), (¥)), a pair (5, ¥¢) for action a and an action a’ performed
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by agent i in state s, in order to check whether action a’ is opportunistic

behavior,

1. Check if there is any inference relation in 9t among the formulas we
need to verify in state s X1 = {¢, ¢y, p} and s(a’) X2 = {¢,¥¢,p}, find
out the largest non-inferential subsets (X1)m and (X2)o, and choose the
corresponding monitoring approach;

2. Sort all the formulas from (X1)m and (X2)m in a sequence ordered by
monitoring cost A((X1)m U (X2)m)e;

3. Verify all the formulas from ((X1)m U (X2)om)c one by one; when one
formula is detected to be false, the monitoring process stops and action a’
is detected not to be opportunistic behavior; otherwise, it is detected to

be opportunistic behavior.

With the above steps, the monitoring cost for opportunism can be reduced
statistically when the monitoring is performed for lots of times. For a single
time of monitoring, we still cannot guarantee that the monitoring cost is
reduced with the above steps. This is because possibly (only) we unfortunately
come across the situation where the last formula in the cost ordered sequence is
detected to be false, for which the monitoring cost is the Mpreferred compared

to any sequence ordered at random.

4.6 Related Work

Apart from related work we introduce in Section 2, this chapter is also related
to norm violation monitoring. Norms have been used as a successful approach
to regulate and organize agents’ behaviors [Shoham and Tennenholtz, 1992].
There are various ways of the specification of norms and norm violations
such as [Anderson, 1958]. Similar to [Agotnes et al., 2007], we only consider
a norm as a subset of all possible system behaviors. About norm violation
monitoring, [Bulling et al., 2013] proposes a general monitoring mechanism
for the situation where agents’ behaviors cannot be perfectly monitored. It
studies different types of monitors and provides a logical analysis of the
relations between monitors and norms to be monitored. Our work is strongly
inspired by them, but we focus on the situation where agents’ actions cannot
be observed directly but can be reasoned about through checking how things
change, assuming state properties can be perfectly verified. Our monitoring

approaches are similar to Artikis’ methods of complex event recognition in
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norm-governed multi-agent systems [Artikis et al., 2015], which take as input
streams of low-level events, such as a change in temperature, and combine
them to infer complex high-level events of interest, such as the start of a fire

incident.

4.7 Chapter Summary

For the issue of monitoring, opportunism is a behavior that causes norm
violation and promotes agents’ own value. In order to monitor its invisible
performance in the system, we developed a logical framework based on the
specification of actions. In particular, we investigated how to evaluate agents’
actions to be opportunistic with respect to different forms of norms when
those actions cannot be observed directly, and studied how to reduce the
monitoring cost for opportunism. We proved formal properties aiming at
having an effective and cost-saving monitoring mechanism for opportunism.
Future work can be done on value: in our monitoring approaches it is assumed
that we can reason whether an action promotes or demotes the value with a
value system and how things change by the action, but a value system is still
like a black box that we still don’t know how the propositions we detect relate
to a value system. Moreover, in our framework every state transition is labeled
with an action and a hypothetical agent. We can improve the effectiveness
of our monitoring mechanism by attaching capability to agents. In this way,
given an agent with its capability, the possible actions that were performed
by the agent can be eliminated. About reducing monitoring cost, apart from
inference more properties among formulas can be studied concerning about

the relations among the formulas we detect for monitoring opportunism.
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Reasoning about
Opportunistic Propensity

Opportunism is a behavior that takes advantage of knowledge asymmetry and
results in promoting agents’ own value and demoting others’ value. We want
to eliminate such selfish behavior in multi-agent systems, as it has undesirable
results for the participating agents. In order for monitoring and eliminat-
ing mechanisms to be put in place, it is needed to know in which context
agents will or are likely to perform opportunistic behavior. In this chapter,
we develop a framework to reason about agents’ opportunistic propensity.
Opportunistic propensity refers to the potential for an agent to perform op-
portunistic behavior. In particular, agents in the system are assumed to have
their own value systems and knowledge. With value systems, we define agents’
state preferences. Based on their value systems and incomplete knowledge
about the state, they choose one of their rational alternatives, which might
be opportunistic behavior. We then characterize the situation where agents
will perform opportunistic behavior and the contexts where opportunism is

impossible to occur.

5.1 Introduction

Opportunism is a selfish behavior that takes advantage of relevant knowledge

asymmetry and which results in promoting one’s own value and demoting
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others’ value (Chapter 3). In the context of multi-agent systems, it is normal
that knowledge is distributed among participating agents in the system, which
creates the ability for the agents to behave opportunistically. We want to
eliminate such a selfish behavior, as it has undesirable results for other agents
in the system. Evidently, not every agent is likely to be opportunistic. In
social science, ever since the theory about opportunism was proposed by
Williamson in economics, it has gained a large amount of criticism due to
over-assuming that all economic players are opportunistic. [Chen et al., 2002]
highlights the challenge on how to predict opportunism ex ante and introduces
a cultural perspective to better specify the assumptions of opportunism. In
multi-agent systems, we also need to investigate the interesting issues about
opportunistic propensity so that the appropriate amount of monitoring [Luo
et al., 2016] and eliminating mechanisms can be put in place.

Based on decision theory, an agent’s decision on what to do depends on
the agent’s ability and preferences. If we apply it to opportunistic behavior,
an agent will perform opportunistic behavior when he can do it and he prefers
doing it. Those are the two issues that we consider in this chapter without
discussing any normative issues. Based on this assumption, we develop a
model of transition systems in which agents are assumed to have their own
knowledge and value systems, which are related to the ability and the desire
of being opportunistic respectively. Our framework can be used to predict
and specify when an agent will perform opportunistic behavior, such as which
kinds of agents are likely to perform opportunistic behavior and under what
circumstances. A monitoring mechanism for opportunism benefits from this
result as monitoring devices may be set up in the occasions where oppor-
tunism will potentially occur. We can also design eliminating mechanisms
for opportunism based on the understanding of how agents decide to behave
opportunistically. Besides, our framework can be used by autonomous agents
to decide whether to participate in the system, as their actions might poten-
tially be regarded as opportunistic behavior given their knowledge and value
systems.

In this chapter, we introduce a framework to reason about agents’ oppor-
tunistic propensity. Opportunistic propensity refers to the potential for an
agent to perform opportunistic behavior. More precisely, agents in the system
are assumed to have their own value systems and knowledge. We specify an
agent’s value system as a strict total order over a set of values, which are

encoded within our logical language. Using value systems, we define agents’
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state preferences. Moreover, agents have partial knowledge about the true
state where they are residing. Based on their value systems and incomplete
knowledge, they choose one of their rational alternatives, which might be
opportunistic. We thus provide a natural bridge between logical reasoning and
decision making, which is used for reasoning about opportunistic propensity.
We then characterize the situation where agents will perform opportunistic

behavior and the contexts where opportunism is impossible to happen.

5.1.1 Chapter Outline
The rest of the chapter is organized as follows:

e Section 5.2 introduces the logical framework, which is a transition system
extended with agents’ epistemic relations;

e Section 5.3 introduces how agents form their rational alternatives for
decision making with their value systems and limited knowledge about
the system;

e Section 5.4 defines opportunism for making prediction;

e Section 5.5 characterizes the situation where agents will perform oppor-
tunistic behavior and the contexts where opportunism is impossible to
happen;

e Section 5.7 summarizes the chapter.

5.2 Framework

We use Kripke structures as our basic semantic models of multi-agent systems.
A Kripke structure is a directed graph whose nodes represent the possible
states of the system and whose edges represent accessibility relations. Within
those edges, equivalence relation (-) C S X S represents agents’ epistemic
relation, while relation R C S X Act x S captures the possible transitions of
the system that are caused by agents’ actions. We use sg to denote the initial
state of the system. It is important to note that, because in this chapter
we only consider opportunistic behavior as an action performed by an agent,
we do not model concurrent actions so that every possible transition of the
system is caused by an action instead of joint actions. We use ® = {p,q, ...}
of atomic propositional variables to express the properties of states S. A
valuation function m maps each state to a set of properties that hold in the

corresponding state. Formally,
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Definition 5.2.1. Let ® = {p,q,...} be a finite set of atomic propositional
variables. A Kripke structure over ® is a tuple T = (Agt, S, Act, 7, K, R, s0)

where

o Agt ={1,...,n} is a finite set of agents;

e S is a finite set of states;

e Act is a finite set of actions;

e m:S — P(D) is a valuation function mapping a state to a set of proposi-
tions that are considered to hold in that state;

o K : Agt — 2579 s a function mapping an agent in Agt to a reflezive,
transitive and symmetric binary relation between states; that is, given an
agent i, for all s € S we have sK(i)s; for all s,t,u € S sK(i)t and tKC(i)u
imply that sK(i)u; and for all s,t € S sK(i)t implies tK(i)s; sK(i)s' is
interpreted as state s’ is epistemically accessible from state s for agent
i. For convenience, we use K(i,s) = {s' | sK(i)s'} to denote the set of
epistemically accessible states from state s;

e R C S x Act x S is a relation between states with actions, which we
refer to as the transition relation labeled with an action; we require that
for all s € S there ewists an action a € Act and one state s' € S such
that (s,a,s’) € R, and we ensure this by including a stuttering action
sta that does not change the state, that is, (s,sta,s) € R; we restrict
actions to be deterministic, that is, if (s,a,s’) € R and (s,a,s") € R,
then s’ = s”; since actions are deterministic, sometimes we denote state
s’ as s{a) for which it holds that (s, a,s{a)) € R. For convenience, we use
Ac(s) ={a | 3s’ € S: (s,a,s") € R} to denote the available actions in
state s.

e 5o € S denotes the initial state.

Now we define the language we use. The language Lxa, propositional
logic extended with knowledge and action modalities, is generated by the

following grammar:
pu=p|loe |1 Ve | Kip|{a)p (i€ Agt,a € Act)

The semantics of Lxa are defined with respect to the satisfaction relation |=.
Given a Kripke structure 7 and a state s in 7, a formula ¢ of the language

can be evaluated as follows:

o T,s=piff pemn(s);
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e T,sE il T,s - ¢;

e TosE @iV it T,s =1 or T,sF pa;

o T,s = Ko iff for all ¢ such that sK(i)t, T,t = ¢;

T, s = {(a)y iff there exists s’ such that (s,a,s’) € R and T, s’ | ¢;

Other classical logic connectives (e.g.,“A”, “—7) are assumed to be defined as
abbreviations by using — and V in the conventional manner. As is standard,
we write T = @ if T,s = ¢ for all s € S, and = ¢ if T = ¢ for all Kripke
structures 7.

In this chapter, in addition of the C-relation being S5, we also place
restrictions of no-forgetting and no-learning based on Moore’s work [Moore,
1980] [Moore, 1984] to simplify our model. It is specified as follows: given
a state s in S, if there exists s’ such that s(a)K(i)s’ holds, then there is a
s'" such that sK(i)s” and s’ = s''(a) hold; if there exists s’ and s’ such that
sK(i)s" and s” = s'(a) hold, then s{(a)K(i)s”. Following this restriction, we

have

F Ki({a)p) < () Kip.

The no-forgetting principle says that if after performing action a agent 14
considers a state s’ possible, then before performing action a agent i already
considered possible that action a would lead to this state. In other words,
if an agent has knowledge about the effect of an action, he will not forget
about it after performing the action. The no-learning principle says that all
the possible states resulting from the performance of action a in agent i’s
possible states before action a are indeed his possible states after action a. In
other words, the agent will not gain extra knowledge about the effect of an
action after performing the action. We will illustrate our framework through

the following example:

Example 5.1. Consider the following example: Figure 5.1 shows a Kripke
structure T for agent i. In state s, agent i considers state s and s’ as his
epistemic alternatives. Formula u, =v and —w hold in both state s and s,
meaning that agent i knows u, v and —w in state s. By the performance of
action a1, state s and s’ result in state s(a1) and s'{a1) respectively, where

formula —u, —v and w hold.
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s<a;>

[
s'<a;>
([

{u, -v, ~w} {-u, -v, w}

Figure 5.1. A Kripke structure 7 for agent 1.

5.3 Value System and Rational Alternative

Agents in the system are assumed to have their own value systems and
knowledge. Based on their value systems and incomplete knowledge about
the system, agents form their rational alternatives for the action they are

going to perform.

5.3.1 Value system

Given several (possibly opportunistic) actions available to an agent, it is the
agent’s decision to perform opportunistic behavior. Basic decision theory
applied to intelligent agents relies on three things: agents know what actions
they can carry out, the effects of each action and agents’ preference over the
effects [Poole and Mackworth, 2010]. In this chapter, the effects of each action
are expressed by our logical language, and we will specify agents’ abilities
and preferences in this section. It is worth noting that we only study a single
action being opportunistic in this chapter, so we will apply basic decision
theory for one-shot (one-time) decision problems, which concern the situations
where a decision is experienced only once.

One important feature of opportunism is that it promotes agents’ own
value but demotes others’ value, and agents’ value systems work as the basis
of agents’ consideration about performing opportunistic behavior. A value can
be seen as an abstract basis according to which agents define their preferences
over states. For instance, if we have a value denoting equality, we prefer
the states where equal sharing or equal rewarding hold. Related work about
values can be found in [Pitt and Artikis, 2015] and [Van der Weide, 2011].
Because of the abstract feature of a value, it is usually interpreted in more

detail as a state property, which is represented as an Lxa formula. The most
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basic value we can construct is simply a proposition p, which represents the
value of achieving p. More complex values can be interpreted such as of the
form (a)¢ A (a’)=p, which represents the value that there is an option in the
future to either achieve ¢ or —@. Such a value corresponds to freedom of
choice. A formula of a value can also be in the form of K¢, meaning that it
is valuable to achieve knowledge. In this chapter, we denote values with v,
and it is important to remember that v is an element from the language Lxa.
However, not every formula from Lxa can be intuitively classified as a value.

We argue that agents can always compare any two values. The rationale for
this argument is that, when two values are equivalent (or simply incomparable)
to us, we can consider them as one value. In other words, every element in
the set of values is comparable to each other and none of them is logically
equivalent to each other. Therefore, we define a value system as a strict total
order over a set of values, representing the degree of importance of something,
which are inspired by the preference lists in [Bulling and Dastani, 2016] the
goal structure in [Agotnes et al., 2007].

Definition 5.3.1 (Value System). A wvalue system V = (Val, <) is a tuple
consisting of a finite set Val = {v,...,v'} C Lka of values together with a
strict total ordering < over Val. When v < v, we say that value v' is more

important than value v as interpreted by value system V.

We also use a natural number indexing notation to extract the value of a
value system, so if V gives rise to the ordering v < v’ < ..., then V[0] = v,
V[1] = ', and so on. Since a value is interpreted as an Lka formula and it
can be promoted or demoted by an action, value promotion and demotion

along a state transition can be defined as follows:
Definition 5.3.2 (Value Promotion and Demotion). Given a value v and an
action a, we define the following shorthand formulas:
promoted (v, a) := —w A {(a)v
demoted(v, a) := v A {a)—v
We say that a value v is promoted along the state transition (s,a,s’) if and

only if s |= promoted(v, a), and we say that v is demoted along this transition
if and only if s E demoted(v, a).

An agent’s value v gets promoted along the state transition (s, a, s’) if and

only if v doesn’t hold in state s and holds in state s’; an agent’s value v
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gets demoted along the state transition (s,a,s’) if and only if v holds in
state s and doesn’t hold in state s’. Note that in principle an agent is not
always aware that his or her value gets demoted or promoted, i.e. it might
be the case where s |= promoted(v,a) but agent i does not know this, i.e.
s = —(K; promoted (v, a)).

Now we can define a multi-agent system as a Kripke structure together
with agents’ value systems, representing their basis of practical reasoning.
We also assume that value systems are common knowledge in the system.

Formally, a multi-agent system M is an (n + 1)-tuple:
M = (T7 ‘/17 ceey Vn)

where T is a Kripke structure, and for each agent ¢ in 7, V; is a value system.

We now define agents’ preferences over two states in terms of values, which
will be used for modelling the effect of opportunism. We first define a function
Mpreferred(i, s,s’) that maps a value system and two different states to the
most preferred value that changes when going from state s to s’ from the
perspective of agent . In other words, it returns the value that the agent
most cares about, i.e. the most important change between these states for

the agent.

Definition 5.3.3 (Most Preferred Value). Given a multi-agent system M,
an agent i and two states s and s, function Mpreferred : Agt x S x S — Val

is defined as follows:
Mpreferred(i,s,s") \, := Vi[min{j | Vk > j : M, s = Vi[k] & M, s’ = Vi[k]}]
We write Mpreferred(i,s,s’) for short if M is clear from context.

Note that if no values change between s and s’, we have that Mpreferred(i, s,s’) =
V;[0], i.e. the function returns the agent’s least preferred value. Moreover, it
is not hard to see that Mpreferred(i, s,s’) = Mpreferred(i, s’, s), meaning that
the function is symmetric for the two state arguments.

With this function we can easily define agents’ preference over two states.

We use a binary relation “3” over states to represent agents’ preferences.

Definition 5.3.4 (State Preferences). Given a multi-agent system M, an
agent i and two states s and s’, agent i weakly prefers state s’ to state s,

denoted as s <M s, iff
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M, s = Mpreferred(i,s,s’) = M, s’ |= Mpreferred(i, s,s’)

We write s Z; 8" for short if M is clear from context. Moreover, we write

~T

S =i S’ for sets of states S and S" whenever Vs € S,Vs' € §' 1 s 3 5.

<;s,and s <; s’

~

As standard, we also define s ~; s’ to mean s 3; s’ and s’
to mean s 3; s’ and s 4; s'. The intuitive meaning of the definition of s <X; s
is that agent i weakly prefers state s’ to s if and only if the agent’s most
preferred value does not get demoted (either stays the same or gets promoted).
In other words, agent 7 weakly prefers state s’ to s: if Mpreferred(i, s, s’) holds
in state s, then it must also hold in state s’, and if Mpreferred(i,s,s’) does
not hold in state s, then it does matter whether it holds in state s’ or not.
Furthermore, the interpreted meaning of s ~; s’ is that state s and s’ are
subjectively equivalent to agent ¢, not necessarily that they objectively refer
to the same state. Thus, given an agent’s state preference, a set of states can
be classified into different groups with an ordering in between. Clearly there
is a correspondence between state preferences and promotion or demotion of

values, which we can make formal with the following proposition.

Proposition 5.3.1. Given a model M with agent i, state s and available

action a in s, and let v* = Mpreferred(i, s, s(a)). We have:

s =i s{a) & M, s = promoted(v”, a)
s >; s(a) & M, s | demoted(v”, a)
s~ s{a) & M, s = —(demoted (v, a) V promoted(v*, a))

Proof. Firstly we prove the third one. We define s ~; s{(a) to mean s 3; s{a)
and s{a) Z; s. s i s(a) means that value v* doesn’t get demoted when going
from s to s{a), and s{a) Z; s means that value v* doesn’t get demoted when
going from s{a) to s. Hence, value v* doesn’t get promoted or demoted (stays
the same) by action a. Secondly we prove the first one. We define s <; s{a)
to mean s 3; s(a) and s #%; s{a). s 3 s{a) means that value v* doesn’t get
demoted when going from s to s{a), and s 7; s’ means that either value v*
gets promoted or demoted by action a. Hence, value v* gets promoted by

action a. We can prove the second one in a similar way.

Additionally, apart from the fact that s <; s(a) implies that the Mpreferred

changed value gets promoted, we also have that no other value which is more
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preferred gets demoted or promoted. We have the result that the =; relation

~T

obeys the standard properties we expect from a preference relation.

Proposition 5.3.2 (Properties of State Preferences). Given an agent i, his

preferences over states “3;” are

e Reflexive: Vs € S :s 3, s;
o Transitive: Vs,s',s" € S:if s 318 and s’ 3; 8", then s 3; s";

o Total: Vs,s' € S: s Zi 8 ors’ =Zis.

Proof. The proof follows Definition 5.5.4 directly. In order to prove 3, is
reflexive, we have to prove that for any arbitrary state s we have s 3, s. From
Definition 5.3.8 and Definition 5.3.4 we know Mpreferred(i,s,s’) = V;[0] when
s = s, and for any arbitrary state s we always have M, s |= V;[0] implies
M, s = V;[0]. Therefore, s 3i s and we can conclude that 3; is reflexive.

In order to prove transitivity, we have to prove M, s = v* implies M, s" |=
v*, where v* = Mpreferred(i,s,s”). It can be the case where v* stays the same
in state s and s or the case where M, s = —w* and M,s"” |= —w*. For the
first case, when s ~ s' and s’ ~ 5", meaning that all the values stay the same
when going from s to s’ and from s’ to s, it is also the case when going from
s to s”. We now consider the case where M,s = —v* and M,s" = —v*.
Firstly, we denote Mpreferred(i,s,s’) as u* and Mpreferred(i,s’,s”) as w*.
It can either be that u* ~; w*, u* <; w* or u* =; w*. If u* ~; w*, we
can conclude that u* ~; w* ~; v*, hence the implication holds. We now

distinguish between the cases where u* <; w* or u* =; w*.

o If u* <; w*, we know that w* is the most preferred value that changes
and gets promoted when going from s’ to s”, but stays the same between s
and s'. Hence, we can conclude that M, s = —w* and M,s" E w*, and
that w* = v* (i.e., w* is the most preferred value that changes between s
and s"). Hence we have M, s = v* implies M, s" = v*.

o If u™ »; w*, we know that u™ is the most preferred value that changes and
gets promoted when going from s to s', but stays the same between s’ and
s". Hence, we can conclude that M, s = —u* and M,s” = u*, and that

u* =" (i.e. v* is the most preferred value that changes between s and
s'"). Hence, we have M, s =v* implies M, s" = v*.

In order to prove totality by contradiction, we assume that we can find a
witness that 3s,8" : s Zi s’ and s’ Zi s, that is, s,/ : s =; s’ and s <; s'. If

s =i 8, we know that v* = Mpreferred(i,s,s’) gets demoted when going from
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state s to s'; if s <; ', we know that v* = Mpreferred(i,s,s’) gets promoted

when going from state s to s'. Contradiction!

In our system, we only look at the value change that is most cared about
to deduce state preferences. Certainly, there are other ways of deriving these
preferences from a value system. Instead of only considering the value change
that is most cared about in the state transition, it is also possible to take
into account all the value changes in the state transition. For example, we
can define a function that tells whether and to what extent a state transition
promotes or demotes an agent’s overall value by attaching weights to values,
and the weights can be the indexes of values in a value system. Then we
sum all the weights for the state transition. The summation can tell whether
and to what extent a state transition promotes or demotes an agent’s overall
value. With this approach, an agent considers all the values that are either
promoted or demoted in the state transition. The higher index the value has,
the more the agent values it. For opportunism, what we want to stress is that
opportunistic agents ignore (rather than consider less) other agents’ interest,
which has a lower index in the agent’s value system. In order to align with

this aspect, we use the most preferred value approach in this chapter.

5.3.2 Rational Alternatives

Since we have already defined values and value systems as agents’ basis
for decision making, we can start to apply decision theory to reason about
agents’ decision-making. Given a state in the system, there are several actions
available to an agent, and he has to choose one in order to go to the next state.
We can see the consideration here as a one-shot decision making. In decision
theory, if agents only act for one step, a rational agent should choose an
action with the Mpreferred (expected) utility without reference to the utility
of other agents [Poole and Mackworth, 2010]. Within our framework, this
means that a rational agent will always choose a rational alternative based on
his value system. We will introduce the notion of rational alternatives below.

Before choosing an action to perform, an agent must think about which
actions are available to him. We have already seen that, for a given state
s, the set of available actions is Ac(s). However, since an agent only has
partial knowledge about the state, we argue that the actions that an agent
knows to be available is only part of the actions that are physically available

to him in a state. For example, an agent can call a person if he knows the
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phone number of the person; without this knowledge, he is not able to do it,
even though he is holding a phone. Recall that the set of states that agent
i considers as being the actual state in state s is the set K(4,s). Given an
agent’s partial knowledge about a state as a precondition, he knows what
actions he can perform in that state, which is the intersection of the sets of

actions physically available in the states in this knowledge set.

Definition 5.3.5 (Subjectively Available Actions). Given an agent i and a

state s, agent i’s subjectively available actions are the set:

Ac(i, s) = ﬂ Ac(s).

s'eK(i,s)

Because a stuttering action sta is always included in Ac(s) for any state s,
we have that sta € Ac(i, s) for any agent ¢. When only sta is in Ac(, s),
we say that the agent cannot do anything because of his limited knowledge.
Obviously an agent’s subjectively available actions are always part of his
physically available actions (Ac(z, s) C Ac(s)). Based on agents’ rationality
assumptions, he will choose an action based on his partial knowledge of
the current state and the next state. Given a state s and an action a, an
agent considers the next possible states as the set K(4, s(a)). For another
action a’, the set of possible states is K (7, s(a’)). The question now becomes:
How do we compare these two possible set of states? Clearly, when we have
K(i,s{a)) <; K(i,s{a’)), meaning that all alternatives of performing action
a’ are more desirable than all alternatives of choosing action a, it is always
better to choose action a’. However, in some cases it might be that some
alternatives of action a are better than some alternatives of action a’ and
vice-versa. In this case, an agent cannot decisively conclude which of the
actions is optimal, which implies that the preferences over actions (namely

sets of states) is not total. This leads us to the following definition:

Definition 5.3.6 (Rational Alternatives). Given a state s, an agent i and
two actions a,a’ € Ac(i, s), we say that action a is dominated by action a’ for
agent i in state s iff K(i,s{a)) <; K(i,s(a’)). The set of rational alternatives
for agent i in state s is given by the function a} : S — 24, which is defined

as follows:

aj(s) = {a € Ac(i,s) | =3a’ € Ac(i,s):a# a’ and

a’ dominates a for agent i in state s}.
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The set aj(s) are all the actions for agent ¢ in state s which are available
to him and are not dominated by another action which is available to him.
In other words, it contains all the actions which are rational alternatives for
agent i. Since it is always the case that Ac(i,s) is non-empty because of
the stuttering action sta, and since it is always the case that there is one
action which is non-dominated by another action, we conclude that aj (s) is
non-empty. We can see that the actions that are available to an agent not only
depend on the physical state, but also depend on his knowledge about the
current state. The more he knows, the better he can judge what his rational
alternative is. In other words, an agent tries to make a best choice based on
his value system and incomplete knowledge. The following proposition shows

how an agent removes an action with our approach.

Proposition 5.3.3. Given a state s, an agent i and two actions a,a’ €

Ac(i, s), action a is dominated by action a’ iff
-3s’,s" € K(i,s) : s'(a) = s"{a’).
Proof.

3s',s" € K(i,s) : s'(a) = s"(a")
& K(i, s(a)) £ K(i, s(a')),
because s'(a) € K(i,s({a)) and s"{a’) € K(i, s{a’))

< Action a is non-dominated by action a'.

Agents remove all the options (actions) that are always bad to do, and
there is no possibility to be better off by choosing a dominated action. The
following proposition connects Definition 5.3.6 with stuttering action and

state preferences.
Proposition 5.3.4. Given a multi-agent system M, a state s and an agent
i,

sta & a*(s) = Va € a”(s) : s <; s{a).

Proof. We prove it by contradiction. Statement =(Va € a*(s) : s <; s{(a)) is
equivalent to statement 3a € a*(s) : s Z; s(a). We will make the proof with
the situations where Ja € a™(s) : s =; s{a) and Ja € a*(s) : s ~; s(a). If

there erists an action a € a*(s) such that agent i’s value will get demoted by
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performing it (Ja € a*(s) : s =; s{a)), it will be dominated by the stuttering
action sta. Sincw sta is not in a*(s), action a is not in a*(s) as well. If
there exists an action a € a™(s) such that agent i’s value will keep agent i’s
values neutral (Ja € a*(s) : s ~; s(a)), sta will also be in a*(s), because all
the actions in agent i’s rational alternatives are equivalent to agent i and sta

has the same effect as action a. Contradiction!

If the stuttering action sta is not in the set of rational alternatives for agent
i, meaning that it is dominated by an action (not necessarily in the set of
rational alternatives), agent ¢ can always promote his value by performing
any action in his rational alternatives.

Our approach to comparing two sets of states resulting from two different
actions is proposed with the assumption that an agent knows what he knows
and what he doesn’t know, which are the properties of positive introspection
and negative introspection of agents’ epistemic relations. Certainly, there are
multiple ways of doing it. For instance, instead of removing all the options
that are always bad to do, we can also do it merely with our limited knowledge
about the actions. As we know, given a state s’ from agent i’s knowledge
set KC(4, s), it results in s'(a) and s’(a’) by action a and action a’ respectively.
Action a is dominated by action a’ if and only if for all the states s’ from
K(i,s) we have s'(a) <; s'(a’). In this pairwise comparison approach, agent
i compares two states resulting from the same state, which means that he
only takes into account what he knows and ignores what he doesn’t know
for removing dominated actions. In this chapter, we remove the actions by
which agents are impossible to be better off, because it has natural ties to
game theory in the context of (non-)dominated strategies [Dixit and Nalebuff,
2008]. We will illustrate the above definitions and our approach through the

following example.

Example 5.1 (continued). We extend Example 5.1 as follows: Figure 5.2
shows a transition system M for agent i. State s and s’ are agent i’s epistemic
alternatives, that is, K(i,s) = {s,s'}. Now consider the actions that are phys-
ically available and subjectively available to agent i. Ac;(s) = {a1, a2, as, sta},
Aci(s") = {a1, a2, sta}. Because Ac(i,s) = Aci(s) N Aci(s'), agent i knows
that only sta, a1 and az are available to him in state s .

Next we talk about agent i’s rational alternatives in state s. Given agent
1’s value system V; = (u < v < w), and the following valuation: w, —v and ~w

hold in K(i,s), ~u, —v and w hold in K(i,s{a1)), and u, v and —w hold in
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K(%, s{a2)), we then have the following state preferences: K(i,s) < K(i, s{a1)),
K(i,s) < K(i,s(az)) and K(i,s{az)) < K(i,s(a1)), meaning that action az
and the stuttering action sta are dominated by action ai. Thus, we have

a;(s) = {a1}.

S<31>

g<ap | W VWl
/ 2

{u, v, -w}

Figure 5.2. A transition system M for agent 3.

5.4 Opportunism Propensity

Before reasoning about opportunistic propensity, we should first formally
know what opportunistic propensity actually is. Opportunism is a selfish
behavior that takes advantage of relevant knowledge asymmetry and results in
promoting one’s own value and demoting others’ value (Chapter 3). It means
that it is performed with the precondition of relevant knowledge asymmetry
and the effect of promoting agents’ own value and demoting others’ value.

Firstly, knowledge asymmetry is defined as follows.

Definition 5.4.1 (Knowledge Asymmetry). Given two agents i and j, and
an Lxa formula ¢, knowledge asymmetry about ¢ between agent i and j is

the abbreviation:
Knowasym(i, 7, ¢) := Kip A Kjp AN K (- Kjp).
It holds in a state where agent i knows ¢ while agent j does not know ¢ and

this is also known by agent i. It can be the other way around for agent ¢ and
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agent j. But we limit the definition to one case and omit the opposite case

for simplicity. Now we can define opportunism:

Definition 5.4.2 (Opportunism Propensity). Given a multi-agent system
M, a state s and two agents i and j, the assertion Opportunism(z,j,a)

that action a performed by agent i is opportunistic behavior is defined as:

Opportunism(, j, a) := Knowasym(i, j, promoted(v™, a)

A demoted(w*, a))
where v* = Mpreferred(i, s, s(a)) and w* = Mpreferred(j, s, s(a)).

This definition shows that if the precondition Knowasym is satisfied in state
s then the performance of action a will be opportunistic behavior. The
asymmetric knowledge that agent ¢ has is about promoting value v* and
demoting value w* along the transition by action a, where v* and w* are
the values that agent ¢ and agent j most care about along the transition
respectively. It follows that agent j is partially or completely not aware of it.
Definition 5.4.2 about opportunistic propensity is aligned with the definition
of opportunism in Chapter 3 in the reveal that the precondition of performing
opportunistic behavior is modeled in an explicit way. As is stressed in Chapter
3, opportunistic behavior is performed by intent rather than by accident. In
this chapter, instead of explicitly modeling intention, we interpret it from
agents’ rationality that they always intentionally promote their own values.
We can derive three propositions from the definition, which are useful in our

next section.

Proposition 5.4.1 (Value Opposition). Given a multi-agent system M and
an opportunistic behavior a performed by agent i to agent j in state s, action
a will promote agent i’s value but demote agent j’s wvalue, which can be

formalized as

M, s = Opportunism(i, j,a) = s <; s(a) and s >; s(a)
Proof. From M, s |= Opportunism(, j,a) we have:

M, s = K;(promoted(v*, a) A demoted(w™, a))

And thus since all knowledge is true, we have that M, s = promoted(v*, a) and
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M, s = demoted(w*, a). Using the correspondence found in Proposition 5.3.1,

we can conclude s <; s(a) and s >; s(a).

We objectively say that agent i’s value gets promoted and agent j’s value
gets demoted by opportunistic behavior a, but agent j is not aware of it
even after opportunistic behavior a is performed due to the no-learning
restriction on agents’ epistemic relations. That is, if M, s E —K;((a)—w™)
for M, s = =K ; demoted(w™, a), then M, s = (a)-K;(-~w").

Proposition 5.4.2 (Different Value Systems). Given a multi-agent system
M and opportunistic behavior a performed by agent i to agent j in state s,

agent i and agent j have different value systems, which can be formalized as
M, s = Opportunism(i, j,a) = V; # V.

Proof. We prove it by contradiction. We denote v* = Mpreferred(i, s, s(a))
and w* = Mpreferred(j, s, s(a)), for which v* and w* are the property changes
that agent i and agent j most care about in the state transition. If V; = Vj, then
v* = w*. However, because M,s |= K;(promoted(v*,i) A demoted(w™, j)),
and thus M,s = K;(—v* A w"), and because knowledge is true, we have
M, s = —w* Aw*. But, since v* = w”*, we have M,s = —w* Av*. Contradic-

tion!

From this proposition we can see that agent i and agent j care about different

things based on their value systems about the transition.

Proposition 5.4.3 (Inclusion). Given a multi-agent system M and oppor-
tunistic behavior a performed by agent i to agent j in state s, agent j’s
knowledge set in state s is not a subset of agent i’s and action a is available

in agent i’s knowledge set:
M, s E Opportunism(i, j,a) = K(j,s) € K(i,s) and a € Ac(i, s).

Proof. We can prove it by contradiction. Knowledge set is the set of states
that an agent considers as possible in a given actual state. Vt € K(i,s), agent
i considers state t as a possible state where he is residing. The same with
K(j,8) for agent 5. If K(j,s) € K(i,s) is false, we have K(j,s) C K(i,s)
holds, which means that agent j knows more than or exactly the same as
agent i. However, Definition 5.4.2 tells that agent i knows more about the

transition by action a than agent j. So K(j,s) C K(i, s) is false, meaning that
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K(j,8) € K(i,s) holds. Further, because from M,s = Opportunism(i, j, a)
we have M, s = K;({a)v™ A (a)—w™), by the semantics of (a)v™ and (a)—w™,
for all t € K(i,s) there exists (t,a,s’) € R. Thus, we have a € Ac(i, s).

These three propositions are three properties that we can derive based on
Definition 5.4.2. The first one shows that opportunistic behavior results in
value opposition for the agents involved; the second one tells that the two
agents involved in the relationship evaluate the transition based on different
value systems; the third one indicates the asymmetric knowledge that agent ¢

has for behaving opportunistically.

Example 5.2. Figure 5.3 shows the example of selling a broken cup: The
action selling a cup is denoted as sell and we use two value systems Vs and
Vi for the seller and the buyer respectively. State s1 is the seller’s epistemic
alternative, while state s1 and sz are the buyer’s epistemic alternatives. We
also use a dash line circle to represent the buyer’s knowledge K(b, s1) (not the

seller’s). In this example, K(s, s1) C (b, s1). Moreover,
hm = Mpreferred(s, s1, s1(sell)),

—hb = Mpreferred(b, s1, s1(sell)),

meaning that the seller only cares about if he gets money from the transition,
while the buyer only cares about if he has a broken cup from the transition.

We also have
M, s1 E Ks(promoted(hm, sell) A demoted(—hb, sell)),

meaning that the seller knows the transition will promote his own value while
demote the buyer’s value in state s1. For the buyer, action sell is available in
both state s1 and s2. However, hb doesn’t hold in both s1(sell) and s2(sell),
so he doesn’t know whether he will have a broken cup or not after action sell
is performed. Therefore, there is knowledge asymmetry between the seller
and the buyer about the value changes from si to si(sell). Action sell is

potentially opportunistic behavior in state si.

5.5 Reasoning about Opportunistic Propensity

In this section, we will characterize the situation where agents will perform

opportunistic behavior and the contexts where opportunism is impossible to
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{~hm,-hb} {hm,hb}
e sl |/ @ sisel>
w sell ‘

i > @ /s)<sell>

\\\52 ®
{=hm,=hb} {hm,=hb}
Figure 5.3. Selling a broken cup.

happen.

5.5.1 Having Opportunism

Agents will perform opportunistic behavior when they have the ability and
the desire of doing it. The ability of performing opportunistic behavior can be
interpreted by its precondition: it can be performed whenever its precondition
is fulfilled. Agents have the desire to perform opportunistic behavior whenever
it is a rational alternative.

There are also relations between agents’ ability and desire of performing an
action. As rational agents, firstly we think about what actions we can perform
given the limited knowledge we have about the state, and secondly we choose
the action that may maximize our utilities based on our partial knowledge.
This practical reasoning in decision theory can also be applied to reasoning
about opportunistic propensity. Given the asymmetric knowledge an agent
has, there are several (possibly opportunistic) actions available to him, and
he may choose to perform the action which is a rational alternative to him,
regardless of the result for the other agents. Based on this understanding, we

have the following theorem, which implies agents’ opportunistic propensity:

Theorem 5.5.1. Given a multi-agent system M, a state s, two agents i and
j and an action a, agent i will perform action a to agent j as opportunistic

behavior in state s:
Ja € aj (s) : M, s = Opportunism(i, j, a)
if

1.vt € K(i,s) : M,t | promoted(v*,a) A demoted(w*,a), It €
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K(j,8) : M,t &= —(promoted(v*,a) A demoted(w*,a)), where v* =
Mpreferred(i, s, s(a)) and w* = Mpreferred(j,s,s(a));
2.5 < s{a) and s =; s{a).

3. —=3a’ € Ac(i,s) : a # a’ and o' dominates a.

Proof. Forwards: If action a is opportunistic behavior, we can immediately
have statement 1 by the definition of Knowledge Set. Because action a is
in agent i’s rational alternatives in state s (a € aj(s)), by Definition 5.5.6,
action a is not dominated by any action in Ac(i,s). Also because action a is
opportunistic, by Proposition 5.4.1 it results in promoting agent i’s value but
demoting agent j’s value (s <; s{a) and s =; s(a)). Backwards: Statement
1 means that there is knowledge asymmetry between agent i and agent j
about the formula promoted(v*,a) A demoted(w™,a). From this we can see
the knowledge asymmetry is the precondition of action a. If this precondition
is satisfied, agent i can perform action a. Moreover, by statement 2, because
action a promotes agent i’s value but demotes agent j’s value, we can conclude
that action a is opportunistic behavior. By statement 3, because action a is
not dominated by any action in Ac(i,s), it is a rational alternative for agent

i in state s to perform action a.

Given an opportunistic behavior a, in order to predict its performance, we
should first check the asymmetric knowledge that agent i has for enabling its
performance. Based on agent i’s and agent j’s value systems, we also check if
it is not dominated by any actions in Ac(%, s) and its performance can promote
agent ¢’s value but demote agent j’s value. It is important to stress that
Theorem 5.5.1 never states that an agent will for sure perform opportunistic
behavior if the three statements are satisfied. Instead, it shows opportunism

is likely to happen because it is in the agent’s rational alternatives.

5.5.2 Not Having Opportunism

As Theorem 5.5.1 shows, we need much information about the system to
predict opportunism, and it might be difficult to achieve all of them. For-
tunately, in some cases it is already sufficient to know that opportunism is
impossible to occur. An example might be detecting opportunism: if we
already know in which context agents cannot perform opportunistic behavior,
there is no need to set up any monitoring mechanisms for opportunism in
those contexts. The following propositions characterize the contexts where

there is no opportunism:
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Proposition 5.5.1. Given a multi-agent system M, a state s, two agents i

and j and an action a,
K(i,s) = K(j,s) = M, s = - Opportunism(i, j, a).

Proof. When K(i,s) = K(j, s) holds, which means that both agent i and agent
j have the same knowledge. In this context, Statement 1 in Theorem 5.5.1 is

not satisfied, so action a is not opportunistic behavior.

Proposition 5.5.2. Given a multi-agent system M, a state s, two agents i

and j and an action a,
V; =V; = M, s | - Opportunism(i, j, a).

Proof. When V; = V; holds, which means that both agent i and agent j have
the same value system. In this case, the values of both agents don’t go opposite,
that is, Statement 2 in Theorem 5.5.1 is not satisfied. So action a is not

opportunistic behavior.

{=hm,pc} {hm,pc}
s, @ ® si<sell>
; sell \
5@ L@ sy<sell>
{-hm,-pc} {hm,pc}

Figure 5.4. Variation of selling a broken cup.

The above two propositions show that opportunism is impossible to occur
when there is no knowledge asymmetry between agents and they share the
same value systems. After we defined opportunism, we had Proposition
5.4.2 showing that two agents have different value systems as a property of
opportunism. Together with Proposition 5.5.1 and Proposition 5.5.2, it looks
like once having two different value systems and knowledge asymmetry about
the value changes are satisfied one agent will perform opportunistic behavior
to the other agent. Now let us go back to the example of selling a broken
cup, the buyer’s value gets demoted along the state transition, because he

wants to have a good cup for use, which he finally doesn’t have. Suppose
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the buyer only cares about appearance in the deal: as we show in Figure
5.4, the buyer knows it is a pretty cup before he buys it, denoted as pc, and
he gets a pretty cup (probably not for use) after the seller sells it. In this
case, the behavior performed by the seller will not be seen as opportunistic
behavior. From this variation, we notice that sometimes an action might
not be seen as opportunistic behavior even though the agents involved have
different value systems, because the two value systems are compatible rather
than conflicting. This brings us to the notion of compatibility. Intuitively,
compatibility describes a state in which two or more things are able to exist or
work together in combination without problems or conflict. We then propose

the notion of compatibility of value systems with respect to a state transition.

Definition 5.5.1 (Compatibility of Value Systems). Given a multi-agent sys-
tem M, a state transition (s,a,s’) and two value systems V; and V;

(Vi # V;), the two value systems are compatible with respect to transition

(s,a,s") if and only if M,s |= —(promoted(v*, a) A demoted(w*,a)), where

v* = Mpreferred(i,s,s’) and w* = Mpreferred(j, s,s’).

From this definition we have s <; s’ and s =; s’ don’t hold at the same
time, which means that the values of two agents don’t go opposite (one
gets promoted and the other one gets demoted) along a transition if their
value systems are compatible with respect to the transition. Now we can
relate the notion of compatibility of value systems to predicting opportunism.
The following proposition characterize another context where opportunistic

behavior will not occur:

Proposition 5.5.3. Given a multi-agent system M with a state s, two agents
i and j and an action a, if value system V; and V; are compatible with respect

to (s,a, 5,)7 then
M, s = = Opportunism(i, j, a).

Proof. This proposition holds because two compatible value systems with re-
spect to transition (s,a,s’) will not lead to the result that one agent’s value
get promoted and the other agent’s value get demoted (s <; s' and s =; s').

By Theorem 5.5.1, it implies that action a will not be opportunistic behavior.

In this section, we specified the situation where agents will perform op-
portunistic behavior and characterized the contexts where opportunism is

impossible to happen. This information is essential not only for the system
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designers to identify opportunistic propensity, but also for an agent to decide
whether to participate in the system given his knowledge about the system

and his value system, as his behavior might be regarded as opportunistic.

5.5.3 Computational Complexity

Theorem 5.5.1 shows that whether a given action will be performed by an agent
as opportunistic behavior, which gives an insight into checking opportunism
in the system. From the perspective of system designers, given a multi-agent
system we design, it is important to know whether there exists opportunistic
behavior between agents and how difficult it is to check it. In this subsection,
we will investigate this issue through proposing an algorithm. The decision

problem associated with predicting opportunistic behavior is as follows:

PREDICTING OPPORTUNISM

Given: Multi-agent system M.

Question: Does there exist opportunistic behavior

between agents for M?

Theorem 5.5.2. Given a multi-agent system M, the problem that whether
there exists opportunistic behavior between agents for M can be solved in time
O(nmk?), where n is the number of transitions, m is the mazimal number of
available actions to a given agent in a given state, and k is the maximal size
of S5 class.

Proof. In order to prove the problem can be solved in time O(nmkz), we
need to find an algorithm that allows us to solve the decision problem with
the same computational complexity. We design Algorithm 5.1 for verifying
opportunistic behavior in a multi-agent system M based on Theorem 5.5.1.
The algorithm loops through all the possible transitions in the system, which
has complexity O(n), where n = |R|. Notice that transitions are exzecuted
by hypothetical agents, meaning that the value systems we consider for the
transition is assumed to be known once the tramsition is given. For each
transition, it verifies the statements listed in Theorem 5.5.1 one by one. Line
21-24 is to verify whether there is no action a' that dominates action a.
Based on the definition of dominance between actions, the algorithm has to
perform the comparison K(i,s{a)) with K(i,s(a’)) for all a’ in Ac(i,s). If
for all s" € K(i,s{a)) and for all s" € K(i,s(a’)) we have s' < s", then

action a is dominated by action a’. Hence, the complexity of executing line
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Algorithm 5.1. Predicting Opportunism.

1: procedure HASKNOWASYM(S1, S2, 7, ¢) returns true or false

2 set g1 < true

3 set g2 + false

4 for each s € S1 do

5: if ¢ € 7(s) then

6: set g1 + false

7 break

8 for each s € S do

9 if ~¢ € 7(s) then

10: set ga < true

11: break

12: return g1 A g2

13:

14: procedure PREDICTING(M) returns true or false

15: set flag + false

16: for each (s,a,s{a)) € R do

17: set v* <— Mpreferred(i, s, s{a))

18: set w* + Mpreferred(j, s, s(a))

19: if HASKNOWASYM(K (2, s), K(4, s), 7, promoted (v*, a) A
demoted(w*,a)) then

20: if promoted(v*, a) A demoted(w*, a) € 7(s) then

21: set h <0

22: for each a’ € Ac(i, s) do

23: if a # o’ and K(i, s{a)) < K(i,s(a’)) then

24: h++

25: if h ==0 then

26: set flag < true

27: break

28: return flag

21-24 is O(mk?), where m = |Ac(i,s)| and k = |K(i, s)|. The computational
complezity of the whole algorithm is O(nmk?), which implies that Algorithm
5.1 can check whether there exists opportunistic behavior between agents for a

given multi-agent system in polynomial-time.

5.6 Discussion

We reason about agents’ opportunistic propensity based on decision theory ex-
tended with knowledge and value systems, which correspond to some concepts

from game theory. In game theory, agents can be situated in a game which
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is not fully observable, and the notion of information sets is introduced to
represent the states that the agent cannot distinguish. In this chapter, we use
a similar concept knowledge set to represent the set of states that the agent
considers as possible. Based on the representation of uncertainty, we use the
notion of dominance to compare two different actions: a dominated action is
an action that is always bad to perform regardless of the uncertainty about
the system, which is an approach bridging to (non-)dominated strategies in
game theory. It is thus already seen that we can apply techniques from game
theory based on the concept similarities to enrich the existing decision theory
and enhance the reasoning capabilities on agents’ opportunistic propensity.
Further, [Bench-Capon et al., 2012] already pointed out that utility-based
decision-mechainsms in game theory cannot represent agents’ decision theory
in a real way. In this chapter, we follow its idea using values and value systems
as the basis for agents’ choice, which allows us to better predict opportunism.
Given Definition 5.3.3, agent i only cares about the value change that he
most prefers and ignores other value changes for defining his state preference.
Hence, if we interprete value promotion as happiness and value demotion
as sadness, this approach can be seen as the weight between the agent’s
happiness and sadness from the states: he prefers state s’ rather than state s
because his most preferred value gets promoted thus the happiness he gets is
more than the sadness for being in state s’ instead of state s. When talking
about actions, s <; s{a) for instance, because among all the value changes
agent ¢’s most preferred value gets promoted when going from state s to state
s{a), we can say that he feels more happy than sad by performing action
a (apparently a # sta) instead of doing nothing. This interpretation is of
importance for the design of eliminating mechanism for opportunism: if we
want to make it not optimal for an agent to be opportunistic, the sadness he
will get from it must be higher than the happiness, which implies that the
value change that is most cared about by the agent must be demotion.
Moreover, our approach can be used in practice. For instance, in the
electronic market place, only the seller knows that the product is not good
for the buyer before he ships it, and he can earn more money if he still
claims that the product is good. In this context, if earning money is most
important to the seller, he can and wants to perform opportunistic behavior,
selling the product, to the buyer according to Theorem 5.5.1. Monitoring and
eliminating mechanisms should be put there in order to demotivated such a

behavior. However, if we can ensure that both the seller and the buyer are
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aware of the quality of the product before the seller ships it, meaning that
knowledge asymmetry about the transaction is removed, it is impossible for

the seller to get benefits from the buyer.

5.7 Chapter Summary

The investigation of opportunism is still new in the area of multi-agent sys-
tems. We ultimately aim at designing mechanisms to eliminate such selfish
behavior in the system. In order to avoid over-assuming the performance of
opportunism so that monitoring and eliminating mechanisms can be put in
place, we need to know in which context agents will or are likely to perform
opportunistic behavior. In this chapter, we argue that agents will behave
opportunistically when they have the ability and the desire of doing it. With
this idea, we developed a framework of multi-agent systems to reason about
agents’ opportunistic propensity without considering normative issues. Agents
in the system were assumed to have their own value systems. Based on their
value systems and incomplete knowledge about the state, agents chose one of
their rational alternatives, which might be opportunistic behavior. With our
framework and our definition of opportunism, we characterized the situation
where agents will perform opportunistic behavior and the contexts where
opportunism is impossible to occur and prove the computational complexity
of predicting opportunism. Certainly there are multiple ways to extend our
work. One interesting way is to enrich our formalization of value system over
different sets of values, and the enrichment might lead to a different notion of
the compatibility of value systems and different results about opportunistic
propensity. Another way is to consider normative issues in our framework in
addition to the ability and the desire of being opportunistic. Most importantly,
this chapter set up a basic framework to design eliminating mechanisms for

opportunism, which can be seen in the next chapter.
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Opportunism is a behavior that takes advantage of knowledge asymmetry
and results in promoting agents’ own value and demoting others agents’ value.
We want to eliminate such a selfish behavior in multi-agent systems, as it
has undesirable results for the participating agents. However, as the context
we study here is multi-agent systems, system designers actually might not
be aware of the value system for each agent thus they have no idea whether
an agent will perform opportunistic behavior. Given this fact, this chapter
designs two mechanisms for eliminating opportunism given a set of possible
value systems for the participating agents: in the epistemic approach an
agent’s knowledge gets updated so that the other agent is not able to perform
opportunistic behavior, and in the normative approach the system is updated
with a norm so that it is not optimal for an agent to perform opportunistic

behavior.

6.1 Introduction

Opportunistic behavior (or opportunism) is a behavior that takes advantage
of relevant knowledge asymmetry and results in promoting an agent’s own
value and demoting another agent’s value. On the one hand, it is common in
distributed multi-agent systems that agents possess different knowledge, which
enables the performance of opportunism; on the other hand, opportunistic

behavior has undesirable results for other agents who participate in the
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system. Thus, we want to design mechanisms to eliminate opportunism. This
chapter investigates two different mechanisms, which allow us to eliminate
the performance of opportunism in the system from different perspectives.
In our previous chapters, we monitor and predict opportunism given a value
system for an agent, i.e., an agent performed and will perform opportunistic
behavior if he has the value system as we assume. However, as the context
we study here is open multi-agent systems, system designers might not be
aware of the value system for each agent before designing any mechanism to
eliminate opportunism in the system. The goal of this chapter is thus to design
mechanisms to eliminate opportunism given a set of possible value systems of

agents, which contains the value systems with opportunistic propensity.

In mechanism design, a mechanism is an institute, procedure, or game
for determining outcomes [Maskin, 2008] [Nisan, 2007]. Differently, we in
this chapter consider an operation to the system as an indirect mechanism:
a revealing update that can eliminate opportunism through updating the
knowledge of the agent, and a norm that can eliminate opportunism through
changing the environment of the system. More precisely, we argue that agents
will perform opportunistic behavior when they have the ability and the desire
of doing it in Chapter 5. Based on the idea, the first mechanism we propose
is to remove the precondition of opportunism (knowledge asymmetry) by
revealing knowledge to agents such that agents will not be able to perform
opportunistic behavior, which is called an epistemic approach in this chapter;
the second approach we propose is to update the state properties (typically
normative properties) such that it is not optimal for agents to perform it,
which is called a normative approach in this chapter. For the epistemic ap-
proach, since agents’ value systems are unknown to the system designer, there
might exist privacy norms that prevent agents from having the knowledge for
eliminating opportunism. We prove formal properties that allow us to check
whether we can eliminate opportunism and respect agents’ privacy as well.
For the normative approach, we show that the design of the sanction needs to
consider all the agents’ possible value system profiles in order to demotivate

the choice of performing opportunistic behavior.

6.1.1 Chapter Outline

The rest of the chapter is organized as follows:
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Section 6.2 introduces our logical framework, which is a transition system
extended with agents’ epistemic relations and value systems;

Section 6.3 defines opportunistic propensity;

Section 6.4 introduces the types of norms we use in this chapter;
Section 6.5 and Section 6.6 propose two different mechanisms (epistemic
one and normative one) to eliminate opportunism;

Section 6.7 relates our mechanisms to the theory of mechanism design;
Section 6.8 compares two mechanisms, highlighting their advantages and
disadvantages;

Section 6.9 summarizes the chapter.

6.2 Framework

In this section, we introduce the model we use for multi-agent systems. A

transition system consists of agents, states of the world, actions, agents’ epi-

stemic accessibility relations, transitions which go from one state to another by

an action, and a valuation function that returns for each state the properties

of the environment.

Definition 6.2.1. Let ® = {p,q,...} be a finite set of atomic propositional

variables. A transition system over ® is a tuple T = (Agt, S, Act, 7, K, R, so)

where

Agt ={1,...,n} is a finite set of agents;

S is a finite set of states;

Act is a finite set of actions;

78 — 2% is a valuation function mapping a state to a set of propositions
that are considered to hold in that state;

K : Agt — 2°%° s a function mapping an agent in Agt to a reflexive,
transitive and symmetric binary relation between states; that is, given an
agent i, for all s € S we have sK(i)s; for all s,t,u € S sK(i)t and tK(i)u
imply that sK(i)u; and for all s,t € S sK(i)t implies tK(i)s; sK(i)s' is
interpreted as state s’ is epistemically accessible from state s for agent i; we
also use K(i,s) = {s' | sKC(i)s'} to denote the set of agent i’s epistemically
accessible states from state s;

R C S x Act x S is a relation between states with actions, which we
refer to as the transition relation labeled with an action; we require that

for all s € S there ewists an action a € Act and one state s’ € S such
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that (s,a,s’) € R, and we ensure this by including a stuttering action
sta that does not change the state, that is, (s,sta,s) € R; we restrict
actions to be deterministic, that is, if (s,a,s’) € R and (s,a,s"”) € R, then
s’ = §"; since actions are deterministic, sometimes we denote state s’ as
s(a) for which it holds that (s, a,s(a)) € R; we use Ac(s) ={a|3Is' € S:
(s,a,s") € R} to denote the available actions in state s;

e 5o € S denotes the initial state.

In the interest of simplicity, we only consider one action that takes place at a
transition, thus the model is not concurrent.

Now we define the language we use. The language Lka, propositional
logic extended with knowledge and action modalities, is generated by the

following grammar:
pu=plop eV | Kip|(a)p (i€ Agt,a € Act)

The semantics of Lxa are defined with respect to the satisfaction relation |=.
Given a transition system 7 and a state s in 7, a formula ¢ of the language

can be evaluated as follows:

e T,s =piff pcn(s);

o T,sE—piff T,s - ¢;

e T,sE @1V it T,sE @1 or T,sE g

o T,s = K iff for all ¢ such that sK(i)t, T,t = ¢;

e T,s | (a)p iff there exists s’ such that (s,a,s’) € R and T,s" &= ¢;

Other classical logic connectives (e.g.,“A”, “—”) are assumed to be defined as
abbreviations by using — and V in the conventional manner. As standard, we
write T =@ if T,s =@ forall s € S, and |= ¢ if T |= ¢ for all multi-agent
systems 7. Notice that we can also interpret (a)p as the ability to achieve ¢
by action a. Hence, we write ={a)e to mean not being able to achieve ¢ by
action a. In addition of the K-relation being S5, we also place restrictions of
no-forgetting and no-learning based on Moore’s work [Moore, 1980] [Moore,
1984] to simplify our model. It is specified as follows: given a state s in S, if
there exists s’ such that s{a)k(i)s" holds, then there is a s” such that skK(i)s"”
and s’ = s”'(a) hold; if there exists s and s” such that sK(i)s’ and s = s'{(a)

hold, then s(a)K(i)s”. Following this restriction, we have

F Ki((a)p) < (a) Kip.
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In other words, if an agent has knowledge about the effect of an action, he will
not forget about it after performing the action; and the agent will not gain
extra knowledge about the effect of an action after performing the action.
Apart from the above elements, we need to provide an extension to enable
the representation of values from the concept of opportunism. As we did in
the previous chapter, we define a value as a Lxa formula and then a value
system as a total order (representing the degree of importance) over a set
of values, which means that agents can always compare any two values. In
other words, every element in the set of values is comparable to each other
and none of them is logically equivalent to each other. One can see similar
approaches in [Bulling and Dastani, 2016] and [Agotnes et al., 2007].

Definition 6.2.2 (Value System). A wvalue system V = (Val, <) is a tuple
consisting of a finite set Val = {v,...,v'} C Lka of values together with a
strict total ordering < over Val. When v < v', we say that value v’ is more
important than value v as interpreted by value system V. A wvalue system
profile (Vi,Va, ..., Vagt) is a tuple containing a value system V; for each agent

2.

We also use a natural number indexing notation to extract the value of a
value system, so if we have the ordering v < v’ < ... for a value system V/,
then V[0] = v, V[1] =/, and so on. Note that different agents may or may
not have different value systems. We now define a multi-agent system as a
transition system together with agents’ value systems. Formally, a multi-agent

system M is an (n + 1)-tuple:
M= (T, Vi,...,Vn)

where T is a transition system, and for each agent ¢ in 7, V; is a value system.

We now define agents’ preferences over two states in terms of values,
which will be used for modeling agents’ decision making and the effect of
opportunism. We first define how a value gets promoted and demoted along

a state transition:

Definition 6.2.3 (Value Promotion and Demotion). Given a value v and an

action a, we define the following shorthand formulas:

promoted(v, a) := —w A (a)v

demoted(v,a) := v A (a)—w
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We say that a value v is promoted along the state transition (s,a,s’) if and
only if s |E promoted(v, a), and we say that v is demoted along this transition
if and only if s = demoted(v, a).

An agent’s value v gets promoted along the state transition (s, a,s’) if and
only if v doesn’t hold in state s and holds in state s’; an agent’s value v gets
demoted along the state transition (s,a,s’) if and only if v holds in state s
and doesn’t hold in state s’.

We secondly define a function Mpreferred(i, s,s’) that maps a value system
and two different states to the most preferred value that changes when going
from state s to s’ from the perspective of agent i. In other words, it returns
the value that the agent most cares about, i.e. the most important change

between these states for the agent.

Definition 6.2.4 (Most Preferred Value). Given a multi-agent system M,
an agent i and two states s and s’, function Mpreferred : Agt x S x S — Val

is defined as follows:

Mpreferred(i, s, s’)M =

Vi[min{j | Vk > j : M, s = Vi[k] & M, s = Vi[k]}]

We write Mpreferred(i,s,s’) for short if M is clear from context.

For example, given agent i’s value system v < v < w, if formula
u,—w and —w hold in state s and formula u,v, and —w hold in state s,
function Mpreferred(i,s,s’) will return v because the most preferred value w
remains the same in both states. With this function we can define agents’
preference over two states. We use a binary relation “3” over states to

represent agents’ preferences.

Definition 6.2.5 (State Preferences). Given a multi-agent system M, an
agent i and two states s and s', agent i weakly prefers state s’ to state s,

denoted as s <M s, iff
M, s |= Mpreferred(i, s, s’) = M, s’ |= Mpreferred(i, s, s")

We write s 3; s’ for short if M is clear from context. As standard, we also
define s ~; s’ to mean s 3; 8’ and s’ Z; s, and s <; s’ to mean s 3; s’ and
s #i 8. Moreover, we write S 3; S’ for sets of states S and S’ whenever
Vse S, Vs'eS :s3s.
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The intuitive meaning is that agent i weakly prefers state s’ to s if and only if
the agent’s most preferred value does not get demoted (either stays the same
or gets promoted). Using the same example for function Mpreferred, given
agent i’s value system u < v < w, if formula u,—v, and —w hold in state s
and formula u, v, and —w hold in state s’, what the agent cares about is value
u. Since it doesn’t hold in state s but holds in state s’, agent i will prefer
state s’ to state s. One can refer to Chapter 5 for further discussion about
the definition. Clearly there is a correspondence between state preferences
and value promotion or demotion by an action: given a model M with agent

i, state s and available action a in s, and let v* = Mpreferred(i, s, s(a)),

s =i s{a) & M, s = promoted(v”, a)
s >; s{a) & M, s | demoted(v”, a)
s ~; s{a) & M, s E —(demoted(v*, a) V promoted(v*, a))

One can refer to Chapter 5 for the proof. Moreover, the 3; relation is reflexive,
transitive and total, which have been proved in our previous chapter. It is
possible that agents have different preferences over states, since they may not
share the same value system.

Since we have already defined values and value systems as agents’ basis
for decision making, we can start to apply decision theory to reason about
agents’ decision-making. Given a state in the system, there are several actions
available to an agent, and he has to choose one in order to go to the next
state. Before choosing an action to perform, an agent must think about which
actions are available to him. We have already seen that, for a given state
s, the set of available actions is Ac(s). However, since an agent only has
partial knowledge about the state, we argue that the actions that an agent
knows to be available is only part of the actions that are physically available
to him in a state. For example, an agent can call a person if he knows the
phone number of the person; without this knowledge, he is not able to do it,
even though he is holding a phone. Recall that the set of states that agent
i considers as being the actual state in state s is the set K(4,s). Given an
agent’s partial knowledge about a state as a precondition, he knows what
actions he can perform in that state, which is the intersection of the sets of

actions physically available in the states in this knowledge set.

Definition 6.2.6 (Subjectively Available Actions). Given an agent i and a

state s, agent i’s subjectively available actions are the set:
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Ac(i,s) = ﬂ Ac(s").

s'eK(i,s)

Because a stuttering action sta is always included in Ac(s) for any state s,
we have that sta € Ac(i, s) for any agent i. When only sta is in Ac(s, s),
we say that the agent cannot do anything because of his limited knowledge.
Obviously an agent’s subjectively available actions are always part of his
physically available actions (Ac(i, s) C Ac(s)). Based on agents’ rationality
assumptions, he will choose an action based on his partial knowledge of
the current state and the next state. Given a state s and an action a, an
agent considers the next possible states as the set K(i, s{a)). For another
action a’, the set of possible states is K(i,s(a’)). The question now becomes:
How do we compare these two possible set of states? Clearly, when we have
K (i, s{a)) <; K(i,s(a")), meaning that all alternatives of performing action
a’ are more desirable than all alternatives of choosing action a, it is always
better to choose action a’. However, in some cases it might be that some
alternatives of action a are better than some alternatives of action a’ and
vice-versa. In this case, an agent cannot decisively conclude which of the
actions is optimal, which implies that the preferences over actions (namely

sets of states) is not total. This leads us to the following definition:

Definition 6.2.7 (Rational Alternatives). Given a state s, an agent i and
two actions a,a’ € Ac(i, s), we say that action a is dominated by action a’ for
agent i in state s iff K(i,s{a)) <; K(i,s(a’}). The set of rational alternatives
for agent i in state s is given by the function a} : S — 24, which is defined

as follows:

a;(s) = {a € Ac(i,s) | ~3a’ € Ac(i,s):a# a’ and

a’ dominates a for agent i in state s}.

The set aj(s) are all the actions for agent ¢ in state s which are available
to him and are not dominated by another action which is available to him.
In other words, it contains all the actions which are rational alternatives for
agent 3. More discussion can be found in Chapter 5 We can see that the
actions that are available to an agent not only depend on the physical state,
but also depend on his knowledge about the state and the next state. The

more he knows, the better he can judge what his rational alternative is. In
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other words, an agent tries to make a best choice based on his value system

and incomplete knowledge.

6.3 Defining Opportunistic Propensity

An agent will perform opportunistic behavior when he has the ability and
the desire of doing it, which is called opportunistic propensity in [Luo et al.,
2017]. By intuition, we can eliminate opportunism in the system by remov-
ing the ability or the desire. In this section, we will provide the definition
of opportunistic propensity. Opportunism is a selfish behavior that takes
advantage of relevant knowledge asymmetry and results in promoting one
agent’s own value and demoting another agent’s value. It means that it is
performed with the precondition of relevant knowledge asymmetry and the

effect of value opposition. Firstly, knowledge asymmetry is defined as follows:

Definition 6.3.1 (Knowledge Asymmetry). Given two agents i and j, and
a formula ¢, knowledge asymmetry about ¢ between agent i and j is the

abbreviation:
Knowasym(i, j, ¢) 1= Kip A =Kjp A Ki(=Kjp).

It holds in a state where agent ¢ knows ¢ while agent j does not know ¢ and
this is also known by agent . It can be the other way around for agent ¢ and
agent j. But we limit the definition to one case and omit the opposite case

for simplicity. Now we can define opportunism as follows:

Definition 6.3.2 (Opportunism Propensity). Given two agents ¢ and j, the
assertion Opportunism(i, 7, a) that action a performed by agent i is opportun-

istic behavior is defined as:

Opportunism(s, j,a) :=

Knowasym (%, j, promoted(v”, a) A demoted(w", a))

where v* = Mpreferred(i, s, s(a)) and w* = Mpreferred(j,s,s(a)). We use
OPP(i, 7, s) to denote the set of opportunistic behavior performed by agent 4

to agent j in state s. That is,

OPP(i,7,s) = {a € Ac(i,s) | M, s = Opportunism(z, j, a)}.
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6 Eliminating Opportunism

This definition shows that if the precondition, Knowasym, is satisfied in a
given state then the performance of action a will be opportunistic behavior.
As the definition is given with the value systems of agent ¢ and agent j, a
value system profile (V;, V;) corresponds to one type of opportunistic behavior.
The asymmetric knowledge that agent ¢ has is about the change of the truth
value of v* and w* along the transition by action a, where v* and w* are
the propositions that agent ¢ and agent j most prefer along the transition
respectively. It follows that agent j is partially or completely not aware of
it. Definition 6.3.2 follows our definition of opportunism for reasoning about
opportunistic propensity of an agent in a state. As is stressed in Chapter 3,
opportunistic behavior is performed by intent rather than by accident. In this
chapter, instead of explicitly modeling intention, we interpret it from agents’
rationality that they always intentionally promote their own values. We can

derive a proposition from the definition, which is the effect of opportunism.

Proposition 6.3.1 (Value Opposition). Given a multi-agent system M and
an opportunistic behavior a performed by agent i to agent j in state s, action
a will promote agent i’s value but demote agent j’s wvalue, which can be

formalized as
M, s = Opportunism(s, j,a) implies s <; s(a) and s >, s(a).

Proof. M,s = Opportunism(s, j,a) implies M,s = K;(promoted(v*,a) A
demoted(w™*,a)). And thus, since all knowledge is true, we have that M, s |=
promoted(v*, a) Ademoted(w*, a). Since v* = Mpreferred(i, s, s(a)) and w* =
Mpreferred(j, s, s(a)), using Definition 6.2.5, we can conclude s <; s{a) and

s> s{a).

Example 6.1. We reuse the example in our previous chapters. Figure 6.1
shows the example of selling a broken cup: The action selling a cup is denoted
as sell and we use two value systems Vs and Vi for the seller and the buyer
respectively. State s1 is the seller’s epistemic alternative, while state s1 and
s2 are the buyer’s epistemic alternatives. We also use a dashed circle to
represent the buyer’s knowledge KC(b, s1) (not the seller’s). In this example,
K(s,s1) C K(b,s1). Moreover,

hm = Mpreferred(s, s1, s1(sell)),

—hb = Mpreferred(b, s1, 1 (sell)),
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meaning that the seller only cares if he gets money from the transition, while
the buyer only cares about if he doesn’t have a broken cup from the transition.
Note that having a broken cup (hb) is not the same as the cup is broken. We

also have
M, s1 = K(promoted(hm, sell) A demoted(—hb, sell)),

meaning that the seller knows the transition will promote his own value while
demote the buyer’s value in state s1. For the buyer, action sell is available in
both state s1 and s2. However, hb doesn’t hold in both si(sell) and sa2(sell),
so he doesn’t know whether he has a broken cup or not after action sell is
performed. Therefore, there is knowledge asymmetry between the seller and
the buyer about the value changes from sy to si(sell). Action sell is potentially

opportunistic behavior in state si.

{=hm,=hb} {hm,hb}
51 PY sell__, (] \\‘51<sell>
w sell ‘ \

x — |
52 @ . @  sy<sell>

{~hm,~hb} {hm,~hb}

Figure 6.1. Selling a broken cup.

6.4 Norms

Research has shown that we can regulate and eliminate agents’ behavior
through setting norms in the system [Moses and Tennenholtz, 1995] [Shoham
and Tennenholtz, 1992]. Due to the undesirable result of opportunistic be-
havior, it is valuable to study mechanisms for eliminating opportunism with
norms. In Gibbs’s influential article, norms are defined as a collective evalu-
ation of behavior in terms of what it ought to be and/or particular reactions
to behavior such as sanctions and a particular kind of conduct [Gibbs, 1965].
It means that norms should prescript desirable or undesirable states or actions,
and that the enforcement policies can be separated from the specification of

norms. We will follow this definition to formalize norms in this chapter.
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There are two types of norms we will consider in the following sections.
One is called privacy norms that are implemented for respecting agents’
privacy. For instance, we wouldn’t require the seller to share the original price
of the cup to the buyer. Hence, it is about knowledge asymmetry between

different agents. It is formalized as follows:

Definition 6.4.1 (Privacy Norms). Let i and j be two agents, and v be a
formula in Lxa, a privacy norm is in the form of Knowasym(i, j,7), stating
that agent © should have privacy about the fact v from agent j. Given a multi-
agent system M with a state s, we say that privacy norm Knowasym(s, j, )
in state s is respected if M,s |= Knowasym(i,j,7), and we use II(s)m to
denote the set of privacy norms that are implemented in state s. We will write

I1(s) for short if it is clear from context.

In this chapter, we assume that there are some privacy norms that are
supposed to be respected in the system. For instance, privacy norm
Knowasym(s, b, oprice) is interpreted as the seller should have privacy about
the original price from the buyer. Privacy norms are state-sensitive in the
reveal that a privacy norm can be active in a state while dis-active in another
state.

The other type of norms we consider is enforcement norms, which are
associated with appropriate sanction to motivate or demotivate a state. We
will give a language to construct norms. We first use I' C ® to denote a set of
sanction propositions. Given a multi-agent system, we construct the language

of norms in the following way:
vi=(p,SA) where ¢ € Lprop, SA € P(T).

The intuitive meaning of norms in this form is that whenever the system
ends up in a ¢-state, it will be updated with set SA that consists of sanction
propositions, regardless the action that brings about the (-state. Note that
a sanction not only can be negative for demotivating p-states, but also can
be positive for encouraging @-states, depending on an agent’s preferences
with his value system. For example, we can construct a negative norm
(moneys Abrokeny, { fine}) to demotivate the state where the seller has money
and the buyer has a broken cup with a fine to the seller. This is the only form
of norms we consider in this chapter. The reason why we use it in this chapter
is because it simplifies our semantics of update logic so that we can focus on

the investigation of how to eliminate opportunism with a norm. One can refer
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to Chapter 4 for the specification of more forms of norms, and [Knobbout
et al., 2016b] for the update semantics when actions are explicitly stated in
the norm.

There are relationships between the two types of norms. Both of norms
prescribe the desirable state of affairs. However, we use them in this chapter
for different purposes: the enforcement policies are not stated in the privacy
norms, as the issue we want to tackle with privacy norms is whether our
revealing update might reveal the information that we want to keep secret
through privacy norms, which is irrelevant to enforcement policies (Section
6.5); for enforcement norms, we simplify the prescription of a desirable state of
affairs as a formula and state sanctions in the language as enforcement policies,
since we want to study how agents’ decision to be opportunistic is affected
by sanctioning (Section 6.6). Note that, according to the basic schemes of
normative implementation, both norms belong to soft constraints that it is
possible to violate. The two sections below will investigate mechanisms for

eliminating opportunism with the two types of norms in detail.

6.5 Eliminating Opportunism Using an Epistemic Ap-

proach

One possible way to eliminate opportunism in the system is to remove the
possibility of being opportunistic for agents. Since the precondition of op-
portunistic behavior is knowledge asymmetry, we can simply prevent the
satisfaction of knowledge asymmetry in all states so that it is impossible for
agents to perform opportunistic behavior. If we are interested in how the
system will behave after updating agents’ knowledge, we enter the field of
dynamic epistemic logic. Dynamic Epistemic Logic is the study of modal
logics of model change by epistemic and doxastic consequences of actions
such as public announcements and epistemic actions [Baltag and Renne,
2016] [Van Ditmarsch et al., 2007]. Opportunism can be eliminated through
announcing certain information to the agent involved, such that knowledge
asymmetry is removed. This requires the system or someone else in the system
to be aware of the information that needs to be announced. Since the system
is not aware of the value system of each agent but has a finite set of possible
value systems for each agent, we argue that it is still practical for the system
to reveal the important facts to the agent involved. For example, given two

possible value systems of the buyer, namely one that cares about the usage
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of the cup and the other one that cares about the outlook of the cup, the
system can make a 3D scan of the cup and then send it to the buyer, so that
the buyer gets valuable information about the transaction to decide whether
to buy the cup. The event or the procedure is called a revealing update
that is performed by the system and results in updating agents’ knowledge,
and we want to study how to eliminate opportunism by revealing updates in
this section. In this chapter, we denote a revealing update as reveal(y) that
reveals whether or not formula ¢ is true. Given a multi-agent system, our

logical language Lxap is an extension of Lxa as follows:

pu=p| @ |1V | Kip|(a)p | [reveal(p)ilyy (i € Agt,a € Act)

As is standard, formulas with revealing updates are evaluated as follows:

given a multi-agent system M and a state s in M,

o M, s |= [reveal(yp);]y iff M|reveal(p)i,s =

where M|reveal(p); = (Agt, S, Act, 7, K', R, s0, V1, ..., Vn) and K’ is defined

as follows:
sK'(i)s" iff (sKC(4)s" and (M, s |= ¢ iff M, s = @)).

The above semantics shows that, after the system performs the revealing
update reveal(y) to agent 7, agent i’s knowledge about ¢ gets updated, in the
way that the access regarding to the indistinguishability of the truth value of
© is removed while the rest of the model remains unchanged. In other words,
if ¢ is true in state s, the epistemic access of agent i that connects state s
with the states where ¢ is false will be removed; if ¢ is false in state s, the
epistemic access of agent ¢ that connects state s with the states where ¢ is true
will be removed. Notice that, after performing a revealing update, it is always
possible to make the system consistent with our no-learning and no-forgetting
restriction by repeatedly removing corresponding epistemic access. As this
part of making consistent is not what we want to study in this chapter, we
skip its formal definition. We can also see update reveal(y) as a process of
monitoring ¢ performed by the system for the given agent, distinguishing
states which satisfy ¢ from those which do not satisfy ¢. Note that this
monitor returns a value from the set {¢, =@}, while the monitor we defined in
4 returns a truth value from the set {true, false} indicating whether an given

formula is detected. Hence, in the rest of the chapter we always discuss two
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cases where ¢ holds and doesn’t hold in the actual state for any definition
and proof. We have the following validity, given a multi-agent system M, a

revealing update reveal(y);,
M = ¢ — [reveal(p):]Kip,

which means that if ¢ holds then agent i knows ¢ after ¢ is revealed. Further,
if the system reveals something to an agent that he already knew, the model

will remain the same. We formalize it as
if M E K;p, then M|reveal(y); = M.

This is because the revealing update will not cause any epistemic access
removal from the model.

In this chapter, we want to investigate how to eliminate the performance
of opportunism, typically through removing knowledge asymmetry in the
system in this section. In order to do that, we firstly introduce the notion
Eliminating Opportunism by a Revealing Update: we say that a revealing
update can eliminate opportunism if and only if the revealing update disables
its performance, namely precondition Knowledge Asymmetry is removed by

the revealing update. Formally,

Definition 6.5.1 (Eliminating Opportunism by a Revealing Update). Given
a multi-agent system M, an opportunistic behavior a performed by agent i
to agent j in state s, and a revealing update reveal(§);, we say the revealing

update can eliminate opportunistic behavior a iff
M, s = [reveal(€) ]~ Knowasym (4, j, promoted(v*, a) A demoted(w”, a)),

where v* = Mpreferred(i, s, s{a)) and w* = Mpreferred(j, s, s(a)).

This definition shows how a revealing update eliminates opportunistic beha-
vior: revealing update reveal(§); disables the performance of opportunistic
behavior ¢ by making knowledge asymmetry false in the new system. Notice
that based on the semantics of our framework, action a, which was opportun-
istic, is still not removed. However, since there is no knowledge asymmetry
between agent ¢ and agent j, agent j can prevent agent ¢ from performing
opportunistic behavior a, or can still accept it. In the latter case, action a
is no longer opportunistic as knowledge asymmetry is false. For instance,

sell and buy are synchronized to be one action. After the system reveals to
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the buyer that the cup is broken, the buyer will not buy the cup so that
the deal cannot be done, or the buyer will still buy the broken cup as it is
his only choice, but the latter case is not opportunistic behavior since there
is no knowledge asymmetry about the deal. We can immediately have the
following proposition, which shows the relationship between revealing updates

and asymmetric knowledge:

Proposition 6.5.1. Given a multi-agent system M, an opportunistic be-
havior a performed by agent i to agent j in state s and a revealing update

reveal(§);, the revealing update can eliminate opportunistic behavior a if

e in the case M, s = ¢, M = K;(§ — (promoted(v*, a) A demoted(w™, a))),
e in the case M,s = —¢ M [E K;(-¢ — (promoted(v*,a) A
demoted(w*, a))),

where v* = Mpreferred(i, s, s(a)) and w* = Mpreferred(j, s, s(a)).

Proof. In the case where & holds in state s, we have M,s = K & after
reveal(§); is performed. Because M E K;(§ — (promoted(v*,a) A
demoted(w™, a))) implies M |= K;§ — Kj(promoted(v*, a)Ademoted(w™, a)),
we have M,s = Kj(promoted(v*,a) A demoted(w*,a)). Thus, there
is no knowledge asymmetry between agent i and agent j about formula
promoted(v*, a) A demoted(w*, a). Therefore, according to Definition 6.5.1,
revealing update reveal(§); eliminate opportunistic behavior a. We can prove

it in a similar way when =& holds in state s.

That is what we can directly derive from the definition of opportunism: to
eliminate opportunism by removing the precondition of knowledge asymmetry
between different agents. Notice that agent j is not aware of the whole formula
promoted(v*, a) A demoted(w”™, a) but might know part of the formula, for
example demoted(w™, a). In that case, the system needs to reveal £ to agent
j and agent j knows £ — promoted(v*, a) or £ — promoted(v*,a).

Ideally we can let every agent have exactly the same knowledge such
that there is no knowledge asymmetry thus opportunism will never occur.
However, it is difficult to implement such an extreme case in reality, because
sometimes we would like to design a system that can respect agents’ privacy,
which is realized through the implementation of privacy norms. However,
since the system designer is not aware of agents’ value systems thus doesn’t
know to reveal to agents for eliminating opportunistic behavior, there might

exist privacy norms that prevent the system from revealing to agents the
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information that can eliminate opportunism. Namely, the revealing update
performed by the system might reveal the information that the system wants
to keep secret through setting a privacy norm. One simple example is that the
system wants to reveal ¢ to an agent for eliminating opportunistic behavior
but as is stated in a privacy norm the agent should not be aware of the
information about . Hence, there exists a balance between respecting of
agents’ privacy and eliminating of opportunism. In other words, the system
can perform revealing updates to agents for eliminating opportunistic behavior
but also lower the privacy level in the system. In principle, given a set
of possible value system profiles and a privacy norm, the system has to
consider every possible value system profile in order to identify an action
to be opportunistic, and then think about whether there exists a revealing
update that can eliminate opportunistic behavior and respect the privacy
norm as well. Since the identification of opportunism has closer relationship
with the normative approach we will discuss next section, in this section we
assume that opportunistic behavior is given and we will focus on the study
about the trade-off between eliminating opportunistic behavior and respecting
the privacy norm. Namely, suppose we already identified an action to be

opportunistic behavior with a possible value system profile, a question arises:

Research Problem 1. Given opportunistic behavior and a privacy norm,
does there exist a revealing update that can eliminate opportunistic behavior

and respect the privacy norm as well?

Intuitively, an agent gets to know something after something was revealed
to the agent, but the revealing update might disrespect another agent’s
privacy, which is stated by our privacy norms in the system. The following
proposition shows that in which case a revealing update respects a privacy

norm:

Proposition 6.5.2. Given a multi-agent system M in a state s, a privacy
norm Knowasym(i, 7,7) € II(s) with respect to formula v, and a revealing up-
date reveal(§);, the revealing update respects privacy norm Knowasym(i, 7,)
if:

e in the case M,s =&, M,s = -K;(§ — ),

e in the case M, s |= =€, M, s = ~K;(=§ — 7),

Proof. In order to respect privacy norm Knowasym(z, j,7), we have to en-
sure M, s |= [reveal(§);]-K ;v so that M, s |= [reveal(§);] Knowasym(z, 7, )
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(Definition 6.3.1). In the case where & holds, M, s |= [reveal(§);]K;& after the
revealing update is performed to agent j. Furthermore, M,s = —K;(§ — )
implies that there exists s’ € K(j,s) : M,s" |E —=(¢§ — ~), which is equi-
valent to M,s’ = & A —y. Since agent j’s epistemic access which con-
nects —&-state to state s gets removed after the revealing update is per-
formed, state s’ where € A =y holds is still in agent j’s knowledge set.
In other words, there exists s' € K(j,s) : M|reveal(§);,s' E & A —y.
Therefore, we can conclude that M, s {= [reveal(§);]-K;vy and it leads to
M, s |= [reveal(€) ;] Knowasym(i, j,v). We can prove it in a similar way when
=& holds in state s.

The proposition shows that privacy norm Knowasym(%, j,7) is respected if
agent j is not aware of the inference. Reversely, if the above statement doesn’t
hold, the revealing update will reveal the information that the system wants
to keep in private between agents. From Proposition 6.5.1 and Proposition
6.5.2, we can see our research problem is equivalent to the problem whether
there exists a formula & such that the formulas from both propositions hold.

Therefore,

Proposition 6.5.3. Given a multi-agent system M in state s, an op-
portunistic behavior a performed by agent i to agent j, a privacy norm
Knowasym(i, j,v) € II(s) and a revealing update reveal(§);, reveal(§); can
eliminate opportunistic behavior a and respect privacy norm Knowasym(i, 7, )
if:
e in the case M,s = & M,s E K;j(§ — (promoted(v*,a) A
demoted(w™*,a))) A ~K;(§ — ),
e in the case M,s E =& M,s E K;j(-( — (promoted(v*,a) A
demoted(w™,a))) A =K;(=& = ),

where v* = Mpreferred(i, s, s(a)) and w* = Mpreferred(j, s, s(a)).

Proof. The statement is the combination of the statements from Proposition
6.5.1 and Proposition 6.5.2. When agent j is aware of & — promoted(v*, a) A
demoted(w™, a), reveal(§); can eliminate opportunistic behavior a; when agent
j is not aware of & — =, revealing update reveal(§); respects privacy norms
Knowasym(i, 7,7). Again, we can prove it in a similar way when =& holds in

state s.

Essentially, the above proposition shows the relation among a revealing

update, agents’ value systems and a privacy norm: if what an agent cares
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about, which his value system reflects, is not respected by the system through
setting corresponding privacy norms in the system, such a revealing update to
the agent doesn’t exist. In other words, it is dependent on the compatibility
between agents’ value systems and the privacy norms in the system. For
example, for the case where £ holds, in order to eliminate opportunistic
behavior a, the system has to reveal (verify) £ to agent j, who knows that
¢ implies value opposition along the transition. However, if he is also aware
of the formula & — ~, such a revealing update will reveal to agent j the
information about «y, which is against the privacy norm. Hence, there is no
revealing update that can eliminate opportunistic behavior a and respect
the privacy norm with respect to v as well. Further, sometimes formula
& — 7 is valid in M thus it becomes universal knowledge in the system.
In that case, revealing update reveal(¢) will always reveal the information
about v we want to keep in private. Thus, we have to remove privacy norm
Knowasym(4, ,) so that it is allowed to perform revealing update reveal(§)
to eliminate opportunistic behavior a, which can be seen as an alternative

normative approach apart from using enforcement policies as in Section 6.6.

Example 6.2. We again consider the scenario shown in Example 6.1. There

is knowledge asymmetry between the seller and the buyer,
Knowasym(s, b, promoted(hm, sell) A demoted(—hb, sell)),
which is equivalent to
Knowasym(s, b, ~hm A (sell)hm A =hb A (sell)hb).

In this scenario the seller knows the transition will promote his own value
while demote the value of the buyer, but the buyer is not aware of the demotion
part, as (sell)hb doesn’t hold in both state s1 and state sa. Now the buyer
performs revealing update reveal(broken)y to check whether the cup is broken
or not, and he also knows that his value will get demoted while the buyer’s

value will get promoted if the cup is broken, that is,
M, s |= Ky(broken — (promoted(hm, sell) A demoted(—hb, sell))),
which implies

M, s = Kybroken — Kp(promoted(hm, sell) A demoted(—hb, sell)).
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6 Eliminating Opportunism

Since the cup is actually broken (M, s |= broken), the buyer knows the cup
is broken after the system performs revealing update reveal(broken)y to him
(M, s = Kybroken) and thus he knows his value will get demoted while the

buyer’s value will get promoted,
M, s |= Ky(promoted(hm, sell) A demoted(—hb, sell)).

Therefore, there is no knowledge asymmetry about the transition between the
seller and the buyer (shown in Fig. 6.2), which prevents the seller from selling
the broken cup to the buyer, according to Definition 6.53.2. Next we suppose
a privacy norm Knowasym(s, b, oprice) in the system, which means that the
seller should keep the original price in private. Since inference broken —

oprice is not valid in M intuitively, the buyer is not aware of it,
M, s |= =Ky (broken — oprice).

Therefore, revealing update reveal(broken), won’t reveal the original price to
the buyer and privacy norm Knowasym(s, b, oprice) is still respected in the

updated system.

{-hm,=hb,broken} {hm,hb}
@ __sell |/ @ si<sell>
‘: [ sell i f
x — ;
S @ . @ /sy<sell>

{—-hm,—-h&—-broken} {hm,i-'hb}

reveal(broken),

{=hm,-hb,broken} {hm,hb}

sell
;@ —> @ si<sell>

Figure 6.2. Update by revealing update reveal(broken)y.
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6.6 Eliminating Opportunism Using a Normative Ap-

proach

The first approach we discussed in the previous section is to remove know-
ledge asymmetry so that it is impossible for agents to perform opportunistic
behavior in the system. However, as we mentioned before, sometimes we are
supposed to respect agents’ privacy in the sense that agents are allowed not
to share certain information with other agents, which creates the possibility
of opportunism. Instead of finding a balance between respecting of agents’
privacy and eliminating opportunism, we may consider another approach that
makes it not optimal for agents to perform opportunistic behavior. Namely,
the pain or sadness of being opportunistic is more than the happiness or
benefits of being opportunistic in order to deter agents from choosing to
perform opportunistic behavior.

In Chapter 5, an agent forms his rational alternatives based on his limited
knowledge about the current state and his value system without considering
any norm. The approach we propose in this section is to eliminate oppor-
tunism through adding a norm to the system such that it will direct agents
not to be opportunistic. Given the language in which we construct a norm in
Section 6.4, we show how to update a multi-agent system using this form of
norms, which is inspired by [Knobbout et al., 2016b]. We use (M, s)[v] to
denote the updated system. Given a multi-agent system M in state s and a
norm v = (¢, SA), (M, s)[v] = (M]v], s[v]) such that:

o« M[v] = (Agt, S, Act, 7', K, R, s0, Vi, ..., V), where for every s € S:

m(s)USA if Ji€ Agt:s € K(i,s") and M, s = ¢;

m(s) otherwise.

The semantics show that we only update the state properties while the
frame of the system still remains unchanged. In order to implement the
norm in the system, we not only update the state where ¢ is satisfied (the
norm is applicable), but also update all the possible states for all the agents
in that state. In this way, agents are aware of the norm, which influences
their decision making in the new system. That is, if M, s = ¢, then for all
1€ Agt,p € SA,
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6 Eliminating Opportunism
(M, s)[v] = Kip.

Based on our update logic with norms and agents’ decision making, we
will investigate how norms can eliminate opportunism. Firstly, we need to
consider whether an update with norms can change agents’ decision making.
Regarding the subjectively available actions, since agents’ epistemic access-
ibility structures and the physically available actions in each state remain
the same after we update the system with a norm, agents’ subjective avail-
able actions are not changed by the update. That is, Ac(i,s) = Ac(z, s[v]).
However, agents’ rational alternatives are not necessarily the same as before
the update. This is because state properties are updated with sanctions,
which might lead to the change of agents’ state preferences. For example, if
K (3, s{a)[v]) <i K(i,s{a’)[v]) doesn’t hold after the update, action a is not
dominated by action a’. We will eliminate opportunism based on this idea.
Like what we did with our epistemic approach, we firstly introduce the notion
Normative Elimination: we say that a norm can eliminate opportunism if and
only if the opportunistic behavior is not in an agent’s rational alternatives

after the system is updated with the norm. Formally,

Definition 6.6.1 (Eliminating Opportunism by a Norm). Given an oppor-
tunistic behavior a performed by agent i to agent j in state s, and a norm v,

we say that norm v can eliminate opportunistic behavior a iff
a & a;i (s[v]).

It is no longer optimal to perform opportunistic behavior a after the system
is updated with norm v. Following Definition 6.2.7, opportunistic behavior a
is not in agent 4’s rational alternatives whenever it is dominated by another
action a’. Notice that the dominating action is not necessarily an rational
alternative. Additionally, if norm v can eliminate opportunistic behavior a,
the agent knows that there are at least two different actions available to him,
ie. |Ac(i, s[v])| > 2.

In our previous work, we monitor and predict the performance of oppor-
tunism with the given agents’ value systems as an assumption. However, since
the context we consider here is multi-agent systems, the system designers
might not be aware of the preferences of the participating agents. For example,
what the seller most cares about in the transaction might be his reputation,

not necessarily money. This information must slowly be generated as the
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6.6 Eliminating Opportunism Using a Normative Approach

Table 6.1. Eliminating opportunism by norm v. We use O and N to denote
being opportunistic and non-opportunistic respectively with respect to an action
and a value system profile. Notation O or N with an underline means that the

corresponding action is in agent ¢’s rational alternatives..

/

~

| a]a | a|a
vV |O|N 5w [o|N
Vv | N|o viv)|N]o

system is executed. The system designer is to design a mechanism given a set
of possible an agent’s preferences; the agent cannot do better by trying to
manipulate the mechanism for its own gain. As we mentioned before, given a
set of possible value system profiles, the system has to consider every possible
value system profile in order to identify an action to be opportunistic. Once
the precondition of knowledge asymmetry is satisfied, an agent is capable
to be opportunistic to another agent; but the system designer has no idea
which action the agent prefers and whether a given action is opportunistic
behavior, as the value systems of both agents are unknown to the system

designer (according to Definition 6.3.2). Therefore, the problem becomes:

Research Problem 2. Given a set of possible value system profiles \7, can
we design a norm v with appropriate sanction such that for every value system

profile (V;, V_;) € V norm v can eliminate opportunistic behavior?

Based on Definition 6.6.1, norm v can eliminate an agent’s opportunistic
behavior if and only if for every value system profile sanction SA removes
an action, which was opportunistic behavior in the original system, from the
agent’s rational alternatives. For example, given two possible value system
profiles for agent i and agent j {(Vi, V), (V/,V/)} and two actions a and
a’ that are subjectively available to agent i, agent i will perform action a,
which is opportunistic, with value system profile (V;, V;); while agent i will
perform action a’, which is opportunistic, with value system profile (V/, V}).
We need to design a norm v such that agent i will perform action a’, which is
non-opportunistic, with value system profile (V;, V;), and agent ¢ will perform
action a, which is non-opportunistic, with value system profile (V/,V}), as
illustrated the table below.

Based on Definition 6.6.1, we can characterize our research problem as

follows: given a multi-agent system M with two agents 7 and j in state s, a
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6 Eliminating Opportunism

set of possible value system profiles \A/, and a norm v, whether
V(Vi, Vi) €V i a ¢ af (sv]).

We will use an example to show how a norm with sanction can or cannot

eliminate opportunistic behavior.

Example 6.3. We again discuss the scenario shown in Example 6.1, where
the seller only considers state s as possible for simplification. Apart from the
notations that were used, we use hr to denote having good reputation from
the deal and hp to denote having a pretty cup. The seller knows that he can
either sell the broken cup with a normal price (sell) or keep it (keep). Note
that action keep is actually stuttering action sta. Suppose the seller has two
possible value systems: Vs where hr < hm, and V., where hm < hr, and the
buyer has one possible value system Vi, where hp < —hb. Thus, we have the
set V = {(Vs, Vb), (VZ, Vi) } containing two value system profiles for the seller
and the buyer. The problem is that we have no idea which value system the
seller has, thus we can only say that it is possible for the seller to sell the
broken cup to the buyer without letting him know the cup is broken, which is
possibly opportunistic behavior.

For value system profile (Vs,Vs), the seller will sell the broken cup to the
buyer with a normal price and it is regarded as opportunistic behavior, because
it most promotes the seller’s value (bringing about hm) but demotes the buyer’s
value (bringing about —hb). For value system profile (V{,Vy), the seller will
keep the broken cup, because selling a broken cup to the buyer will demote his
most preferred value (bringing about —hr). However, it is interesting to see
that the seller will never be opportunistic no matter whether he will perform
sell or keep, because action sell will bring about —hr thus demoting his most
preferred value and action keep will not lead to value opposition. The above

analysis is illustrated through the following figure and table.

Table 6.2. Buyer’s decision-making with different value systems.

‘ sell ‘ keep
(VW) | 0 | N
Vive) | N | N

Next we are going to update the system with norm v such that action sell
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{hm,hb,=hr,hp}

® s<sell>
{=hm,~hb,hr,~hp} 5!
S . %‘Em:“hblhr'—hp}
[ ]

s<keep>

Figure 6.3. System before update.

will be dominated by action keep, where v = (hm A hb, {sanction}), illustrated

through the following table:

Table 6.3. System updated with norm v. We use O and N to denote being oppor-
tunistic and non-opportunistic respectively with respect to an action and a value
system profile. Notation O or N with an underline means that the corresponding
action is in agent ¢’s rational alternatives..

‘ sell ‘ keep ‘ sell ‘ keep
(m,% )Jo | N 5 (W | N | N
viv) | N | N Vi) | N | N

Let us first consider value system profile (Vs, V). Because M, s{sell) =
hm A hb and the seller only considers state s(sell) as possible, state s{sell)
gets updated with set {sanction}. If the seller has value system Vs, action
keep will be dominated by action sell, because action sell will promote his
most preferred value hm. In order to enforce action keep in the new system,
we can either motivate action keep or demotivate action sell by norm v.
Since we have the restriction that norm v functions directly on opportunistic
behavior, we will not consider the latter case. In other words, sanction has to
be negative for the seller and thus value —sanction has to be more preferred
by the seller than value hm in all cases, that is, for all t € K(s,s(sell)[v])
and t' € K(s, s(keep)[v]) : M,t = —sanction and M,t' |= sanction, where
—sanction = Mpreferred(s,t,t'). Note that in the new system action sell
is mot opportunistic behavior any more, as it will demote the seller’s most
preferred value if he performs it.

We now consider value system profile (VJ,Vy). If the seller has value
sytem V., it really doesn’t matter whether the seller cares about the sanc-

tion or not, because: if —sanction < hr, then for all t € K(s,s(sell)[v])
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6 Eliminating Opportunism

and t' € K(s,s(keep)[v]) : M,t = hr and M,t = —hr, where hr =
Mpreferred(s,t,t'), which means that the seller still perfers action keep.
If hr < —sanction, then —sanction = Mpreferred(s,t,t'), which is the same
as the case where the seller has value system Vs. Thus, no matter how big the
sanction is for the seller with value system V., he will always choose action
keep, which is not opportunistic behavior before the update.

In summary, given a set of possible value system profiles, in order to
remove action sell from the seller’s rational alternatives, we have to consider

the sanction for every possible value system profile.

{hm,hb,=hr}

@® s<sell>
{ﬂhm,ﬂhb,hry
s @ %ﬁhmphb,hr}
| @® s<keep>
v=(hmAhb, {sanction})

{hm,hb,-hr,sanction}

@® s<sell>
{ﬂhm,—-hb,hry
s @ %iqhm,ahb,hr}
[ ]

s<keep>

Figure 6.4. Update by norm v.

6.7 Relation to Mechanism Design

Mechanism design is a field to design a game with desirable properties (out-
comes) for various agents to play [Maskin, 2008] [Nisan, 2007]. Given agents’
preferences < and an assumed solution concept g that defines agents’ way of
finding optimal outcomes, we can make a prediction of the outcomes that will
be achieved, which is represented as ¢g(Z). Given agents’ preferences = and a

social choice rule f that specifies the criteria of the desirable outcomes, we
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say that f(3) are the set of social optimal outcome, which are the outcomes
we want to have occur. Since agents’ preference might be unknown to us,
our goal is to design mechanisms such that for all the possible preference =
the predicted outcomes g(3) coincide with (or is a subset of) the desirable
outcomes f(Z) (more elaboration can be found in [Knobbout et al., 2016a]).
In this chapter, we take a slightly different view of mechanism design from the
traditional one above: we consider a mechanism as an operation or an update
to the system, which can be a revealing update or an enforcement norm.When
applying the theory of mechanism design to eliminating opportunism, we see
agents’ rational alternatives as predicted outcomes, opportunistic behaviors
as undesirable outcomes, and our goal is to design updates (revealing updates
or a norms) to the system such that for all the possible value system profiles
the intersection of an agent’s rational alternatives (using our decision theory)
and opportunistic behaviors in the new system is empty. In this section,
we will discuss how revealing updates and enforcement norms implement
non-opportunism respectively.

Given an opportunistic behavior, we know what kind of information the
system needs to reveal to an agent for eliminating it. However, if we take
into account an agent’s decision-making, it can be the case where it is not
optimal for the agent to perform such an opportunistic behavior thus it is
not necessary to eliminate it. In that sense, we connect revealing updates
with rational alternatives as what we did with enforcement norms previously.
Hence, the goal of this chapter is to find out an update (a revealing update
or an enforcement norm) such that it is not optimal for the agent to behave
opportunistically after it is implemented. Given a value system for agent
1, we know the set of agent ¢’s rational alternatives a;(s). Given a value
system profile for agent i and j, we can identify the set of opportunistic beha-
viors OPP(3, j, s) that agent ¢ and j are involved in. We use a; (s)| reveal(§);
(aj (s)|v) and OPP(4, j, s)| reveal(§); (OPP(3, j, s)|v) to denote the set of ra-
tional alternatives and the set of opportunistic behaviors after reveal(§);
is performed in state s (norm v is implemented) respectively. Because op-
portunistic behavior is undesirable from the perspective of the system and
agents form their rational alternatives (possibly opportunistic) based on their
value systems, it is important to know whether a revealing update removes
opportunistic behavior from the system and whether an normative update
removes opportunistic behavior from the rational alternatives. Formally, we

define non-opportunistic implementation as follows:
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Definition 6.7.1 (Non-opportunistic Implementation). Given a multi-agent
system M with two agents ¢ and j in state s, a revealing update reveal(§); and
a norm v, we say that revealing update reveal(€); implements non-opportunism
iff aj (s)| reveal(§);NOPP(4, 4, s)| reveal(€); = &, and that norm v implements
non-opportunism iff aj (s)|v N OPP(i, j,s)|v = @.

A revealing update or a norm implements non-opportunism if and only if
the intersection between rational alternatives and opportunistic behaviors
becomes empty after the revealing update is performed or the norm is im-
plemented. Clearly, this concerns the update that they bring to the system.
With our update logic of revealing updates and enforcement norms, we can
discuss how a revealing update and an enforcement norm influence an agent’s

decision-making and the identification of opportunistic behavior.

Proposition 6.7.1. Given a multi-agent system M with two different agents
it and j in state s, and a revealing update reveal(€);, agent i’s rational altern-
atives will remain the same after reveal(€); is performed in state s, which is

formalized as
0! (s) = a (s)| reveal (€) 1.

Proof. Since revealing update reveal(§); is performed by the system to agent j,
agent i’s epistemic structure will remain the same after reveal(§); is performed.
Hence, according to Definition 6.2.6 and 6.2.7, agent i’s subjectively available
actions and rational alternatives will remain the same after reveal(§); is

performed.

Proposition 6.7.2. Given a multi-agent system M with two different agents
© and j in state s, and a revealing update reveal(§);, opportunistic behaviors
performed by agent i to agent j will not become more after reveal(§); is

performed, which is formalized as
OPP(i,j,s) D OPP(4, j, s)| reveal(§);.

Proof. Given a value system profile for agent i and j, we can identify the set
of opportunistic behaviors OPP(i, 4, s) in a state. Because reveal(§); causes
update of agent j’ knowledge, knowledge asymmetry will become false after
reveal(€);, and thus some actions will become non-opportunistic. Because the
system might reveal the information that is not relevant to any opportunistic

behavior, it is possible that all the opportunistic behaviors remain unchanged.
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If we limit a revealing update to the one that is performed to agent j, agent
i’s rational alternatives will remain the same while opportunistic behaviors
performed by agent ¢ to agent j will remain the same or become less, after
reveal(€); is performed. Therefore, if a revealing update can eliminate all the
actions in the intersection of rational alternatives and opportunistic behavior,
it implements non-opportunism. Notice that action a, which was opportunistic
behavior, is still in agent ¢’s rational alternatives, but it is not opportunistic
any more because knowledge asymmetry regarding opportunistic behavior
a is already removed. As for example 6.2, we see that reveal(broken), can
eliminate opportunistic behavior sell. Even though the seller can still sell the
broken cup to the buyer, it is not opportunistic behavior any more because
the buyer already know that he will have a broken cup. Therefore, we can
conclude that given a set of value system profiles V= {(Vs,V4)} sensing
action reveal(broken), implements non-opportunism. For enforcement norms,
they alter both rational alternatives and opportunistic behavior. Since agents’
value systems are unknown to us, we need to examine those updates for every

possible value system profile in V.

6.8 Discussion

We propose two distinct mechanisms, namely epistemic approach and norm-
ative approach, to eliminate opportunism in multi-agent systems, which are
consistent with our assumption that agents will not perform opportunistic
behavior if they don’t have the ability or the desire of doing that. Both
of them can be considered as updates to the system, and have their own
advantages and disadvantages. For the epistemic approach, in order to reveal
useful information to agents, the system has to first identify if a given action
is opportunistic behavior with a set of value system profiles for the agents
involved, and then reveal appropriate information to the agents to eliminate
opportunism. Those revealing updates should not be demotivated by the sys-
tem through setting privacy norms. This indeed puts a burden on the designer
before implementing any privacy norms, as agents’ value systems are initially
unknown to the system designer. For the normative approach, we discussed in
Section 6.6 how an enforcement norm with appropriate sanction demotivates
the performance of opportunistic behavior for all the value system profiles,
ignoring the possibility that such sanction can also make non-opportunism to

opportunism. In other words, in order to eliminate opportunistic behavior, it
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is needed to guarantee the rational alternatives in the updated system are

non-opportunistic behavior.

6.9 Chapter Summary

Opportunism is a behavior that takes advantage of relevant knowledge asym-
metry and results in promoting an agent’s own value and demoting another
agent’s value. As opportunistic behavior has undesirable results for other
agents who participate in the system, we want to design mechanisms to
eliminate opportunism. In this chapter we developed two approaches to
eliminate opportunism in multi-agent systems. In this first approach, we elim-
inated opportunism by removing the precondition of opportunism knowledge
asymmetry, which made the performance of opportunism impossible; in the
second approach, we eliminated opportunism by enforcing normative facts,
which made the choice of performing opportunistic behavior not optimal.
Although both of these approaches involved norms, they are used for different
purposes: knowledge asymmetry is removed by agents’ revealing updates,
which might reveal the information that the system wanted to keep private
between agents through setting privacy norms. So we investigated the balance
between eliminating opportunism and respecting agents’ privacy. Enforce-
ment norms with sanction are used to demotivate the choice of performing
opportunistic behavior. Since agents’ value systems are unknown to us, we
investigate the design of sanction given all the possible value system profiles.
Finally, we relate our approaches to the theory of mechanism design. An
agent performs opportunistic behavior when he has the ability and the desire
of doing. We eliminated opportunism by removing the ability in this paper,
future work can be done by removing the desire, namely making the choice of
being opportunistic not optimal. As there exists trade-off between eliminating
opportunism and respecting agents’ privacy, it will be interesting to eliminate

opportunism through removing privacy norms.
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Concluding Remarks

In this chapter, we will summarize our work for this thesis, highlighting our
contributions from both theoretical and practical perspectives. Besides, we
will explore possible venues for future work based on what we have done in
this thesis.

7.1 Conclusions

At the beginning of this thesis, we stated our research questions that we
needed to answer through the thesis. This section summarizes how our work
answers those questions. We investigate opportunistic behavior, which is
a concept from social science, with the notion of value in the context of
multi-agent systems for different issues. In order to simplify our specification,
most of the time we assume that opportunistic behavior contains only one
action and happens between two agents. The norms we use for the study of
opportunism are enforcement norms that agents in the system are able to
obey or violate, and that lead to sanction once they are violated.

Research Question 1 asked whether we could formally define opportunistic
behavior in the context of multi-agent systems. We answered this question
through Chapter 3. Opportunistic behavior is a selfish behavior that takes
advantage of knowledge asymmetry and results in value opposition. We
formally defined opportunism using the situation calculus as our technical

basis, capturing the features of opportunism: knowledge asymmetry as the
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precondition, value opposition as the postcondition and intention as the
mental state. We then extended the definition to the case with multiple actions
and a normative context. Such a formal definition laid a solid foundation for
any work we performed in the following chapters.

Research Question 2 asked whether we could develop a mechanism for
monitoring opportunism even though the system is not able to see its per-
formance. We answered this question through Chapter 4. We developed a
logical framework based on action specification, which allowed us to detect
opportunistic behavior with respect to different forms of norms off-line. In
this chapter, the system cannot see the performance of opportunistic beha-
vior directly but can detect it through verifying its pre- and post-condition.
Moreover, we studied how to reduce the monitoring cost for opportunism.

Research Question 3 asked whether we could develop a framework that
allowed us not only to reason about agents’ opportunistic propensity but
also to design a mechanism for eliminating opportunism. We answered this
question through Chapter 5 and Chapter 6. We developed a logical framework
where agents were assumed to have their own value systems and incomplete
knowledge about the system. In Chapter 5, agents form their rational al-
ternatives, which might be opportunistic, based on their own value systems
and incomplete knowledge. We characterized the situation where agents
will perform opportunistic behavior and the contexts where opportunism is
impossible to occur. Based on the same logical framework, in Chapter 6
we designed two mechanisms to eliminate opportunism in the system. In
the epistemic approach, an agent’s knowledge got updated so that the other
agent was not able to perform opportunistic behavior, and in the normative
approach the system was updated with a norm so that it was not optimal for
an agent to perform opportunistic behavior. Both mechanisms corresponded
to agents’ ability and desire of being opportunistic respectively.

This thesis has both theoretical and practical contributions. Theoretically,
the topic of opportunism in multi-agent systems is new. We take the initiative
to build a formal theory of opportunism in the context of multi-agent systems,
setting a foundation of any future work associated with this topic. Besides,
we investigate different issues about opportunism. We develop a logical
framework to study each issue, which can be seen as a formal specification
of multi-agent systems. Practically, using our logical frameworks, we have
consistent formal definitions of opportunism and the corresponding properties

for the issues we investigate, which allows us to answer the research questions
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by checking the satisfaction of some formulas in the system. Further, our
thesis has applications in real multi-agent systems such as e-commerce systems.
The situation of knowledge asymmetry between customers and sellers about
transactions leads to the risk of fraud, which bring undesirable results to the
customers. Our thesis gives insights into the ways of monitoring, predicting

and eliminating them.

7.2 Future Work

This thesis has opportunities for future research that should be noted. Firstly,
while most of the time we study opportunistic behavior that contains one
action, it is possible that opportunistic behavior contains multiple actions
as we defined in Chapter 3. For monitoring opportunistic behavior with
multiple actions, since we have already proved that a sequence of actions
is opportunistic while an action within might not be opportunistic, it is
important for the system to decide how many actions we evaluate as a whole
to be opportunistic. For predicting opportunistic behavior with multiple
actions, agents’ decision making is done for a sequence of actions. In other
words, agents maximize total reward over a finite number of steps, which
altogether are considered as opportunistic behavior.

Secondly, it might be interesting to study opportunism with responsibility
since there is a strong connection between these two notions. Intuitively,
opportunistic agents are responsible for the undesirable result that they bring
to other agents, because they are the ones who are aware of the situation of
knowledge asymmetry. In this thesis, atomic actions are not labeled with
agents. In order to reason about responsibility for opportunism, we need to
know whether an action is actually performed by agent i in order to know
whether this is opportunistic behavior of agent i. Therefore, our framework
can be extended with responsibility to identify which agent is responsible for

which action.
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Summary

Opportunistic behavior (or opportunism) is a selfish behavior that inten-
tionally takes advantage of relevant knowledge asymmetry to achieve own
gain, regardless of other agents’ value. It is commonly existing in business
transactions and social interactions in the form of cheating, lying, betrayal,
etc, thereby gaining much attention and investigation from social science. In
multi-agent systems, it is normal that knowledge is distributed among differ-
ent agents, which creates the opportunity for agents to perform opportunistic
behavior to other agents. Since opportunistic behavior has undesirable results
for other agents in the system, the aim of this thesis is to eliminate such a
selfish behavior from the system. In order to reach this goal, we perform
the investigation of opportunism with the notion of values for different issues
in the context of multi-agent systems. Logical specification is used for our
investigation in order to prove useful properties with respect to the issue.
Based on our understanding of the concept of opportunism in social science,
we first provide a formal definition of opportunism using the situation calculus,
capturing the features of opportunism: knowledge asymmetry as the precondi-
tion, intention as the mental state and value opposition as the postcondition.
We then extend the definition to the case where opportunistic behavior con-
tains multiple actions and is situated in a context with norms. Such a formal
definition of opportunism sets a theoretical foundation for any later research
about opportunism. Because opportunistic behavior has undesirable results
for other agents in the system but cannot be observed directly, there has to
be a monitoring mechanism that can detect the performance of opportunistic
behavior. We secondly provide a logical framework to specify monitoring
approaches for opportunism. We investigate how to evaluate agents’ actions to
be opportunistic with respect to different forms of norms when those actions
cannot be observed directly, and study how to reduce the monitoring cost for
opportunism. In order for monitoring and eliminating mechanisms to be put

in place, it is important to know in which context agents will or are likely to
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perform opportunistic behavior. Therefore, we develop a logical framework
to reason about agents’ opportunistic propensity. Opportunistic propensity
refers to the potential for an agent to perform opportunistic behavior. We
argue that agents will perform opportunistic behavior when they have the
ability and the desire of doing that. With this premise, agents in the system
are assumed to have their own value systems and knowledge. Based on their
value systems and incomplete knowledge about the state, they choose one of
their rational alternatives, which might be opportunistic behavior. We then
characterize the situation where agents will perform opportunistic behavior
and the contexts where opportunism is impossible to occur. Finally, we reach
our goal through designing two mechanisms for eliminating opportunism: in
the epistemic approach an agent’s knowledge gets updated so that the other
agent is not able to perform opportunistic behavior, and in the normative
approach the system is updated with a norm so that it is not optimal for an
agent to perform opportunistic behavior. Both approaches corresponding to
agents’ ability and desire of being opportunistic respectively.

We take the initiative to build a formal theory of opportunism in the con-
text of multi-agent systems, setting a foundation of any future work associated
with this topic. Our research also has applications in real multi-agent systems
such as e-commerce systems, giving insights into the ways of monitoring,
predicting and eliminating opportunistic behavior in real life. Future work

can be done for opportunism with multiple actions and responsibility.
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Samenvatting

Opportunistisch gedrag (oftewel opportunisme) is egoistisch gedrag waarmee
intentioneel geprofiteerd wordt van kennis asymmetrie voor eigen gewin,
ongeacht de waardes van andere agenten. Omdat het voorkomt in bedrijf-
stransacties en sociale interacties in de vorm van bedriegen, liegen, misleiden
en andere vormen, krijgt dit onderwerp veel aandacht in onderzoek binnen de
sociale wetenschappen. In multi-agent systemen is het normaal dat kennis
gedistribueerd is onder de verschillende agenten, wat de mogelijkheid creéert
voor agenten om opportunistisch gedrag te verrichten jegens andere agen-
ten. Omdat opportunisme ongewenste resultaten oplevert voor de andere
agenten in het systeem, is het hoofddoel van deze thesis om zulk egoistisch
gedrag te elimineren uit het systeem. Om dit doel te bereiken onderzoeken
we opportunisme aan de hand van waardesystemen in de context van een
multi-agent systeem. Om nuttige eigenschappen te bewijzen met betrekking
tot opportunisme gebruiken we in ons onderzoek logica.

Op basis van het sociaalwetenschappelijke begrip van opportuinisme lev-
eren we eerst een formele definitie van opportunisme door gebruik te maken
van het formalisme dat bekend staat als de ‘situation calculus’ Dit stelt
ons in staat om verscheidende facetten van opportunisme te vangen: kennis
asymmetrie als de pre-conditie, intentie als de mentale toestand en waarde-
tegenstelling als de post-conditie. Vervolgens breiden we deze definitie uit
naar gevallen waarbij opportunistisch gedrag bestaat uit verschillende han-
delingen en gevallen waarbij het gedrag plaatsvindt in de context van bepaalde
normen. Deze formele definitie van opportunisme zet het theoretische fun-
dament voor later onderzoek naar opportunisme. Omdat opportunistisch
gedrag ongewenste resultaten oplevert voor andere agenten in het systeem
maar niet rechtstreeks geobserveerd kan worden, moet er een monitorend
mechanisme ingezet worden dat opportunistisch gedrag kan waarnemen. We
ontwikkelen een logisch raamwerk voor dit soort monitorende aanpakken van

opportunisme. We onderzoeken hoe we de handelingen van agenten kunnen
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evalueren als zijnde opportunistisch met betrekking tot verschillende vormen
van normen wanneer deze handelingen niet rechtstreeks geobserveerd kunnen
worden, en we bestuderen hoe we de kosten van monitoren kunnen beperken.
Om monitorende mechanismen in te zetten is het belangrijk om te weten in
welke contexten agenten vermoedelijk opportunistisch gedrag zullen uitvoeren.
Om dit voor elkaar te krijgen ontwikkelen we een logisch raamwerk om te
redeneren over de neiging tot opportunisme bij agenten. De neiging tot op-
portunisme hangt samen met het vermogen van een agent om opportunistisch
gedrag uit te voeren. We betogen dat agenten opportunistisch gedrag zullen
vertonen wanneer ze de mogelijkheid en het verlangen hebben om dit te doen.
Voor dit uitgangspunt is het van belang dat agenten in het systeem ieders
een onafhankelijk en persoonlijk systeem van waarden en kennis hebben. Ge-
baseerd op hun systeem van waardes en incomplete kennis over een toestand
kiezen ze een van hun rationele alternatieven, wat mogelijk opportunistisch
gedrag kan zijn. Vervolgens karakteriseren we de situatie waarin agenten
opportunistisch gedrag zullen uitvoeren en de contexten waarin opportunisme
uitgesloten is. Tenslotte bereiken we ons eerder gestelde doel door twee
mechanismen te ontwikkelen die opportunisme elimineren: in de Epistemische
aanpak wordt de kennis van een agent gelipdatet op een manier zodat de
andere agenten niet in staat zijn om opportunistisch gedrag uit te voeren, en
in de normatieve aanpak wordt het systeem getipdatet met een norm zodanig
dat het niet meer optimaal is voor een agent om opportunistisch gedrag uit
te voeren. Deze aanpakken corresponderen respectievelijk met het vermogen
en verlangen van de agent om opportunistisch te zijn.

Wij nemen het initiatief om een formeel raamwerk voor opportunisme te
ontwikkelen in de context van multi-agent systemen. Hiermee zetten we het
fundament voor toekomstig onderzoek naar dit onderwerp. Ons onderzoek
heeft ook toepassingen in alledaagse multi-agent systemen, zoals e-commerce
systemen, en levert daarmee inzicht in manieren om opportunisme in de
werkelijkheid te monitoren, voorspellen en te elimineren. In opvolgend on-
derzoek kan er gekeken worden naar opportunisme met meerdere handelingen

en verantwoordelijkheid.
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