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The reflection of internal gravity waves at sloping boundaries leads to focusing or
defocusing. In closed domains, focusing typically dominates and projects the wave
energy onto ‘wave attractors’. For small-amplitude internal waves, the projection
of energy onto higher wavenumbers by geometric focusing can be balanced by
viscous dissipation at high wavenumbers. Contrary to what was previously suggested,
viscous dissipation in interior shear layers may not be sufficient to explain the
experiments on wave attractors in the classical quasi-two-dimensional trapezoidal
laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate
description of the viscous dissipation in the interior shear layer, as well as at the rigid
boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers
consist of no more than 1 % of the wall-to-wall distance, dissipation by lateral walls
dominates at intermediate wave numbers. Our extended model for the spectrum of
three-dimensional wave attractors in equilibrium closes the gap between observations
and theory by Hazewinkel et al. (J. Fluid Mech., vol. 598, 2008, pp. 373–382).
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1. Introduction

The dispersion relation of internal waves is given by ω2
0 = N2

0 sin2 θ, with ω0 the
wave frequency, θ the angle of phase propagation with respect to the vertical, z the
direction antiparallel to gravity and N0 the Brunt–Väisälä frequency, here assumed
constant. The group propagation is always orthogonal to the phase propagation
(Sutherland 2010), thus θ also represents the angle of energy propagation with respect
to the horizontal plane, and is fixed for monochromatic waves. This property results
in geometric focusing or defocusing upon reflection at a sloping topography. Repeated
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geometric focusing in closed domains can project the wave energy onto closed orbits,
known as wave attractors (Maas & Lam 1995; Maas et al. 1997). In the vicinity of
internal wave attractors, energy is dissipated by viscous dissipation (Hazewinkel et al.
2008), or lost to nonlinear wave–wave interactions (Scolan, Ermanyuk & Dauxois
2013; Brouzet et al. 2016a, 2017a; Dauxois et al. 2018). Internal wave attractors
are studied most thoroughly in the classical quasi-two-dimensional trapezoidal
set-ups (Maas & Lam 1995; Maas et al. 1997; Maas 2005, 2009; Swart et al.
2007; Grisouard, Staquet & Pairaud 2008; Harlander 2008; Hazewinkel et al. 2008,
2010; Scolan et al. 2013; Brouzet et al. 2016a,b, 2017a,b), geometries which are
also popular in studies on closely related inertia wave attractors (Manders & Maas
2003; Klein et al. 2014; Troitskaya 2017). Recent studies also examine internal
wave attractors confined to more sophisticated domains, resembling simplified ocean
topography (Tang & Peacock 2010; Echeverri et al. 2011; Hazewinkel, Maas &
Dalziel 2011; Wang et al. 2015; Guo & Holmes-Cerfon 2016). Applying standard
boundary layer theory, Klein et al. (2014) establish the importance of the Ekman
boundary layers for inertial wave attractors. Surprisingly, the role of energy dissipation
at rigid boundaries for internal wave attractors still remains an open question, even
for the simplest domain, the classical quasi-two-dimensional (quasi-2-D) trapezoid.
The energy loss at the wave attractor – and in the broader sense internal wave beams
– can have far-reaching consequences for the mixing budget of stratified fluids, such
as the deep oceans (Wunsch & Ferrari 2004) and marginal seas (Lamb 2014).

In this paper, we apply standard boundary layer theory to quantify the frictional
damping mechanisms of internal wave attractors in the classical quasi-2-D laboratory
set-up. Frictional dissipation takes place in two types of viscous layers: the shear
layers in the interior along the attractor and the boundary layers at the rigid
boundaries.

Internal wave damping through interior shear layers, first described by Thomas &
Stevenson (1973), has been studied extensively over the past decades, and in particular
in the context of internal wave attractors by Dintrans, Rieutord & Valdettaro (1999),
Swart (2007), Hazewinkel et al. (2008), Brouzet et al. (2016a) and inertial wave
attractors by Dintrans et al. (1999), Rieutord, Georgeot & Valdettaro (2001, 2002),
Ogilvie (2005), Jouve & Ogilvie (2014). A simple model for an equilibrium wave
attractor spectrum, with the energy input at the basin scale (low wavenumbers)
and dissipation only through internal shear at high wavenumbers, has been derived
by Hazewinkel et al. (2008). Although the structure of their theoretical spectrum
resembles their experimentally observed spectrum of an internal wave attractor in the
classical quasi-2-D trapezoidal set-up, the discrepancy hints at significant dissipation
at the rigid boundaries. Grisouard et al. (2008) performed 2-D numerical simulations,
designed to replicate the laboratory experiment by Hazewinkel et al. (2008) with
free-slip boundaries. Their simulations underestimates the energy dissipation at high
wavenumbers, also indicating an additional energy sink at the walls in the laboratory.
The fully 3-D simulations by Brouzet et al. (2016b) signify significantly increased
dissipation rates in the lateral boundary layers. Our theoretical analysis shows that
adding dissipation at the rigid boundaries closes the gap between the model and
observations in Hazewinkel et al. (2008).

Stokes boundary layers in homogenous fluids are well understood and are described
in many text books on fluid mechanics, e.g. Schlichting & Gersten (2000). The
stratified boundary layers for monochromatic internal waves are to some extent
analogous to homogenous Stokes boundary layers, but differ in a number of
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fundamental aspects, such as the characteristic thickness of the boundary layer.
The thickness of the stratified boundary layer is given by

d0 =µ
−1
( ν
ω

)1/2
, with µ=

√∣∣∣∣sin2 ϕ

sin2 θ
− 1
∣∣∣∣ (1.1)

dependent on the angle ϕ of the boundary (with respect to the horizontal) and the
internal wave inclination, θ . Note that horizontal boundaries (ϕ = 0), investigated by
Renaud & Venaille (2018), coincide with the homogeneous case, µ = 1. For near-
critical reflections (ϕ ∼ θ ) the boundary layer thickness d0 tends to infinity, making
different approaches, such as in Dauxois & Young (1999), necessary. The theoretical
investigation on stratified rotating boundary layers by Swart et al. (2010) stresses the
importance of these critical cases (ϕ ∼ θ ) for the generation of internal inertia waves
by oscillating boundaries. Kistovich & Chashechkin (1995a,b) computed the boundary
layer of a reflecting internal wave beam, but did not account for the dissipative energy
loss inside the boundary layer. Vasiliev & Chashechkin (2003) constructed asymptotic
solutions for internal wave fields generated by a rigid plane vibrating along its surface.
We now investigate a situation in which the energy flux is in opposite direction, i.e.
the wave attractor loses energy to the rigid walls. The objective is to understand and
quantify the damping induced by stratified boundary layers on wave attractors. Partial
results are also reported in Beckebanze & Maas (2016).

The structure of this paper is as follows. The formulation of the problem is
described in § 2. In § 3, we construct inviscid wave attractor solutions. Internal
shear, lateral wall boundary layers and boundary layers at the reflecting walls are
subsequently added in respectively §§ 4–6. In § 7, we compare our extended model
for the equilibrium wave attractor spectrum with the laboratory experiment and 3-D
simulations. Conclusions are drawn in § 8.

2. Preliminaries
In this paper we consider monochromatic internal waves in a linearly stratified

Boussinesq fluid inside a trapezoidal tank

D= {(x, y, z) ∈R| − ly 6 y 6 ly,−lx 6 x 6 lx, 0 6 z 6 min[h, (lx − x) tan α]}, (2.1)

with z antiparallel to gravity. We anticipate ratios sin θ =ω0/N0 of wave frequency ω0
over Brunt–Väisälä frequency N0, such that the internal wave motion is predominantly
confined to a neighbourhood around the theoretical inviscid wave attractor, as
illustrated in figure 1(a,b). The Cartesian coordinates, (x, y, z), are dimensionalized
with the length scale λ0, which we assume to be the characteristic wavelength of the
predominant wave motion – the viscous wave attractor – measured in the cross-beam
direction. Note that scaling the non-dimensional half-bottom-length, lx, half-width, ly,
and height, h, with the same length scale, λ0, leaves the angle of the inclined wall,
α, and the energy propagation angle, θ , both with respect to the horizontal, invariant.
We require ly ' 1, i.e. the dimensional width, W = 2lyλ0, is at least of the same order
of magnitude as the wave attractor cross-beam length scale, λ0.

We consider sufficiently weak monochromatic forcing, generating only small-
amplitude wave motion. This means that the Stokes number, U0/ω0λ0, with U0 the
dimensional scale of the internal wave velocity, is small such that all nonlinear
advection terms can be neglected.
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x
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z

(a) (b)

FIGURE 1. (Colour online) Schematic view of the 3-D trapezoidal domain D (a), and its
side view (b). The viscous wave attractor interacts with the rigid boundaries of D (free
slip at surface, z=h) primarily in the shaded areas (a), as it is confined to a region around
the theoretical inviscid wave attractor orbit (dashed lines in a,b). The black dot in (b) to
the right of the inclined wall indicates the virtual source. The phase propagation is along
coordinates ζn, n = 1, 2, 3, 4 (red arrows), whereas the energy propagation is along ξn
(blue arrows) at an angle θ with respect to the horizontal x. The thickening of the wave
attractor in the energy propagation direction is due to viscous damping, as discussed in
§ 5, and it is balanced by the focusing reflection at inclined wall with angle α.

Under these assumptions, the (linearized) equations governing the dimensionless
velocity field u= (u, v, w), buoyancy b and pressure p of the Boussinesq fluid, with
scaled Brunt–Väisälä frequency N=N0/ω0=±1/sinθ , are given in subscript-derivative
notation by

ut =−∇p+ bẑ+ δ21u+ f e−it, bt =−N2w, ∇ · u= 0. (2.2a,b)

Here, δ = d0/λ0 � 1 is the non-dimensional Stokes boundary layer width, with
d0 =
√
ν/ω0, and ν the kinematic viscosity constant. We assume the fluid to be salt

stratified, and neglect diffusivity by considering an infinite Schmidt number (ratio of
kinematic viscosity over mass diffusivity, typically approximately 700 for salt-stratified
fluids). The forcing f = f (x, z) is assumed to be uniform in the transverse y-direction.
For mathematical convenience, we consider f to be a localized source, located outside
the trapezoidal domain, D, as illustrated in figure 1(b). This enables us to describe
the viscous wave attractor as four branches of a viscous internal wave beam (Ogilvie
2005). The downside of this approach is a slight violation of the impermeability
boundary condition at the inclined wall near the wave attractor upon incorporating
viscous attenuation. In fact, the energy input into the closed domain D occurs through
spatially non-uniform oscillations at the inclined wall, on which we have no control a
priori. We accept this disadvantage, which also underlies the theoretical 2-D spectra
by Hazewinkel et al. (2008), because it is irrelevant for the energy loss through the
boundary layers of a quasi-2-D weakly viscous wave attractor – the main objective
of the presented analysis.

We solve the governing equations (2.2) asymptotically with no-slip boundary
conditions, u = 0, at the boundary of the trapezoidal domain D (except at the free
surface, z= h, where we impose free slip), by expanding the velocity vector u in the
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small parameter δ,
u= u0 + δu1 +O(δ2), (2.3)

and similarly for buoyancy b and pressure p. We start in § 3 by solving (2.2) at O(δ0)
with free-slip boundary conditions for u0. Free slip means that we only require the
normal derivative of tangential velocity to vanish. Viscous attenuation is added in § 4,
and in § 5, we extend u0 such that it vanishes at the lateral walls (surfaces along
dashed theoretical attractor in figure 1(a), blue online). In § 6, we add correction terms
in order to satisfy the no-slip boundary condition also at the reflection sides (green
surfaces in figure 1(a), green online).

3. Wave attractor branches in interior
It is convenient to express the four wave attractor branches in the rotated and shifted

coordinates [ξn, ζn], n= 1, 2, 3, 4, given by[
ξ1,3
ζ1,3

]
=∓

[
cos θ −sin θ
sin θ cos θ

] [
x− x1,3
z− z1,3

]
,

[
ξ2,4
ζ2,4

]
=∓

[
cos θ sin θ
sin θ −cos θ

] [
x− x2,4
z− z2,4

]
,

(3.1a,b)
with [xn, zn] the reflection points of the attractor, see figure 1(b). The theoretical
inviscid wave attractor (dashed lines in figure 1) corresponds to ζn = 0, for
n= 1, 2, 3, 4.

The inviscid O(δ0)-velocity field generated by a monochromatic, localized source,
describing the first wave attractor branch (labelled with the super-script 1), can be
written as

u[1]0 = ξ̂1U(ζ1)= [− cos θ, 0, sin θ ] U(ζ1), U(ζ )=
∫
∞

0
Û(k) exp [i(kζ − t)] dk, (3.2)

where k is the non-dimensional wavenumber (scaled by λ−1
0 ). Physical quantities are

always the real part of the presented expression, and the hat on a coordinate always
denotes the unit vector pointing in the direction of this coordinate, i.e. ξ̂1 is the unit
vector along the first wave attractor branch. The Fourier spectrum

Û(k)=
1

2π

∫
∞

−∞

U(ζ ) exp[−iζk] dζ (3.3)

of the along-wave-beam velocity component U depends on the unspecified localized
source at (x0, z0). The main objective of the presented analysis is to derive constraints
for Û(k), based on geometric wave focusing (this section), and viscous dissipation
(§§4–6). Note that Û(k)= 0 for k 6 0 because no energy can propagate towards the
source (by assumption).

Subsequent free-slip reflections of the first wave attractor branch at the surface, z=
h, at the vertical wall, x=−lx, and at the bottom, z= 0, lead to the following velocity
fields for the second, third and fourth wave attractor branches:

u[n]0 = ξ̂nU(ζn) for n= 2, 3, 4. (3.4)

The fourth branch returns to the inclined wall, z= (lx − x) tan α, where the free-slip
boundary condition reads

Re
[(

u[1]0 + u[4]0

)
· n̂α
]
= 0, (3.5)
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with n̂α = [sin α, 0, cos α] a normal vector of the inclined wall. On the inclined wall,
z= (lx − x) tan α, we have

u[1]0 · n̂α =−sin[α − θ ]
∫
∞

0
Û(k) exp

[
ik

sin[α − θ ]
cos α

(x− x1)− it
]

dk (3.6)

and

u[4]0 · n̂α = sin [α + θ ]
∫
∞

0
Û(k) exp

[
ik

sin[α + θ ]
cos α

(x− x1)− it
]

dk. (3.7)

Substitution of k→ γ k in (3.6), with

γ =
sin[α + θ ]
sin[α − θ ]

, (3.8)

such that the exponential terms in (3.6) and (3.7) become identical, and inserting (3.6)
and (3.7) into (3.5) gives

Re
[∫

∞

0
(Û(γ k)− Û(k)) exp

[
ik

sin[α + θ ]
cos α

(x− x1)− it
]

dk
]
= 0. (3.9)

Satisfying the free-slip boundary conditions at the four reflecting walls for all times t
thus imposes the spectral constraint

Û(γ k)= Û(k). (3.10)

Solutions to this functional equation are non-unique (see Beckebanze & Keady
2016, pp. 185–186 for a more rigorous analysis of this functional equation). The
non-uniqueness is apparent by writing Û(k) = P(logγ (k)), which satisfies (3.10)
for arbitrary function P with period 1: Û(γ k) = P(logγ (γ k)) = P(1 + logγ (k)) =
P(logγ (k))= Û(k). For all these spectra (except P= 0) the velocity expressions (3.2)
and (3.4) are non-integrable for points on the inviscid wave attractor, ζn = 0 (dashed
lines in figure 1b), confirming the results by Rieutord et al. (2001). The exact
self-similar wave attractor solution by Maas (2009) in terms of countable infinite
Fourier coefficients is an example of such spectrum Û(k) (where P is a superposition
of Dirac delta functions). The self-similar structure of wave attractors is reflected by
the logγ -periodicity of the spectra. Next, we regularize the singularity on the inviscid
wave attractor by adding viscous attenuation.

4. Internal shear layer dissipation
Incorporating weak viscous attenuation in an asymptotic wave beam expression

was first done by Thomas & Stevenson (1973), and has been achieved using different
procedures (see §6 of Voisin (2003) for an overview). Here, we determine the
effect of viscosity on the spectrum Û(k) – an exponential attenuation factor – and
incorporate it in the inviscid spectral decompositions for the velocity field, (3.2) and
(3.4). We briefly demonstrate this analysis because of its similarity with the damping
mechanisms caused by the rigid walls, presented in §§ 5 and 6.

For notational convenience, we drop the superscript [n], and consider a wave
attractor branch with velocity U in the along-energy-propagation direction ξ , and
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phase propagation along ζ . Upon incorporating continuity and buoyancy equations,
one can write the governing equation for U as

−1U +N2
(
sin2 θ Uζ ζ + 2 cos θ sin θUζ ξ + cos2 θUξξ

)
=−iδ2∆2U. (4.1)

This equation is solved at O(δ0) by U(ζ ) as defined in (3.2), provided the
non-dimensional dispersion relation, 1= N2 sin2 θ , holds. The velocity function U is
still an O(δ0)-solution if we let the spectrum Û(k) to be weakly dependent on the
along-beam coordinate ξ , that is to say, if Ûξ ∈O(δ). We assume Ûξ ∈O(δ2)⊂O(δ).
Equation (4.1) at O(δ2) then becomes

2N2 sin θ cos θUζ ξ =−iδ2Uζ ζ ζ ζ . (4.2)

This is solved by

U =
∫
∞

0
Û(k, ξ) exp [ikζ − it] dk, Û(k, ξ)= Û(k) exp

[
−δ2 tan θ

2
k3(ξ − ξ0)

]
, (4.3)

for arbitrary Û(k), and where ξ0 is the along-wave-attractor distance to the virtual
localized source. Adding weak viscous attenuation to the 2-D wave attractor velocity
field is thus achieved by replacing Û(k)→ Û(k) exp

[
−δ2(tan θ/2)k3(ξ − ξ0)

]
in the

velocity fields (3.2) and (3.4).
Note that the real (imaginary) part U(ζ , ξ) in (4.3) is even (odd) in ζ around

ζ = 0. This symmetry is preserved among reflections at horizontal or vertical
boundaries, whereas reflections at inclined boundaries break it. All attractors include
symmetry-breaking reflections, hence, their velocity fields cannot be symmetric around
the inviscid attractor orbit, ζ = 0, when including viscous attenuation. Describing the
wave attractor branches nevertheless by a viscous wave beam emitted from a virtual
point source leads to a slight violation of the impermeability boundary condition
at the inclined wall. Instead, the viscous wave attractor satisfies an oscillating
boundary constraint at the inclined wall, with the spatial scale of the wall oscillation
corresponding to the cross-beam thickness. Physically, the internal waves are thus
generated by spatially non-uniform oscillations of the inclined wall.

Incorporating the viscous attenuation in the impermeability constraint (3.9) at the
reflection point (x1, z1) results in the modified spectral constraint

Û(γ k)= Û(k) exp
[
−δ2 tan θ

2
k3L
]
, (4.4)

where L = La/λ0 is the non-dimensional length of the wave attractor. We consider
La � λ0, such that the discussed asymmetry of the attractor is negligible. As a
consequence, the attenuation rate −δ2(tan θ/2)k3L per attractor cycle can be orders
of magnitude larger than O(δ2k3), namely if L & δ−1

� 1 (note that by assumption,
the most energetic wavenumber is non-dimensionalized to 2π).

The spectral constraint (4.4) for the velocity field is equivalent to the constraint
for the buoyancy gradient spectrum, A(k), given by Hazewinkel et al. (2008) upon
correcting for a missing factor 1/2 in their viscous attenuation rate, and a missing
factor γ −1 on the right-hand side of their recursive relation A2

n = γ
3A2

n−1, where An
and An−1 are the buoyancy gradient spectra before and after the reflection from the
slope, respectively.
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Damping of quasi-2-D internal wave attractors by rigid-wall friction 621

The constraint (4.4) for Û(k) now admits integrable finite-energy spectra:

Û(k)= P(logγ (k)) exp
[
−β1k3

]
, with β1 =

δ2L tan θ
2(γ 3 − 1)

(4.5)

for continuous period-1 functions P. The function P(logγ (k)) in the spectral solution
(4.5) still reflects the geometric wave focusing, which projects the internal wave
field distribution on any wavenumber interval [k, γ k] onto [γ k, γ 2k], whereas the
exponential term accounts for the energy dissipation upon travelling once around the
wave attractor. If the energy input occurs within a low wavenumber interval, say
I∗= [k∗, γ k∗], with distribution E(k), then P(m)=

√
E(exp[log(γ )m]) defines P(m) for

all m > logγ (k∗) (by periodic continuation) and we take P(m) = 0 for m < logγ (k∗)
(no energy at wavenumbers smaller than k∗). If the energy input is spread over a
wider interval than I∗, then one can split it into several intervals, define corresponding
functions P for each interval and superimpose the resulting spectra. For mathematical
convenience, we take P(m) to be periodic with period 1 in the following.

If the energy input is discrete, say occurring only at fixed wavenumber k∗, then the
function P must have a spike at logγ (k∗) (a Dirac delta function), and P thus consists
of a superposition of Dirac delta functions by periodic continuation. The spectrum
Û(k) then peaks at wavenumbers k∗γ n for n = 0, 1, 2, . . . . The (discrete) spectral
model derived by Hazewinkel et al. (2008) corresponds to this special case. We also
discuss this discrete case in the comparison section, § 7.

In the next section, we show that the dissipation at the lateral walls also adds an
exponential attenuation factor to the spectral constraint (4.4).

5. Dissipation at lateral walls
In this section we extend the wave attractor velocity field to the lateral walls,

y=±ly, where we apply the no-slip boundary condition. Again, we do this for one
(arbitrary) wave attractor branch with interior velocity field u0= ξ̂U, and phase speed
along ζ̂ . Using the stretched coordinate η = δ−1y, the momentum equations for u0
and w0 are given by

−iu0 =−p0x + u0ηη , i cot2 θw0 =−p0z +w0ηη . (5.1a,b)

In these two equations, the partial time derivatives have already been replaced by
−i. It is the buoyancy, b0 = −i sin−2 θ w0, which adds to the time derivative of the
vertical velocity component, w0, producing the factor −cot2θ . Outside the boundary
layers, the along-wave-beam velocity component U is related to the pressure gradient
in ζ -direction by

−iξ̂xU =−ζ̂xp0ζ ⇒ p0ζ =−i cot θU, (5.2)

which solves the momentum equations in the unstretched coordinates at O(δ0), i.e.
(5.1) without the diffusive terms. Here, ξ̂x = ± cos θ is the x-component of the unit
vector ξ̂ , and similarly ζ̂x =± sin θ , the sign again depending on the branch. Solving
(5.1) with no-slip boundary conditions at the walls, η=±δ−1ly, and interior velocity
field ξ̂U in the centre plane, η= 0, gives

u0 = ξ̂x

(
1−

cosh[i−1/2η]

cosh[i−1/2δ−1ly]

)
U, w0 = ξ̂z

(
1−

cosh[i1/2 cot θη]
cosh[i1/2 cot θδ−1ly]

)
U. (5.3a,b)
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The presence of stratification (non-zero buoyancy) causes the factor-cot θ difference
in the thicknesses of the boundary layer, δ and δ tan θ , for respectively horizontal
and vertical velocity components, making (u0, 0, w0) divergent near the walls. This
peculiar twist of the stratification on the boundary layer thickness was previously
found by Vasiliev & Chashechkin (2003) in their theoretical study on 3-D internal
wave generation by an inclined plane oscillating in the planar direction.

Note that the y-momentum equation is satisfied at O(δ) by choosing an appropriate
pressure p2(η), which is O(δ2), and thus negligible. By the continuity equation at
O(δ0) in stretched coordinate η,

u0x +w0z =−v1η , (5.4)

we get the O(δ) transversal velocity component

v1 = cos θ sin θ
(

i1/2 sinh[i−1/2η]

cosh[i−1/2δ−1ly]
− i−1/2 tan θ

sinh[i1/2 cot θη]
cosh[i1/2 cot θδ−1ly]

)
Uζ + V(y).

(5.5)
Here, V(y) is an undetermined velocity component satisfying Vη(y) ∈ O(δ), that is
to say, slowly varying in the transversal y-direction. The impermeability boundary
condition (v1 = 0) at both walls translates to

V(±ly)=±σUζ , with
σ = cos θ sin θ(i−1/2 tan θ tanh[i1/2 cot θδ−1ly] − i1/2 tanh[i−1/2δ−1ly]).

}
(5.6)

In the limit δ−1ly� 1, the expression simplifies to σ =−i1/2 sin θeiθ . The transversal
velocity component V enters the continuity equation at O(δ) in the unstretched
coordinates:

Uξ + δVy = 0. (5.7)

Since U is y-independent, we get Vyy = 0, hence

V =
σy
ly

Uζ . (5.8)

Thus, the transversal velocity v decays linearly (hence slowly) towards the centre
plane, y = 0, making the velocity field in the interior truly three-dimensional at
O(δl−1

y ).
The transversal divergence,

Vy =
σ

ly
Uζ =

iσ
ly

∫
∞

0
kÛ(k) exp [ikζ − it] dk, (5.9)

is balanced by −δ−1Uξ , according to the continuity equation (5.7). This means that U
must be ξ -dependent at O(δ). For the velocity expressions (3.2) and (3.4) of the wave
attractor, this requires the spectrum Û(k) to be replaced by Û(k) exp

[
−iδl−1

y σkξ
]
.

Consequently, the velocity U decays in the along-wave-beam direction, ξ , with
exp[−δl−1

y σ0kξ ], where σ0=Re[iσ ]> 0 for θ ∈ (0,π/2). The imaginary part of il−1
y σ ,

which takes both positive and negative values for θ ∈ (0, π/2), describes a slight
change in tilt in phase propagation direction, that changes from ζ to ζ − δl−1

y Re[σ ]ξ .
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Damping of quasi-2-D internal wave attractors by rigid-wall friction 623

Adding the damping by the lateral walls to the constraint for the 2-D viscous wave
attractor spectrum, (4.4), gives

Û(γ k)= Û(k) exp
[(
−δ2 tan θ

2
k3
− iδ

σ

ly
k
)
L
]
. (5.10)

This extended equilibrium wave attractor spectrum constraint is solved by

Û(k)= P(logγ (k)) exp
[
−β1k3

− β2k
]
, with β2 =

iδLσ
ly(γ − 1)

, (5.11)

for all period-1 functions P.

6. Dissipation at reflecting walls
No-slip reflection of 2-D monochromatic internal waves from a wall has been

analysed theoretically for wave beams by Kistovich & Chashechkin (1995a,b).
Whereas dissipation due to internal shear is included in the analysis by Kistovich
& Chashechkin (1995a,b), they do not account for the energy loss in the viscous
boundary layer, which also weakens the reflected wave beam. We are interested in
precisely this energy loss at the reflecting wall, such that we can tell when it is
negligible.

To begin with, we consider the inviscid free-slip velocity field at the inclined
wall, z= (lx − x) tan α, as this is the most general prescription of a planar reflecting
boundary. Expressed in the rotated and shifted coordinate system of the inclined wall,[

x′
z′

]
=

[
cos α −sin α
sin α cos α

]
·

[
x− x1
z− z1

]
, (6.1)

with z′ normal to the wall (see sketch in figure 2), the inviscid free-slip velocity field
at the inclined wall, z′ = 0, is given by

u[1]0 + u[4]0 = x̂′Ũ(x′), Ũ(x′)=
−sin 2θ

sin[α − θ ]

∫
∞

0
Û(k) exp

[
ik sin[α + θ ]x′ − it

]
dk, (6.2)

where we have used the velocity expressions from § 3 and the inviscid spectral
constraint (3.10).

The task is now to find a quasi-2-D correction velocity field, ũ = [ũ, 0, w̃],
such that it annihilates the free-slip velocity (6.2) at the inclined wall, z′ = 0,
and decays exponentially towards the interior. Using the stretched coordinate
Z = δ−1z′, the x′-momentum equation at O(δ0), governing the velocity component
ũ′0 = ũ0 cos α − w̃0 sin α in the direction along the inclined wall, becomes

i
(

sin2 α

sin2 θ
− 1
)

ũ′0 = ũ′0ZZ
. (6.3)

As previously in (5.1), we have replaced the partial time derivatives with −i, and
used b̃0= i(sin α/ sin2 θ)ũ′0. The pressure gradient is absent because the pressure is not
modified by the no-slip boundary. Solving (6.3) for ũ0 = x̂′ũ′0 such that it annihilates
(6.2) at z′ = Z = 0 and vanishes in the interior, Z′→−∞, gives

ũ0 =−x̂′Ũ(x′) exp
[
i1/2µZ

]
with µ=

√
sin2 α

sin2 θ
− 1. (6.4)
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Reflected beam

In
cid

en
t b

ea
m

Inclined w
all

FIGURE 2. This sketch illustrates the velocity components involved in the reflection of
the wave attractor (dashed line, wave motion confined to shaded area) at the inclined wall
(solid line), with arrows pointing in the energy propagation directions. The velocity field
of the reflected beam, u[1]=u[1]0 + δu

[1]
1 +O(δ2), is – due to focusing – larger in amplitude

than the incident beam velocity, u[4]0 , but weaker than the free-slip reflected velocity field,
u[1]0 (dashed arrow). The velocity component ũ′0, pointing along the wall, annihilates the
free-slip velocity field u[1]0 + u[4]0 at the wall, z′ = 0, and decays exponentially towards the
interior. By mass conservation, it generates the velocity component w̃′1 at O(δ), normal to
the wall, which itself is cancelled by ẑ′u[1]1 at z′= 0. Contrary to ũ0 and w̃1, the component
u[1]1 does not decay towards the interior; it is the correction on the reflected beam due to
damping by the no-slip reflection.

By the continuity equation at O(δ0) in stretched coordinate Z,

ũ′0x′
+ w̃′1Z

= 0, (6.5)

with w̃′1 the O(δ)-velocity component normal to the wall, we get

w̃′1 = i−1/2µ−1Ũx′(x′) exp
[
i1/2µZ

]
+ F(x′, z′). (6.6)

Here, F is an undetermined velocity component, with spatial variations of O(1),
similar to V in the previous section. Previously, we were able to find a linear
function in y for V , such that the impermeability boundary conditions at opposite
lateral walls are satisfied. This procedure fails here (because there is no opposite
inclined wall), and we must take F= 0. As a consequence, w̃′1 describes an apparent
flow through the inclined wall, z′ = Z = 0. This apparent flow through the wall,

w̃′1(x
′, Z = 0)=−i1/2 γ sin 2θ

µ

∫
∞

0
kÛ(k) exp

[
ik sin[α + θ ]x′ − it

]
dk, (6.7)

can be balanced by absorbing some O(δ)-fraction of the incident wave beam (see also
illustration in figure 2). Consequently, the viscously reflected beam with velocity field
u[1] = u[1]0 + δu

[1]
1 +O(δ2) is weaker than the inviscid velocity field, u[1]0 . We write

u[1] = ξ̂1

∫
∞

0
Û(k) exp[−δRαk] exp [ikζ1 − it] dk, (6.8)
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0.25
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0.75

1.00

1.25
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FIGURE 3. This figure presents the O(δ)-dissipation rate, Re[Rϕ], as a function of the
angle ϕ of the reflecting wall with respect to the vertical, for θ = 0.42 rad. As to be
expected, Rϕ blows up at the critical reflection angle, ϕ = θ = 0.42 (vertical asymptote).
The total dissipation by no-slip reflections of a wave attractor such as in figure 1(a) is the
sum of dissipation rates at the bottom (Re[R0]), the inclined wall (Re[Rα], here α = 1.1)
and the vertical wall (Re[Rπ/2]).

such that

u[1]1 =−ξ̂1Rα

∫
∞

0
kÛ(k) exp [ikζ1 − it] dk, (6.9)

where δRe[Rα]> 0 is the dissipation rate (per wavenumber) due to the reflection.
The complex-valued reflection dissipation rate Rα is determined by the impermeabi-

lity condition at O(δ):
w̃′1 + u[1]1 · ẑ′ = 0 at z′ = 0. (6.10)

Substituting (6.7) and (6.9) into (6.10) and noting that on the inclined wall, z′= 0, we
have ζ1 = sin[α − θ ]x′, gives

Rα = i1/2 sin 2θ
µ sin[α − θ ]

. (6.11)

We can readily use expression (6.11) to determine the dissipation rates due to the
reflections at respectively the flat bottom (α→ 0) and the vertical wall (α→π/2):

R0 = i−1/22 cos θ and Rπ/2 = i1/22 sin θ tan θ = i tan2 θR0.f (6.12a,b)

The dissipation rate (real part of (6.11)) as a function of the angle of the reflecting
boundary is shown in figure 3. In laboratory and numerical set-ups, the surface of
the fluid, z= h, is typically free, so the most appropriate constraint on this boundary
is free slip (because vertical variations are negligibly small), i.e. no dissipation by
reflection. The full viscous 3-D equilibrium wave attractor spectrum must thus satisfy

Û(γ k)= Û(k) exp
[
−δ2 (L/2 tan θ) k3

− δ
(
iσ l−1

y L+ Rα + R0 + Rπ/2
)

k
]
. (6.13)

Solutions to this spectral constraint are given by

Û(k)= P(logγ (k)) exp
[
−β1k3

− β2k− β3k
]
, with β3 = δ

Rα + R0 + Rπ/2

γ − 1
, (6.14)

for arbitrary period-1 functions P. If not stated otherwise we always consider P =
constant in the following.
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Brunt-Väisälä frequency N0 3 rad s−1

Angle of wave beam with respect to horizontal θ = arcsin[ω0/N0] 0.42 rad
Angle of sloping wall with respect to horizontal α 1.10 rad
Width of the tank W = 2lyλ0 10.1 cm
Tank length at bottom L= 2lxλ0 45.3 cm
Water column height H = hλ0 19.0 cm
Wave attractor length La =Lλ0 85.0 cm

TABLE 1. Parameter values of the laboratory experiment by Hazewinkel et al. (2008).

7. Comparison with laboratory experiments and 3-D simulations

We validate our theoretical results by comparing it with experimental spectral
results by Hazewinkel et al. (2008) and Brouzet (2016) in §§ 7.1 and 7.2 respectively.
Section 7.2 also includes a comparison with fully 3-D numerical simulations,
replicating one of the experiments by Brouzet (2016).

7.1. Comparison with laboratory experiment by Hazewinkel et al. (2008)
Hazewinkel et al. (2008) studied the equilibrium spectrum of internal wave attractors
in the classical trapezoidal set-up, both in the laboratory and with a simple model.
The parameter values relevant for the comparison with our theory are listed in table 1.
Using synthetic schlieren techniques, they directly measured the buoyancy gradient
field, [bx, bz]. Spatial variations of this buoyancy gradient field for each wave attractor
branch are primarily in the corresponding phase propagation directions, ζ . Figure 4
reproduces the normalized modulus of the observed spectrum Â(k)= (−i/ sin θ)kÛ(k)
of the buoyancy gradient, bζ , pointing in the phase propagation direction of the first
wave attractor branch, along transect S1 as shown in figure 1(a) in Hazewinkel et al.
(2008). For comparison, figure 4 shows our theoretical 3-D wave attractor spectrum
(thick blue solid line) for different period-1 functions P in (6.14). Additionally,
we present the theoretical 2-D spectrum including internal shear dissipation only
((4.5), dashed line in figure 4), which corresponds to the 2-D theoretical spectrum
by Hazewinkel et al. (2008), their (4.6), for P = constant and upon correcting
mathematical mistakes in their analysis, mentioned in § 4. Note that Hazewinkel et al.
(2008) seemingly achieved a good fit in their figure 6 because they changed their
input wavenumber, kin = 2π/H (in their notation k0), while keeping the same kin

fixed in their (4.6). Correct application of their theory reveals that their theoretical
spectrum does not depend on their input wavenumber, kin, and that the theoretical
2-D spectrum predicts the attractor wavelength to be a factor 2 smaller than observed.
The mismatch between the 2-D spectra and observation supports our striking and
unexpected conclusion that dissipation at the rigid walls must be substantial.

To illustrate the importance of the different dissipation mechanisms, we also present
in figure 4 the spectra excluding dissipation upon reflection ((5.11), dotted blue line)
and excluding internal shear dissipation ((6.14) with β1= 0, black dashed-dotted line)
for P= constant.

Three conclusions can be directly inferred from the comparison in figure 4.

(i) The full 3-D wave attractor spectrum fits the observed spectrum reasonably well
for the choices P= constant and P(k)=Pc(k)=3+ cos(2πk). The contact surface
of the wave attractor with the tank boundaries (shaded surfaces in figure 1a)
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FIGURE 4. (Colour online) Normalized modulus of the buoyancy gradient spectra, Â(k)∝
kÛ(k). The red curves with black dots reproduce the observed spectrum by Hazewinkel
et al. (2008). Theoretical spectra are presented in plot (a) with P= constant and in plot
(b) with Ps(k)= 3+ sin(2πk), Pc(k)= 3+ cos(2πk): 3-D spectrum ((6.14), thick blue) and
2-D spectrum ((4.5), black dashed). Panel (a) also shows the spectra excluding dissipation
upon reflection ((5.11), i.e. β3 = 0, dotted blue) and excluding internal shear dissipation
((6.14) with β1 = 0, black dashed-dotted).

consists primarily (∼73 %) of those at the lateral walls. It thus comes as no
surprise that in this particular laboratory set-up, with β3 ≈ 0.28β2, neglecting
dissipation at the reflecting walls still results in good fits with the observation
(see also relatively small difference between solid and dotted blue lines in
figure 4a). Hence, dissipation occurs primarily in the internal shear layers and in
the lateral boundary layers, and secondarily also at the reflecting rigid boundaries.

(ii) Neglecting internal shear dissipation ((6.14) with β1 = 0, dashed-dotted line)
leads to a spectrum whose peak coincides with the observation. However, at
large wavenumbers, this spectrum diverges from the observation. This indicates
that the neglected internal shear dissipation, which is cubic in wavenumber k,
is the dominant dissipation mechanism at high wavenumbers in the laboratory
experiment.

(iii) The discrepancy between the full 3-D spectrum for Pc(k) = 3 + cos(2πk) and
Ps(k) = 3 + sin(2πk) shows that the shape of the theoretical spectrum depends
strongly on this period-1 function, P. As discussed in § 4, the precise nature of
the P is set by the spatial structure of the energy input, i.e. by the geometry
of the tank used in the experiment by Hazewinkel et al. (2008). This means
that the energy input strongly influences the spatial structure of the equilibrium
wave attractor, and upscaling of a laboratory set-up generally does not leave
the wave attractor invariant. Despite the sensitivity on P, we can only achieve
reasonable fits between theory and observations if we include dissipation at the
rigid boundaries, which is dominated by lateral walls dissipation.

7.2. Comparison with laboratory experiments by Brouzet (2016) and 3-D simulation
Following Scolan et al. (2013), Brouzet (2016) performed laboratory experiments on
wave attractors in a trapezoidal tank using a wave generator. They especially carried
out experiments in two trapezoidal tanks with almost identical lateral width (W), but
with differences in height (H) and attractor length (La) of approximately a factor 3
(see table 2 for parameter values). Here, we briefly describe the experiments for a
comparison with our theory
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Small tank Large tank

Brunt–Väisälä frequency N0 1.37 0.867 rad s−1

Angle of wave beam with respect
to the horizontal

θ = arcsin[ω0/N0] 0.61 0.58 rad

Angle of sloping wall with
respect to the horizontal

α 1.13 1.18 rad

Width of the tank W = 2lyλ0 17.0 17.4 cm
Water column height H = hλ0 29.5 92.0 cm
Wave attractor length La =Lλ0 103.3 337.8 cm
Wave maker amplitude a 2.5 1.5 mm

TABLE 2. Parameter values of the laboratory experiments by Brouzet (2016).

In both experimental set-ups, the internal waves are generated by a sinusoidally
shaped wave maker (Gostiaux et al. 2007) situated on the left side of the tank, with
the vertical wavelength corresponding to half the height of the water column, so
kin = π/H cos θ . Previous experiments (Scolan et al. 2013), also reported in Brouzet
et al. (2016a,b, 2017a), show that triadic resonance instabilities arise if the wave
maker amplitude, a, exceeds a critical values in the range 2.5–3 mm, dependent on
the position of the attractor. Both experiments presented here are stable, and a steady
state is reached after a spin-up of approximately 20 wave periods.

Figure 5(a,b) presents two snapshots of the observed buoyancy gradient field, bζ , in
steady state, with the derivative taken in the phase propagation direction of the first
branch. The Fourier spectra along the depicted transects are shown in figure 5(c,d).
(The experimental non-dimensional buoyancy gradient bζ = g/(ρ0N2

0)ρ
′

ζ , where
ρ0 = 1000 kg m−3 the background density, g gravitational acceleration, coordinate ζ
now understood dimensional, and ρ ′ the density perturbation, is first projected onto
1000 data points along each depicted transect; then it is Fourier transformed using Fast
Fourier transform in MATLAB with zero padding to get 10 000 data points in Fourier
space.) For comparison, figure 5(c,d) also present the theoretical spectra with and
without rigid-wall dissipation for P= constant (solid and dashed lines, respectively).
Figure 5(d) also includes the spectrum of the numerical simulation (simulation output
is directly saved on an inclined (ζ , y)-plane (40× 173 grid-points), which intersects
the first wave attractor branch at the dot-dashed transect in figure 5(b). The simulated
density perturbation is differentiated with respect to ζ , averaged in the y-direction
(excluding 10 grid points in lateral boundary layer) and ω0-Hilbert filtered over the
last 63 wave periods of the simulation (simulation lasted 107 wave periods), before
computing the spectrum (with zero padding to get 120 data points in Fourier space).)
for the large tank set-up, discussed below.

The dots on the solid blue line of the fully dissipative spectra indicate the
hypothetical spikes of Û(k) at k= γ nkin, n= 0, 1, 2, . . . , which occur according to our
theory if the energy is confined to precisely kin. Such spikes are by no means visible
in the experimental and simulated spectra. We believe that due to imperfections
in the laboratory set-up and numerics in the simulation, the experimental and
simulated energy inputs do not occur precisely at kin, but over a continuous range of
wavenumbers near kin. The spectra with P= constant capture such continuous energy
input over a range of wavenumbers. We have no reason to believe that P= constant
is the best representation of the actual energy input. Different period-1 functions P
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FIGURE 5. (Colour online) Experimental results by Brouzet (2016) in the small and
large tank set-ups. (a,b) Snapshots of the buoyancy gradient, bζ , in the phase propagation
direction ζ of first branch, derived from observed field [bx, bz] after Hilbert filtering at ω0.
(c,d) Normalized modulus of experimental buoyancy gradient spectra, |Â|/|Âmax|, (black
lines) along the depicted transects of the first attractor branch in (a,b). For comparison,
corresponding 3-D theoretical spectra (solid blue) and 2-D spectra (dashed blue) for P=
constant; the blue dots indicate the discrete 3-D spectra with energy input only at kin.
The red dot-dashed curve in (d) shows the numerical spectrum taken along the dot-dashed
transect in (b) after ω0-Hilbert filtering simulated steady-state time series of the large tank
set-up. See text for additional explanation.

(not shown) lead to similar discrepancies between 3-D theory and experimental
spectra in figure 5(d).

Despite small discrepancies in figure 5(d), it is clear that for both experimental
set-ups the correspondence between the observation and our 3-D model is best. This
supports our new conclusion that dissipation at the rigid walls (mostly at the lateral
walls) is significant even for very small ratios of boundary layer thickness over lateral
width, d0/W ∼O(10−2).

Fully 3-D simulations are run for the ‘large tank’ set-up (see table 2) with the
method of spectral elements, which combines the accuracy and high resolution of
spectral methods with geometric flexibility of finite element methods (see Brouzet
et al. (2016b), Sibgatullin & Kalugin (2016) for details on the numerical method).
Figure 6 presents two snapshots of the steady-state buoyancy field in a ξ = constant
plane (dot-dashed transect in figure 5d), intersecting the first wave attractor branch
in the phase-propagating direction, ζ . We present only ∼6 % of the transversal
wall-to-wall distance, to magnify the boundary layer structure near the lateral wall
(here at y = 0). For comparison, we show the theoretical buoyancy field for spectra
with and without rigid-wall dissipation. The theoretical buoyancy field for the fully
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FIGURE 6. (Colour online) Snapshots (a–f ) of the density perturbation (= proportional
to buoyancy b) in an inclined plane, ξ = constant, along the phase propagation direction
ζ (dot-dashed transect in figure 5b), and in the vicinity of one lateral wall (here y= 0).
Simulated density perturbation at times t= 1000 s (a), and 0.3 wave periods later, at t=
1004 s (b), are plotted on top of corresponding theoretical density perturbation for the
fully dissipative attractor (3-D spectrum, plots c,d) and for internal shear dissipation only
(2-D spectrum, plots e, f ). The (buoyancy) boundary layer widths, d0 tan θ = 0.13 cm and
d0µ at respectively lateral wall (y = 0) and inclined wall (ζ = 19 cm), are indicated by
the dashed lines; the solid line shows the centre of the wave attractor. In (g) and (h)
comparison of simulated (dot-dashed red) and theoretical (3-D in solid, 2-D in dashed)
density perturbations in the panels above along y= d0 tan θ = 0.13 cm (dashed in above
graphs).

dissipative spectra (middle panels, maximum amplitude scaled to maximum amplitude
of simulation) agrees with the numerical simulation remarkably well. In contrast,
neglecting rigid-wall dissipation leads to a much thinner wave attractor, which might
even be unstable to triadic resonance instabilities for this experiment.

Figure 6 also visualizes the complex structure of the buoyancy field in the lateral
boundary layer, which is of relevance to secondary processes, such as mean flow
generation. In fact, we find that the transversal velocity component, v, (not shown) is
dominated by a mean component. Our linear theory cannot capture the induced mean
flow, discussed in §4.4 of Brouzet (2016), which increases continuously throughout
the simulated 107 wave periods.

Last but not least: the comparison of buoyancy gradient spectra in figure 5(d) shows
that simulated and experimentally observed spectral properties agree very well, thereby
confirming that wall dissipation is also important for the numerical simulation.
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Our results suggests that similar 2-D simulations by Grisouard et al. (2008), meant
to replicate quasi-2-D laboratory set-ups, probably miss significant dissipation at
the lateral walls. We speculate that the lateral wall dissipation shifts the onset of
triadic resonance instabilities towards stronger energy input, i.e. larger wave attractor
amplitude a in the experiments by Scolan et al. (2013) and Brouzet (2016).

7.3. Scaling of wave attractors
There is an ongoing debate on the scaling of wave attractors (Rieutord et al. 2001;
Ogilvie 2005; Grisouard et al. 2008; Hazewinkel et al. 2008; Brouzet 2016; Brouzet
et al. 2017b). Our new analysis predicts that the scaling of wave attractors depends on
the type of energy dissipation. We define the characteristic wavelength of the attractor
as 2π/kmax, where kmax is the dimensional wavenumber corresponding to the maximum
of the spectrum. Considering only internal shear dissipation ((4.5) with P= constant),
we get the characteristic attractor wavelength λI

0 = 2π/kmax = 2π (3β1)
1/3, where β1

is now understood as the dimensional equivalent of its non-dimensional definition
in (4.5), taking d0 instead of δ, and La instead of L. We recover λI

0 ∝ (Laν/N0)
1/3,

as originally found by Rieutord et al. (2001) and numerically verified by Grisouard
et al. (2008). Damping only by the lateral walls ((5.11) with β1 = 0) results in an
attractor wavelength λW

0 = 2πRe[β2] ∝ (La/W) (ν/N0)
1/2, with β2 also understood to

be dimensional. Interestingly, this attractor length scale, λW
0 , is independent of the

actual size of the 3-D tank, because scaling both La and W leaves λW
0 invariant. The

dissipation at the lateral walls is negligible only if λI
0� λ

W
0 , which is the case when

W� L2/3
a d1/3

0 σ0
[cot θ 2(γ 3

− 1)/3]1/3

2(γ − 1)
. (7.1)

Figure 7 shows λ0 as a function of La for the parameter values of the small and large
tank set-ups by Brouzet (2016), with the dots showing the experimentally observed
characteristic wavelengths (corresponding to kmax indicated in figure 5c,d). The two
graphs do not coincide due to slightly different parameter values, most prominently
differences in angle α for the two set-ups. One can distinguish two different regimes:
(i) For La�W, lateral wall dissipation dominates, so λW

0 ∝La. (ii) For W .La, internal
shear dissipation contributes significantly, so λI

0 ∝ L1/3
a . The presented experiments

fall into the transition between region (i) and (ii). This stresses the importance of
previously unrecognized dissipation at rigid lateral walls.

8. Concluding remarks
From our theoretical analysis it is evident that the structure of a wave attractor

in equilibrium is primarily determined by wave focusing, viscous dissipation at the
rigid boundaries (mostly at the lateral walls), as well as viscous dissipation in the
internal shear layers. Contrary to what was previously suggested, we show that
the quasi-2-D experiments by Hazewinkel et al. (2008) cannot be captured by the
theoretical spectrum of a 2-D steady-state wave attractor, which takes only internal
shear dissipation into account. We close the gap between observations and theory
by adding viscous dissipation at the lateral walls, which are the primary contact
surfaces of the attractor and the rigid boundaries in the experiment by Hazewinkel
et al. (2008). It is clear that rigid-wall dissipation also plays an important role in the
experiments by Scolan et al. (2013) and Brouzet (2016).

Contrary to previous studies, we find that the shape of the equilibrium wave
attractor in the classical trapezoidal set-up is not only dependent on the properties of
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FIGURE 7. (Colour online) Theoretical wavelength λ0, as function of orbital attractor
length, La, for parameter values corresponding to ‘small tank’ (blue) and ‘large tank’ (red),
with the dots showing the observed wavelength at the actual orbital lengths (1 m and
3 m, respectively). Solid lines: scaling of λ0 as a function of La for fixed W and fully
dissipative attractor (value W= 0.17 m is marked). Dashed lines: scaling for internal shear
damping only (λI

0 ∝ L1/3
a ). Dot-dashed lines: rigid-wall dissipation only (λW

0 ∝ La).

the stratified fluid (viscosity ν, Brunt–Väisälä frequency N0), the geometry of the tank
(width W, wave attractor length La, sloping wall angle α) and forcing frequency ω0,
but also on the nature of the energy input, which determines the period-1 function
P in (4.5), (5.11) and (6.14). Whereas the fluid properties and geometry determine
the characteristic cross-beam wavelength of the wave attractor, the nature of the
energy input sets the fine structure of the equilibrium wave attractor. The role of
the period-1 function P remains vague, and more research is needed to understand
the relation between a single wavenumber energy input and a continuous steady-state
wave attractor spectrum.

The striking unresolved problem is the following: if the energy input is discrete,
as one may argue for the ‘small tank’ and ‘large tank’ set-ups, then the period-1
function P should consist of Dirac delta functions, leading to a discrete spectrum.
However, the experimental and simulated spectra with supposedly discrete energy
input are smooth. It is unclear whether the energy input is not as discrete in spectral
space as we imagined, or whether some other mechanism (not captured by our theory)
effectively smooths the wave attractor spectrum.

In the ocean, sites where internal waves propagate parallel to a rigid vertical
boundary over long distances are sparse; the channel between two coral atolls studied
by Rayson et al. (2016) being such exceptional example. Wave beam reflection at
bottom topography is much more common. To the best of our knowledge, we are
the first to explicitly determine the dissipation due to such reflection. Our assumption
of a stable laminar boundary layer holds in the ocean for semi-diurnal tides with
amplitudes up to 32 m (Bukreev 1988). For internal tides with wavelengths of the
order of 100 m (k0 = 0.06 rad m−1), we find that the velocity amplitude decay due
to non-critical reflection, d0k0Rα, can amount up to ∼1 %. For larger wavelengths,
the decay is even smaller, confirming that dissipation due to laminar reflection is
typically negligible in the ocean. Probably more important is the three-dimensionality
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of the boundary layer velocity field occurring for reflecting wave beams, which
happens if incoming and outgoing beams point in different horizontal directions. It is
well known that the 2-D steady-state similarity linear solutions for collinear viscous
wave beams by Tabaei & Akylas (2003) can also be valid in the nonlinear regime.
This may change in the vicinity of the rigid boundary, where Reynolds stresses may
become large. Consequences can be the generation of strong mean flows, such as
observed experimentally by Bordes et al. (2012) and Grisouard et al. (2013), and
in the simulations by King, Zhang & Swinney (2010) and by K. Raja (personal
communication), or triadic resonance instability (Scolan et al. 2013; Brouzet et al.
2016a, 2017a). Both scenarios may result in the breakdown of the internal wave
beam, strong energy dissipation near the reflecting boundary and potentially vertical
mixing (Dauxois et al. 2018).
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