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a b s t r a c t

A pseudoforest is a graph where each connected component contains at most one cycle,
or alternatively, a graph that can be turned into a forest by removing at most one edge
from each connected component. In this paper, we show that the following problem can
be solved in O(3knkO(1)) time: given a graph G and an integer k, can we delete at most k
vertices from G such that we obtain a pseudoforest? The result improves upon an earlier
result by Philip et al. (2015) who gave a (nonlinear) 7.56knO(1)-time algorithm both in the
exponential factor depending on k as well as in the polynomial factor depending on n.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we consider the Pseudoforest Deletion problem. A pseudoforest is an undirected graph that is obtained
from a forest by adding at most one edge to each connected component. In the Pseudoforest Deletion problem, we are
given a graph G = (V , E) and an integer k, and ask if there is a set of at most k vertices in G, that, when deleted from G, turns
G into a pseudoforest.

The Pseudoforest Deletion problem derives its interest by its relation to the well studied Feedback vertex set problem,
where we want to delete at most k vertices from a graph so that the graph becomes a forest. Allowing one more edge
per connected component of the graph after removing the deletion set changes the problem significantly, and, somewhat
surprisingly, seems tomake it simpler in the parameterized setting, as the running time of our algorithm is smaller than that
of the best known parameterized algorithms for Feedback Vertex Set.

The Pseudoforest Deletion problem was first studied by Philip et al. [14], together with the generalization where each
connected component is a tree plus at most ℓ edges. They showed that for each ℓ, the problem to delete at most k vertices
such that we obtain such an ℓ-pseudoforest has a kernel with O(k2) vertices, with the constant factor growing with ℓ. For the
Pseudoforest Deletion problem, i.e., the case that ℓ = 1, they give a deterministic algorithmwith running time 7.56knO(1).1
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In this paper, we improve upon the latter result, both with respect to the exponential factor in k, as well as in the polynomial
factor in n, which is, in our case, linear.

It is easy to see that the Pseudoforest deletion problem belongs to the class of problems studied by Fomin et al. [10],
and thus, by these results, the problemhas a constant-factor polynomial-time approximation algorithm, a polynomial kernel
(improved to quadratic by the results of Philip et al. [14]), and a randomized algorithm that runs in time O(ckn) for some
constant c. The randomized algorithm is a generalization of an algorithm by Becker et al. [2] for the Feedback Vertex Set
problem and a related problem called the Loop Cutset problem. Fomin et al. [10] consider a large class of problems that
includes Pseudoforest Deletion; they show that each problem in this class has a deterministic algorithm that runs in time
O(2O(k)nlog2n), and a constant-factor approximation algorithm that runs in timeO(nm). If one looks closely at the randomized
algorithm by Becker et al. [2] and the generalization by Fomin et al. [10], it follows that one can solve the Pseudoforest
deletion problem with a randomized algorithm in O(4knkO(1)) time.

Our improvement on these two algorithms is based upon the combination of a few different insights and techniques, in
particular:

• Positive instances, i.e., graphs that can be turned into a pseudoforest by deleting at most k vertices have treewidth at
most k + 2.

• The notion of pseudoforest has the following local characterization: a graph is a pseudoforest if and only if it has an
edge orientation such that each vertex has outdegree at most one.

• The local characterization allows us to solve the problemwith dynamic programming on a tree decomposition in time
that is linear in the number of vertices and single exponential in the treewidth, without the need to use advanced
techniques like the cut and count method [9] or the rank based approach [6]. With help of convolutions [17] (see
also [4]), the running time of the dynamic programming algorithm is reduced to O(3tntO(1)) on tree decompositions
of width t .

• What remains is the need to find an initial tree decomposition to run the dynamic programming algorithm on. For
this, we use a modification of the O(f (t)n) algorithm for Treewidth by Bodlaender [5]. The modification includes the
use of iterative compression inside one of the subroutines.

It is interesting to contrast our result with the currently best known parameterized algorithms for Feedback Vertex Set:
for the Pseudoforest Deletion problem we have a deterministic O(3knkO(1)) algorithm, while Feedback Vertex Set can be
solved in O(3knO(1)) time with a randomized algorithm [9] and O(3.63knO(1)) time with a deterministic algorithm [12]; in
both cases, the running time is not linear in n.

This paper is organized as follows. In Section 2, we give some preliminary definitions. Section 3 contains a few graph
theoretic observations. The main algorithm is given in Section 4. It uses as a subroutine a dynamic algorithm that solves the
Pseudoforest Deletion problem when a tree decomposition of bounded width is available. The details of this subroutine
are given in the Appendix. In Section 5, we discuss a corollary of our result and an ILP formulation of the problem. Some
conclusions are given in Section 6.

2. Preliminaries

When not specified otherwise, a graph G = (V , E) is considered to be undirected, but possibly with self-loops and parallel
edges. Allowing self-loops and parallel edges makes the description of the main algorithm easier. An orientation of a graph
G = (V , E) is a directed graph obtained by giving each edge in G a direction. For a graph G = (V , E) and vertex set W ⊆ V ,
the subgraph of G induced by W is denoted by G[W ] = (W , {e ∈ E | both endpoints of e belong to W }). The subgraph of
G = (V , E) induced by all vertices except those inW is denoted by G \ W , i.e., G \ W = G[V \ W ].

A tree decomposition of a graph G = (V , E) is a pair ({Xi | i ∈ I}, T = (I, F )) with T a tree, and {Xi | i ∈ I} a collection of
subsets (called bags) of V , such that

1.
⋃

i∈IXi = V ;
2. for all {v, w} ∈ E, there is an i ∈ I with {v, w} ⊆ Xi;
3. for all v ∈ V , the set of nodes {i ∈ I | v ∈ Xi} forms a connected subtree of T .

Thewidth of a tree decomposition ({Xi | i ∈ I}, T = (I, F )) is maxi∈I |Xi| − 1. The treewidth of a graph G is the minimumwidth
over all tree decompositions of G.

For the definition above, if there are parallel edges or self-loops, we can just ignore them, i.e., a tree decomposition of a
graph with parallel edges and self-loops is a tree decomposition of the associated simple graph (obtained by keeping only
one of each set of parallel edges and removing all self-loops).

In this paper, we also use the related notion of nice tree decomposition. In the literature, there are a few variants of this
notion that differ in details. In this case, we use the variant with edge introduce nodes and leaf bags of size one.

A nice tree decomposition is a tree decomposition ({Xi | i ∈ I}, T = (I, F )) where T is a rooted tree, and nodes are of one
of the following five different types. With each bag/node in the tree decomposition, we also associate a subgraph of G; the
subgraph associated with node i is denoted Gi = (Vi, Ei). We give each type together with how the corresponding subgraph
is formed.
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Fig. 1. A pseudoforest.

• Leaf nodes i. i is a leaf of T ; |Xi| = 1, and Gi = ({vi}, ∅) is the graph consisting of the vertex vi and no edges.
• Introduce vertex nodes i. i has one child, say j. There is a vertex v with Xi = Xj ∪ {v}, v ̸∈ Vj, and Gi = (Vj ∪ {vi}, Ej),

i.e., Gi is obtained from Gj by adding vi as isolated vertex.
• Introduce edge nodes i. i has one child, say j. There are two vertices v, w ∈ Xi, Xi = Xj, and Gi = (Vj, Ej ∪{{v, w}}). I.e.,

Gi is obtained from Gj by adding an edge between two vertices in Xi = Xj. If we have parallel edges, we have exactly
one introduce edge node for each parallel edge. E.g., if there are two edges between v and w, we have exactly two
edge introduce nodes for the pair v, w; typically, one of these can be the parent of the other in the tree. A self-loop
with endpoint v is handled in the same way, i.e., there is an introduce edge node i with v ∈ Xi, and Gi is obtained by
adding the self-loop to Gj.

• Forget nodes i. i has one child, say j. There is a vertex v with Xi = Xj \ {v}. Gi and Gj are the same graph.
• Join nodes i. i has two children, say j1 and j2. Xi = Xj1 = Xj2 , Vj1 ∩ Vj2 = Xi and Ej1 ∩ Ej2 = ∅. Gi = (Vj1 ∪ Vj2 , Ej1 ∪ Ej2 ).

I.e., Gi is obtained by taking the union of Gj1 and Gj2 , where the vertices in Xi are the intersection of these two graphs.

If r is the root of T , then Gr = G.
A pseudotree is a connected graph that is either a tree or obtained by adding one edge to a tree. Note that, as we allow

self-loops and parallel edges, this edge may be a self-loop or a parallel edge. A graph is a pseudoforest, if each connected
component is a pseudotree. An example is given in Fig. 1.

A pseudoforest deletion set in a graph G = (V , E) is a set of verticesW ⊆ V such that G \ W is a pseudoforest.
The c-improved graph of a graph G = (V , E) is the graph obtained by adding an edge between each pair of vertices that

have at least c common neighbors of degree at most c + 1. (We do not take the closure of this operation.)
A vertex v is simplicial in a graph G = (V , E) if the neighborhood of v is a clique.
Restricting a function f to a sub-domain Z is denoted f |Z . With f +v → iwe denote the new function obtained by adding

v to the domain of f , mapping v to i. f v→i denotes the function obtained by changing f by mapping v to i.

3. Graph theoretic observations

In this section, we give some easy graph theoretic results.

Lemma 1. Let G = (V , E) be a graph. The following statements are equivalent.

1. G is a pseudoforest.
2. G has an orientation such that each vertex has outdegree at most one.
3. Each connected component of G has equally many vertices and edges, or its number of vertices is one larger than its number

of edges.

Proof. (1) ⇒ (2): Consider a connected component of G. In case this connected component is a tree, then choose a root, and
direct all edges towards the root. If we have a connected component obtained by adding an edge {v.w} to a tree, then this
edge closes a cycle. Orient all edges in this cycle in one direction, and orient all other edges towards the cycle. See Fig. 2.

(2)⇒ (3): Consider a connected component of G. Suppose it has r vertices and s edges. By connectivity, s ≥ r −1. As each
vertex has outdegree at most one, s ≤ r .

(3) ⇔ (1): This follows directly from the well-known fact that a connected graph with r vertices and s edges is a tree, if
and only if s = r − 1. □

While Lemma 1 is an easy observation, it is a key point to our result: being a pseudoforest seems to be a global property,
but it actually can be expressed by a local property: having an orientation with outdegree at most one allows a dynamic
programming algorithm on tree decompositions with three states per vertex, i.e., with tables of size bounded by 3t , t being
the width of the tree decomposition.

The following result is folklore.While the folklore result deals with simple graphs, we can build a nice tree decomposition
for a graph with parallel edges and self-loops by building a tree decomposition for the underlying simple graph, and then
adding the self-loops and parallel edges in the obvious way.
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Fig. 2. Orienting the edges in a pseudoforest such that each vertex has outdegree at most one.

Lemma 2. Suppose G = (V , E) is given with a tree decomposition of width k with r bags. Then one can construct a nice tree
decomposition of G with O(kr + |E|) bags in O(k2r + |E|k) time.

The following result is a trivial consequence of treewidth folklore. As the construction in the proof is used in the algorithm,
we give the constructive proof here.

Lemma 3. Let G = (V , E) be a graph.

1. If G is a pseudoforest, the treewidth of G is at most 2.
2. If there is a set W ⊆ V such that G \ W is a pseudoforest, the treewidth of G is at most 2 + |W |. The corresponding tree

decomposition can be computed in O(n · |W |) time.

Proof. (1) The treewidth of a tree is 1; the treewidth of a tree plus one edge is 2: add one endpoint of the new edge to all bags.
The treewidth of a graph equals the maximum treewidth of a connected component, hence the treewidth of a pseudoforest
is at most 2.

(2) Take a tree decomposition of width at most 2 of G \ W , and addW to all bags. □

4. A parameterized algorithm for pseudoforest deletion

In this section, we give the main algorithm and prove that it attains the O(3knkO(1)) time bound. We use a number of
subroutines, discussed in a number of subsections. The main algorithm is given in Section 4.3. Section 4.6 discusses some
implementation details and the running time. Other subsections discuss necessary subroutines. More precisely, we have the
following subroutines:

• PFD. The main procedure. Arguments are a graph G = (V , E), and an integer k. The procedure returns ‘No’, if G has no
pseudoforest deletion set of size at most k, and otherwise it returns a minimum size pseudoforest deletion set of G.
See Section 4.3.

• MakeSparse. Its argument is a graph G = (V , E), and it outputs a subgraph G′ of G, which has O(n) edges and the same
collection as pseudoforest deletion sets. See Section 4.2.

• PFD-DP. This procedure solves the problemwhen a tree decomposition ofG is given. Arguments are a graphG = (V , E),
an integer k, and a tree decomposition TD of G. The output is a minimum size pseudoforest deletion set of G.

• PFD-LargeMatching. This procedure is called from themain procedure,with arguments a graphG = (V , E), an integer
k, and a matching M in G. The procedure returns ‘No’, if G has no pseudoforest deletion set of size at most k, and
otherwise it returns a minimum size pseudoforest deletion set of G. See Section 4.4.

• PFD-ManySimplicial. This procedure is called from the main procedure, with arguments a graph G′
= (V , E), an

integer k, and a set of simplicial vertices in G. The procedure returns ‘No’, if G has no pseudoforest deletion set of size
at most k, and otherwise it returns a minimum size pseudoforest deletion set of G. See Section 4.5.

4.1. Dynamic programming on tree decompositions

In this section, we briefly discuss a subroutine of our algorithm

Theorem 4. Suppose G = (V , E) is given with a tree decomposition of width at most t with O(n) bags. One can find in O(3tntO(1))
time a minimum size pseudoforest deletion set.

In the pseudo-code in the following sections, we call the procedure of Theorem 4 PFD-DP. It gets as input a graph G, an
integer k, and a tree decomposition of G, and either outputs ‘No’, if G has no pseudoforest deletion set of size at most k, and
otherwise it outputs a minimum size pseudoforest deletion set of G.

The algorithm is a more or less standard dynamic programming algorithm on tree decompositions. The key insight is the
alternative characterization of Lemma 1, i.e., we look for a set of vertices to be deleted and an orientation of the edges, such
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that each vertex that is not deleted has outdegree at most one. This allows us to work with ‘three states’ per vertex: a vertex
is deleted, has outdegree zero, or has outdegree one.

To obtain the stated running time, attention has to be paid to the computation in join nodes. Here, we need the use of
convolutions, i.e., transformations between a standard dynamic programming table and an alternative representation of it
(and back), where the alternative representation enables to execute a computation at a join node in O(3t tO(1)) time. For the
further discussion and the further (lengthy and somewhat tedious) details, we refer the reader to the Appendix.

4.2. Keeping the graph sparse

We have a simple procedure to ensure that we always work with graphs with O(n) edges, based upon the following
lemma.

Lemma 5. Let G = (V , E) be a graph.

1. Suppose that there are four or more parallel edges from v tow. Let G′ be the graph obtained from G by removing one parallel
edge from v tow. The minimum size of a pseudoforest deletion set in G equals the minimum size of the pseudoforest deletion
set of G′.

2. Suppose that there are three or more self-loops with v as endpoint. Let G′′ be the graph obtained from G by removing one
self-loopwith v as endpoint. Theminimumsize of a pseudoforest deletion set in G equals theminimumsize of the pseudoforest
deletion set of G′′.

Proof. The result follows by observing that if there are three or more parallel edges from v to w then any pseudoforest
deletion set must contain v or w, and that if there are two or more self-loops with v as endpoint, then any pseudoforest
deletion set contains v. □

Algorithm 1 Procedure to ensure that we have O(n) edges
1: procedureMakeSparse(G = (V , E))
2: while there is a pair v, w with four or more parallel edges {v, w} do
3: Remove one of the edges {v, w} from G.
4: end while
5: while there is a vertex v with three or more self-loops do
6: Remove one of the self-loops from v

7: end while
8: return G
9: end procedure

Lemma 6. If G = (V , E) has a pseudoforest deletion set S of size at most k, then G has after running Makesparse(G) less than
4kn edges.

Proof. There are at most n − k edges with both endpoints in V \ S, as G \ S is a pseudoforest. In addition we have at most
3 · k(k − 1)/2 edges between vertices in S, 3 · k · (n − k) edges between vertices in S and V \ S, and 2k self-loops with the
endpoint in S. This totals to less than 4kn. □

4.3. Outline of the main algorithms

One ingredient of our algorithm is an approach first used by Bodlaender [5] to obtain an algorithm for Treewidth that
uses O(f (k)n) time, see Theorem 7. Perković and Reed [13] showed that the result can be improved with respect to factors
polynomial in k; for our purposes, the form below suffices.

Theorem 7 (Bodlaender [5]). There are constants c1 and c2, such that for each graph G = (V , E) and integer t, at least one of the
following three statements is true.

• Any maximal matching of G has at least 1
c1·t8

n edges.

• The t-improved graph of G has at least 1
c2·t2

n simplicial vertices of degree at most t.
• The treewidth of G is at least t + 1.

The overall outline of the algorithm follows the cases of Theorem 7, with an additional simple base case. See Algorithm 2.
The function PFD either returns a pseudoforest deletion set of G of size at most k, or ‘No’, if G has no pseudoforest deletion
set of size at least k. There are five cases for the algorithm:
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1. If G has at least 4kn edges after a call toMakeSparse, then we can answer ‘No’ (Lemma 6).
2. If |V | ≤ k, then V is a pseudoforest deletion set of size k, and we are done.
3. If the maximal matching M in G is ‘sufficiently large’, i.e., of size at least 1

c1((k+2)8)
n, then the algorithm proceeds with

the subroutine discussed in Section 4.4.
4. If the k+ 3-improved graph G′ of G has sufficiently many vertices of degree at most k+ 3 that are simplicial, then the

algorithm proceeds with the subroutine discussed in Section 4.5.
5. If none of the cases above applies, then Theorem 7, with t = k + 3 gives that the treewidth of G is at least k + 4, and

hence theminimum size of a pseudoforest deletion set in G is at least k+2. (Recall Lemma 3: the treewidth of a graph
is at most two larger than the size of a pseudoforest deletion set.) So, we safely can return ‘No’.

Algorithm 2 A recursive algorithm for Pseudoforest Deletion
1: procedure PFD(G = (V , E), k)
2: G = MakeSparse(G).
3: if |E|≥ 4k · |V | then
4: return ‘No’
5: end if
6: if |V |≤ k then
7: return |V |

8: else
9: Compute a maximal matchingM .

10: if |M|≥
1

c1·(k+2)8
n then

11: return PFD-LargeMatching(G, k,M)
12: else
13: Compute the k + 3-improved graph G′ of G.
14: Compute the set S of vertices that have degree at most k + 3 and are simplicial in G′.
15: if |S|≥ 1

c2·(k+2)2
n then

16: return PFD-ManySimplicial(G′, k, S)
17: else
18: return ‘No’.
19: end if
20: end if
21: end if
22: end procedure

We will discuss how each of the subroutines solves the problem when the corresponding case holds, and how this leads
to an algorithm with the stated time bounds below.

4.4. Graphs with a large maximal matching

In this section, we suppose that we have a (maximal) matching M in G = (V , E) with size 1
O(k8)

n, and show how we can
solve the Pseudoforest Deletion problem in this case, with help of recursive calls to the main procedure and with calls to
a dynamic programming algorithm on tree decompositions. Before we start with explaining the algorithmic ideas, we need
a number of additional definitions and lemmas.

A p-contraction (‘parallel contraction’) of an edge {v, w} is the operation that identifies v and w, removes the edge {v, w},
but keeps parallel edges, e.g., if there are edges {v, x} and {w, x} before the contraction, then x has two parallel edges to the
newly formed vertex; if there is an edge parallel to the contracted edge, then this turns into a self-loop. Note that the number
of edges of a graph drops by exactly one when doing a p-contraction.

Lemma 8. Let graph G′ be obtained from graph G by p-contracting an edge.

1. G is a pseudotree, if and only if G′ is a pseudotree.
2. G is a pseudoforest, if and only if G′ is a pseudoforest.

Proof. (1) A p-contraction affects one of the connected components of G. In this component, the number of vertices and the
number of edges both decrease by one, and thus, by the characterization of Lemma 1, this component is a pseudotree after
the contraction, if and only if it is a pseudotree before the contraction. □

(2) follows directly from (1).

From Lemma 8, we directly obtain the following lemma.
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Lemma 9. Let G′ be obtained from G by a p-contraction of the edge {v, w}. Let x be the vertex resulting from the contraction of
{v, w}. Suppose W is a pseudoforest deletion set in G′.

1. If x ̸∈ W, then W is a pseudoforest deletion set in G.
2. If x ∈ W, then W \ {x} ∪ {v, w} is a pseudoforest deletion set in G.

LetM be a set of edges, andW ⊆ V be a set of vertices. The setWM that results from p-contracting M is obtained as follows:
if a vertex v ∈ W is not an endpoint of an edge inW , then v ∈ WM . If a vertex in v ∈ M is endpoint of an edge inW , and it is
contracted (by one or more p-contractions) to a vertex x, then x ∈ WM . All vertices in WM are obtained in this way. I.e., we
repeat the steps in Lemma 9 for each edge inW . By applying Lemma 9 to each edge inM , we obtain the following result.

Lemma 10. Suppose G has a pseudoforest deletion set X. Let M be a set of edges in G. Let GM be obtained from G by p-contracting
the edges inM . Let XM be the set of vertices in GM obtained from X by the p-contraction of edges. Then XM is a pseudoforest deletion
set of G.

A subroutine that gives a pseudoforest deletion set of size at most 2k. We are now ready to give the first subroutine in this
section. It receives as input a graph G, an integer k, and a matchingM , and either returns that G has no pseudoforest deletion
set of size atmost k, or it outputs a pseudoforest deletion set of G of size at most 2k. See Algorithm 3 for the pseudo-code. The
algorithm contracts the edges inM and recursively calls themain procedure on the smaller graph G′ obtained by contracting
the edges. If G′ has no pseudoforest deletion set of size at most k, then by Lemma 10, G also has no pseudoforest deletion
set of size at most k, and we can safely return ‘No’. Otherwise, we can assume that our recursive call gave us a pseudoforest
deletion set A of GM of size at most k. We compute the set S of vertices that are contracted to A; i.e., if a vertex v ∈ A is the
result of p-contracting an edge from x to y, then we have x, y ∈ S; if a vertex v ∈ A is not the result of a p-contraction, then
we place v in S.

Claim 11. Let A, S, G as above. If A is a pseudoforest deletion set in GM of size at most k, then S is a pseudoforest deletion set in
G of size at most 2k.

Proof. Each vertex in A can belong to S or have two vertices in S contracted to it, so |S| ≤ 2|A|.
Consider the graph G \ S. If we p-contract in this graph all edges inM belonging to this graph, then we obtain GM \ A. As

A is a pseudoforest deletion set, GM \ A is a pseudoforest. By Lemma 8, G \ S is a pseudoforest. So S is a pseudoforest deletion
set in G. □

Algorithm 3 Subroutine when a large matchingM is given
1: procedure PFD-LargeMatching(G = (V , E), k,M)
2: Compute the graph G′

= (V ′, E ′) obtained by p-contractingM in G.
3: A = PFD(G′, k)
4: if A = ‘No’ then
5: return ‘No’
6: else
7: ▷ A is now a pseudoforest deletion set of G of size at most k
8: Let S be the set of vertices contracted to A.
9: return PFD-IterativeImprove(G, k, S)

10: end if
11: end procedure

Iterative improvement: decreasing the pseudoforest deletion set size from 2k to k. We now give the second subroutine of
Section 4.4. In the first subroutine, we obtained a pseudoforest deletion set of size 2k. With help of dynamic programming
on tree decompositions (Theorem 4) and the iterative improvement technique, we obtain an algorithm that either correctly
tells that G has no pseudoforest deletion set of size at most k, or outputs such a set. The input of the subroutine is the graph
G, the integer k, and a pseudoforest deletion setW of size at most 2k. See Algorithm 4.

We number the vertices in W : w1, . . . , w|W |. Let Gi = G \ {wi+1, . . . , w|W |}, i.e., Gi is the subgraph of G, induced by
(V \ W ) ∪ {w1, . . . , wi}. Note that we obtain Gi+1 from Gi by adding wi+1 and incident edges (1 < i ≤ |W |).

Claim 12. At Line 3, S is a pseudoforest deletion set of Gk of size at most k. At Line 6 of Algorithm 4, S is a pseudoforest deletion
set of Gi of size at most k + 1.

Proof. Line 3: AsW is a pseudoforest deletion set of G, {w1, . . . , wk} = W \ {wk+1, . . . , w|W |} is a pseudoforest deletion set
of Gk = G \ {wk+1, . . . , w|W |}.

Line 6: This invariant follows by an inductive argument. If i = k + 1, then this follows by the first part of this claim, and
observing that we add wi to the graph and the deletion set. Now suppose i > k + 1 and the claim holds for smaller i. At
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Line 16 we have that S is a pseudoforest deletion set of Gi. Now, we increase i by one, thus add wi to the graph (Line 4) and
wi to the deletion set (Line 5). □

At Line 8, we have a tree decomposition of Gi of width at most |S| + 2 ≤ k + 3, see Lemma 3. At Line 11, we call the
dynamic programming algorithm of Theorem 4. If this algorithm tells that Gi has no pseudoforest deletion set of size at most
k, then also G has no pseudoforest deletion set of size at most k, and we safely can return ‘No’ (Lines 12 and 13).

We can conclude that PFD-InterativeImprove either correctly determines that G has no pseudoforest deletion set of size
at most k, or it outputs a minimum size pseudoforest deletion set of G. Its running time is dominated by running at most k
times the algorithm of Theorem 4.

Algorithm 4 Iterative improvement: from a pseudoforest deletion set of size at most 2k to one of size at most k
1: procedure PFD-IterativeImprove(G = (V , E), k, W )
2: Number the vertices inW , say W = {w1, . . . , w|W |}.
3: S = {w1, . . . , wk}.
4: for i from k + 1 to |W | do
5: S = S ∪ {wi}.
6: Compute the graph Gi = G[(V \ W ) ∪ {w1, . . . , wi}].
7: Build a tree decomposition of Gi \ S of width at most two.
8: Add S to all bags of this tree decomposition.
9: Let TD be the resulting tree decomposition.

10: ▷ TD is a tree decomposition of Gi of width at most k + 3.
11: A = PFD-DP(Gi, k, TD).
12: if |A|> k then
13: return ‘No’.
14: else
15: ▷ A is now a pseudoforest deletion set of Gi of size at most k.
16: S = A.
17: end if
18: end for
19: return S.
20: end procedure

4.5. Improved graphs with many simplicial vertices

In this section, we look at the procedure PFD-ManySimplicial. This procedure is called from PFD (Algorithm 1) when the
k+3-improved graph G′ of G has ‘many’ simplicial vertices. More precisely, G′ has at last 1

c2·(k+2)2
n vertices that are simplicial

and have degree at most k + 3.
In Algorithm 5, we either determine that G′ has no pseudoforest deletion set of size k or find one of minimum size.

Lemma 13 shows that this also gives the answer for the input graph G.

Lemma 13. Let G be a graph and let k be an integer. Let G′ be the k + 3-improved graph of G. Let X be a set of vertices. X is a
pseudoforest deletion set of G, if and only if X is a pseudoforest deletion set of G′.

Proof. As a subgraph of a pseudoforest is a pseudoforest, the ‘if’-direction is trivial.
Suppose that X is a pseudoforest deletion set of G. Consider two vertices v, w, with at least k+ 3 common neighbors. We

claim that v ∈ X or w ∈ X . Suppose not. Vertices v and w have at least three common neighbors that do not belong to X .
See Fig. 3. We now have five vertices with at least six edges between them, so for any orientation, at least one of these five
vertices has outdegree two or more, contradiction. As v ∈ X or w ∈ X , we can safely add the edge {v, w}, as G \ X remains a
pseudoforest. □

The algorithm starts by looking at the subgraph G′′ of G′, obtained by removing the set of simplicial vertices from G′. We
recursively solve the pseudoforest deletion set problem on G′′. If G′′ has no pseudoforest deletion set of size at most k, then
G′ has no pseudoforest deletion set of size at most k, as G′′ is a subgraph of G. By Lemma 13, G has no pseudoforest deletion
set of size at most k, so we correctly answer ‘No’ in Line 5.

We now suppose that we have the k+ 3-improved graph G′, and a set Z with 1
O(t2)

n =
1

O(k2)
n simplicial vertices of degree

at most k + 3.

Lemma 14 (Folklore, See [5]). Suppose W is a set of simplicial vertices in G with maximum degree k. Then the treewidth of G is
at most the maximum of the treewidth of G \ W and k.
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Fig. 3. A subgraph with five vertices and six edges. See the proof of Lemma 13.

Algorithm 5 Subroutine when we have many simplicial vertices in the improved graph
1: procedure PFD-ManySimplicial(G′

= (V , E ′), k, Q )
2: ▷ Q is a set of simplicial vertices in G′.
3: Compute the graph G′′

= G′
\ Q .

4: A = PFD(G′′, k)
5: if A = ‘No’ then return ‘No’
6: else
7: ▷ A is now a pseudoforest deletion set of G′′ of size at most k.
8: Build a tree decomposition of G′′ of width at most k + 2.
9: Build a tree decomposition TD of G′ of width at most k + 3.

10: A = PFD-DP(G′, k, TD)
11: if |A|> k then
12: return ‘No’
13: else
14: return A
15: end if
16: end if
17: end procedure

Proof. Consider a tree decomposition of G\W . It is well-known that for each clique X , there is a bag containing X as a subset.
For each vertex v ∈ W , find a bag i containing N(v), and add a new bag with vertex set v ∪ N(v), making this bag adjacent
to i. For details, see e.g., [5]. □

We recursively run the algorithm on G′
− Z . If G′

− Z has no pseudoforest deletion set of size at most k, then G′ has none,
and hence, by Lemma 13, G has no pseudoforest deletion set of size at most k; we can halt and answer ‘No’. Otherwise, we
obtain a pseudoforest deletion set of size at most k of G′

\ Z . We can thus build a tree decomposition of width at most k + 2
of G′

\ Z , as in Lemma 3 (Line 8). Build a tree decomposition of width at most k + 3 of G′, following the construction of the
proof of Lemma 14. As G is a subgraph of G′, we now have a tree decomposition of G of width at most k + 3, and thus can
run the dynamic programming algorithm from Theorem 4 on this latter tree decomposition, and return the answer of this
algorithm.

4.6. Implementation and time analysis

We now discuss some implementation details and show the time bound. We first consider all steps except for the
recursive calls:

• Finding a maximal matching, contracting a matching, executing the MakeSparse procedure can be clearly done in
time, linear in O(|V | + |E|). As we start with a simple graph, and ensure after contraction or improvement that the
graph has a linear number of edges by callingMakeSparse, each of these steps uses O(n) time.

• Finding the improved graph, the simplicial vertices of bounded degree, and how to transform a tree decomposition
of the graph without these simplicial vertices to one with the simplicial vertices can be done in O(nkO(1)) time [5]. We
can use the same procedures as in [5] for these steps.

• PFD-IterativeImprove makes O(k) calls to the dynamic programming algorithm PFD-DP, and hence uses O(n3kkO(1))
time.

• PFD-LargeMatching makes one recursive call to PFD with a graph with n −
1

O(k8)
n vertices and one call to PFD-

IterativeImprove; its time, not counting the time by the recursive call, is bounded by O(n3kkO(1)).
• PFD-ManySimplicialmakes one recursive call to PFDwith a graph with n−

1
O(k2)

n vertices and one call to PFD-DP; its
time, not counting the time by the recursive call, is bounded by O(n3kkO(1)).

Themain procedure PFDmakes either a call to PFD-LargeMatching or to PFD-ManySimplicial (or answers the problem);
these can make one call to PFD but with a graph with at most n −

1
O(k8)

n vertices; with the remaining work bounded by
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O(n3kkO(1)), and thus our running time satisfies the following recurrence:

T (n) = T
(
n −

1
O(k8)

n
)

+ O(n3kkO(1)).

This resolves to T (n) = O(n3kkO(1)), which shows our main result Theorem 4.

Theorem 15. The problem, given a graph G and integer k, to decide if G has a pseudoforest deletion set of size at most k, and if
so, find one, can be solved in O(n3kkO(1)) time.

5. Additional results

In this section, we discuss a corollary of our result and give a compact integer linear programming formulation of the
Pseudoforest deletion problem.

5.1. Approximation of feedback vertex set

Our main result also implies an approximation algorithm for Feedback Vertex Set.

Corollary 16. There is an algorithm, that given a graph G and integer k, gives a feedback vertex set of size at most 2k or tells that
G has no feedback vertex set of size at most k, that runs in O(3kkO(1)n) time.

Proof. First run the algorithm of Theorem 15. If G has no pseudoforest deletion set of size at most k, then G also has no
feedback vertex set of size at most k, as each feedback vertex set is a pseudoforest deletion set.

Suppose the algorithm gives a pseudoforest deletion set W with |W | ≤ k. Consider the graph G \ W . If G \ W has more
than k connected components that contain a cycle, then each feedback vertex set in G must contain at least one vertex of
each of these cycles, hence G has no feedback vertex set of size at most k.

Otherwise, we choose from each cycle in G \ W an arbitrary vertex. Let X be the set containing all vertices in W and the
chosen vertices on the cycles in G \ W . X is a feedback vertex set in G of size at most 2k. □

For the Feedback Vertex Set problem, polynomial-time 2-approximation algorithms are known [3,1]; these algorithms
are not known to use linear time. The algorithm of Corollary 16 uses time linear in n, but at the cost of an additional
exponential factor in k. Our result can possibly be used as a first step in an fpt algorithm for Feedback Vertex Set using
iterative compression, aiming at an algorithm that is efficient both in the term depending on k as well as in the term
depending on n.

5.2. ILP formulations

It may be interesting to note that the Pseudoforest Deletion problem has compact formulations as Integer Linear
Programming problems. Given a graphG, theminimumsize of a pseudoforest deletion set equals the solution of the following
ILP.

min
n∑

i=1

xi (1)

∑
j

yij ≤ 1 for all i (2)

xi + xj + yij + yji ≥ 1 for all edges {vi, vj} ∈ E (3)

xi ∈ {0, 1} for all i (4)

yij ∈ {0, 1} for all ij (5)

This formulation is based on the characterization of Lemma 1, i.e., we look for an orientation of the edges in G \ X such
that each vertex in V \ X has outdegree at most one. We have a variable xi for every vertex vi, with xi = 1 denoting that vi
belongs to the deletion set. For every edge {vi, vj}, we have two variables yij and yji. If yij = 1 then we orient the edge {vi, vj}

oriented from vi to vj; if yji = 1, then we orient this edge from vj to vi. However, if either xi = 1 or xj = 1, i.e., an endpoint
of the edge belongs to the deletion set, then we do not need to orient this edge. I.e., for each edge {vi, vj} ∈ E, there are the
following possibilities:

• The edge is oriented from vi to vj and neither vi nor vj is in the deletion set. In this case, we set yij = 1 and yji = 0.
• The edge is oriented from vj to vi and neither vi nor vj is in the deletion set. In this case, we set yij = 0 and yji = 1.
• vi or vj (or both) is in the deletion set. In this case, we set yij = yji = 0.
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Fig. 4. The Butterfly graph.

One thus easily verifies that the ILP-formulation given above correctly models the Pseudoforest Deletion problem.
The formulation has an integrality gap of at least 4, i.e., there are graphswhere the solution of the linear programobtained

by replacing the conditions yij ∈ {0, 1} by yij ≥ 0 is at most 1/4th of the solution of the given ILP. An example of such a graph
is a butterfly graph (see Fig. 4). The optimal pseudoforest deletion set has size one, namely {x}. The LP has a solution with
value 1

4 : give xweight 1/4, all other vertices weight 0, and give arcs with head xweight 1/4 and other arcs weight 1/2.
The following variation is somewhat stronger. The integrality gap for the butterfly graph is 3. Here, an optimal solution

is to assign 1
3 to x, 1

6 to the arcs with x as head, and 1
2 to all other arcs.

min
n∑

i=1

xi (6)

xi +
∑

j

yij ≤ 1 for all i (7)

xi + xj + yij + yji ≥ 1 for all edges {vi, vj} ∈ E (8)

xi ∈ {0, 1} for all i (9)

yij ∈ {0, 1} for all ij (10)

It is unclear (and worth further study) whether these ILP formulations have algorithmic applications, and what the exact
integrality gaps are for the formulations. Still, it is interesting that this problem can be expressed as such a compact ILP.

6. Concluding remarks

The main result of this paper is an O(3k
· kO(1)n)-time parameterized algorithm for the Pseudoforest Deletion problem.

The dependency of the running time on k is the currently best known, while the dependency on the number of vertices is
linear.

It is an interesting openproblemwhether this is (up to factors polynomial in k) optimal, assuming the (Strong) Exponential
Time Hypothesis, or whether a result similar to the lower bound proofs by Cygan et al. [9] can show that there is no
O((3 − ϵ)tnO(1)) algorithm for Pseudoforest Deletion on graphs given with a tree (or path) decomposition of width t;
compare the similar result for Feedback Vertex Set in [9].

A generalization of the Pseudoforest Deletion problem is the ℓ- Pseudoforest Deletion problem; a graph is an
ℓ-pseudoforest if it can be obtained from a forest by adding at most ℓ edges to each tree. It seems that the problem is harder
when ℓ > 1, as there is no apparent ‘local formulation’, whereas for ℓ = 1, we have the formulation from Lemma 1. Thus, we
wonder whether there exist deterministic algorithms for ℓ- Pseudoforest Deletion that run in O(ckℓn) time for constant cℓ
depending on ℓ. Philip et al. [15] show that for every ℓ, ℓ- Pseudoforest Deletion has a kernel with O(k2) vertices. Given the
local nature of Pseudoforest Deletion, it is interesting to see if there exists a kernel for it with a linear number of vertices.

Another interesting direction for further study is to explore what other problems give efficient parameterized algorithms
that are linear in n and have a good running time in terms of the function of k, with help of the technique based on Theorem7.
See for instance the recent O(2O(k2)n) algorithm for Pathwidth by Fürer [11].

Appendix. Solving Pseudoforest Deletion on tree decompositions

In this section, we will prove the following result, which was briefly discussed in Section 4.1.

Theorem 8. Suppose G = (V , E) is given with a tree decomposition of width at most t with O(n) bags. One can find in O(3tntO(1))
time a minimum size pseudoforest deletion set.

For easier explanation of the algorithm, wewill first derive an algorithm that usesO(4tntO(1)) time and solves the decision
problem, i.e., computes the size of the minimum pseudoforest deletion set. Then, with help of the convolutions technique for
tree decompositions, introduced by van Rooij et al. [17], we obtain a decision problem with O(3tntO(1)) running time. At
the end, we discuss how we can compute within the same time bound also the corresponding minimum size pseudoforest
deletion set.
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An algorithm that runs in O(4tntO(1)) time. We first transform the tree decomposition to a nice tree decomposition, which
has O(tn) bags.

Recall that we associate a subgraph Gi of G with each node i in the nice tree decomposition. A partial solution for a node
i ∈ I is a pair (Y , Λ), with Y ⊆ Vi a set of vertices and Λ an orientation of Ei such that each vertex in Vi \ Y has at most one
outgoing arc in Λ. If r is the root of the nice tree decomposition, then a partial solution for r is called a solution. We say a
solution (Y , Λ) extends a partial solution (Y ′, Λ′) for i if Y ′

= Y ∩ Vi and Λ′ is the restriction of Λ to Ei.
The characteristic of a partial solution (Y , Λ) for i is the function f : Xi → {X, 0, 1}, such that

• For all v ∈ Xi, f (v) = X if and only if v ∈ Y .
• If v ∈ Xi and f (v) = 0, then v has no outgoing arcs in Λ.
• If v ∈ Xi and f (v) = 1, then v has exactly one outgoing arc in Λ.

Themain ingredient of the algorithm is to compute for eachnode in i a table (function) Ti, in postorder, i.e., we compute the
table for a node after the tables for its children are known. A table Ti maps each function f : Xi → {0, 1, X} to a nonnegative
integer or to ∞, in the following way.

Suppose i is a bag in a nice tree decomposition,with corresponding setXi and subgraphGi. For a function f : Xi → {0, 1, X},
Ti(f ) equals the minimum of |Y | over all partial solutions (Y , Λ) at i with characteristic f . If no such partial solution exists,
then Ti(f ) = ∞.

The following claim trivially holds by Lemma 1, and shows how to obtain the answer to the decision version of the
Pseudoforest Deletion problem given Tr for the root r of the tree decomposition.

Claim 17. Let r be the root of a nice tree decomposition of G = (V , E). The minimum size of a pseudoforest deletion set in G equals
the minimum of Tr (f ) over all f : Xr → {0, 1, X}.

We will now discuss for each of the types of nodes in a nice tree decomposition how to compute the table Ti, given the
tables of the children of the node.

Leaf nodes. Let i be a leaf node, with Xi = {v}. Now, if f (v) = 0, then Ti(f ) = 0; if f (v) = 1, then Ti(f ) = ∞, and if f (v) = X ,
then Ti(f ) = 1.

Introduce vertex nodes. Suppose i is an introduce vertex node i with child j and Xi = Xj ∪ {v}.
As the degree of v in Gi is 0, for each f with f (v) = 1, we have Ti(f ) = ∞, as there are no partial solutions with v having

outdegree one.
For a function f with f (v) = 0, we have Ti(f ) = Tj(f |Xj ), and for functions f with f (v) = X , we have Ti(f ) = Tj(f |Xj ) + 1.

Indeed, we can just extend any partial solution for Gj by either not placing v in the pseudoforest deletion set, in which case
v has outdegree zero; or placing v in the pseudoforest deletion set, in which case v is mapped to X and the size of the set is
increased by one.

Introduce edge nodes. Consider an introduce edge node i with child j, where we introduce an edge with endpoints v and w.
Note that we allow parallel edges and self-loops; the subroutine below is also correct in case the introduced edge is parallel
to an existing edge or is a self-loop (i.e., v = w.)

For each f : Xi → {0, 1, X}, we consider the two cases in which {v, w} can be oriented. We then obtain the following
cases; for brevity, we omit the isomorphic cases with the roles of v and w switched.

• If f (v) = X and f (w) = X , then Ti(f ) = Tj(f ).
• If f (v) = X and f (w) = 0, then Ti(f ) = Tj(f ). (Only the case where the edge is oriented from v to w needs to be

considered here.)
• If f (v) = X and f (w) = 1, then Ti(f ) = min{Tj(f ), Tj(f w→0)}.
• If f (v) = 1 and f (w) = 1, then Ti(f ) = min{Tj(f v→0), Tj(f w→0)}.
• If f (v) = 1 and f (w) = 0, then Ti(f ) = Tj(f v→0). (We must orient the edge from v to w, and thus v has outdegree zero

in the corresponding orientation of Gj.)
• If f (v) = 0 and f (w) = 0, then Ti(f ) = ∞. (No orientation with both v and w having outdegree zero is possible.)

Forget nodes. Let i be a forget nodewith child jwith Xj = Xi∪{v}. Then Ti(f ) = min{Tj(f +v → 0), Tj(f +v → 1), Tj(f +v →

X)}.

Join nodes. Suppose i is a join node with children j1 and j2. The following claim gives that we can compute Ti, given Tj1 and
Tj2 , in time O(4t tO(1)). As said, we later will improve the exponential factor to 3t with help of convolutions.

Lemma 18. Ti(f ) is the minimum over all f1 and f2 of Tj1 (f1) + Tj2 (f2) − α, where

• For all v ∈ Xi, f (v) = X ⇔ f1(v) = X ⇔ f2(v) = X.
• For all v ∈ Xi, f (v) = 0 ⇔ f1(v) = 0 ⇔ f2(v) = 0.
• For all v ∈ Xi, if f (v) = 1 then either f1(v) = 1 and f2(v) = 0, or f1(v) = 0 and f2(v) = 1.
• α = |{v ∈ Xi | f (v) = X}|.
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Proof. The proof follows standard techniques for dynamic programming on tree decompositions. The number of elements
in the vertex deletion set Z in Gi equals the number of elements in Z in Gj1 plus the number of elements in Z in Gj2 , minus
the number of elements in Z in both—the latter number is α; we thus have to subtract α once to prevent counting vertices
in Z ∩ Xi twice. □

The claim above shows that we can compute Ti given Tj1 and Tj2 in O(4t tO(1)) time: for each v ∈ Xi, there are four
combinations to consider: f1(v) = f2(v) = X; f1(v) = f2(v) = 0; f1(v) = 1 and f2(v) = 0; f1(v) = 0 and f2(v) = 1.
This gives 4|Xi| combinations in total; for each, look up the table entries in Tj1 and Tj2 , compute the value which arrives
when we combine these entries. We initialize each value in Ti to ∞, and for each computed value, we set the value of the
corresponding entry in Ti to the minimum of its current value and the just computed value.

Pseudoforest Deletion is finite integer index.Wenow discuss a small modification, which deletes some table entries that
will never lead to an optimal solution. The modification shows that Pseudoforest Deletion is finite integer index (see [8]),
and in fact, has the de Fluiter property, as defined by van Rooij [16, Chapter 11.2]. We do not give the formal definition of this
property, but state the elements that are needed for our algorithm. Intuitively, Lemma 19 tells us that when we solve the
Pseudoforest Deletion problem on graphs of treewidth t , then we can work with dynamic programming tables where for
each table, the difference between the smallest and largest number in the table is at most t .

Lemma 19. Let i be a bag, and let fX be the function that maps each element of Xi to X.

1. For all f : Xi → {0, 1, X}, Ti(fX ) ≤ Ti(f ) + |Xi|.
2. Let f : Xi → {0, 1, X}. If Ti(f ) > Ti(fX ), then no partial solution at i with characteristic f will extend to an optimal solution.

Proof. For (1), take a partial solution (Y , Λ) with characteristic f , and change it by placing every vertex in Xi \ Y in Y , i.e., we
take the partial solution (Y ∪ Xi, Λ). This partial solution has characteristic fX , and thus Ti(fX ) ≤ |Y ∪ Xi| ≤ Ti(f ) + |Xi|.

For (2), suppose (Y , Λ) is a partial solution for iwith characteristic f . Suppose it extends to a solution (Z, Λ′). Let (Q , Λ′′)
be a partial solution for i with characteristic fX , and |X | = Ti(fX ). Note that Xi ⊆ Q . We can use an exchange argument as
follows: take (Z \Y ∪X, Λ′′′), where an edge inΛ′′′ is oriented as inΛ′′ if it belongs to Gi and as inΛ′ otherwise. As, whenever
a vertex is incident to an edge oriented as in Λ′ and an edge oriented as in Λ′′, it belongs to Xi and hence to the deletion set
Z \Y ∪Q , and hence is an orientation with all vertices not in Z \Y ∪X of outdegree at most one. As |X | = Ti(fX ) < Ti(f ) ≤ |Y |,
we have that |Z \ Y ∪ Q | < |Y | and thus (Z, Λ′) is not an optimal solution. □

As a result, we have that we can ignore in our computations, all values for Ti that are larger than Ti(fX ) without affecting
the correctness of the algorithm. In the implementation, we just delete these entries from the tables or set their values to
Ti(fX ) + 1. As a result, all values in a table Ti are in the range Ti(fX ) − |Xi|, . . . , Ti(fX ).

Using convolutions for join nodes. In order to speed up the dynamic programming algorithm, we use convolutions. The use
of this technique in the setting of dynamic programming on tree decompositions was introduced by van Rooij et al. [17,16].
Our exposition will not be entirely self-contained, in order to avoid repeating lengthy details which can be found in
[16, Chapter 12].

Suppose we have a join node iwith children j1 and j2. For each Z ⊆ Xi, we call a subroutine; this subroutine will compute
all values Ti(f ) for f with f (v) = X ⇔ v ∈ Z; i.e., we fixwhich vertices fromXi aremapped toX (are placed in the pseudoforest
deletion set) and compute the table entries in Ti of this type.

The computation of these values then is almost identical to the computation for the number of perfect matchings for join
nodes, as given by van Rooij [16, Chapter 11.4]. We give some main ideas here; for more details we refer to [16].

We first transform the tables Tj1 and Tj2 to tables T ′

j1
and T ′

j2
. Functions T ′ have three arguments:

• A function f : Xi \ Z → {0, ?}. A ‘?’ denotes that the vertex can be mapped to 0 or to 1.
• An integer α; using the finite integer index property, the range of the possible value of α has size t + O(1). α will

denote the ‘target value’, i.e., the size of the pseudoforest deletion set for corresponding partial solutions.
• An integer β ∈ {0, 1, . . . , |Xi \ Z |}. β denotes the number of vertices with state 1.

Now, T ′

j1
(f , α, β) equals the number of functions f ′

: Xj1 → {0, 1, X}, such that

• For v ∈ Xj1 = Xi, f ′(v) = X ⇔ v ∈ Z .
• For v ∈ Xj1 : f (v) = 0 ⇒ f ′(v) = 0. (Note that the implication is only in one direction!)
• Tj1 (f ) = α.
• There are exactly β vertices v in Xj1 = Xi with f ′(v) = 1.

We define T ′

j2
in exactly the same way.

The tables T ′

j1
and T ′

j2
can be computed in O(2|Xi\Z |) time. For details how this is done, see [16, Chapter 11.4]. We convert

the tables T to T ′ ‘coordinate-wise’, i.e., we first build an intermediate table, similar to T ′ but with states 0, 1, X , and then
change this to a table with states 0, ?, X by changing the set of possible states for one vertex at the time. Each number to
compute is either a copy of the value (if f (v) = 0), or one addition (if f (v) = ?, then we add the cases with f ′(v) = 0 and
f ′(v) = 1).
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We then compute a table T ′

i . Again T ′

i has three arguments: a function f : Xi\Z → {0, ?}, and valuesα,β , where T ′

i (f , α, β)
is the sum of T ′

j1
(f , α′, β ′) · T ′

j2
(f , α′′, β ′′) with

• α = α′
+ α′′

− |Z |. (The argument is similar as earlier if we take the union of a pseudoforest deletion set of size α′ in
Gj1 and a pseudoforest deletion set of size α′′ in Gj2 , the size of this union is α′

+ α′′ minus the size of the intersection
of these two sets; this latter value is |Z |.)

• β = β ′
+ β ′′.

We now change the table back to a table with entries {0, 1} for v ∈ Xi \ Z . We do this coordinate-wise, again, with a
copy of a value when f (v) = 0, and one subtraction when we want to have f (v) = 1: fix the value for all w ̸= v, fix α, and
subtract the value with f (v) = 0 from the value with f (v) = ?. Let T ′′

i be the resulting table. T ′′

i (f , α, β) denotes the number
of ways a partial solution corresponding to a value in table Tj1 can be combined with a partial solution corresponding to a
value in table Tj2 to obtain a partial solution for i with f giving the states of vertices in Xi \ Z , Z still the vertices in Xi in the
pseudoforest deletion set, α the size of the pseudoforest deletion set, and β the number of vertices in Xi \ Z with status 1 in
the first partial solution (for Gj1 ), plus the number of vertices in Xi \ Z with status 1 in the second partial solution (for Gj2 ).

Now, in these combinations, we possibly combined two partial solutions both with state 1. That would lead to a vertex
with outdegree two. However, we can detect this with a technique from [17,16]: precisely in these cases, we do not have
that β equals the number of vertices in Xi \ Z with f (v) = 1. Thus, for f with f (v) = X ⇔ v ∈ Z , we have that Ti(f ) equals
the minimum α such that there are f ′

: Xi \ Z → {0, 1}, and β , such that

• T ′′

i (f , α, β) ≥ 1.
• For all v ∈ Z: f (v) = X; for all v ∈ Xi \ Z , f (v) = f ′(v).
• β = |{v ∈ Xi \ Z | f (v) = 1}|.

This allows us to compute the values of Ti(f ) for this choice of Z; we repeat the steps above for each Z ⊆ Xi.
For one choice of Z , the time for the computations is bounded by O(2|Xi\Z |tO(1)); summing this over all Z ⊆ Xi gives time

O(3|Xi||Xi|
O(1)) = O(3t tO(1)).

Obtaining a constructive algorithm. As for many dynamic programming algorithms, constructing an optimal solution is done
after computing its value, by traversing the tree top-down. We first select an entry from the root table Tr with minimum
value, i.e., a function f : Xr → {0, 1, X} with Tr (f ) = minf ′:Xr→{0,1,X}Tr (f ′). We construct a solution corresponding to f by
finding ‘corresponding’ table entries in the child nodes, constructing partial solutions corresponding to these nodes, and
placing the vertices in Xr with f (v) = X in the pseudoforest deletion set. What are ‘corresponding’ table entries is different
for the different types of nodes of a nice tree decompositions; e.g., for a forget node an entry corresponding to f is where the
minimum in min{Tj(f + v → 0), Tj(f + v → 1), Tj(f + v → X)} is attained. Obtaining these entries is trivial, except for join
nodes.

For a join node i, we must solve the following problem: we are given an f : Xi → {0, 1, X}, and must find f1 and f2 as in
Lemma 18. It is easy to see, and for our purposes sufficient to notice that we can try all combinations f1 and f2, such that for
all v ∈ Xi:

• If f (v) = X , then f1(v) = f2(v) = X .
• If f (v) = 0, then f1(v) = f2(v) = 0.
• If f (v) = 1, then (f1(v) = 1 and f2(v) = 0) or (f1(v) = 0 and f2(v) = 1).

These are at most 2t+1 different combinations to try; for each, we can see if these combine to f as in Lemma 18 in O(tO(1))
time. With O(n) nodes in the tree decomposition, the time to construct a solution after all tables Ti have been computed
is bounded by O(n2t tO(1)). (As a side remark, using self reduction (see [16, Chapter 12]) it is possible to avoid the factor
exponential in t here and perform this step in O(ntO(1)) time, but as the asymptotic running time is not dominated by this
step, we prefer to give the simpler argument.)

Note that the algorithm remains correct when we run it on multigraphs with possible parallel edges and self-loops. This
ends the proof of Theorem 4.
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