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A graph G is a (�A, �B )-graph if V (G) can be bipartitioned into A and B such that 
G[A] satisfies property �A and G[B] satisfies property �B . The (�A , �B)-Recognition

problem is to recognize whether a given graph is a (�A , �B)-graph. There are many 
(�A , �B)-Recognition problems, including the recognition problems for bipartite, split, 
and unipolar graphs. We present efficient algorithms for many cases of (�A, �B )-Recogni-

tion based on a technique which we dub inductive recognition. In particular, we give 
fixed-parameter algorithms for two NP-hard (�A, �B )-Recognition problems, Monopo-

lar Recognition and 2-Subcoloring, parameterized by the number of maximal cliques 
in G[A]. We complement our algorithmic results with several hardness results for
(�A , �B)-Recognition.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A (�A, �B)-graph, for graph properties �A, �B , is a graph G = (V , E) for which V admits a partition into two sets A, B
such that G[A] satisfies �A and G[B] satisfies �B . There is an abundance of (�A, �B)-graph classes, and important ones 
include bipartite graphs (which admit a partition into two independent sets), split graphs (which admit a bipartition into 
a clique and an independent set), and unipolar graphs (which admit a bipartition into a clique and a cluster graph). Here 
a cluster graph is a disjoint union of cliques. An example for each of these classes is shown in Fig. 1.

The problem of recognizing whether a given graph belongs to a particular class of (�A, �B)-graphs is called
(�A, �B)-Recognition, and is known as a vertex-partition problem. Recognition problems for (�A, �B)-graphs are of-
ten NP-hard [1,13,20], but bipartite, split, and unipolar graphs can all be recognized in polynomial time [24,16,23,12,29]. 
With the aim of generalizing these polynomial-time algorithms, we study the complexity of recognizing certain classes of 
(�A, �B)-graphs, focusing on two particular classes that generalize split and unipolar graphs, respectively. To achieve our 
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Fig. 1. Three examples of (�A , �B )-graphs, where the coloring gives a (�A , �B )-partition. The vertices of A are black and the vertices of B are white. Left: 
in bipartite graphs, A and B are independent sets. Center: in split graphs, A is a clique and B is an independent set. Right: in unipolar graphs, A is a clique 
and B induces a cluster graph.

Fig. 2. An example of the inductive step in inductive recognition. Left: a split graph Gi−1 with a given partition into a clique A and an independent set B . 
Center: the partition for Gi−1 cannot be directly extended to a partition for Gi since the vertex vi has a nonneighbor v j in A and a neighbor v� in B . 
Right: after deciding to put vi in the clique A, we can repair the partition by moving v j to the independent set B and v� to the clique A.

goals, we formalize a technique, which we dub inductive recognition, that can be viewed as an adaptation of iterative com-
pression to recognition problems. We believe that the formalization of this technique will be useful in general for designing 
algorithms for recognition problems.

Inductive recognition. The inductive recognition technique, described formally in Section 3, can be applied to solve the
(�A, �B)-Recognition problem for certain hereditary (�A, �B)-graph classes. Intuitively, the technique works as follows. 
Suppose that we are given a graph G = (V , E) and we have to decide its membership of the (�A, �B)-graph class. We 
proceed in iterations and fix an arbitrary ordering of the vertices; in the following, let n := |V | and m := |E|. We start 
with the empty graph G0, which trivially belongs to the hereditary (�A, �B)-graph class. In iteration i, for i = 1, . . . , n, we 
recognize whether the subgraph Gi of G induced by the first i vertices of V still belongs to the graph class, assuming that 
Gi−1 belongs to the graph class.

Inductive recognition is essentially a variant of the iterative compression technique [26], tailored to recognition problems. 
The crucial difference, however, is that in iterative compression we can always add the ith vertex vi to the solution from 
the previous iteration to obtain a new solution (which we compress if it is too large). However, in the recognition problems 
under consideration, we cannot simply add vi to one part of a bipartition (A, B) of Gi−1, where Gi−1 is member of the 
graph class, and witness that Gi is still a member of the graph class: Adding vi to A may violate property �A and adding 
vi to B may violate property �B . An example for split graph recognition is presented in Fig. 2. Here, we cannot add vi to 
A or B to obtain a valid bipartition for Gi , even if Gi−1 is a split graph with clique A and independent set B . Therefore, we 
cannot perform a ‘compression step’ as in iterative compression. Instead, we must attempt to add vi to each of A and B , 
and then attempt to ‘repair’ the resulting partition in each of the two cases, by rearranging vertices, into a solution for Gi
(if a solution exists). This idea is formalized in the inductive recognition framework in Section 3.

Monopolar graphs and mutually exclusive graph properties. The first (�A, �B)-Recognition problem that we consider is the 
problem of recognizing monopolar graphs, which are a superset of split graphs. A monopolar graph is a graph whose vertex 
set admits a bipartition into a cluster graph and an independent set; an example is shown in Fig. 3. Monopolar graphs 
have applications in the analysis of protein-interaction networks [4]. The recognition problem of monopolar graphs can be 
formulated as follows:

Monopolar Recognition

Input: A graph G = (V , E).
Question: Does G have a monopolar partition (A, B), that is, can V be partitioned into sets A and B such that G[A] is a 
cluster graph and G[B] is an edgeless graph?

In contrast to the recognition problem of split graphs, which admits a linear-time algorithm [16], Monopolar Recognition

is NP-hard. This motivates a parameterized complexity analysis of Monopolar Recognition. We consider the parameterized 
version of Monopolar Recognition, where the parameter k is an upper bound on the number of clusters in G[A], and use 
inductive recognition to show the following:
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Fig. 3. A monopolar and a 2-subcolorable graph with colorings that give a (�A , �B )-partition. The vertices of A are black and the vertices of B are white. 
Left: a monopolar graph where A induces a cluster graph and B is an independent set. Right: a 2-subcolorable graph where A and B induce cluster graphs.

Theorem 1.1. In O(2k · k3 · (n + m)) time, we can decide whether G admits a monopolar partition (A, B) such that G[A] is a cluster 
graph with at most k clusters.

The above result is a generalization of the linear-time algorithm for recognizing split graphs [16], which we can obtain by 
setting k = 1.

We observe that inductive recognition, and the ideas used to obtain the result in Theorem 1.1, can be generalized to
(�A, �B)-Recognition problems in which properties �A and �B satisfy certain conditions of mutual exclusivity. To under-
stand this notion of mutual exclusivity, consider the situation for split graphs. Intuitively, recognizing split graphs is easy 
for the following reason: If we consider any bipartition of a split graph G into a clique K and an independent set I , then 
this bipartition differs only very slightly from any other such bipartition of G . This is because at most one vertex of K may 
be part of any independent set of G and similarly, at most one vertex of I may be part of any clique in G . Thus, the two 
graph properties exclude each other to a large extent. In the situation of monopolar graphs, the two properties �A and �B

defining monopolar graphs, are not mutually exclusive: G[A] and G[B] could be an edgeless graph of arbitrary number of 
vertices. However, in the parameterized Monopolar Recognition problem, we restrict G[A] to contain at most k clusters. 
This restriction makes the properties mutually exclusive, as G[A] may not contain an edgeless graph on k + 1 vertices any-
more. Hence, any two monopolar partitions with k clusters in G[A] again differ only slightly if the parameter k is small. We 
generalize this observation in the following definition:

Definition 1.1. Two graph properties �A and �B are called mutually d-exclusive if there is no graph with at least d vertices 
that fulfills �A and �B .

For a pair (�A, �B) of mutually d-exclusive graph properties, we use inductive recognition to obtain the following result:

Theorem 1.2. If �A and �B are hereditary and mutually d-exclusive, and membership of �A and �B can be decided in polynomial 
time, then (�A, �B)-Recognition can be solved in n2d+O(1) time.

Although Theorem 1.2 is quite general, there are many natural cases of (�A, �B)-Recognition to which it does not apply. 
Moreover, the degree of the polynomial in the running time depends on d, that is, the corresponding algorithm is an XP 
algorithm for the parameter d. Thus, while Theorem 1.2 can be applied to solve the parameterized Monopolar Recognition

problem where d = k + 1, the running time obtained is not practical, even for moderate values of k. In contrast, the much 
more efficient algorithm alluded to in Theorem 1.1 is tailored for parameterized Monopolar Recognition. An improvement 
from the XP algorithm implied by Theorem 1.2 to an FPT algorithm for all pairs of mutually exclusive properties is unlikely, 
as we show in Section 4. Nevertheless, we show in Section 6 that the FPT algorithm for Monopolar Recognition can be 
adapted to work for certain pairs of mutually exclusive properties �A and �B .

2-Subcolorings. Next, we study 2-subcolorable graphs; these are graphs for which the vertex set admits a bipartition into two 
cluster graphs [3], and thus are a superset of unipolar graphs; an example is shown in Fig. 3. The recognition problem of 
2-subcolorable graphs can be formulated as follows:

2-Subcoloring

Input: A graph G = (V , E).
Question: Does G have a 2-subcoloring (A, B), that is, can V be partitioned into sets A and B such that each of G[A]
and G[B] is a cluster graph?

In contrast to the recognition problem of unipolar graphs, which admits a polynomial-time algorithm [29,12,23], 
2-Subcoloring is NP-hard [1]. We consider 2-Subcoloring parameterized by the number of clusters in G[A], and use 
inductive recognition to show the following:
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Theorem 1.3. In O(k2k+1 · nm) time, we can decide whether G admits a 2-subcoloring (A, B) such that G[A] is a cluster graph with 
at most k clusters.

The above result can be seen as a generalization of the polynomial-time algorithms for recognizing unipolar graphs [29,
12,23], which we can obtain by setting k = 1. We remark that one faces various technical difficulties when designing algo-
rithms for parameterized 2-Subcoloring as it does not seem to yield to standard approaches in parameterized algorithms. 
This is a testament to the power of the inductive recognition technique, which adds to the arsenal of existing techniques 
for designing parameterized algorithms. Observe also that Theorem 1.2 does not apply to parameterized 2-Subcoloring.

Further results. We also consider the 2-Subcoloring problem parameterized by a weaker parameter: the total number of 
clusters in G[A] and G[B]. This parameterization makes the problem amenable to a branching strategy that branches on the 
placement of the endpoints of suitably chosen edges and nonedges of the graph. In this way, we create partial 2-subcolorings 
(A′, B ′) where each vertex in V \ (A′ ∪ B ′) is adjacent to the vertices of exactly two partial clusters, one in each of G[A′]
and G[B ′]. Then we show that whether such a partial 2-subcoloring extends to an actual 2-subcoloring of G can be tested 
in polynomial time via a reduction to 2-CNF-Sat. We prove the following result:

Theorem 1.4. In O(4k · k2 · n2) time, we can decide whether G admits a 2-subcoloring (A, B) such that G[A] and G[B] are cluster 
graphs with at most k clusters in total.

Finally, we consider the parameter consisting of the total number of vertices in G[A]. We observe that a straightforward 
branching strategy yields a generic fixed-parameter algorithm for many (�A, �B)-Recognition problems.

Proposition 1.1. Let �A and �B be two hereditary graph properties such that membership of �A can be decided in polynomial time 
and �B can be characterized by a finite set of forbidden induced subgraphs. Then we can decide in 2O(k)nO(1) time whether V can be 
partitioned into sets A and B such that G[A] ∈ �A , G[B] ∈ �B , and |A| ≤ k.

We complement our results by presenting in Section 9 several hardness results showing that significant improvements 
over the algorithms presented in this paper for Monopolar Recognition, 2-Subcoloring, and the (�A, �B)-Recognition

problem in general, are unlikely.

Related work. As mentioned, split graphs and unipolar graphs can be recognized in linear time [16] and polynomial time [29,
12,23], respectively. In contrast, if �A and �B can be characterized by a set of connected forbidden subgraphs and �A is 
not the set of all edgeless graphs, then (�A, �B)-Recognition is NP-hard [13]. This implies the NP-hardness of Monopolar 
Recognition and 2-Subcoloring. Up to the authors’ knowledge, the parameterized complexity of Monopolar Recognition

and 2-Subcoloring has not been studied before. The known algorithms for both problems are not parameterized, and 
assume that the input graph belongs to a structured graph class; see [5–7,11,21] and [3,14,15,27], respectively. Recently, 
Kolay and Panolan [19] considered the problem of deleting k vertices or edges to obtain an (r, �)-graph. For integers r, �, 
a graph G = (V , E) is an (r, �)-graph if V can be partitioned into r independent sets and � cliques. For example, (2, 0)-graphs 
are precisely bipartite graphs and (1, 1)-graphs are precisely split graphs. Observe that (1, ·)-graphs are not necessarily 
monopolar, because monopolar graphs do not allow edges between the cliques (as G[A] is a cluster graph), whereas such 
edges are allowed in (1, ·)-graphs. These differences lead to substantially different algorithmic techniques. For example, 
since Kolay and Panolan [19] consider the deletion problem, they can use iterative compression in their work. Moreover, 
they consider r, � < 3, whereas the number of cliques k may be arbitrarily large in our setting. Nevertheless, during the 
development of our algorithms we were inspired by some of their observations.

Organization of the article. After describing the necessary graph-theoretic notations and giving a brief background on param-
eterized complexity in Section 2, we introduce inductive recognition in Section 3. In Section 4, we show our most general 
tractability result based on inductive recognition, the XP algorithm for mutually exclusive graph properties (Theorem 1.2). 
In Section 5, we give the linear-time fixed-parameter algorithm for Monopolar Recognition parameterized by the number k
of cliques (Theorem 1.1). In Section 6, we present more general graph classes such that we can obtain FPT algorithms for 
their corresponding recognition problems. In Section 7, we turn to 2-Subcoloring parameterized by the smaller number of 
cliques between the two parts, and give an FPT algorithm for this problem based on inductive recognition (Theorem 1.3). 
In Section 8, we present FPT algorithms that are not based on inductive recognition, for recognition problems parameterized 
by weaker parameters (Proposition 1.1 and Theorem 1.4). Our hardness results are presented in Section 9. In Section 10, 
we summarize our findings and point out future research directions.

2. Preliminaries

For n ∈N, we let [n] := {1, . . . , n} denote the integers from 1 through n. We follow standard graph-theoretic notation [9]. 
Let G be a graph. By V (G) and E(G) we denote the vertex set and the edge set of G , respectively. The order of a graph 
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G is |V (G)|. Throughout this work, let n := |V (G)| and m := |E(G)|. For X ⊆ V (G), G[X] denotes the subgraph of G induced 
by X . For a vertex v in G , N(v) and N[v] denote the open neighborhood and the closed neighborhood of v , respectively. 
The degree of a vertex v in G , denoted deg(v), is |N(v)|. We say that a vertex v is adjacent to a subset X ⊆ V (G) of vertices
if v is adjacent to at least one vertex in X . For X ⊆ V (G), we define N(X) := (

⋃
v∈X N(v)) \ X and N[X] := ⋃

v∈X N[v], and 
for a family X of subsets X ⊆ V (G), we define N(X ) := (

⋃
X∈X N(X)) \ (

⋃
X∈X X) and N[X ] := ⋃

X∈X N[X]. If S is any set 
of vertices in G , we write G − S for the subgraph of G obtained by deleting all the vertices in S and their incident edges. 
For a vertex v ∈ V (G), we write G − v for G − {v}.

By P3 we denote the graph that is a (simple) path on 3 vertices. We repeatedly use the following well-known fact:

Fact 2.1. A graph is a cluster graph if and only if it does not contain P3 as an induced subgraph.

Let r, s be positive integers. The Ramsey number R(r, s) is the smallest integer such that every graph of order at least 
R(r, s) either contains a clique of r vertices or an independent set of s vertices. Ramsey’s theorem [25] states that, for any 
two positive integers r, s, the number R(r, s) exists. The following upper bound on R(r, s) is known: R(r, s) ≤ (r+s−2

r−1

)
.

A parameterized problem is a set of instances of the form (x, k), where x ∈ �∗ for a finite alphabet set �, and k ∈ N

is the parameter. A parameterized problem Q is fixed-parameter tractable (FPT), if there exists an algorithm that on input 
(x, k) decides if (x, k) is a yes-instance of Q in time f (k)nO(1) , where f is a computable function independent of n = |x|; 
an algorithm with this running time is called FPT algorithm. A hierarchy of fixed-parameter intractability, the W-hierarchy⋃

t≥0 W[t], was introduced based on the notion of FPT reduction, in which the 0th level W[0] is the class FPT. It is commonly 
believed that W[1] 	= FPT. A parameterized problem Q is in the parameterized complexity class XP, if there exists an 
algorithm that on input (x, k) decides if (x, k) is a yes-instance of Q in time O(n f (k)), where f is a computable function 
independent of n = |x|. For more discussion on parameterized complexity, we refer to the literature [10,8].

We make also use of the Exponential Time Hypothesis (ETH). The ETH was formulated by Impagliazzo et al. [17], and 
states that k-CNF-Sat (for any k ≥ 3) cannot be solved in subexponential time 2o(n) , where n is the number of variables in 
the input formula. Therefore, there exists a constant c > 0 such that k-CNF-Sat cannot be solved in time O(2cn). ETH has 
become a standard hypothesis in complexity theory for proving tight running time bounds results.

3. Foundations of inductive recognition

In this section, we describe the foundations of the general technique that we use to solve (�A, �B)-Recognition prob-
lems. The technique works in a similar way to the iterative compression technique by Reed et al. [26]. Let G be an arbitrary 
hereditary graph class (that is, if G ∈ G , then G ′ ∈ G for every induced subgraph G ′ of G). We call an algorithm A an 
inductive recognizer for G if given a graph G = (V , E), a vertex v ∈ V such that G − v ∈ G , and a membership certificate 
for G − v ∈ G , algorithm A correctly decides whether G ∈ G , and gives a membership certificate if G ∈ G (for example, in 
the case of recognizing monopolar graphs, it may be a string encoding a monopolar partition).

Theorem 3.1. Let G be an arbitrary hereditary graph class. Given an inductive recognizer A for G , we can recognize whether a given 
graph G = (V , E) is a member of G in time O(n + m) + ∑n

i=1 T (i), where T (i) is the worst-case running time of A on a graph of 
order at most i.

Proof. We first sort the vertices in an arbitrary order to obtain a list v1, . . . , vn . Let G0 = (∅, ∅) be the empty graph 
and Gi := G[{v1, v2, . . . , vi}], for i = 1, . . . , n. Since G is hereditary, G0 is a member of G and we can easily compute a 
membership certificate of G0 in G . Then, for i = 1, . . . , n, in order, we run A on (Gi, vi) passing to A the certificate of 
membership of Gi−1 in G , to decide whether Gi is a member of G , and produce a membership certificate in case it is, but 
only if Gi−1 is a member of G . If A decides that Gi is not a member of G for some i = 1, . . . , n, then we answer that G is 
not a member of G; this is correct, because G is hereditary. Otherwise, we answer that G is a member of G; the correctness 
of this answer follows from the correctness of A. The bound on the running time is straightforward. �

For the purpose of this paper, we consider parameterized inductive recognizers for (�A, �B)-graphs. In addition to G and v , 
these recognizers take a nonnegative integer k as input. The above general theorem can then be instantiated as follows.

Corollary 3.1. Let k be a nonnegative integer, and let �A and �B be two hereditary graph properties. Let Gk be a class of 
(�A, �B)-graphs with an additional hereditary property that depends on k. Given a parameterized inductive recognizer A for Gk, 
we can recognize whether a given graph G = (V , E) is a member of Gk in time O(n + m) + ∑n

i=1 T (i, k), where T (i, k) is the worst-
case running time of A with parameter k on a graph of order at most i.

Corollary 3.2. Let k be a nonnegative integer and let �A and �B be two hereditary graph properties. Let Gk be a class of 
(�A, �B)-graphs with an additional hereditary property that depends on k. Given a parameterized inductive recognizer A for Gk
that runs in time f (k) · �, where � is the maximum degree of the input graph and f is an arbitrary computable function, we can 
recognize whether a given graph G = (V , E) is a member of Gk in time f (k) ·O(n + m).



I. Kanj et al. / Journal of Computer and System Sciences 92 (2018) 22–47 27
Proof of Corollary 3.2. Modify the algorithm in the proof of Theorem 3.1 by, instead of sorting the vertices v1, . . . , vn arbi-
trarily, sorting them in nondecreasing order of their vertex-degree in O(n +m) time (using Bucket Sort for example). In this 
way, for each i ∈ [n], graph Gi has its maximum degree upper bounded by the degree of vertex vi . Thus, if the running time 
of A depends linearly on the maximum degree of the input graph and arbitrarily on k, then the total running time is linear 
for every fixed k. �
4. A general application of inductive recognition

Recall that (�A, �B)-Recognition is NP-hard if �A and �B can be characterized by a set of connected forbidden induced 
subgraphs and, additionally, �A is not the set of all edgeless graphs [13]. While being quite general, this hardness result is 
not exhaustive and ideally, we would like to obtain a complexity dichotomy for (�A, �B)-Recognition. As a first application 
of inductive recognition and a step towards such a complexity dichotomy, we show how inductive recognition can be used 
to solve (�A, �B)-Recognition for hereditary mutually d-exclusive graph properties �A , �B , as defined in Definition 1.1
(Section 1).

To apply inductive recognition, we need to describe an inductive recognizer for (�A, �B)-graphs, that is, we need to 
give an algorithm for the following problem.

Inductive (�A, �B)-Recognition

Input: A graph G = (V , E), a vertex v ∈ V , and a partition (A′, B ′) of G ′ = G − v such that G[A′] ∈ �A and G[B ′] ∈ �B .
Question: Does V have a (�A, �B)-partition (A, B), that is, a partition such that G[A] ∈ �A and G[B] ∈ �B ?

For mutually d-exclusive graph properties, we can solve this problem by starting a search from the partition (A′, B ′)
of G − v . Herein, we can use the fact that the number of vertices that can be moved from A′ to B and from B ′ to A are 
each upper-bounded by d, because G[A′] ∈ �A and G[B ′] ∈ �B . This implies that the partition (A, B) is determined to a 
large extent by the partition (A′, B ′).

Lemma 4.1. If �A and �B are hereditary and mutually d-exclusive graph properties, and membership of �A and �B can be decided 
in polynomial time, then Inductive (�A, �B)-Recognition can be solved in time n2d+O(1).

Proof. Assume there is a (�A, �B)-partition (A, B) of V . Since �A and �B are mutually d-exclusive, at most d − 1 vertices 
of A′ are contained in B and at most d − 1 vertices of B ′ are contained in A. Consequently, we can decide whether G
is a (�A, �B)-graph by the following algorithm. Consider each pair of Ã ⊆ A′ and B̃ ⊆ B ′ such that | Ã| < d and |B̃| < d. 
Determine whether

((A′ ∪ {v} ∪ B̃) \ Ã, (B ′ ∪ Ã) \ B̃)

is a (�A, �B)-partition and output it if this is the case. Otherwise, check whether

((A′ ∪ B̃) \ Ã, (B ′ ∪ {v} ∪ Ã) \ B̃)

is a (�A, �B)-partition and output it if this is the case. If both tests fail for all pairs of Ã and B̃ , then output that G is not 
a (�A, �B)-graph.

The correctness follows from the fact that the algorithm considers both possibilities of placing v in A or B , and all 
possibilities for moving vertices from A′ to B and from B ′ to A. The running time is n2d−2 · nO(1) = n2d+O(1) , since we 
consider altogether at most 2 · n2d−2 different bipartitions, and for each bipartition the membership of the two parts in �A
and �B can be determined in polynomial time. �

By combining Theorem 3.1 and Lemma 4.1, we immediately obtain the following.

Theorem 1.2. If �A and �B are hereditary and mutually d-exclusive, and membership of �A and �B can be decided in polynomial 
time, then (�A, �B)-Recognition can be solved in n2d+O(1) time.

Two hereditary graph properties �A, �B are mutually d-exclusive for some integer d if and only if �A excludes some 
edgeless graph and �B excludes some clique, or vice versa: Clearly, the “only if”-part holds. For the “if”-part, we obtain the 
following upper bounds on d.

Proposition 4.1. Let �A and �B be hereditary graph properties. If �A excludes an edgeless graph of order sa and �B excludes a 
complete graph of order sb, then �A and �B are mutually R(sa, sb)-exclusive.

Proof. By the definition of Ramsey numbers, every graph of order R(sa, sb) contains either an edgeless subgraph of order 
at least sa , or a complete subgraph of order sb . Thus, every graph of order at least R(sa, sb) fulfilling �A contains a com-
plete graph of order sb and thus does not fulfill �B . Since Ramsey numbers are symmetric, every graph of order R(sa, sb)

fulfilling �B contains an edgeless subgraph of order sa and thus does not fulfill �A . �
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If �A and �B fulfill the conditions of the above proposition and are recognizable in polynomial time, then Theorem 1.2
applies.

Corollary 4.1. Let �A and �B be hereditary graph properties such that membership of �A and �B can be decided in polynomial 
time. If �A excludes a fixed edgeless graph and �B excludes a fixed complete graph, then (�A, �B)-Recognition can be solved in 
polynomial time.

Observe that if �A and �B both contain arbitrarily large edgeless graphs, then �A and �B are not mutually exclusive. 
Similarly, �A and �B are not mutually exclusive if both contain arbitrarily large complete graphs. As a consequence, Corol-
lary 4.1 summarizes the applications of Theorem 1.2. A natural question is whether in Theorem 1.2 the dependency of the 
running time on d can be improved. A substantial improvement to f (d) · nO(1) , however, is unlikely as we show in the 
remainder of this section.

A note on vertex deletion problems. Theorem 1.2 has some applications for vertex deletion problems in undirected graphs 
which we illustrate with an example below. On the negative side, this example also gives a graph property �A and a 
family F of graph properties such that �A and each �B ∈ F are mutually d(�B)-exclusive and (�A, �B)-Recognition is 
W[1]-hard with respect to d(�B) if we consider �B as part of the input.

Consider the Vertex Cover problem where we are given a graph G and want to determine whether G has a vertex 
cover S of size at most k, that is, whether at most k vertices of G can be deleted such that the remaining graph is edgeless. 
This problem can be phrased as a (�A, �B)-Recognition problem: �A is the class of edgeless graphs and �B is the class 
of graphs of order at most k.

The standard parameter for Vertex Cover is the solution size k. Let us consider instead the smaller parameter �, the 
“size of the maximum independent set over all size-k solutions S”. That is, we modify the problem by adding an additional 
integer � to the input and we want to decide whether there is a vertex cover S of size at most k such that the size of a 
maximum independent set in G[S] is �. Call this problem Dense Vertex Cover. Clearly, � can be arbitrarily smaller than k. 
A given instance (G, k, �) of Dense Vertex Cover can again be formulated in terms of (�A, �B)-Recognition: As before, 
�A is the set of edgeless graphs, and �B is now the class of graphs of order at most k which have no independent set of 
size � + 1. Also, since �A excludes the complete graph on two vertices, �A and �B are mutually (� + 1)-exclusive. Hence, 
Theorem 1.2 implies for every fixed � a polynomial-time algorithm for Dense Vertex Cover, in other words, an XP algorithm 
for the parameter �.

Ideally, we would like to replace this XP algorithm by an FPT algorithm. This, however, is unlikely, as the following 
proposition shows.

Proposition 4.2. Dense Vertex Cover parameterized by � is W[1]-hard.

Proof. Consider the Partitioned Independent Set problem where we are given a graph G = (V , E) with a vertex parti-
tion V 1, . . . , Vt such that each part V i induces a clique in G and the task is to decide whether G has an independent set 
of size t . Equivalently, we may ask for a vertex cover of size n − t , giving a trivial reduction from Partitioned Independent 
Set to Dense Vertex Cover. This reduction is parameter-preserving: the input graph is not changed by the reduction and 
thus � ≤ t , because the maximum independent set size in G is at most t . Hence, it suffices to establish that Partitioned 
Independent Set is W[1]-hard parameterized by the size t of the desired independent set.

The W[1]-hardness of Partitioned Independent Set can be seen by a folklore reduction from Independent Set parameter-
ized by the size of the independent set, which is well known to be W[1]-hard (see e.g. [10,8]); for the sake of completeness, 
we give a short description. Let (G, k) be an instance of Independent Set with an n-vertex graph G = (V , E) and integer k. 
Create k copies v1, . . . , vk of each vertex v ∈ V , and let V ′ = {v1, . . . , vk | v ∈ V } and V ′

i = {vi | v ∈ V }. Let G ′ be the graph 
with vertex set V ′ where ui and v j are adjacent if and only if i = j, or i 	= j and u ∈ NG [v]. Observe that G ′[V ′

i ] is a clique 
for each i. Moreover, G has an independent set of size k if and only if G ′ has an independent set of size k. Hence, by setting 
t = k, we complete the reduction. �

We have noted above that each instance of Dense Vertex Cover can be solved by a call to the algorithm in Theorem 1.2
for two mutually (� + 1)-exclusive graph properties. Combining this with Proposition 4.2, we obtain the following corollary.

Corollary 4.2. Unless FPT = W[1], the running time in Theorem 1.2 cannot be improved to f (d) · nO(1) .

Nevertheless, Theorem 1.2 and Corollary 4.1 imply XP algorithms for many vertex deletion problems when the parameter 
is the size of the independent set of the solution; examples of such applications are Feedback Vertex Set (where the remain-
ing graph is a forest), Bounded Degree Deletion (where the remaining graph has degree at most r for some constant r), 
and Planar Vertex Deletion.
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5. An FPT algorithm for MONOPOLAR RECOGNITION

Monopolar Recognition is the special case of (�A, �B)-Recognition where �A is the set of cluster graphs and �B is 
the set of edgeless graphs. Here, we consider Monopolar Recognition with the number k of clusters as a parameter. This 
further restricts �A : by bounding the parameter k we constrain �A to be the set of cluster graphs with at most k clusters. 
Thus, the graphs in �A cannot contain an edgeless graph of order k + 1 as subgraph. In other words, every graph in �A
that has order at least k + 1 contains at least one edge. Altogether this implies the following.

Fact 5.1. If �A is the set of cluster graphs with at most k clusters and �B is the set of edgeless graphs, then �A and �B are mutually 
(k + 1)-exclusive.

Thus, �A and �B fulfill the conditions of Theorem 1.2 for each fixed k which implies an XP algorithm for Monopolar 
Recognition parameterized by k. In this section, we give a linear-time FPT algorithm for Monopolar Recognition parame-
terized by the number of clusters k.

Throughout, given a graph G = (V , E) and a nonnegative integer k, we say that a monopolar partition (A, B) of G is valid
if G[A] is a cluster graph with at most k clusters. Using Corollary 3.2, it suffices to give a parameterized inductive recognizer 
for graphs with a valid monopolar partition. That is, we need to solve the following problem in time f (k) · �, where f is 
some computable function and � is the maximum degree of G:

Inductive Monopolar Recognition

Input: A graph G = (V , E), a vertex v ∈ V , and a valid monopolar partition (A′, B ′) of G ′ = G − v .
Question: Does G have a valid monopolar partition (A, B)?

In the following, we fix an instance of Inductive Monopolar Recognition with a graph G = (V , E), a vertex v ∈ V , and a 
valid monopolar partition (A′, B ′) of G ′ = G − v .

To find a valid monopolar partition (A, B) of G , we try the two possibilities of placing v in A or placing v in B . More 
precisely, in the first case, we start a search from the bipartition (A′ ∪ {v}, B ′), and in the second case, we start a search 
from the bipartition (A′, B ′ ∪ {v}). Neither of these two partitions is necessarily a valid monopolar partition of G . The search 
strategy is to try to “repair” a candidate partition by moving few vertices from one part of the partition to the other part. 
During this process, if a vertex is moved from one part to the other, then it will never be moved back. To formalize this 
approach, we introduce the notion of constraints.

Definition 5.1. A constraint C = (AC∗ , AC
P , BC∗ , BC

P ) is a four-partition of V such that AC∗ ⊆ A′ and BC∗ ⊆ B ′ . The vertices 
in AC

P and BC
P are called permanent vertices of the constraint. A constraint C = (AC∗ , AC

P , BC∗ , BC
P ) is fulfilled by a vertex 

bipartition (A, B) of G if (A, B) is a valid monopolar partition of G such that AC
P ⊆ A and BC

P ⊆ B .

The permanent vertices in AC
P and BC

P in the above definition will correspond to those vertices that were moved during the 
search from one part to the other part. The following observation is straightforward:

Fact 5.2. Each valid monopolar partition (A, B) of G fulfills either (A′, {v}, B ′, ∅) or (A′, ∅, B ′, {v}).

We call the two constraints in Fact 5.2 the initial constraints of the search. We solve Inductive Monopolar Recognition by 
giving a search-tree algorithm that determines for each of the two initial constraints whether there is a partition fulfilling it. 
The root of the search tree is a dummy node that has two children, associated with the two initial constraints. Each non-root 
node in the search tree is associated with a constraint C , and the algorithm searches for a solution that fulfills C . To this 
end, the algorithm applies reduction and branching rules that find vertices that in every valid monopolar partition (A, B)

fulfilling C are in AC∗ ∩ B or BC∗ ∩ A; that is, these vertices must ‘switch sides’.
Formally, a reduction rule that is applied to a constraint C associated with a node α in the search tree associates α with 

a new constraint C′ or rejects C; the reduction rule is correct either if C has a fulfilling partition if and only if C′ does, or 
if the rule rejects C , then no valid monopolar partition of G fulfills C . A branching rule applied to a constraint C associated 
with a node α in the search tree produces more than one child node of α, each associated with a constraint; the branching 
rule is correct if C has a fulfilling partition if and only if at least one of the child nodes of α is associated with a constraint 
C′ that has a fulfilling partition.

The algorithm first performs the reduction rules exhaustively, in order, and then performs the branching rules, in order. 
That is, Reduction Rule i may only be applied if Reduction Rule i′ for all i′ < i cannot be applied. In particular, after 
Reduction Rule i is applied, we start over and apply Reduction Rule 1, and so on. The same principle applies to the branching 
rules; moreover, branching rules are only applied if no reduction rule can be applied.

Let C = (AC∗ , AC
P , BC∗ , BC

P ) be a constraint. We now describe the reduction rules. Throughout, recall from Fact 2.1 that 
cluster graphs contain no P3 as an induced subgraph. The first reduction rule identifies obvious cases in which a constraint 
cannot be fulfilled.
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Reduction rule 5.1. If G[AC
P ] is not a cluster graph with at most k clusters, or if G[BC

P ] is not an edgeless graph, then reject 
the current constraint.

Proof of correctness. If G[AC
P ] is not a cluster graph with at most k clusters, then there is no valid monopolar parti-

tion (A, B) satisfying AC
P ⊆ A. Similarly, there is no valid monopolar partition (A, B) satisfying BC

P ⊆ B if G[BC
P ] is not an 

edgeless graph. �
The second reduction rule finds vertices that must be moved from BC∗ to AC

P .

Reduction rule 5.2. If there is a vertex u ∈ BC∗ that has a neighbor in BC
P , then set AC

P ← AC
P ∪ {u} and BC∗ ← BC∗ \ {u}; that 

is, replace C with the constraint (AC∗ , AC
P ∪ {u}, BC∗ \ {u}, BC

P ).

Proof of correctness. For every partition (A, B) fulfilling C , G[B] is an edgeless graph and BC
P ⊆ B . Hence, u ∈ A. �

The third reduction rule finds vertices that must be moved from AC∗ to BC
P .

Reduction rule 5.3. If there is a vertex u ∈ AC∗ and two vertices w, x ∈ AC
P such that G[{u, w, x}] is a P3, set AC∗ ← AC∗ \ {u}

and BC
P ← BC

P ∪ {u}.

Proof of correctness. For every partition (A, B) fulfilling C , the graph G[A] is a cluster graph and AC
P ⊆ A. Hence, u ∈ B . �

The first branching rule identifies pairs of vertices from AC∗ such that at least one of them must be moved to BC
P because 

they form a P3 with a vertex in AC
P .

Branching rule 5.1. If there are two vertices u, w ∈ AC∗ and a vertex x ∈ AC
P such that G[{u, w, x}] is a P3, then branch 

into two branches: one associated with the constraint (AC∗ \ {u}, AC
P , BC∗ , BC

P ∪ {u}) and one associated with the constraint 
(AC∗ \ {w}, AC

P , BC∗ , BC
P ∪ {w}).

Proof of correctness. For every partition (A, B) fulfilling C , G[A] is a cluster graph and AC
P ⊆ A. Hence, u ∈ B or w ∈ B . �

It is important to observe that if none of the previous rules applies, then (AC∗ ∪ AC
P , BC∗ ∪ BC

P ) is a monopolar partition (we 
prove this rigorously in Lemma 5.1). However, G[AC∗ ∪ AC

P ] may consist of too many clusters for this to be a valid monopolar 
partition. To check whether it is possible to reduce the number of clusters in G[AC∗ ∪ AC

P ], we apply a second branching rule 
that deals with singleton clusters in G[A′].

Branching rule 5.2. If there is a vertex u ∈ AC∗ such that {u} is a cluster in G[A′], then branch into two branches: 
the first is associated with the constraint (AC∗ \ {u}, AC

P ∪ {u}, BC∗ , BC
P ), and the second is associated with the constraint 

(AC∗ \ {u}, AC
P , BC∗ , BC

P ∪ {u}).

Proof of correctness. For every partition (A, B) fulfilling C , we have either u ∈ A or u ∈ B . �
If no more rules apply to a constraint C , then we can determine whether C can be fulfilled:

Lemma 5.1. Let C = (AC∗ , AC
P , BC∗ , BC

P ) be a constraint to which Reduction rules 5.1, 5.2, and 5.3, and Branching rules 5.1 and 5.2 do 
not apply. Then (AC∗ ∪ AC

P , BC∗ ∪ BC
P ) is a monopolar partition. Moreover, there is a valid monopolar partition (A, B) fulfilling C if and 

only if (AC∗ ∪ AC
P , BC∗ ∪ BC

P ) is valid.

Proof. First, we show that (AC∗ ∪ AC
P , BC∗ ∪ BC

P ) is a monopolar partition. There are no induced P3’s in G[AC∗ ∪ AC
P ], because 

Reduction rules 5.1 and 5.3 and Branching rule 5.1 do not apply, and because there are no induced P3’s in G containing 
three vertices from AC∗ ⊆ A′ . Similarly, there are no edges in G[BC∗ ∪ BC

P ], because Reduction rules 5.1 and 5.2 do not apply, 
and because there are no edges in G[B ′] and BC∗ ⊆ B ′ .

To show the second statement in the lemma, observe that, if (AC∗ ∪ AC
P , BC∗ ∪ BC

P ) is valid, then C is fulfilled by (AC∗ ∪
AC

P , BC∗ ∪ BC
P ). It remains to show that, if (AC∗ ∪ AC

P , BC∗ ∪ BC
P ) is not valid, then each monopolar partition (A, B) of G

fulfilling C is not valid. For the sake of contradiction, assume that this is not the case and let (A, B) be a valid monopolar 
partition fulfilling C . Since (AC∗ ∪ AC, BC∗ ∪ BC) is a monopolar partition of G that is not valid, there are more than k
P P
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clusters in G[AC∗ ∪ AC
P ]. Thus, there is a cluster Q in G[AC∗ ∪ AC

P ] such that Q ⊆ B . Note that |Q | = 1, because G[B] has 
no edges and Q ⊆ B . Because (A, B) fulfills C , Q ∩ AC

P = ∅ and thus Q ⊆ AC∗ . Hence, Q is a subset of a cluster Q ′ of 
G[A′], as Q ⊆ AC∗ ⊆ A′ . However, |Q ′| ≥ 2, because Branching rule 5.2 does not apply even though Q ⊆ AC∗ . Hence, any 
rule that moved the vertices of Q ′ \ Q was not Branching rule 5.2. Then the description of the other rules implies that 
Q ′ \ Q ⊆ BC

P . Note that BC
P ⊆ B , because (A, B) fulfills C . Hence, Q ′ ⊆ B and thus G[B] contains an edge. Therefore, (A, B)

is not a monopolar partition, a contradiction to our choice of (A, B). �
The following lemmas will be used to upper bound the depth of the search tree, and the number of applications of each 

rule along each root-leaf path in this tree. Herein a leaf of the search tree is a node associated either with a constraint that 
Reduction rule 5.1 rejects, or with a constraint to which no rule applies.

Lemma 5.2. Along any root-leaf path in the search tree of the algorithm, Reduction rule 5.2 is applied at most k + 1 times.

Proof. Let C = (AC∗ , AC
P , BC∗ , BC

P ) be a constraint obtained from an initial constraint via k + 1 applications of Reduction 
rule 5.2 and an arbitrary number of applications of Reduction rules 5.1 and 5.3, and Branching rules 5.1 and 5.2. Each appli-
cation of Reduction rule 5.2 adds a vertex of B ′ to AC

P . Since G[B ′] is edgeless, any monopolar partition (A, B) with AC
P ⊆ A

has at least k + 1 clusters in G[A] and, therefore, is not valid. Reduction rule 5.1 will then be applied before any further 
application of Reduction rule 5.2, and the constraint C will be rejected. �
Lemma 5.3. Along any root-leaf path in the search tree of the algorithm, Reduction rule 5.3 and Branching rules 5.1 and 5.2 are applied 
at most k + 1 times in total.

Proof. Let C = (AC∗ , AC
P , BC∗ , BC

P ) be a constraint obtained from an initial constraint via k + 1 applications of Reduction 
rule 5.3 and Branching rules 5.1 and 5.2, and an arbitrary number of applications of the other rules. Let ks denote the 
number of singleton clusters in G[A′]. Observe that each application of Reduction rule 5.3 or Branching rules 5.1 and 5.2
makes a vertex of AC∗ ⊆ A′ permanent by placing it in AC

P or BC
P . By the description of all rules, a vertex will never be 

made permanent twice. Hence, out of the k + 1 applications of Reduction rule 5.3 and Branching rules 5.1 and 5.2, at most 
ks make the vertex from a singleton cluster of G[A′] permanent. Observe that Branching rule 5.2 cannot make a vertex 
from a nonsingleton cluster in G[A′] permanent. Thus, Reduction rule 5.3 and Branching rule 5.1 make at least k − ks + 1
vertices in the k − ks nonsingleton clusters of G[A′] permanent. Since k − ks + 1 ≥ 1, this also implies that a nonsingleton 
cluster exists. By the pigeonhole principle, out of the k − ks + 1 vertices that are made permanent by Reduction rule 5.3
and Branching rule 5.1, two are from the same nonsingleton cluster in G[A′]. Since both Reduction rule 5.3 and Branching 
rule 5.1 only move vertices from AC∗ to BC

P , it follows that BC
P contains two adjacent vertices. Then the constraint C will be 

rejected by Reduction rule 5.1, which is applied before any further rule is applied. �
Theorem 5.1. Inductive Monopolar Recognition can be solved in O(2k · k3 · �) time, where � is the maximum degree of G.

Proof. We call a leaf of the search tree associated with a constraint to which no rule applies an exhausted leaf. By Lemma 5.1
and the correctness of the rules, G has a valid monopolar partition if and only if for at least one exhausted leaf node, the 
partition (AC∗ ∪ AC

P , BC∗ ∪ BC
P ), induced by the constraint C associated with that node, is a valid monopolar partition. Hence, if 

the search tree has an exhausted leaf for which the partition (AC∗ ∪ AC
P , BC∗ ∪ BC

P ), induced by the constraint C associated with 
that node, is a valid monopolar partition, the algorithm answers ‘yes’; otherwise, it answers ‘no’. Therefore, the described 
search-tree algorithm correctly decides an instance of Inductive Monopolar Recognition.

To upper bound the running time, let T denote the search tree of the algorithm. By Lemma 5.3, Branching rules 5.1
and 5.2 are applied at most k + 1 times in total along any root-leaf path in T . It follows that the depth of T is at most 
k + 2. As each of the branching rules is a two-way branch, T is a binary tree, and thus the number of leaves in T is O(2k).

The running time along any root-leaf path in T is dominated by the overall time taken along the path to test the 
applicability of the reduction and branching rules, and to apply them. By Lemma 5.2 and Lemma 5.3, along any root-leaf 
path in T the total number of applications of Reduction rules 5.2 and 5.3 and Branching rules 5.1 and 5.2 is O(k). Reduction 
rule 5.1 is applied once before the application of each of the aforementioned rules. It follows that the total number of 
applications of all rules along any root-leaf path in T is O(k). Moreover, T has O(2k) leaves as argued before. Therefore, 
we test for the applicability of the rules and apply them, or use the check of Lemma 5.1, at most O(2k · k) times.

We now upper bound the time to test the applicability of the rules and to apply them by O(k2 · �). Let C =
(AC∗ , AC

P , BC∗ , BC
P ) be a constraint associated with a node in T . Observe that each cluster in G[AC∗ ] has size O(�). 

Since G[AC∗ ] has at most k clusters, this implies that |AC∗ | ≤ k · �. Thus, in O(k · �) time, we can compute a list of all 
clusters in G[AC∗ ] and the size of each cluster. The same holds for G[A′]. Observe that we can always check in O(1) time, 
for a given vertex v , whether v is contained in A′ , AC∗ , AC

P , BC∗ , or BC
P and, in case v is contained in A′ or AC∗ , we can find 

the index and the size of the cluster that contains v . Moreover, by Lemma 5.2 and 5.3, we can assume that |AC
P | = O(k), 

and by Lemma 5.3, we can assume that |BC | =O(k).
P
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To test the applicability of Reduction rules 5.1 and 5.2, we check whether G[AC
P ] is a cluster graph with at most k

clusters, whether G[BC
P ] is edgeless, and whether there is an edge with one endpoint in BC

P and the other endpoint in BC∗ . 
This can be done in O(k · �) time since |AC

P | =O(k), |BC
P | =O(k), and the maximum degree is �.

To test the applicability of Reduction rule 5.3, we consider each pair v, w of vertices in AC
P . If v and w are adjacent, 

then in O(�) time we can check whether there is a vertex u ∈ AC∗ such that u is adjacent to exactly one of v and w . If v
and w are not adjacent, then in O(�) time we can check whether they have a common neighbor in AC∗ . If neither condition 
applies to any pair v, w , then Reduction rule 5.3 does not apply. Overall, this test takes O(k2 · �) time.

To test the applicability of Branching rule 5.1, we can check for each vertex v of the at most k vertices of AC
P in O(�)

time whether v has neighbors in two different clusters of AC∗ , or whether there are two vertices u, w in the same clus-
ter of AC∗ such that v is adjacent to u but not adjacent to w . If one of the two cases applies to some vertex v ∈ AC

P , 
then Branching rule 5.1 applies to v . Otherwise, there is no P3 containing exactly one vertex from AC

P and exactly two 
vertices from AC∗ , and Branching rule 5.1 does not apply. Hence, the applicability of Branching rule 5.1 can be tested in 
O(k · �) time.

To test the applicability of Branching rule 5.2, we can check in O(k) time, whether G[AC∗ ] contains a singleton cluster 
that is also a singleton cluster of G[A′].

All rules can trivially be applied in O(1) time if they were found to be applicable. Hence, the running time to test and 
apply any of the rules is O(k2 · �).

Finally, if none of the rules applies, then we can check in O(k · �) time whether the number of clusters in G[AC∗ ∪ AC
P ]

is at most k. Hence, the algorithm runs in O(2k · k3 · �) time in total. �
Given the above theorem, Corollary 3.2 immediately implies Theorem 1.1, which we restate below:

Theorem 1.1. In O(2k · k3 · (n + m)) time, we can decide whether G admits a monopolar partition (A, B) such that G[A] is a cluster 
graph with at most k clusters.

6. Generalizations of the algorithm for MONOPOLAR RECOGNITION

In this section, we present two general FPT algorithms for a range of cases of (�A, �B)-Recognition in which �A

and �B are characterized by a finite set of forbidden induced subgraphs. We achieve this by adapting the algorithm 
of Section 5, meaning that the obtained algorithms rely on the inductive recognition framework. Therefore, the main 
step is to solve Inductive (�A, �B)-Recognition, where we are given a graph G with a distinguished vertex v , and 
a (�A, �B)-partition (A′, B ′) of G − v , and we are asked to determine whether G has a (�A, �B)-partition (A, B). To 
solve Inductive (�A, �B)-Recognition, we consider again constraints C of the type (AC∗ , AC

P , BC∗ , BC
P ). That is, C is a four-

partition of the vertex set such that AC∗ ⊆ A′ and BC∗ ⊆ B ′ , and AC
P and BC

P represent the permanent vertices, which may 
not be moved between A and B anymore. We start with the two initial constraints (A′, {v}, B ′, ∅) and (A′, ∅, B ′, {v}), and 
recursively search for solutions fulfilling one of the two constraints, building a search tree whose nodes correspond to 
constraints. As in Section 5, a (�A, �B)-partition (A, B) of G fulfills a constraint C if AC

P ⊆ A and BC
P ⊆ B .

The first step towards designing both algorithms is to generalize several reduction and branching rules of the algorithm 
for Monopolar Recognition. The generalization of Reduction rule 5.1 is as follows.

Reduction rule 6.1. If G[AC
P ] does not fulfill �A or if G[BC

P ] does not fulfill �B , then reject the current constraint.

Proof of correctness. If G[AC
P ] /∈ �A , then since �A is hereditary, there is no A such that AC

P ⊆ A and G[A] ∈ �A . Similarly, 
if G[BC

P ] /∈ �B , then there is no B such that BC
P ⊆ B and G[B] ∈ �B . For any (�A, �B)-partition (A, B) fulfilling C , we have, 

however, AC
P ⊆ A and BC

P ⊆ B . Thus, no such (�A, �B)-partition exists. �
The other reduction and branching rules are aimed at destroying forbidden induced subgraphs in the candidate vertex 

set AC∗ ∪ AC
P for A and in the candidate vertex set BC∗ ∪ BC

P for B by moving vertices between AC∗ and BC∗ . To destroy 
the forbidden induced subgraphs of �A in AC∗ ∪ AC

P , we used Reduction rule 5.3 and Branching rule 5.1 in Section 5. 
A generalized variant of these rules is as follows.

Branching rule 6.1. If there is a vertex set Ã ⊆ AC∗ ∪ AC
P such that G[ Ã] is a minimal forbidden induced subgraph of �A , 

then for each u ∈ Ã \ AC
P branch into a branch associated with the constraint (AC∗ \ {u}, AC

P , BC∗ , BC
P ∪ {u}).

Proof of correctness. Suppose that (A, B) is a (�A, �B)-partition of G fulfilling C . Since G[ Ã] does not fulfill �A , there is 
a vertex u ∈ Ã such that u ∈ B . Moreover, since (A, B) fulfills C , we have AC ⊆ A, and hence AC ∩ B = ∅. Therefore, u /∈ AC . 
P P P
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Consequently, in the branch of Branching rule 6.1 which is associated with the constraint (AC∗ \ {u}, AC
P , BC∗ , BC

P ∪ {u}), this 
constraint is fulfilled by (A, B) since u ∈ B . �

In the case of Monopolar Recognition, for subgraphs that do not fulfill �B , it was sufficient to use Reduction rule 5.2. 
This can be generalized to the following branching rule; the correctness proof is analogous to that of Branching rule 6.1 and 
omitted.

Branching rule 6.2. If there is a vertex set B̃ ⊆ BC∗ ∪ BC
P such that G[B̃] is a minimal forbidden induced subgraph of �B , 

then for each u ∈ B̃ \ BC
P branch into a branch associated with the constraint (AC∗ , AC

P ∪ {u}, BC∗ \ {u}, BC
P ).

In the following two subsections we use the above reduction and branching rules and some specialized rule to give the 
promised algorithms.

6.1. Cluster graphs and graphs excluding large cliques

For monopolar graphs, �A is the family of cluster graphs with at most k cliques, and �B is the property of being 
edgeless. We now consider the more general case where �B excludes some clique and has a characterization by minimal 
forbidden induced subgraphs, each of order at most r (and �A remains the family of all cluster graphs with at most k
cliques).

The algorithm uses Reduction rule 6.1, Reduction rule 5.3, Branching rule 5.1, and Branching rule 6.2. (It does not use 
Branching rule 6.1 which is used the next subsection.) Note that applying Reduction rule 5.3 and Branching rule 5.1 is 
almost equivalent to applying Branching rule 6.1. The difference is that we do not branch on forbidden induced subgraphs 
that are an edgeless graph on k + 1 vertices. This improves the efficiency of the resulting algorithm. The following fact is 
not hard to prove.

Fact 6.1. Let C = (AC∗ , AC
P , BC∗ , BC

P ) be such that none of Reduction rule 6.1, Reduction rule 5.3, Branching rule 5.1, and Branching 
rule 6.2 apply. Then, G[AC∗ ∪ AC

P ] is a cluster graph and G[BC∗ ∪ BC
P ] satisfies �B .

That G[AC∗ ∪ AC
P ] is a cluster graph can be seen by inapplicability of Reduction rule 6.1, Reduction rule 5.3, Branching rule 5.1

and the fact that none of the rules puts any vertex into AC∗ which is initially a subset of A′ of the (�A, �B)-partition (A′, B ′). 
That G[BC∗ ∪ BC

P ] satisfies �B follows from the inapplicability of Reduction rule 6.1 and Branching rule 6.2.
To obtain a (�A, �B)-partition (AC∗ ∪ AC

P , BC∗ ∪ BC
P ), it remains to ensure that G[AC∗ ∪ AC

P ] contains at most k clusters. 
If G[AC∗ ∪ AC

P ] has more than k clusters, then some vertex has to be moved from AC∗ to BC
P . This is done in the following 

branching rule.

Branching rule 6.3. If G[AC∗ ∪ AC
P ] is a cluster graph with more than k clusters, then let u ∈ AC∗ be a vertex contained 

in a cluster of G[AC∗ ∪ AC
P ], such that this cluster contains no vertices from AC

P (such a cluster must exist by Reduction 
rule 6.1). Branch into two branches: one associated with the constraint (AC∗ \ {u}, AC

P ∪ {u}, BC∗ , BC
P ) and one associated with 

the constraint (AC∗ \ {u}, AC
P , BC∗ , BC

P ∪ {u}).

The rule is trivially correct since u is either contained in A or in B for any (�A, �B)-partition (A, B) fulfilling C . Now if 
none of the rules applies, then we have found a solution.

Fact 6.2. Let C = (AC∗ , AC
P , BC∗ , BC

P ) be such that Reduction rule 6.1, Reduction rule 5.3, Branching rule 5.1, Branching rule 6.2, and 
Branching rule 6.3 do not apply to C . Then (AC∗ ∪ AC

P , BC∗ ∪ BC
P ) is a (�A, �B)-partition.

To bound the running time, in particular, the number of applications of the branching and reduction rules, we make use 
of the fact that the properties �A and �B are mutually d-exclusive for some integer d.

Lemma 6.1. Let �A be the set of cluster graphs with at most k cliques, and let �B be any hereditary graph property that excludes the 
complete graph on s vertices as an induced subgraph. Then, �A and �B are mutually ((s − 1) · k + 1)-exclusive.

Proof. Let G be a graph of order at least (s − 1) · k + 1 that fulfills �A , that is, G is a cluster graph with at most k clusters. 
By the pigeonhole principle, one of these clusters has at least s vertices. Therefore, G contains a clique on s vertices. Thus, G
does not fulfill �B . �

We can now conclude with the complete algorithm and its running-time analysis.
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Theorem 6.1. Let �A be the set of all cluster graphs with at most k cliques, and let �B be any hereditary graph property such that

• �B can be characterized by forbidden induced subgraphs, each of order at most r; and
• for some s ≤ r, the complete graph on s vertices is a forbidden induced subgraph of �B .

Then (�A, �B)-Recognition can be solved in 2s·k · (r − 1)(s−1)·k · nO(1) time.

Proof. The algorithm creates the two initial constraints (AC∗ , {v}, BC∗ , ∅) and (AC∗ , ∅, BC∗ , {v}). Then, for each initial con-
straint, it applies Reduction rule 6.1, Reduction rule 5.3, Branching rule 5.1, Branching rule 6.2, and Branching rule 6.3
exhaustively. If none of these rules applies to the current constraint, then the algorithm outputs (AC∗ ∪ AC

P , BC∗ ∪ BC
P ), which, 

by Fact 6.2, is a (�A, �B)-partition of G . Thus, to prove the correctness of the algorithm, it remains to show that if there is 
a (�A, �B)-partition (A, B) for G , then the algorithm outputs such a partition.

Suppose that (A, B) is a (�A, �B)-partition. Then (A, B) fulfills one of the initial constraints. If a constraint C is fulfilled 
by (A, B), then Reduction rule 6.1 does not apply to this constraint, and, by the correctness of the rules, any application 
of Reduction rule 5.3, Branching rule 5.1, Branching rule 6.2, or Branching rule 6.3 yields at least one constraint that is 
fulfilled by (A, B). Hence, the initial constraint C fulfilling (A, B) has at least one descendant that is fulfilled by (A, B), and 
to which none of the reduction and branching rules applies. For this constraint, the algorithm outputs a (�A, �B)-partition.

It remains to bound the running time of the algorithm. Since all minimal forbidden induced subgraphs of �B have 
at most r vertices, we can check in nO(1) time, whether any of the branching and reduction rules applies (note that r
is a problem-specific constant). To obtain the running time bound, it is thus sufficient to bound the number of created 
constraints in the search tree.

To this end, we bound the number of applications of the branching and reduction rules along any path from an initial 
constraint to a leaf constraint. Reduction rule 6.1 is applied at most once. To bound the number of applications of the other 
rules, we use that, by Lemma 6.1, �A and �B are mutually ((s − 1) · k + 1) exclusive. This implies that Branching rule 6.2
is applied at most (s − 1) · k + 1 times: Each application of the rule adds a vertex of B ′ to AC

P . Since G[B ′] fulfills �B , so 
does G[AC

P ∩ B ′]. Thus, if |AC
P ∩ B ′| > (s − 1) · k, then G[AC

P ] does not fulfill �A and Reduction rule 6.1 applies, terminating 
the current branch.

Reduction rule 5.3, Branching rule 5.1, and Branching rule 6.3 can be applied altogether at most k + (s − 1) · k + 2 times: 
Each application of any of these rules either adds a vertex of A′ to BC

P or increases the number of clusters in G[AC
P ] by 

one. Again by Lemma 6.1, at most (s − 1) · k vertices of A′ can be moved from AC∗ to BC
P , before Reduction rule 6.1 applies. 

Similarly, if G[AC
P ] has more than k clusters, then Reduction rule 6.1 applies.

To bound the number of leaf constraints, observe that Branching rule 6.2 branches into at most r − 1 new constraints, 
and Branching rule 5.1 and Branching rule 6.3 branch into 2 new constraints. Thus, the overall number of leaf constraints 
is O(2s·k+2 · (r −1)(s−1)·k+1). By the bound on the number of constraints on any root-leaf path, we thus have that the overall 
search tree size is O(2s·k · (r − 1)(s−1)·k · kO(1)) which implies the overall running time bound. �
6.2. Mutually exclusive graph properties with small forbidden subgraphs

We now relax the demands on the hereditary properties �A and �B even further: we demand only that �A excludes 
some fixed edgeless graph, that �B excludes some fixed clique, and that �A and �B are each characterized by forbid-
den induced subgraphs of constant size. Recall that, by Proposition 4.1, such properties are mutually d-exclusive for some 
constant d.

Theorem 6.2. Let �A and �B be two hereditary graph properties such that

• �A excludes an edgeless graph of order c A and has a characterization by forbidden induced subgraphs, each of order at most rA ; 
and

• �B excludes a complete graph of order cB and has a characterization by forbidden induced subgraphs of order at most rB .

Then (�A, �B)-Recognition can be solved in (rA − 1)R(c A ,cB ) · (rB − 1)R(c A ,cB ) · nO(1) time.

Proof. We show that Inductive (�A, �B)-Recognition can be solved in this running time. In conjunction with Theorem 3.1, 
this implies the above Theorem 6.2.

The algorithm performs a search from the two initial constraints of Fact 5.2. For each constraint encountered during the 
search, we check if Reduction rule 6.1 applies. If this is not the case, we check if Branching rule 6.1 or Branching rule 6.2
applies. If neither applies, then (AC∗ ∪ AC

P , BC∗ ∪ BC
P ) is a (�A, �B)-partition. Otherwise, apply the respective rule and continue 

the search with the constraints created by the rule. By the correctness of Branching rule 6.1, Branching rule 6.2, and Fact 5.2, 
this algorithm finds a (�A, �B)-partition of G if it exists.

It remains to analyze the running time of the algorithm. First, observe that throughout the algorithm, we have AC∗ ⊆ A′
and BC∗ ⊆ B ′ . Thus, every vertex set Ã to which Branching rule 6.1 applies contains at least one vertex from AC and therefore 
P
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creates at most rA − 1 new recursive branches. Now, observe that each application of Branching rule 6.1 increases the 
number of vertices in BC

P by one. Moreover, all vertices in BC
P are from A′ . Thus, if |BC

P | ≥ R(c A, cB), then by Proposition 4.1, 
this implies that G[BC

P ] /∈ �B . Thus, Branching rule 6.1 is applied at most R(c A, cB) times before Reduction rule 6.1 applies. 
Similarly, Branching rule 6.2 is applied at most R(c A, cB) times before Reduction rule 6.1 applies and each application 
of Branching rule 6.2 creates at most rB −1 constraints. Overall, the number of created constraints is thus O((rA −1)R(c A ,cB ) ·
(rB − 1)R(c A ,cB )). For each constraint, we must check if any of the reduction or branching rules applies, which can be done 
in nO(1) time by using the polynomial-time algorithms for checking membership of a graph in �A and �B . �

For the special case of recognizing monopolar graphs with at most k cliques, Theorem 6.2 applies: The graphs fulfilling 
�A have at most k clusters, thus the edgeless graph of order k +1 is forbidden, implying c A = k +1. The forbidden subgraphs 
for �A are exactly the P3 and the edgeless graph on k +1 vertices, implying rA = k +1. For �B , the only forbidden subgraph 
is the clique on two vertices, implying cB = rB = 2. Altogether, this gives a running time of kR(k+1,2) ·nO (1) = kk ·nO (1) . Hence, 
our tailored algorithm in Section 5 is substantially more efficient than the generic algorithm.

Another application of Theorem 6.2 is to (�A, �B)-Recognition for �A being the triangle-free graphs and �B being the 
complete graphs. The running time becomes O(2R(3,2) · nm) in this case, yielding an O (nm)-time algorithm with very small 
constant hidden in the O-Notation.

7. An FPT algorithm for 2-SUBCOLORING

In this section, we give an FPT algorithm for 2-Subcoloring parameterized by the smaller number of clusters in the 
two parts. Although the general approach is similar to the approach used for Monopolar Recognition, in that it relies on 
inductive recognition and the notion of constraints, the algorithm is substantially more complex. In particular, the notion of 
constraints and the reduction and branching rules are more involved.

Throughout, given a graph G and a nonnegative integer k, we call a 2-subcoloring (A, B) of G valid if G[A] has at most 
k cliques. In the inductive recognition framework, we need a parameterized inductive recognizer for the following problem:

Inductive 2-Subcoloring

Input: A graph G = (V , E), a vertex v ∈ V , and a valid 2-subcoloring (A′, B ′) of G ′ = G − v .
Question: Does G have a valid 2-subcoloring (A, B)?

Fix an instance of Inductive 2-Subcoloring with a graph G = (V , E), a vertex v ∈ V , and a valid 2-subcoloring (A′, B ′) of 
G ′ = G − v . We again apply a search-tree algorithm that starts with initial partitions (AC∗ , BC∗ ) of V , derived from (A′, B ′), 
that are not necessarily 2-subcolorings of G . Then, we try to “repair” those partitions by moving vertices between AC∗ and 
BC∗ to form a valid 2-subcoloring (A, B) of G . As before, each node in the search tree is associated with one constraint.

Definition 7.1. A constraint C = (AC
1 , . . . , AC

k , BC
1 , . . . , BC

n , AC
P , BC

P ) consists of a partition (AC
1 , . . . , AC

k , BC
1 , . . . , BC

n ) of V and 
two vertex sets AC

P ⊆ AC∗ and BC
P ⊆ BC∗ , where AC∗ = ⋃k

i=1 AC
i and BC∗ = ⋃n

i=1 BC
i , such that for any i 	= j:

• u and w are not adjacent for any u ∈ AC
i \ AC

P and w ∈ AC
j \ AC

P , and

• u and w are not adjacent for any u ∈ BC
i \ BC

P and w ∈ BC
j \ BC

P .

We explicitly allow (some of) the sets of the partition (AC
1 , . . . , AC

k , BC
1 , . . . , BC

n ) of V to be empty. The vertices in AC
P and BC

P
are called permanent vertices of the constraint.

The permanent vertices in AC
P and BC

P in the definition will correspond precisely to those vertices that have switched sides 
during the algorithm. We refer to the sets AC

1 , . . . , AC
k and BC

1 , . . . , BC
n as groups; during the algorithm, G[AC∗ ] and G[BC∗ ]

are not necessarily cluster graphs and, thus, we avoid using the term clusters.
We now define the notion of a valid 2-subcoloring fulfilling a constraint. Intuitively speaking, a constraint C is fulfilled 

by a bipartition (A, B) if (A, B) respects the assignment of the permanent vertices stipulated by C , and if all vertices that do 
not switch sides stay in the bipartition (A, B) in the same groups they belong to in C . This notion is formalized as follows.

Definition 7.2. A constraint C = (AC
1 , . . . , AC

k , BC
1 , . . . , BC

n , AC
P , BC

P ) is fulfilled by a bipartition (A, B) of V if G[A] is a cluster 
graph with k clusters A1, . . . , Ak and G[B] is a cluster graph with n clusters B1, . . . , Bn (some of the clusters may be empty) 
such that:

1. for each i ∈ [k], Ai ∩ AC∗ ⊆ AC
i ; 3. AC

P ⊆ A; and

2. for each i ∈ [n], Bi ∩ BC∗ ⊆ BC
i ; 4. BC

P ⊆ B.

We now need a set of initial constraints to jumpstart the search-tree algorithm.
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Lemma 7.1. Let A′
1, . . . , A

′
k denote the clusters of G[A′] and let B ′

1, . . . , B
′
n denote the clusters of G[B ′]. Herein, if there are less 

than k clusters in G[A′] or less than n clusters in G[B ′], we add an appropriate number of empty sets. By relabeling, we may assume 
that only B ′

1, . . . , B
′
i contain neighbors of v, and B ′

i+1 = ∅. Each valid 2-subcoloring (A, B) of G fulfills either:

• (A′
1, . . . , A

′
j ∪ {v}, . . . , A′

k, B
′
1, . . . , B

′
n, {v}, ∅) for some j ∈ [k], or

• (A′
1, . . . , A

′
k, B

′
1, . . . , B

′
j ∪ {v}, . . . , B ′

n, ∅, {v}) for some j ∈ [i + 1].

Proof. Since (A′, B ′) is a valid 2-subcoloring of G ′ = G − v and v ∈ AC
P ∪ BC

P for each constraint C , the constructed tuples 
are indeed constraints. Let A1, . . . , Ak be the clusters of G[A] and B1, . . . , Bn be those of G[B].

First, assume that v ∈ A. If, for some j ∈ [k], there is a vertex u ∈ A′
j ∩ N(v) ∩ A, then (A, B) fulfills the con-

straint (A′
1, . . . , A

′
j ∪ {v}, . . . , B ′

n, {v}, ∅). This can be seen as follows. Since G[A] is a cluster graph, each Ai contains vertices 
of at most one cluster of (A′

1, . . . , A
′
k). Similarly, each Bi contains vertices of at most one cluster of (B ′

1, . . . , B
′
n). Hence, 

the clusters of G[A] and G[B] can be labeled accordingly to satisfy Conditions 1 and 2 of Definition 7.2. Moreover, by 
assumption, {v} ⊆ A and thus Conditions 3 and 4 of Definition 7.2 are fulfilled.

Similarly, if, for all j ∈ [k], vertex v has no neighbors in A′
j ∩ A, then there is a j ∈ [k] such that A′

j ∩ A = ∅. Then, (A, B)

fulfills the constraint (A′
1, . . . , A

′
j ∪ {v}, . . . , B ′

n, {v}, ∅), by the same arguments as above.
Symmetric arguments apply for the case v ∈ B . �

Now that we have identified the initial constraints, we turn to the search-tree algorithm and its reduction and branching 
rules. A crucial ingredient to the rules and the analysis of the running time is the following lemma. A consequence of the 
lemma is that if the number of initial constraints is too large, then most of them should be rejected immediately.

Lemma 7.2. Let C = (AC
1 , . . . , AC

k , BC
1 , . . . , BC

n , AC
P , BC

P ) be a constraint and let (A, B) be any valid 2-subcoloring of G fulfilling C . 
If u ∈ V has neighbors in more than k + 1 groups among BC

1 , . . . , BC
n , then u ∈ A.

Proof. For the sake of contradiction, suppose that there is a valid 2-subcoloring (A, B) of G fulfilling C such that u ∈ B . Let 
A1, . . . , Ak and B1, . . . , Bn denote the (possibly empty) clusters of G[A] and G[B] respectively. Let b1, . . . , bk+2 be neighbors 
of u in distinct groups among BC

1 , . . . , BC
n ; these vertices exist by assumption. Without loss of generality, bi ∈ BC

i for each 
i = 1, . . . , k + 2.

Since (A, B) fulfills C , we have Bi ∩ BC∗ ⊆ BC
i for each i = 1, . . . , k + 2. Therefore, the vertices among b1, . . . , bk+2 that are 

in B are in distinct clusters of G[B]. Since u ∈ B , at least k + 1 vertices among b1, . . . , bk+2 are in A, say b1, . . . , bk+1 ∈ A. 
Since (A, B) fulfills C , we have b1, . . . , bk+1 /∈ BC

P , and, thus, bi ∈ BC
i \ BC

P for each i = 1, . . . , k + 1. Then the definition 
of a constraint implies that b1, . . . , bk+1 are pairwise nonadjacent. Hence, these vertices are in distinct clusters of G[A]. 
Therefore, G[A] has at least k + 1 clusters, a contradiction. �

Lemma 7.2 implies that if v has neighbors in more than k +1 clusters of B ′ , then we should immediately reject the initial 
constraints generated by Lemma 7.1 that place v in BC

P . Hence, we obtain the following corollary of Lemmas 7.1 and 7.2.

Corollary 7.1. Lemma 7.1 generates at most 2k + 2 constraints that are not immediately rejected.

As before, each nonroot node of the search tree is associated with a constraint. The root of the search tree is a dummy 
node with children associated with the constraints generated by Lemma 7.1 that are not immediately rejected due to 
Lemma 7.2. We now give two reduction rules, which are applied exhaustively to each search-tree node, in the order they are 
presented. Let C = (AC

1 , . . . , AC
k , BC

1 , . . . , BC
n , AC

P , BC
P ) be a constraint. The first reduction rule identifies some obvious cases 

in which the constraint cannot be fulfilled.

Reduction rule 7.1. If G[AC
P ] or G[BC

P ] is not a cluster graph, or if there are i 	= j such that there is an edge between AC
i ∩ AC

P

and AC
j ∩ AC

P or an edge between BC
i ∩ BC

P and BC
j ∩ BC

P , then reject C .

Proof of correctness. If G[AC
P ] is not a cluster graph, then there is no valid 2-subcoloring (A, B) such that AC

P ⊆ A. Similarly, 
there is no valid 2-subcoloring (A, B) such that BC

P ⊆ B if G[BC
P ] is not a cluster graph.

If there is an edge between two vertices u ∈ AC
i ∩ AC

P and w ∈ AC
j ∩ AC

P where i 	= j, then every valid 2-subcoloring (A, B)

needs to have u and w in the same cluster of G[A], which contradicts Condition 1. Similarly, Condition 2 is violated if there 
is an edge between two vertices u ∈ BC

i ∩ BC
P and w ∈ BC

j ∩ BC
P where i 	= j. �

The second reduction rule is the natural consequence of Lemma 7.2.



I. Kanj et al. / Journal of Computer and System Sciences 92 (2018) 22–47 37
Reduction rule 7.2. If there is a vertex u ∈ AC
i \ AC

P that has neighbors in more than k + 1 groups of BC∗ , then set AC
P ←

AC
P ∪ {u}.

The algorithm contains a single branching rule. This rule, called switch(u), uses branching to fix a vertex u in one of the 
clusters in one of the parts of the 2-subcoloring. The vertices to which switch() must be applied are identified by switching 
rules. We say that a switching rule that calls for applying switch(u) is correct if for all valid 2-subcolorings (A, B) of G
fulfilling C , we have u ∈ AC∗ ∩ B or u ∈ BC∗ ∩ A. We first describe the switching rules, and then describe switch(u).

The first switching rule identifies vertices that are not adjacent to some permanent vertices of their group. Recall from 
Fact 2.1 that cluster graphs do not contain induced P3’s.

Switching rule 7.1. If there is a vertex u such that u ∈ AC
i \ AC

P and u is not adjacent to some vertex in AC
i ∩ AC

P , or u ∈
BC

i \ BC
P and u is not adjacent to some vertex in BC

i ∩ BC
P , then call switch(u).

Proof of correctness. Let (A, B) be a valid 2-subcoloring fulfilling C and let (A1, . . . , Ak) be the partition of A induced by 
the clusters of G[A]. We show the correctness of the case u ∈ AC

i \ AC
P (the other case is symmetric). Suppose that u ∈ A. 

By Condition 1, w ∈ Ai for any w ∈ AC
i ∩ A. Hence, u ∈ Ai . Moreover, since AC

P ⊆ A by Condition 3, AC
i ∩ AC

P ⊆ AC
i ∩ A and, 

thus, w ∈ Ai for any w ∈ AC
i ∩ AC

P . However, G[{u} ∪ (AC
i ∩ AC

P )] is not a clique by assumption, contradicting that Ai is a 
clique. �

The second switching rule finds vertices that have permanent neighbors in another group.

Switching rule 7.2. If there is a vertex u such that u ∈ AC
i \ AC

P and u has a neighbor in AC
P \ AC

i , or u ∈ BC
i \ BC

P and u has 
a neighbor in BC

P \ BC
i , then call switch(u).

Proof of correctness. Let (A, B) be a valid 2-subcoloring fulfilling C . We show the correctness of the case u ∈ AC
i \ AC

P (the 
other case is symmetric). If u ∈ A, then u must be in the same cluster of G[A] as its neighbor in AC

P \ AC
i , because AC

P ⊆ A
by Condition 3. However, this contradicts Condition 1. �

Now, we describe switch(u), which is a combination of a reduction rule and a branching rule. There are two main 
scenarios that we distinguish. If u has permanent neighbors in the other part, then there is only one choice for assigning u
to a group. Otherwise, we branch into all (up to symmetry when a group is empty) possibilities to place u into a group. It 
is important to note that the switching rules never apply switch(u) to a permanent vertex.

Branching rule 7.1 (switch(u)).

• If u ∈ AC
i \ AC

P and u has a permanent neighbor in some BC
j , then set AC

i ← AC
i \ {u}, BC

j ← BC
j ∪ {u}, BC

P ← BC
P ∪ {u}.

• If u ∈ AC
i \ AC

P and u has only nonpermanent neighbors in BC∗ , then, for each BC
j such that N(u) ∩ BC

j 	= ∅
and BC

j ∩ BC
P = ∅, and for one BC

j such that BC
j = ∅ (chosen arbitrarily), branch into a branch associated with the 

constraint (AC
1 , . . . , AC

i \ {u}, . . . , AC
k , BC

1 , . . . , BC
j ∪ {u}, . . . , BC

n , AC
P , BC

P ∪ {u}).

• If u ∈ BC
i \ BC

P and u has a permanent neighbor in some AC
j , then set BC

i ← BC
i \ {u}, AC

j ← AC
j ∪ {u}, AC

P ← AC
P ∪ {u}.

• If u ∈ BC
i \ BC

P and u has only nonpermanent neighbors in AC∗ , then for each AC
j with AC

j ∩ AC
P = ∅, branch into a branch 

associated with the constraint (AC
1 , . . . , AC

j ∪ {u}, . . . , AC
k , BC

1 , . . . , BC
i \ {u}, . . . , BC

n , AC
P ∪ {u}, BC

P ); if no such AC
j exists, 

reject C .

Proof of correctness. All tuples produced by Branching rule 7.1 are indeed constraints, since u is made permanent in every 
case. Let (A, B) be a valid 2-subcoloring fulfilling C . We prove that (A, B) fulfills one of the constraints created by Branching 
rule 7.1. We consider two cases.

Case 1: u ∈ AC
i \ AC

P . Since the switching rule calling switch(u) is correct, we have u ∈ B and, thus, BC
P ∪{u} ⊆ B . Thus, for 

all constraints produced by switch(u), the 2-subcoloring (A, B) satisfies Conditions 3 and 4 of Definition 7.2. Furthermore, 
Condition 1 is satisfied in every generated constraint because removing u from AC∗ weakens the requirement placed on A. 
It remains to show that (A, B) satisfies Condition 2 for one of the generated constraints. If u has a neighbor w ∈ BC

P , then u
is in the same cluster as w in G[B] since (A, B) fulfills C and by Condition 2 of fulfilling constraints. Hence, for the (single) 
constraint produced by switch(u) in this situation, the 2-subcoloring (A, B) satisfies Condition 2. Now consider the case 
that u has no neighbor in BC

P . Let B1, . . . , Bn be the clusters in G[B], indexed according to the groups in C and padded 
with empty sets if the number of clusters is smaller than n. Let B j be the cluster that contains u. As u does not have 
neighbors in BC

P , cluster B j does not contain any vertex of BC
P . There are two subcases. First, u has a neighbor w ∈ BC∗ . 

As (A, B) fulfills C and by Condition 2, we have w ∈ BC . Thus, (A, B) satisfies Condition 2 for the constraint generated 
j
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by switch(u) in which u is added to BC
j . Second, u does not have a neighbor in BC∗ . Consequently, B j ∩ BC∗ = ∅ and hence, 

without loss of generality, by relabeling we have BC
j = ∅. Therefore, for the constraint in which u is added to BC

j = ∅, the 
2-subcoloring (A, B) satisfies Condition 2.

Case 2: u ∈ BC
i \ BC

P . In this case the argument is simpler. Since the switching rule invoking switch(u) is correct, we 
have u ∈ A, and thus AC

P ∪ {u} ⊆ A. This means that, for all constraints produced by switch(u), the 2-subcoloring (A, B)

fulfills Conditions 3 and 4. The case that u has a neighbor in w ∈ AC
P follows by an argument symmetric to the one of 

Case 1. If u has no neighbor w ∈ AC
P , then switch(u) considers all possibilities of placing u in one of the clusters of A. 

Again, u cannot be in a cluster in G[A] that contains a vertex from AC
P , meaning that the groups containing permanent 

vertices may be ignored in the branching. Hence, for one of the produced constraints, (A, B) fulfills Conditions 1 and 2. 
However, special consideration is needed if each of AC

1 , . . . , AC
k has a permanent vertex. Let (A, B) be a valid 2-subcoloring 

of G that fulfills C . Then Condition 1 and 3 imply that G[A] has k clusters that each contains a permanent vertex of AC
P . 

However, u is not adjacent to any permanent vertices. Hence, u /∈ A, which contradicts the correctness of the switching rule 
that called switch(u). Therefore, C cannot be fulfilled, and the rule correctly rejects C . �

If none of the previous rules applies, then the constraint directly gives a solution:

Lemma 7.3. Let C = (AC
1 , . . . , BC

n , AC
P , BC

P ) be a constraint such that none of the rules applies. Then (AC∗ , BC∗ ) is a valid 2-subcoloring.

Proof. We need to show that G[AC∗ ] and G[BC∗ ] are cluster graphs and that G[AC∗ ] has at most k clusters. First, we claim 
that G[AC

i ] is a clique for every i = 1, . . . , k. Every vertex in AC
i \ AC

P is adjacent to every vertex in AC
i ∩ AC

P ; otherwise, 
Switching rule 7.1 applies. Any two vertices in AC

i \ AC
P are also adjacent, because they are in the same cluster of A′ . 

It remains to show that G[AC
i ∩ AC

P ] is a clique. By the description of switch(u), if a vertex x is placed into AC
i and 

AC
i ∩ AC

P 	= ∅, then x is adjacent to a vertex of AC
i ∩ AC

P . Hence, G[AC
i ∩ AC

P ] is connected. Since Reduction rule 7.1 does not 
apply, G[AC

i ∩ AC
P ] does not contain an induced P3 and, thus, it is a clique. Hence, G[AC

i ] is a clique, as claimed.
Second, we claim that there are no edges between AC

i and AC
j , where i 	= j. Suppose for the sake of a contradiction 

that e is such an edge. Since Reduction rule 7.1 does not apply, e is incident with at least one nonpermanent vertex. 
Since Switching rule 7.2 does not apply, e is in fact incident with two nonpermanent vertices. Then e cannot exist by the 
definition of a constraint. The claim follows.

The combination of the above claims shows that G[AC∗ ] is a cluster graph with the clusters AC
i (some of which may be 

empty) and, thus, has at most k clusters. Similar arguments show that G[BC∗ ] is a cluster graph: in the above argument, we 
used only Reduction rule 7.1 and Switching rules 7.1 and 7.2, which apply to vertices in AC∗ and BC∗ symmetrically. �

Using the above rules and lemmas, we can now show the following.

Theorem 7.1. Inductive 2-Subcoloring can be solved in O(k2k+1 · (n + m)) time.

Proof. Given the valid 2-subcoloring (A′, B ′) of G ′ , we use Lemma 7.1 to generate a set of initial constraints, and reject 
those which cannot be fulfilled due to Lemma 7.2. By Corollary 7.1, at most 2k + 2 initial constraints remain, which are 
associated with the children of the (dummy) root node. For each node of the search tree, we first exhaustively apply the 
reduction rules on the associated constraint. Afterwards, if there exists a vertex u to which a switching rule applies, then 
we apply switch(u). If switch(u) does not branch but instead reduces to a new constraint, then we apply the reduction 
rules exhaustively again, etc.

A leaf of the search tree is a node associated either with a constraint that is rejected, or with a constraint to which no 
rule applies. The latter is called an exhausted leaf. If the search tree has an exhausted leaf, then the algorithm answers ‘yes’; 
otherwise, it answers ‘no’. By the correctness of the reduction, branching, and switching rules, and by Lemma 7.3, graph G
has a valid 2-subcoloring if and only if the search tree has at least one exhausted leaf node. Therefore, the described 
search-tree algorithm correctly decides an instance of Inductive 2-Subcoloring.

We now bound the running time of the algorithm. Observe that each described reduction rule and the branching rule 
switch() either rejects the constraint or makes a vertex permanent. Hence, along each root-leaf path, O(n) rules are applied. 
Each rule can trivially be tested for applicability and applied in polynomial time. Hence, it remains to bound the number of 
leaves of the search tree.

As mentioned, at the root of the search tree, we create at most O(n) constraints, out of which at most 2k + 2 constraints 
do not correspond to leaf nodes by Lemma 7.1, Corollary 7.1 and Reduction rule 7.2. The only branches are created by a call 
to switch(u) for a vertex u that has only nonpermanent neighbors in the other part of the bipartition (AC∗ , BC∗ ). Observe 
that if such a vertex u ∈ BC∗ \ BC

P , then in each constraint C′ constructed by switch(u) the number of groups in AC′
∗ that 

have at least one permanent vertex increases by one compared to C . Since each constraint has k groups in AC∗ , this branch 
can be applied at most k times along each root-leaf path in the search tree.
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Similarly, if u ∈ AC∗ \ AC
P , then in each constraint C′ constructed by switch(u) the number of groups in BC∗ that have at 

least one permanent vertex increases by one compared to C . We claim that, if BC∗ has k groups with a permanent vertex, 
then u has a neighbor in BC

P . First, each permanent vertex in BC∗ is part of A′ by the description of the rules. Moreover, the 
permanent vertices of the k groups in BC∗ with a permanent vertex stem from k different clusters in G[A′], because switch()

places a vertex of AC∗ \ AC
P that has neighbors in BC

P in the same group as its neighbors in BC
P . This implies that one of the 

clusters in G[A′] that the permanent vertices stem from contains u. Hence, u is adjacent to a vertex in BC
P , as claimed. The 

claim implies that if BC∗ has k groups with a permanent vertex, then switch(u) applied to a vertex u ∈ AC∗ \ AC
P does not 

branch. Hence, also the branch of switch(u) in which u ∈ AC∗ \ AC
P is performed at most k times along each root-leaf path 

in the search tree.
In summary, the branchings of switch(u) in which u ∈ BC∗ \ BC

P branch into at most k cases, and the branchings in which 
u ∈ AC∗ \ AC

P branch into at most k + 2 cases, since Reduction rule 7.2 does not apply. Observe that k of the initial constraints 
have already one group in AC∗ with a permanent vertex, and the other k + 1 initial constraints have one group in B with 
a permanent vertex. Thus, if the initial constraint C places v in AC

P , then the overall number of constraints from C by 
branching is at most kk−1 · (k + 2)k . If the initial constraint C places v in BC

P , then the overall number of constraints created 
from C by branching is at most kk · (k + 2)k−1. Altogether, the number of constraints created by branching is thus

(2k + 1) · kk · (k + 2)k = (2k + 1) · kk · kk · [(1 + 1/(k/2))k/2]2 = O(k2k+1)

after noting that [(1 + 1/(k/2))k/2]2 = O(1). This provides the claimed bound on the number of leaves of the search tree. 
We now give the detailed proof of the running time.

Our goal is to achieve (almost) linear running time per search-tree node. To this end, we pursue the following strategy for 
applying the reduction, switching, and branching rules. Note that each rule except Reduction rule 7.2 can become applicable 
only due to making a vertex permanent, that is, by placing a vertex into AC

P or BC
P . Hence, it suffices to check whether any 

rule applies whenever we make a vertex permanent; the applications of Reduction rule 7.2 which are not caused by making 
a vertex permanent receive special treatment below. We now argue that, whenever we make a vertex u permanent, we 
can determine in O(k · deg(u)) time, whether any rule applies (and a vertex to which it applies), after an initial, one-time 
expense of O(m + n) time. After this, we prove that this is enough to show the running time bound of O(k2k+1 · (m + n)).

First, observe that we can initialize and maintain in O(m + n) time throughout the algorithm a data structure that 
allows us to determine in O(1) time for an arbitrary vertex to which group it belongs and whether it is permanent, and to 
determine in O(1) time for an arbitrary group how many permanent vertices it contains. We additionally maintain a data 
structure that allows us to determine in O(1) time for an arbitrary permanent vertex to which cluster it belongs in G[AC

P ]
or G[BC

P ], and to determine in O(1) time for an arbitrary cluster in G[AC
P ] or G[BC

P ] how many vertices it contains. This can 
also be done in O(m + n) time overall, since each vertex becomes permanent only once.

To check whether Reduction rule 7.1 becomes applicable when we make a vertex u permanent, it suffices to check 
whether all permanent neighbors of u are in the same cluster and whether these neighbors include all vertices in this 
cluster. This can clearly be done in O(deg(u)) time using the data structures mentioned above.

For Switching rule 7.1, we first iterate over the deg(u) neighbors of u, labeling each with a “timestamp”, an integer that 
is initially 0 and increases whenever we make a vertex permanent. Then, we iterate over a list of vertices in the group of u
(note that, within overall linear time per search tree node, we can maintain these lists for all groups). For each vertex v in 
this list, we check in O(1) time whether it is labeled with the current timestamp. If not, then u and v are not adjacent and 
Switching rule 7.1 applies. After iterating over at most deg(u) + 1 vertices, we encounter a vertex that is nonadjacent to u
if there is one.

We can check for the applicability of Switching rule 7.2 in O(deg(u)) time by examining each neighbor of u using the 
aforementioned data structures.

For Reduction rule 7.2, note first that, except for the possible applications after the initial constraints have been created, 
Reduction rule 7.2 can only become applicable when we move a vertex to BC∗ . Whenever we move a vertex to BC∗ in any 
of the rules, we also make it permanent. Except for the initial applications, which we treat below, it thus suffices to check 
whether Reduction rule 7.2 becomes applicable whenever we make a vertex u permanent. To do this in O(k · deg(u)) time, 
we maintain throughout the algorithm for each nonpermanent vertex in AC∗ a list with at most k entries containing the 
indices of the groups in BC∗ in which it has neighbors. This list can be initialized in O(m + n) time in the beginning. 
Whenever we move a vertex u to AC∗ (and make it permanent), we initialize such a list for u. Whenever we move a 
vertex u to BC∗ (and make it permanent), we update the list for each neighbor. Both cases take O(k · deg(u)) time. At 
the same time, we can check whether Reduction rule 7.2 becomes applicable and identify the vertex to which it becomes 
applicable.

Concluding, whenever we make a vertex u permanent, we can determine in O(k ·deg(u)) time whether any rule becomes 
applicable, and, if so, find a corresponding vertex to apply it to if needed. We now show that this suffices to prove an overall 
running time of O(k2k+1 · (m + n)) time.

To see this, note first that each reduction and switching rule, including the reduction part of Branching rule 7.1, can be 
carried out in O(1) time, once we have determined whether they are applicable, and a vertex to which they are appli-
cable if they need one. (By carrying out a switching rule, we mean to add the vertex u to a queue of vertices to which 
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we shall apply switch().) Furthermore, we make each vertex permanent only once. Hence, the time for checking the ap-
plicability and for applying the reduction and switching rules along each root-leaf path in the search tree is bounded by ∑

u∈V O(k ·deg(u)) =O(k · (m +n)). Herein, we include the reduction part of Branching rule 7.1 but exclude the applications 
of Reduction rule 7.2 that are not due to making a vertex permanent. This running time also subsumes the time for the 
branching part of Branching rule 7.1 by attributing the time taken for constructing constraints in a search-tree node to its 
child nodes.

To finish the proof, it remains to treat Reduction rule 7.2 and the pruning of the initial constraints generated by 
Lemma 7.2. For Reduction rule 7.2, observe that, after an initial exhaustive application when we place v , the only appli-
cations are due to moving a vertex between AC∗ and BC∗ , which we already accounted for above. Furthermore, Reduction 
rule 7.2 can be exhaustively applied in O(m + n) time, since no vertices are moved to BC∗ in the process. Hence, the overall 
time needed for Reduction rule 7.2 along a root-leaf path in the search tree is O(k · (m + n)). For the initial constraints gen-
erated by Lemma 7.2, observe that we can check in linear time whether v has more than k neighbors in groups in BC∗ , and, 
if so, make v permanent in AC∗ ; then we only generate the appropriate at most k constraints. Otherwise, we can directly 
create the at most 2k + 2 constraints. In both cases, the initial constraints can be created in O(k · (m + n)) time. The upper 
bound of O(k2k+1 · (m + n)) on the overall running time follows. �

Given the above theorem, we obtain our running time bound for 2-Subcoloring.

Theorem 1.3. In O(k2k+1 · nm) time, we can decide whether G admits a 2-subcoloring (A, B) such that G[A] is a cluster graph with 
at most k clusters.

Proof. Theorem 7.1 and Corollary 3.1 immediately imply a running time bound of O(k2k+1 · (n2 + nm)). Moreover, before 
starting inductive recognition, we may remove all vertices of degree 0 because they can be safely added to B . After-
wards, n =O(m), giving the claimed running time. �
8. Further FPT results

In this section, we consider two examples of parameterized (�A, �B)-Recognition problems for which the branching 
technique seems to outperform inductive recognition, either in terms of simplicity or efficiency. The first example we con-
sider is that of (�A, �B)-Recognition problems, in which |A| ≤ k, where k is the parameter, and �B can be characterized by 
a finite set of forbidden induced subgraphs. We show that these problems can be solved in time 2O(k)nO(1) by a straight-
forward branching strategy. We note that the inductive recognition technique can be used to solve these problem within 
the same running time, albeit with a little more work. The second example we consider is 2-Subcoloring parameterized by 
the total number of clusters in both sides of the partition. We show that this problem can be solved in O(4k · k2 · n2) time 
by a branching strategy, followed by reducing the resulting instances to the 2-CNF-Sat problem. We note that the algorithm 
in the previous section for 2-Subcoloring can be modified to solve this problem, but runs in time O(kknm).

8.1. Parameterizing (�A, �B)-recognition by the cardinality of A

In this subsection, we consider the parameter consisting of the total number of vertices in G[A]. The follow-
ing proposition shows that a straightforward branching strategy yields a generic fixed-parameter algorithm for many
(�A, �B)-Recognition problems:

Proposition 1.1. Let �A and �B be two hereditary graph properties such that membership of �A can be decided in polynomial time 
and �B can be characterized by a finite set of forbidden induced subgraphs. Then we can decide in 2O(k)nO(1) time whether V can be 
partitioned into sets A and B such that G[A] ∈ �A , G[B] ∈ �B , and |A| ≤ k.

Proof. We describe a branching algorithm. Initially, let A = ∅ and B = V . Now consider a branch where we are given (A, B). 
If |A| > k or G[A] /∈ �A , then reject the current branch. Using the assumed finite set H of forbidden induced subgraphs that 
characterizes �B , find a forbidden induced subgraph H = (W , F ) in G[B]. This takes polynomial time, since H is finite. If H
does not exist, then accept the current branch and answer ‘yes’. Otherwise, branch into |W | branches: for each w ∈ W , we 
construct the branch where A′ = A ∪ {w} and B ′ = B \ {w}. If the algorithm never accepts a branch, then we answer ‘no’. 
The correctness of the algorithm is straightforward: for each forbidden induced subgraph that the algorithm finds, there is 
a branch where the algorithm adds the vertex to A that is also in A in a solution. Every node in the search tree has finite 
degree, since |W | is finite. Moreover, the search tree has depth at most k, since each branch adds a single vertex to A and 
|A| cannot exceed k. Hence, the running time is 2O(k)nO(1) , as claimed. �

If �B has only an infinite characterization by forbidden subgraphs, then (�A, �B)-Recognition parameterized by |A| is 
W[2]-hard in some cases: The problem of deleting at most k vertices in an undirected graph such that the resulting graph 
has no so-called wheel as induced subgraph is W[2]-hard with respect to k [22]. Thus, if �A is the class of graphs of order 
at most k and �B is the class of wheel-free graphs, then (�A, �B)-Recognition is W[2]-hard with respect to |A|.
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8.2. Parameterizing 2-subcoloring by the total number of clusters

In this subsection, we prove Theorem 1.4 by presenting an FPT algorithm for 2-Subcoloring parameterized by the total 
number of clusters in both sides of the partition. Throughout, given a graph G and a nonnegative integer k, we call a 
2-subcoloring (A, B) of G valid if G[A] and G[B] are cluster graphs that, in total, have at most k clusters.

As mentioned, the presented algorithm does not rely on inductive recognition, but instead performs branching on the 
entire graph, followed (possibly) by reducing the resulting instances to the 2-CNF-Sat problem. To describe the branching 
algorithm, we define a notion of a constraint. Throughout, let k be a nonnegative integer and let G = (V , E) be a graph for 
which we want to decide whether it has a valid 2-subcoloring.

Definition 8.1. Let k1, k2 ∈ N. A constraint C is a partition

(AC
1 , . . . , AC

k1
, BC

1 , . . . , BC
k2

, RC)

of V such that G[AC∗ ] is a cluster graph with the clusters AC
1 , . . . , AC

k1
and G[BC∗ ] is a cluster graph with the clusters 

BC
1 , . . . , BC

k2
, where AC∗ = ⋃k1

i=1 AC
i and BC∗ = ⋃k2

j=1 BC
j . We explicitly allow k1 = 0 or k2 = 0, meaning that there are no 

parts AC
i or no parts BC

i in these cases. A constraint is fulfilled by a valid 2-subcoloring (A, B) of G if AC∗ ⊆ A and BC∗ ⊆ B .

The set RC in a constraint C denotes the set of remaining vertices that have not been assigned to any cluster (yet).
The following proposition is crucial at several places in the algorithm:

Proposition 8.1. If a constraint C = (AC
1 , . . . , AC

k1
, BC

1 , . . . , BC
k2

, RC) can be fulfilled by a valid 2-subcoloring (A, B) of G, then G[A]
contains k1 clusters (say A1, . . . , Ak1 ) and G[B] contains k2 clusters (say B1, . . . , Bk2 ) such that AC

i ⊆ Ai for each i ∈ [k1] and BC
j ⊆ B j

for each j ∈ [k2].

Proof. Recall that AC∗ ⊆ A and BC∗ ⊆ B . Moreover, observe that u ∈ AC
i for i ∈ [k1] and v ∈ AC

i′ for i′ ∈ [k1] are adjacent if 
and only if i = i′ , because G[AC∗ ] is a cluster graph with the clusters AC

1 , . . . , AC
k1

. Hence, u ∈ AC
i for i ∈ [k1] and v ∈ AC

i′ for 
i′ ∈ [k1] are in the same cluster of G[A] if and only i = i′ . A similar observation holds with respect to B . �

The algorithm is a search-tree algorithm. Each node in the search tree is associated with a constraint. The root of the 
search tree is associated with the constraint Cr = (RC

r = V ) (that is, all vertices of G are in RC
r and there are no clusters). 

At a node in the search tree, the algorithm searches for a solution that fulfills the associated constraint C . To this end, the 
algorithm applies reduction and branching rules that successively tighten C . We describe these rules next. As usual, reduc-
tion rules are performed exhaustively before branching rules, and the rules are performed in the order they are presented 
below. Throughout, let C = (AC

1 , . . . , AC
k1

, BC
1 , . . . , BC

k2
, RC) be a constraint associated with a node of the search tree of the 

algorithm, and let AC∗ = ⋃k1
i=1 AC

i and BC∗ = ⋃k2
j=1 BC

j .

Reduction rule 8.1. If k1 + k2 > k, then reject C .

Proof of correctness. By Proposition 8.1, no 2-subcoloring of G that fulfills C can be valid. �
For simplicity, we call AC

1 , . . . , AC
k1

the clusters of AC∗ and BC
1 , . . . , BC

k2
the clusters of BC∗ . When we open a new cluster 

in AC∗ with a vertex v ∈ RC , we create the constraint C′ = (AC′
1 , . . . , AC′

k1+1, B
C′
1 , . . . , BC′

k2
, RC′

) where AC′
i = AC

i for i ∈ [k1], 
AC′

k1+1 = {v}, BC′
j = BC

j for j ∈ [k2], and RC′ = RC \ {v}. Opening a new cluster in BC∗ is similarly defined. When we add a 
vertex v ∈ RC to AC∗ , we create the constraint C′ that differs from C in that v /∈ RC′

but instead v ∈ AC′
i , where v is adjacent 

to all vertices of AC
i . Adding a vertex to BC∗ is similarly defined. Note that we can only open a new cluster or add a vertex 

to a cluster if this indeed yields a constraint; for the vertices to which these operations are applied during the algorithm, 
this will always be ensured.

The next reduction rule treats vertices which have to be in AC∗ or BC∗ due to connections to the corresponding clusters.

Reduction rule 8.2. If v ∈ RC is adjacent to two clusters of AC∗ (resp. BC∗ ) or else if v is adjacent to some but not all vertices 
of a cluster of AC∗ (resp. BC∗ ), then

• if v is adjacent to two clusters of BC∗ (resp. AC∗ ) or if v is adjacent to some but not all vertices of a cluster of BC∗ (resp. 
AC∗ ), then reject C;

• if v is not adjacent to any cluster in BC∗ (resp. AC∗ ), then open a new cluster in BC∗ (resp. AC∗ ) with v;
• otherwise, add v to BC∗ (resp. to AC∗ ).
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Proof of correctness. Suppose that v ∈ RC is adjacent to two clusters of AC∗ . Then in any valid 2-subcoloring (A, B) of G
that fulfills C , v is also adjacent to two clusters of A by Proposition 8.1. Hence, v ∈ B . Similarly, if v is adjacent to some but 
not all vertices of a cluster of AC∗ , then v is also adjacent to some but not all vertices of a cluster of A by Proposition 8.1, 
and thus v ∈ B . By a symmetric argument, this immediately shows that the first part of the rule correctly rejects C .

Suppose that v is not adjacent to any cluster in BC∗ . Then in any valid 2-subcoloring (A, B) of G that fulfills C and that 
satisfies v ∈ B , v must be in a different cluster of G[B] than the vertices of BC∗ by Proposition 8.1, because v is not adjacent 
to any vertex of BC∗ . Hence, the second part of the rule correctly opens a new cluster with v .

If none of the previous parts of the rule applied to v , then v is adjacent to all vertices of a cluster BC
i of BC∗ . Then in 

any valid 2-subcoloring (A, B) of G that fulfills C and that satisfies v ∈ B , v must be in the same cluster as the vertices of 
BC

i by Proposition 8.1. Hence, the third part of the rule correctly adds v to BC
i . �

Several types of ambiguous vertices remain. We next describe four branching rules that treat some of these vertices, the 
status of the remaining ones will be determined via a reduction to 2-CNF-Sat. The first type of vertices have no connections 
to any cluster and are treated by the following rule.

Branching rule 8.1. If v ∈ RC is not adjacent to any cluster of AC∗ or BC∗ , then branch into two branches: in the first, open a 
new cluster in AC∗ with v; in the second, open a new cluster in BC∗ with v .

Proof of correctness. Let (A, B) be any valid 2-subcoloring of G that fulfills C . Suppose that v ∈ A. Then v must be in a 
different cluster of G[A] than the vertices of AC∗ by Proposition 8.1, because v is not adjacent to any vertex of AC∗ . Hence, 
(A, B) fulfills the constraint generated in the first branch. Similarly, if v ∈ B , then (A, B) fulfills the constraint generated in 
the second branch. �

After this rule has been applied, we can obtain a useful partition of RC , classifying vertices according to the clusters in 
AC∗ or BC∗ to which they belong, if they are put into AC∗ or BC∗ , respectively.

Proposition 8.2. If Reduction rule 8.2 and Branching rule 8.1 cannot be applied, then RC can be partitioned into sets N AC
i

, NBC
j

, and 
N AC

i BC
j

for i ∈ [k1] and j ∈ [k2], where:

• any vertex in N AC
i

is adjacent to all vertices of cluster AC
i and not to any other clusters of AC∗ nor any clusters of BC∗ ;

• any vertex in NBC
j

is adjacent to all vertices of cluster BC
j and not to any other clusters of BC∗ nor any clusters of AC∗ ; and

• any vertex in N AC
i BC

j
is adjacent to all vertices of clusters AC

i and BC
j and not to any other clusters of AC∗ or BC∗ .

Proof. By Branching rule 8.1, any vertex v ∈ RC is adjacent to at least one cluster of AC∗ or BC∗ . By Reduction rule 8.2, 
v cannot be adjacent to two clusters of AC∗ or two clusters of BC∗ . Furthermore, again by Reduction rule 8.2, if v is adjacent 
to a cluster AC

i of AC∗ (resp. BC
i of BC∗ ), then v is adjacent to all vertices of that cluster. �

This partition of RC enables further branching rules. The following two branching rules take care of pairs of vertices that 
cannot belong to the same cluster in one of the parts AC∗ , BC∗ .

Branching rule 8.2. If u, v ∈ N AC
i

for some i ∈ [k1] (resp. u, v ∈ NBC
j

for some j ∈ [k2]) and uv /∈ E , then branch into two 

branches: in the first, open a new cluster in BC∗ (resp. AC∗ ) with u; in the second, open a new cluster in BC∗ (resp. AC∗ ) 
with v .

Proof of correctness. Let (A, B) be any valid 2-subcoloring of G that fulfills C . Suppose u, v ∈ N AC
i

for some i ∈ [k1]. Then 
AC

i ⊆ Ai for some cluster Ai of G[A] by Proposition 8.1. Since uv /∈ E , at least one of u, v is not in Ai . In fact, since u and v

are adjacent to all vertices of AC
i by definition, at least one of u, v is not in A. By definition, u and v are not adjacent to any 

vertex of BC∗ . Hence, at least one of u, v must be in a different cluster of G[B] than the vertices of BC∗ by Proposition 8.1. 
Therefore, (A, B) fulfills the generated constraint in at least one of the branches. The argument in case u, v ∈ NBC

j
for some 

j ∈ [k2] follows symmetrically. �
Branching rule 8.3. If u ∈ N AC

i
and v ∈ N AC

i′
for some i, i′ ∈ [k1] with i 	= i′ (resp. u ∈ NBC

j
and v ∈ NBC

j′
for some j, j′ ∈ [k2]

with j 	= j′) and uv ∈ E , then branch into two branches: in the first, open a new cluster in BC∗ (resp. AC∗ ) with u; in the 
second, open a new cluster in BC∗ (resp. AC∗ ) with v .
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Proof of correctness. Let (A, B) be any valid 2-subcoloring of G that fulfills C . Suppose that u ∈ N AC
i

and v ∈ N AC
i′

for some 

i, i′ ∈ [k1] with i 	= i′ . Then AC
i ⊆ Ai for some cluster Ai of G[A] and AC

i′ ⊆ Ai′ for some cluster Ai′ of G[A] by Proposition 8.1, 
where i 	= i′ . Since uv ∈ E , u /∈ Ai or v /∈ Ai′ . In fact, since u (resp. v) is adjacent to all vertices of AC

i (resp. AC
i′ ) by definition, 

at least one of u, v is not in A. By definition, u and v are not adjacent to any vertex of BC∗ . Hence, at least one of u, v
must be in a different cluster of G[B] than the vertices of BC∗ by Proposition 8.1. Therefore, (A, B) fulfills the generated 
constraint in at least one of the branches. The argument in case u ∈ NBC

j
and v ∈ NBC

j′
for some j, j′ ∈ [k2] with j 	= j′

follows symmetrically. �
Below, let I = {i | 1 ≤ i ≤ k1, N AC

i
	= ∅} and let J = { j | 1 ≤ j ≤ k2, NBC

j
	= ∅}. If none of the above rules applies, then we 

have the following:

Proposition 8.3. If none of the above rules applies, then G[⋃i∈I N AC
i
] is a cluster graph whose clusters are N AC

i
, where i ∈ I , and 

G[⋃ j∈ J NBC
j
] is a cluster graph whose clusters are NBC

j
, where j ∈ J .

Proof. If N AC
i

is not a clique, then Branching rule 8.2 applies. If a vertex of N AC
i

is adjacent to a vertex of N AC
i′

for i ∈ I and 
i′ ∈ I \ {i}, then Branching rule 8.3 applies. The same holds mutatis mutandis with respect to NBC

j
. �

The following branching rule is special in the sense that it will be applied only once in a root-leaf path of the corre-
sponding search tree.

Branching rule 8.4. Let I = {i | 1 ≤ i ≤ k1, N AC
i

	= ∅} and J = { j | 1 ≤ j ≤ k2, NBC
j

	= ∅}. For each I ′ ⊆ I and J ′ ⊆ J such that 
|I ′| + | J ′| ≤ k − k1 − k2, branch into a branch where we:

• for each i ∈ I ′ , open a new cluster in BC∗ with a fresh dummy vertex si that is made adjacent to all vertices of N AC
i

;

• for each j ∈ J ′ , open a new cluster in AC∗ with a fresh dummy vertex t j that is made adjacent to all vertices of NBC
j

;

• for each i ∈ I \ I ′ , add all vertices of N AC
i

to AC
i ; and

• for each i ∈ J \ J ′ , add all vertices of NBC
j

to BC
j .

Proof of correctness. Recall Proposition 8.3. Let (A, B) be any valid 2-subcoloring of G that fulfills C . Let I∗ denote the set 
containing all integers i such that B contains at least one vertex from N(AC

i ). Similarly, let J∗ denote the set containing all 
integers j such that A contains at least one vertex from N(BC

j ). Each integer in I∗ ∪ J∗ corresponds to a distinct cluster 
that does not intersect with any cluster of the constraint C . Thus, since (A, B) is valid, we have |I∗| + | J∗| ≤ k − k1 − k2. 
Consequently, there is a constraint C′ that was created in the branch where I ′ = I∗ and J ′ = J∗ . Let G ′ denote the graph 
constructed for this branch, that is, the graph G plus the dummy vertices. Then, the bipartition (A′ := A ∪ {si | i ∈ I ′}, 
B ′ := B ∪ {t j | j ∈ J ′}) of G ′ is a solution fulfilling the constraint C′: For each i ∈ I \ I ′ , A′ contains a cluster Ai = AC

i . 
Moreover, for each i ∈ I ′ , B ′ contains a cluster Bi = N(AC

i ) ∪ {si}. The clusters for each j ∈ J can be defined symmetrically. 
Since (A, B) is a 2-subcoloring of G and by the construction of the si and t j , there are no edges between different clusters 
in A or in B . Hence, (A′, B ′) is a 2-subcoloring. Moreover, the bipartition (A′, B ′) does not contain any further clusters and 
by the restriction on |I ′| + | J ′| it is thus valid. �

This completes the description of the reduction and branching rules. After exhaustive application of the rules, the prob-
lem of finding a solution fulfilling the constraint associated with a node can be solved by reduction to 2-CNF-Sat.

Definition 8.2. Say that a node in the search tree is exhausted if none of the reduction and branching rules apply in that 
node.

Lemma 8.1. There is an algorithm that takes as input the graph G = (V , E) and a constraint C = (AC
1 , . . . , AC

k1
, BC

1 , . . . , BC
k2

, RC)

associated with an exhausted leaf node, and decides in O(n2) time whether G has a valid 2-subcoloring that fulfills C .

Proof. We construct an instance of 2-CNF-Sat (satisfiability of Boolean formulas in the conjunctive normal form in which 
each clause contains at most two literals) in O(n2) time that can be satisfied if and only if C can be fulfilled. Since 2-CNF-Sat

is solvable in linear time (see Papadimitriou [24] for example), the algorithm runs in O (n2) time.
Observe that it suffices to place the vertices of RC into clusters. So let v be a vertex in RC . Since no rules apply to C and 

in particular Branching rule 8.2 and Branching rule 8.3 do not apply, v ∈ N AC BC for some i ∈ [k1] and j ∈ [k2]. Suppose that 

i j
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(A, B) is a valid 2-subcoloring that fulfills C . It follows from Proposition 8.1 that if v ∈ A, then v ∈ Ai , and if v ∈ B , then 
v ∈ B j . Therefore, what is left is to decide is whether the vertices in the sets N AC

i BC
j

can be partitioned between A and B

in such a way that v can only be placed in one of its two associated clusters, and such that the resulting bipartition is a 
2-subcoloring of V . We model this as an instance � of 2-CNF-Sat as follows.

For each vertex v ∈ RC , we create a Boolean variable xv . Assigning xv = 1 corresponds to adding v to its associated clus-
ter in A, and assigning xv = 0 corresponds to adding v to its associated cluster in B . The Boolean formula � is constructed 
as follows. For every two vertices v, v ′ ∈ RC , let (say) v ∈ N AC

i BC
j

and v ′ ∈ N AC
i′ BC

j′
. We add the clause (xv ∨ xv ′ ) to � if 

v and v ′ are adjacent but i 	= i′ or if v and v ′ are nonadjacent but i = i′; we add the clause (xv ∨ xv ′ ) to � if v and v ′
are adjacent but j 	= j′ or if v and v ′ are nonadjacent but j = j′ . In both cases, the added clauses enforce that v and v ′
are assigned to different cluster-groups in any satisfying assignment of �. This completes the construction of �. It is not 
difficult to verify that C can be fulfilled if and only if � is satisfiable. Indeed, the correctness proof follows along similar 
lines as the correctness of Branching rules 8.2 and 8.3.

To carry out the construction of the 2-CNF formula in O(n2) time, proceed as follows. First, construct the adjacency 
matrix of G in O(n2) time. Then, for each vertex v ∈ RC determine i and j such that v ∈ N AC

i BC
j

. That is, compute an array 
that maps each vertex v to the tuple (i, j). This can be done in O(m) time by iterating over all neighbors of the clusters 
in AC∗ and BC∗ , and setting the entries of the arrays corresponding to each neighbor accordingly. Finally, iterate over all 
pairs of vertices in RC , determine whether they are adjacent in O(1) time, determine whether their i- and j-values differ 
in O(1) time using the computed array, and add the clause in O(1) time accordingly. Hence, the algorithm runs in O(n2)

time, as required. �
We now combine the reduction and branching rules with Lemma 8.1 and prove the overall running-time bound.

Theorem 1.4. In O(4k · k2 · n2) time, we can decide whether G admits a 2-subcoloring (A, B) such that G[A] and G[B] are cluster 
graphs with at most k clusters in total.

Proof. As outlined in the beginning of this section, the algorithm works as follows. We start with the constraint Cr =
(RC

r = V ). Then we apply the reduction and branching rules exhaustively, in the order they were presented. A leaf of the 
search tree is then a node of the search tree with associated constraint C such that either C is rejected or none of the rules 
applies to C . The latter is an exhausted leaf. Lemma 8.1 shows that there is an O(n2) time algorithm that decides if there is a 
valid 2-subcoloring of G that fulfills the constraint associated with an exhausted leaf. If this algorithm accepts the constraint 
associated with at least one exhausted leaf, then we answer that G has a valid 2-subcoloring; otherwise, we answer that G
does not have a valid 2-subcoloring.

The algorithm is correct, because by the correctness of the rules there is an exhausted leaf of the spanning tree for which 
the associated constraint can be fulfilled if and only if G has a valid 2-subcoloring. Lemma 8.1 implies that an exhausted 
leaf will be accepted if and only if G has a valid 2-subcoloring.

We now analyze the running time. We first claim that the algorithm never executes Branching rule 8.4 more than once 
in a root-leaf path of the search tree. By the description of the algorithm, none of the other branching rules are applicable if 
Branching rule 8.4 is applied. Furthermore, it is clear from the description of the branching rules that none of the branching 
rules are applicable after Branching rule 8.4 has been applied. Indeed, after Branching rule 8.4 has been applied, observe 
that every vertex of RC is in N AC

i ,BC
j

for some i, j for the associated constraint C which contradicts the prerequisites of 
the other branching rules. As for the reduction rules, clearly, neither Reduction rule 8.1 nor Reduction rule 8.2 can become 
applicable after applying Branching rule 8.4. The claim follows, that is, Branching rule 8.4 is applied at most once in a 
root-leaf path of the search tree.

To see that the search tree has O(4k) nodes, note that Branching rules 8.1, 8.2, and 8.3 are two-way branches, and 
each of these rules opens exactly one new cluster in each branch. By Reduction rule 8.1, at most k + 1 clusters can be 
opened, and thus these branching rules lead to O(2k) nodes of the search tree. After all these rules have been applied, 
possibly Branching rule 8.4 will be applied. Since Reduction rule 8.1 cannot be applied, Branching rule 8.4 yields at most 2k

branches. As shown above, no further branching rules will be applied after Branching rule 8.4 has been applied. Hence, the 
search tree has O(4k) leaves.

Finally, we analyze the running time along a root-leaf path in the search tree. We look at all rules individually and 
combine their running time bounds with Lemma 8.1. For Reduction rule 8.1, clearly, whenever we open a cluster, we can 
check in O(1) time whether it becomes applicable and carry out the reduction rule accordingly. Hence, the time needed for 
Reduction rule 8.1 is clearly bounded by O(n2).

For Reduction rule 8.2, note that it only becomes applicable to a vertex v if either a neighbor is put into one of the 
clusters in AC∗ or BC∗ , or if a new cluster is opened with a neighbor of v . We claim that, whenever we open a cluster with 
a vertex u and whenever we put a vertex u into a cluster, we can decide in O(k deg(u)) time whether Reduction rule 8.2
becomes applicable. The overall running time for checking and applying Reduction rule 8.2 is then O(k(n + m)) as each 
vertex is put into a cluster at most once. To decide whether Reduction rule 8.2 becomes applicable when adding a vertex u
to a cluster (or opening a cluster with u), we check for each neighbor w of u, whether it becomes adjacent to two clusters 
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of AC∗ or of BC∗ or adjacent to a proper subset of the vertices of a cluster. This can be checked in O(k) time by maintaining, 
throughout the algorithm, the sizes of each cluster and, for each vertex x ∈ RC , two auxiliary arrays that keep track of which 
clusters x is adjacent to, and how many neighbors x has in each cluster. The overall update cost for these auxiliary arrays 
is O(n + m) because whenever we put a vertex into a cluster we can update the auxiliary arrays for all neighbors. Hence, 
overall we need O(k(n + m)) time to check for applicability and for applying Reduction rule 8.2, along a root-leaf path in 
the search tree.

Branching rule 8.1 can clearly be applied in O(n + m) time and is applied at most k times, yielding O(k(n + m)) time 
along a root-leaf path in the search tree.

Next, in the course of the algorithm we need to compute (and possibly recompute several times) the partition of RC into 
the sets N AC

i
, NBC

j
and N AC

i BC
j

. Using the information about the adjacency of vertices and clusters from the auxiliary arrays 
above, the partition can be computed in O(k(n + m)) time. We recompute this partition whenever we have exhaustively 
applied Reduction rule 8.1, Reduction rule 8.2 and Branching rule 8.1 and before we apply any of Branching rule 8.2, 
Branching rule 8.3 or Branching rule 8.4. Since we showed above that the branching rules are applied at most 2k + 1 times, 
the time needed for computing the sets N AC

i
, NBC

j
and N AC

i BC
j

is O(k2(n + m)) along a root-leaf path in the search tree.

It is not hard to see that each of Branching rule 8.2, Branching rule 8.3, and Branching rule 8.4 can be applied in 
O(n + m) time. As was shown above, they are applied at most k + 1 times, yielding an O(k(n + m)) time needed for these 
rules along a root-leaf path in the search tree. To conclude, we need overall O(k2(n + m)) time to apply the reduction and 
branching rules along a root-leaf path in the search tree. Combining this with Lemma 8.1 and the fact that the search tree 
has O(4k) leaves, we obtain an overall running time of O(4k · (n2 + k2(n + m))) =O(4k · k2 · n2). �
9. Hardness results

In this section, we present hardness results showing that significant improvements over the algorithms presented in 
the previous sections for Monopolar Recognition, 2-Subcoloring, and the (�A, �B)-Recognition problem in general, are 
unlikely. These hardness results are proved under the assumption P 	= NP, or the stronger assumption that the Exponential 
Time Hypothesis (ETH) does not fail. We start with the following propositions showing that the existence of subexponential-
time fixed-parameter algorithms for certain (�A, �B)-Recognition problems is unlikely:

Proposition 9.1. Let �A and �B be hereditary graph properties that can be characterized by a set of connected forbidden induced 
subgraphs. Moreover, assume that �A is not the set of all edgeless graphs. Then, (�A, �B)-Recognition cannot be solved in 2o(n+m)

time, unless the ETH fails.

Proof. For every �A and �B fulfilling the conditions in the proposition, Farrugia [13] presents a polynomial-time reduction 
from a variant of p-in-r SAT. Herein, we are given a boolean formula � with clauses of size r containing only positive 
literals, and the question is whether there is a truth assignment that sets exactly p variables in each clause to true. Given a 
formula �, the reduction of Farrugia [13] constructs an instance G = (V , E) of (�A, �B)-Recognition where n +m =O(|�|)
(for each clause, the construction adds a gadget of constant size). The result now follows from the fact that p-in-r SAT cannot 
be solved in 2o(|�|) time, unless the ETH fails [18]. �

The lower bounds on the running time for Monopolar Recognition and 2-Subcoloring now follow from the above 
proposition:

Proposition 9.2. Monopolar Recognition parameterized by the number k of clusters in G[A] and 2-Subcoloring parameterized by 
the total number k of clusters in G[A] and G[B] cannot be solved in 2o(k)nO(1) time, unless the ETH fails.

Proof. Monopolar Recognition is the case of (�A, �B)-Recognition where �A defines the class of P3-free graphs and 
�B defines the class of edgeless graphs. 2-Subcoloring is the case of (�A, �B)-Recognition where �A and �B define the 
class of P3-free graphs. Hence, for both problems, �A and �B satisfy the conditions in Proposition 9.1. It now remains to 
observe that n is an upper bound on k in both cases. �

In Theorems 1.1 and 1.3 we give fixed-parameter algorithms for two (�A, �B)-Recognition problems, in both of which 
�A defines the set of all cluster graphs, parameterized by the number of clusters in G[A]. Hence, one might hope for a 
generic fixed-parameter algorithm for such problems, irrespective of �B . However, polar graphs stand in our way. A graph 
G = (V , E) has a polar partition if V can be partitioned into sets A and B such that G[A] is a cluster graph and G[B] is the 
complement of a cluster graph (a co-cluster graph) [28]. We have the following proposition:

Proposition 9.3. It is NP-hard to decide whether G has a polar partition (A, B) such that G[A] is a cluster graph with one cluster or 
G[B] is a co-cluster graph with one co-cluster.
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Proof. Observe that a polar partition (A, B) of a graph G = (V , E) where G[B] is a co-cluster graph with a single co-
cluster implies that G[A] is a cluster graph and G[B] is edgeless. Hence, G is monopolar. Since Monopolar Partition is 
NP-hard [13], it follows immediately that it is NP-hard to decide whether G has a polar partition (A, B) such that G[B] is a 
co-cluster graph with a single co-cluster. Now observe that the complement of a polar graph is again a polar graph. Hence, 
a straightforward NP-hardness reduction by taking the complement reveals that it NP-hard to decide whether G has a polar 
partition (A, B) such that G[A] is a cluster graph with a single cluster. �
10. Conclusion

In this paper, we developed the inductive recognition technique for designing algorithms for (�A, �B)-Recognition

problems on graphs. Among other applications, we showed how this technique can be employed to design FPT algorithms 
for two graph partitioning problems: Monopolar Recognition parameterized by the number of cliques (in the cluster graph 
part), and 2-Subcoloring parameterized by the smaller number of cliques between the two parts. These results general-
ize the well-known linear-time algorithm for recognizing split graphs and the polynomial-time algorithm for recognizing 
unipolar graphs, respectively. We believe that inductive recognition can be of general use for proving the fixed-parameter 
tractability of recognition problems that may not be amenable to other standard approaches in parameterized algorithmics. 
We also explored the boundaries of tractability for (�A, �B)-Recognition problems.

There are several open questions that ensue from our work. A natural concrete question is whether we can improve 
the running time of the FPT algorithm for 2-Subcoloring with respect to k, the number of clusters G[A]. In particular, can 
we solve the problem in time 2O(k)nO(1) , or in time f (k)n2? Note that the latter running time would match the quadratic 
running time for recognizing unipolar graphs, corresponding to the parameter value k = 1. It is also interesting to investigate 
further if we can obtain meta FPT-results for (�A, �B)-Recognition based on certain graph properties �A and �B , similar 
to the results obtained for mutually d-exclusive graph properties. Moreover, investigating the existence of polynomial kernels 
for Monopolar Recognition and 2-Subcoloring with respect to the considered parameters, and for (�A, �B)-Recognition

in general based on �A and �B and with respect to proper parameterizations, is certainly worth investigating.
One could also consider vertex-partition problems that are defined using more than two graph properties, that is,

(�A, �B , �C , . . .)-Recognition. Observe that this problem is equivalent to (�A′ , �B ′ )-Recognition, where �A′ = �A and 
�B ′ is the graph property “the vertices can be partitioned into sets that induce graphs with property �B , �C , . . . , re-
spectively”. For example, a graph is d-subcolorable if its vertices can be partitioned into d sets that each induce a cluster 
graph, or alternatively, if its vertices can be partitioned into two sets, one of which is a cluster graph and the other of 
which is (d − 1)-subcolorable. Using the aforementioned equivalence, the NP-hardness result of Farrugia [13] carries over to
(�A, �B , �C , . . .)-Recognition whenever each graph property is additive and hereditary.

At first sight, considering the generalization of 2-Subcoloring to d-Subcoloring seems promising. By the above discus-
sion, d-Subcoloring is NP-hard for any fixed d ≥ 2 (this was also proved explicitly by Achlioptas [1]). A stronger result, 
however, follows from the observation that the straightforward reduction from d-Clique Cover (or d-Coloring) implies that
d-Subcoloring is NP-hard for any fixed d ≥ 3, even when the total number of clusters is at most d. This result implies that, 
unless P = NP, d-Subcoloring has no FPT or XP algorithm for any fixed d ≥ 3 when parameterized by the total number of 
clusters. Hence, unless P = NP, Theorems 1.3 and 1.4 cannot be extended to d-Subcoloring for any fixed d ≥ 3.

To extend the results for Monopolar Recognition and 2-Subcoloring, one could thus instead consider the following two 
different problems, both of which are NP-hard per the above discussion:

• Given a graph G = (V , E) and k ∈ N, can V be partitioned into a cluster graph with at most k clusters and two edgeless 
graphs?
For k = 1, this problem asks whether there is an independent set in G whose removal leaves a split graph, and it can be 
solved in polynomial time [2]. Moreover, if �A is the property of being a cluster graph with at most k clusters and �B

is the property of being a bipartite graph, then this problem is a (�A, �B)-Recognition problem. Since properties �A

and �B are mutually (2k + 1)-exclusive, Theorem 1.2 implies an XP algorithm for this problem when parameterized 
by k.

• Given a graph G = (V , E) and k ∈ N, can V be partitioned into two cluster graphs with at most k clusters in total and 
one edgeless graph?
For k = 1, this problem asks whether G is a split graph, and it can be solved in polynomial time [16]. For k ≤ 2, this 
problem asks whether there is an independent set in G whose removal leaves a co-bipartite graph, and it can be solved 
in polynomial time as well [2]. Moreover, if �A is the property of being 2-subcolorable with at most k clusters in 
total, and �B is the property of being an edgeless graph, then this problem is a (�A, �B)-Recognition problem. Since 
properties �A and �B are mutually (k + 1)-exclusive, Theorem 1.2 implies an XP algorithm for this problem when 
parameterized by k.

Since both problems have XP algorithms when parameterized by k, it is interesting to investigate whether any of them has 
an FPT algorithm. We leave these as open questions for future work.
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