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Critical Role of Preferential 
Flow in Field-Scale Pathogen 
Transport and Retention
Scott A. Bradford,* Feike J. Leij, Jack Schijven, 
and Saeed Torkzaban
A stream tube model was applied to simulate pathogen transport and fate 
in the subsurface at the field scale. Local-scale transport within each stream 
tube was described deterministically using analytic solutions for patho-
gen transport and fate in a uniform or dual-permeability porous medium. 
Important pathogen transport and fate processes that were accounted 
for in an individual stream tube included: advection, dispersion, revers-
ible and irreversible retention, and decay in the liquid and solid phases. 
The velocity in a stream tube was related to a median grain size using 
the Kozeny–Carman equation, and filtration theory was used to predict 
the dependence of retention on physicochemical factors. The field-scale 
velocity distribution was described using a unimodal or bimodal lognormal 
probability density function (PDF). The bimodal lognormal PDF was used in 
conjunction with the dual-permeability model to account for exchange 
between slow and fast velocity domains. The mean and variance of the 
field-scale concentrations were calculated from local-scale stream tube 
information. The setback distance to achieve a selected risk of infection was 
determined from the modeled concentrations and a simplified risk assess-
ment approach. Simulation results demonstrate that field-scale pathogen 
transport and setback distance were very sensitive to velocity distribution 
characteristics. Early breakthrough, higher peak concentrations, and larger 
setback distances were associated with faster stream tubes that had little 
retention, whereas the opposite trends were associated with slower stream 
tubes. The relative importance of faster stream tubes increased under physi-
cochemical conditions that enhanced retention.

Abbreviations: BTC, breakthrough curve; CFT, colloid filtration theory; DPM, dual-per-
meability model; PDF, probability density function; RP, retention profile; SSTM, stochastic 
stream tube model; SWI, solid–water interface; UM, uniform model.

Surveys of shallow and deep groundwater wells frequently find the presence of indica-
tor and/or pathogenic microorganisms (World Health Organization, 2011; Borchardt et 
al., 2007; Li et al., 2015). Contamination of groundwater by pathogens has been linked 
to waterborne and foodborne disease outbreaks (Steele and Odumeru, 2004; Craun et 
al., 2010; Borchardt et al., 2011; UN World Water Assessment Program, 2015) that pose 
a serious risk to public health (Embrey and Runkle, 2006; World Health Organization, 
2011; Bradford et al., 2013). Riverbank filtration, sand filtration, and natural and managed 
aquifer recharge are frequently relied on to remove pathogenic microorganisms from sur-
face water and wastewater supplies that are eventually used for drinking water or irrigation 
water for fresh produce (Schijven and Hassanizadeh, 2000; Ray et al., 2003; Kazner et al., 
2012). An understanding of the processes and factors that influence pathogen transport 
and fate in porous media is therefore needed to accurately assess the risks of contamination 
and to produce safe drinking water (Schijven et al., 2006, 2011).

Most microbial transport studies have been conducted using homogeneous, repacked soil 
columns (Ginn et al., 2002; Harvey and Harms, 2002; Jin and Flury, 2002; Rockhold et 
al., 2004; Unc and Goss, 2004; Foppen and Schijven, 2006; Bradford et al., 2013). Results 
have typically been analyzed using models that consider advective–dispersive transport 
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and first-order microbial retention and release. The pore-water 
velocity (v) controls the advective transport and residence time of 
microbes in porous media. Colloid filtration theory (CFT) has 
often been used to predict the retention rate coefficient (ksw) under 
saturated conditions (Yao et al., 1971). Colloid filtration theory 
predicts that ksw is a function of the single-collector efficiency (h), 
the sticking efficiency (a), and v. The value of h accounts for the 
mass flux of microbes to the collector surface via diffusion, intercep-
tion, and gravitational sedimentation. Correlation equations have 
been developed from pore-scale simulations of colloid transport 
in simplified grain geometries to predict h as a function of v, the 
median grain size (d50), the microbe size (dm), and the microbe 
density (e.g., Tufenkji and Elimelech, 2004; Messina et al., 2015). 
Colloid filtration theory originally assumed that a depended only 
on the adhesive interaction between the microbe and solid, and was 
independent of v (Elimelech et al., 1998). Experimental results in 
repacked columns and CFT predictions typically indicate limited 
potential for microorganism transport in soil and aquifer sediments, 
but greater microbial transport is expected with a decrease in a 
and an increase in d50 and v (Schijven and Hassanizadeh, 2000; 
Gupta et al., 2009; Kim et al., 2010; Bradford et al., 2013). Spatial 
variations in subsurface grain size and water velocity are therefore 
expected to be critical factors in determining pathogen transport.

Experiments in undisturbed (intact) soil columns, lysimeters, tile 
drained fields, and the field indicate that colloids and microorgan-
isms can travel much deeper and faster than would be predicted 
based on the results from repacked column studies (Taylor et al., 
2004; Pang, 2009; Sinreich and Flynn, 2011; Bradford et al., 2013; 
Arnaud et al., 2015; Flynn et al., 2015). Drastic spatial and tem-
poral variability in water flow occurs in natural, heterogeneous 
subsurface environments because the local hydraulic conduc-
tivity can vary by orders of magnitude across a few centimeters 
(LeBlanc et al., 1991), and it changes in a nonlinear fashion with 
the water saturation (e.g., Mualem, 1976; van Genuchten, 1980; 
Schaap et al., 2001). In contrast, the water flow field is relatively 
uniform and well defined in homogeneous repacked soil columns. 
Consequently, a common explanation for dissimilarities in micro-
organism transport in repacked columns and undisturbed soils 
is differences in water flow conditions. In particular, pathogen 
transport is expected to be enhanced when the bulk soil matrix is 
bypassed by rapid, preferential water flow. Field-scale experiments 
have frequently revealed that preferential pathways are a major con-
tributor to the overall transport of microorganisms (Bales et al., 
1989; Abu-Ashour et al., 1994; Jiang et al., 2010). Breakthrough 
concentrations for solutes and microbes in soils with preferential 
flow frequently exhibit physical nonequilibrium transport that is 
characterized by early arrival, concentration tailing, or multiple 
peaks (e.g., Pang, 2009; Sinreich and Flynn, 2011; Wang et al., 
2013). Pathogens and/or subpopulations that survive for extended 
periods of time are especially susceptible to episodic preferential 
flow and transport events (de Roda Husman et al., 2009; Bradford 
et al., 2013).

Processes and conditions that lead to preferential flow have previ-
ously been reviewed in the literature (Hendrickx and Flury, 2001; 
Šimůnek et al., 2003; Jarvis, 2007). In brief, preferential water flow 
can occur as a result of: unstable flow behavior; dynamic capillary 
properties; macropores from decaying plant roots, burrowing earth-
worms, and animals; spatial variations in soil texture (layers and 
lenses) and soil structure; cracks in clayey soils; and fractured rocks. 
Surveys indicate that preferential flow occurs in most field soils 
(Flury et al., 1994; Hendrickx and Flury, 2001). The complexity of 
preferential flow processes presents an obstacle to accurate predic-
tions of field-scale contaminant transport (Šimůnek et al., 2003).

A number of mathematical modeling approaches have been devel-
oped to simulate field-scale preferential water flow and transport. 
The classical uniform model (UM) describes water f low using 
either Richards’ equation in the vadose zone or the Bousinesque 
equation for groundwater, and microbial transport using the 
advective–dispersion equation with first-order terms for retention, 
release, and decay (e.g., Harvey and Garabedian, 1991; Schijven 
et al., 1999; Zhang et al., 2001; Bradford et al., 2014). Subsurface 
heterogeneities and/or preferential pathways can be explicitly 
accounted for in the UM (e.g., Schelle et al., 2013; Wang et al., 
2013), but this requires knowledge of the spatial variability in 
water f low and pathogen transport and fate parameters that is 
typically not available.

There is increasing evidence that the UM often cannot describe field 
observations, and a number of physical nonequilibrium flow and 
transport models have been developed to overcome this limitation 
(Gerke and van Genuchten, 1993; Vogel et al., 2000; Šimůnek et 
al., 2003; Gerke, 2006; Šimůnek and van Genuchten, 2008; Jarvis 
and Larsbo, 2012). The dual-permeability model (DPM) divides the 
soil into fast and slow flow domains at the representative elemen-
tary volume scale and solves separate flow and transport equations 
for each domain that include terms for the exchange of water and/
or contaminants (Köhne et al., 2009a, 2009b; Šimůnek and van 
Genuchten, 2008). Preferential flow and transport in laboratory col-
umns and at the plot or field scale are increasingly described using 
DPMs (e.g., Köhne et al., 2009a, 2009b; Wang et al., 2014).

Deterministic simulations for UMs and DPMs commonly consider 
only a single realization of flow and transport parameters. In this 
case, model output neglects uncertainty in flow and transport pro-
cesses and parameters. Stochastic models have been developed to 
determine the mean and variance in flow and transport processes 
in the heterogeneous subsurface (e.g., Russo and Dagan, 2012; 
Fiori et al., 2015). The stochastic stream tube model (SSTM) is a 
simplified stochastic approach that describes field-scale variability 
in flow and/or other transport parameters using probability den-
sity functions (PDFs) in conjunction with a series of independent 
one-dimensional stream tubes (Toride et al., 1995; Maxwell et al., 
2003; Bradford and Toride, 2007). However, conventional SSTMs 
do not allow for exchange between fast and slow flow domains and 
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have mainly been applied under steady-state flow conditions. The 
relative importance of these assumptions is expected to depend on 
the saturation conditions but has not yet been rigorously tested. 
In particular, exchange between fast and slow domains will be 
controlled by diffusion and dispersion under steady-state satu-
rated flow conditions, whereas advection is expected to dominate 
exchange under variably saturated flow conditions. The use of the 
SSTM in conjunction with the dual-permeability description for 
individual stream tubes may potentially overcome this limitation 
but has only been the subject of preliminary investigation (Wang 
et al., 2014).

The transport distance to achieve the required amount of pathogen 
removal for safe drinking water production is referred to as the set-
back distance. Previous UMs, DPMs, and SSTMs have not always 
considered all relevant pathogen transport and fate processes such 
as flow velocity variations, irreversible and reversible retention, and 
solid- and liquid-phase decay that are needed to assess risk and safe 
setback distances. Furthermore, accurate quantification of field-
scale flow and transport parameters remains a critical challenge for 
all of these models. Models that acceptably describe field data with 
the fewest number of model parameters are generally preferred 
because they are easier to calibrate and apply, especially for reactive 
contaminants like pathogens in poorly characterized subsurface 
environments. Approaches to predict pathogen transport and fate 
parameters are therefore critically important. One potential advan-
tage of the SSTM is that the need to accurately characterize the 
spatial variation in the flow field is replaced by several parameters 
for the PDF that may potentially be determined from a conserva-
tive tracer test (Vanderborght et al., 2006). Some UMs have used 
CFT to predict values of ksw in the field with varying degrees of 
success (e.g., Schijven et al., 1999; Zhang et al., 2001; Maxwell et 
al., 2003). To date, no DPMs or SSTMs have used CFT to predict 
microbial retention parameters.

A SSTM with velocity as the stochastic parameter is presented 
in this work that overcomes many of the above modeling limita-
tions. In particular, the model includes additional pathogen and 
fate processes including filtration theory, unimodal or bimodal 
lognormal PDFs for the water velocity, and UM or DPM for indi-
vidual stream tubes. The developed model was subsequently used 

to study the influence of various preferential flow factors on patho-
gen transport and fate, risk assessment, and the setback distance. 
Specific factors that were considered included: parameters from 
filtration theory (v, d50, dm, and a), the variance of the PDF, the 
PDF type (unimodal and bimodal lognormal distributions), the 
SSTM with UM or DPM in individual stream tubes, and the rate 
of exchange between fast and slow velocity regions.

66Mathematical Models
Microorganism transport and retention was simulated in this work 
using four different model formulations, namely: (i) the UM; (ii) 
the DPM; (iii) the SSTM with the UM applied to individual 
stream tubes (SSTM-UM) using Darcy flux (q) from a unimodal 
or bimodal lognormal distribution; and (iv) the SSTM with the 
DPM applied to individual stream tubes (SSTM-DPM) with q 
from the same bimodal lognormal distribution for both perme-
ability domains. Figure 1 provides conceptual illustrations of 
transport in each of these models as applied in this study. Steady-
state, saturated water flow was assumed in all of these models to be 
consistent with the case of long-term ponded infiltration, as well as 
first-order microbial decay, release, and reversible and irreversible 
retention. The UM considers constant advective and dispersive 
transport in the downward direction. In this case, the microbe 
concentration is perfectly mixed in the direction perpendicular to 
water flow (Jury and Flühler, 1992). In contrast to the UM, the 
DPM allows for physical nonequilibrium transport. In particu-
lar, the DPM considers separate regions of fast and slow advective 
and dispersive transport in the downward direction and first-order 
diffusive and dispersive exchange between fast and slow regions. 
The SSTM-UM and SSTM-DPM describe field-scale transport 
using a series of independent stream tubes based on the UM and 
DPM, respectively, having separate values of q that were consis-
tent with a field-scale probability density function. In contrast to 
the SSTM-UM, the SSTM-DPM allows diffusive and dispersive 
exchange between fast and slow velocity regions within an indi-
vidual stream tube. Note that q is the stochastic parameter in the 
SSTM-UM and SSTM-DPM to reflect the spatial variability in 
the saturated hydraulic conductivity that is ubiquitous at the field 
scale. The mean and variance of the field-scale concentrations in 
the SSTM-UM and SSTM-DPM can be determined from the 

Fig. 1. Conceptual illustrations of microbe trans-
port in the uniform model (UM), dual-permeability 
model (DPM), stochastic stream tube model (SSTM) 
with the UM applied to individual stream tubes 
(SSTM-UM) using Darcy flux (q) from a unimodal 
or bimodal lognormal distribution, and the SSTM 
with the DPM applied to individual stream tubes 
(SSTM-DPM) with q from the same bimodal lognor-
mal distribution for both permeability domains. For 
convenience, only six stream tubes are shown for the 
SSTM-UM, whereas three stream tubes are given for 
the SSTM-DPM (outlined in red). In reality, both 
SSTM-UM and SSTM-DPM consider the full distri-
bution of q.
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local-scale stream tubes. All of these models assumed that the 
initial concentration in the simulation domain was zero, used a 
third-type boundary condition for pulse application at the inlet, 
and a concentration gradient of zero at a depth equal to infinity. 
Below, we briefly present the governing transport equations for 
each of these models.

Uniform Model
The aqueous-phase mass balance equation for microbes in the UM 
is written as follows when the volumetric water content and flux 
remain constant in time (steady-state water flow):

( )
2

b rs
w sw r2

kC C CD v k C S
t zz

r¶ ¶ ¶
= - - m + +

¶ ¶ q¶
 	 [1]

where C [N L−3; N and L denote the number of microbes and 
length, respectively] is the microbe concentration in the aqueous 
phase, Sr [N M−1; M denotes units of mass] is the solid-phase con-
centration of reversibly retained microbes, t [T] is time, z [L] is 
depth, D is the hydrodynamic dispersion coefficient [L2 T−1], v is 
the average pore water velocity [L T−1], rb [M L−3] is the soil bulk 
density, q (dimensionless) is the volumetric water content, mw [T−1] 
is the liquid-phase decay coefficient, and ksw [T−1] and krs [T−1] 
are the microbe retention and release coefficients, respectively. The 
value of q is equal to the product of q and v. The value of D is com-
monly approximated as the product of v and the dispersivity. The 
solid-phase mass balance equations for reversibly and irreversibly 
retained microbes are given as
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where Si [N M−1] is the solid-phase concentration of irreversibly 
retained microbes, ms [T−1] is the solid-phase decay coefficient, and 
Frev (dimensionless) is the fraction of reversibly retained microbes. 
The total local-scale solid-phase concentration of retained 
microbes, S [N M−1], is equal to the sum of Sr and Si. Toride et 
al. (1995) presented the analytic solutions to Eq. [1–3] that were 
used in this work.

Dual-Permeability Model
Separate aqueous- and solid-phase mass balance equations were 
used to describe transport and retention in fast (fracture) and slow 
(matrix) domains of the DPM (Leij and Bradford, 2013):
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where G [T−1] is the mass transfer coefficient between fast and 
slow domains, and the subscripts 1 and 2 are used to denote the 
indicated parameters in the slow and fast domains, respectively. 
The total S = S1 + S2 = Sr1 + Si1 + Sr2 + Si2, the total water content 
(q) is q = q1 + q2, and the total Darcy water velocity (q) is q = q1 
+ q2 = q1v1 + q1v2. Alternatively, it is sometimes useful to write 
q1 and q2 in terms of the fraction of total water flow through the 
slow region, l1 = q1v1/(q1v1 + q1v2), as q1 = l1q and q2 = (1 − l1)
q. The total flux concentration is given as

1 1 2 2
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1 2

q C q C
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q q
+
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+
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Leij and Bradford (2013) presented the analytic solutions to Eq. 
[4–10] that were used in this work.

Stochastic Stream Tubes 
with Uniform Model
Average field-scale aqueous- and solid-phase microbial concen-
trations, CT(z,t) and ST(z,t), were obtained by integrating the 
contributions from individual UM stream tubes over the field-
scale distribution of q as

( )
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where C(z,t; q) and S(z,t; q) are the aqueous- and solid-phase 
microbial concentrations, respectively, in an individual UM 
stream tube evaluated at a given value of q, and f (q) is the field-
scale probability density function for q. Integrals in Eq. [11] 
and [12] were evaluated numerically using the m-point Gauss–
Chebyshev quadrature formula (e.g., Abramowitz and Stegun, 
1972). The field-scale variance in microbe concentrations can also 
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be calculated using the SSTM. For example, the variance of ST(z,t) 
is given as <S(z,t; q)2> − <S(z,t; q)>2.

Field-scale variations in q were described using either unimodal 
or bimodal lognormal PDFs. The unimodal lognormal PDF is 
given as

( )
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2 2
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where m and s are the mean and standard deviation of ln(q), respec-
tively. Note that m = ln(<q>) − 0.5s2, where <q> is the ensemble 
average of q. The bimodal lognormal distribution may be used to 
describe more complex field-scale distributions of q as

( )
( )

( ) ( )

2
aa

2
a a

2
ba

2
b b

ln
exp

2 2

ln1
exp

2 2

qF
f q

q

qF
q

ì üï ïé ù-mï ïë ûï ï= -í ýï ïs p sï ïï ïî þ
ì üï ïé ù-m- ï ïë ûï ï+ -í ýï ïs p sï ïï ïî þ

 	 [14]

where subscripts a and b are included on m , s, and <q> to identify 
parameters associated with the two lognormal distributions, and Fa 
denotes the fraction of q that is assigned to lognormal distribution a.

Stochastic Stream Tubes 
with Dual-Permeability Model
The bimodal lognormal distribution of q (Eq. [14]) was used when 
using the SSTM-DPM. In this case, a constant value of l1 was used 
to determine q1 = l1q and q2 = (1 − l1)q throughout the field. This 
simplification allowed the same bimodal lognormal distribution f 

(q) to be used in both fast and slow domains of the DPM. Similar 
to the SSTM-UM, average field-scale values of CT(z,t) and ST(z,t) 
where obtained by integrating the contributions from individual 
DPM stream tubes over the field-scale distribution of q as
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where aqueous-phase (C1 and C2) and solid-phase (S1 and 
S2) microbial concentrations in the slow and fast regions of an 
individual DPM stream tube were evaluated at a given value of 
q. Integrals and variances associated with the SSTM-DPM were 
determined in an analogous fashion to the SSTM-UM. In contrast 
to the SSTM-UM, the SSTM-DPM allows the role of exchange 
between slow and fast regions to be examined.

66Numerical Experiments
The focus of this research was to numerically investigate the influ-
ence of field-scale velocity variations, including preferential flow, 
on pathogen transport and retention. Colloid filtration theory 
calculations and UM simulations were conducted to examine 
the influence of variations in q, d50, and dm. Simulations of the 
SSTM-UM with a unimodal lognormal PDF probed the roles of 
s and a , whereas those with a bimodal lognormal PDF explored 
the inf luence of Fa. The DPM and SSTM-DPM simulations 
investigated the influence of G. Table 1 summarizes all of these 
simulations and associated model parameters.

Simulated microbe breakthrough curves (BTCs) and final reten-
tion profiles (RPs) are presented below for a four-pore-volume 
input pulse. The BTCs were plotted with the relative f lux con-
centration (C/Co for the UM, CF/Co for the DPM, and CT/Co 
for the SSTM-UM and SSTM-DPM; where Co is the influent 
microbe concentration) on the vertical axis and pore volume on 
the horizontal axis, whereas semilog plots of the RPs are given 
with the normalized solid-phase microbe concentration (S/Co for 
the UM and DPM, and ST/Co for the SSTM-UM and SSTM-
DPM) on the vertical log axis and depth on the horizontal axis. 
The BTCs and RPs are given at a depth of 10 cm and after eight 
pore volumes to facilitate the visualization of microbe concentra-
tions. The number of pore volumes was determined as <q>t/(qLD), 
where LD is the length of the considered simulation domain. A 
constant value of dispersivity was assumed in all simulations equal 
to 0.1LD. Values of q and rb were also constants equal to 0.36 and 
1.70 g cm−3, respectively, to be consistent with typical values in 
sand (e.g., Schaap et al., 2001).

The mathematical equations above included processes of liquid- 
and solid-phase decay, release, and reversible and irreversible 
retention for completeness. Liquid- and solid-phase decay param-
eters and Firr were set to zero (Frev = 1) in numerical experiments 
to better study the processes of pathogen transport and reversible 
retention at the field scale. Pathogen release under steady-state 
conditions is a slow, diffusion-controlled process, and the release 
rate coefficient is typically several orders of magnitude smaller 
than the retention rate coefficient (Ryan and Elimelech, 1996). 
Very limited research has therefore been directed to predicting the 
release rate coefficient under steady-state conditions (Johnson et 
al., 1995; Harter et al., 2000). Consequently, values of krs, krs1, 
and krs2 were set to low values of 0.001 min−1 that are typical for 
packed column studies (Bradford et al., 2016).

Colloid filtration theory was used to estimate the inf luence 
of various physicochemical conditions on ksw for the UM and 
SSTM-UM as (Yao et al., 1971)

( )
sw

50

3 1
2

k v
d
-q

= ha  	 [17]
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The correlation equation of Messina et al. (2015) was used in this 
work to predict h as a nonlinear function of q, d50, and dm when 
using a microbe density of 1.08 g cm−3. Note that Eq. [17] depends 
on the interconnected parameters q (or v) and d50. Values of q 
were therefore related to grain size distribution parameters using 
Darcy’s Law with a unit hydraulic gradient to be consistent with 
steady-state, saturated downward flow (Fig. 1). In particular, the 
saturated hydraulic conductivity (Ks, L T−1) was estimated from 
the representative soil grain size using the Kozeny–Carman equa-
tion (Bear, 1972) as

( )

2 3
w 10

s 2
w 180 1

g d
K

é ùr qê ú= ê úc -qê úë û
 	 [18]

where rw [M L−3] is the density of water, cw [M L−1 T−1] is the 
dynamic viscosity of water, and g [L T−2] is the acceleration due to 
gravity. In this study, the representative soil grain size was taken 
to be d10 [L] (Lemke et al., 2004), i.e., where 10% of the soil mass 
is finer than d10. Note that d50 » d10Ui, where Ui is the unifor-
mity coefficient that was taken to be 4. The use of Eq. [18] in this 
manner allowed q to be related to d50 in CFT calculations.

Colloid filtration theory originally assumed that a in Eq. [17] 
was controlled by the adhesive interaction (e.g., Elimelech et al., 
1998). In reality, a depends on hydrodynamic and adhesive forces 
and torques that act on microbes near the solid–water interface 
(SWI), as well as fluctuations in molecular kinetic energy that pro-
duces a random Brownian force (Cushing and Lawler, 1998). The 

hydrodynamic force and torque that act on a microbe adjacent to 
the SWI depend on the microbe size, the water velocity, and the 
pore-space geometry (grain size distribution, grain–grain contacts, 
and microscopic roughness) (Bradford et al., 2011). The adhesive 
force and its torque depend on the solution- and solid-phase chem-
istries, the microbe size, shape, and deformation, and nanoscale 
roughness and chemical heterogeneity on both the SWI and the 
microbe (Bradford and Torkzaban, 2015). Due to these many com-
plexities, the value of a was set to representative values during the 
simulations discussed below. A value of a = 0 is for a nonreactive 
microbe, whereas larger values indicate greater retention.

The value of q in individual streams tubes of the SSTM-UM 
and SSTM-DPM were determined from PDFs (Eq. [13] or [14]). 
Parameters of these PDFs can be determined by inverse optimiza-
tion to heterogeneous field-scale BTCs of a conservative tracer. An 
example application of the SSTM-UM to describe transport of 
reactive solutes in heterogeneous soils was given in Vanderborght et 
al. (2006). However, hypothetical values of PDF parameters were 
used in our numerical experiments (Table 1). Similarly, values of 
q1 and q2 in the DPM and SSTM-DPM were determined using 
the constraint q = q1 + q2 = l1q + (1 − l1)q with l1 = 0.2. Dual-
permeability models typically assume that only a small fraction of 
the porous medium is associated with fast flow such that q2 << q1. 
To facilitate comparison of the SSTM-UM and SSTM-DPM, the 
values of q1 and q2 were set to 0.5q such that q = q1 + q2 and the 
slow and fast regions had the same size. Values of ksw1 and ksw2 
in the DPM and SSTM-DPM were also estimated using CFT. In 

Table 1. A summary of all model parameters used in the numerical experiments in Fig. 2 through 8.

Figure no. Simulation parameters

Fig. 2 Colloid filtration theory (CFT) predictions using Eq. [17] and the correlation equation of Messina et al. (2015). In Fig. 2a, the sticking efficiency a = 1, 
the median grain size (d50) = 360 mm, the microbe density was 1.08 g cm−3, the microbe size (dm) ranges from 1 to 20,000 nm, and the Darcy flux q = 
0.001, 0.001, 0.01, 0.1, 1, and 10 cm min−1. In Fig. 2b, the value of a = 1, the microbe density was 1.08 g cm−3, dm ranges from 1 to 20,000 nm, q = 0.1 
cm min−1, and d50 = 50, 100, 200, 400, 800, and 1000 mm.

Fig. 3–8 Constant model information and parameters for Fig. 3–8 include the following: steady-state, saturated downward flow with unit hydraulic gradient; 
input pulse duration = four pore volumes; total simulation duration = eight pore volumes; the domain length LD = 10 cm; volumetric water content q 
= 0.36; bulk density (rb) = 1.7 g cm−3; microbe density is 1.08 g cm−3; dispersivity = 0.1LD; the fraction of reversibly retained microbes (Frev) = 1 and 
irreversibly retained microbes (Firr) = 0; liquid-phase decay coefficient (ml) = 0 min−1 and the solid-phase decay coefficient (ms) = 0 min−1; microbe 
retention rate coefficients ksw, ksw1, and ksw2 were determined using CFT (Eq. [17]) and the correlation equation of Messina et al. (2015); correlation 
between q and d50 using Eq. [18] and uniformity coefficient Ui = 4; and microbe release rate coefficients krs = krs1 = krs2 = 0.001 min−1. Breakthrough 
curves are given at a distance of 10 cm, and retention profiles are given after eight pore volumes. Other specific model parameters are provided below.

Fig. 3 Uniform model (UM) simulations with a = 0.05, dm = 1000 nm, and q = 0.05, 0.1, 0.25, 0.5, and 1 cm min−1.

Fig. 4 Dual-permeability model (DPM) simulations with a = 0 (Fig. 4a) and a = 0.1 (Fig. 4b), dm = 1000 nm, q1 = q2 = 0.5q = 0.18, q = 0.1 cm min−1, the 
fraction of total water flow through the slow region (l1) = 0.2 such that flow through the slow region q1 = 0.02 cm min−1 and flow through the fast 
region q2 = 0.08 cm min−1, and the mass transfer coefficient between the fast and slow domains (G) = 0.0001, 0.001, 0.01, and 0.1 min−1.

Fig. 5 Stochastic stream tube model SSTM-UM simulations when a = 0.0, dm = 1500 nm, and q is described using a unimodal lognormal distribution with <q> 
= 0.05 cm min −1 and s = 0.1, 1, and 2.

Fig. 6 SSTM-UM simulations with a = 0.01, 0.05, and 0.1, dm = 1500 nm, and q described using a unimodal lognormal distribution with <q> = 0.05 cm min−1 
and s = 1.

Fig. 7 SSTM-UM simulations with a = 0.1, dm = 1000 nm, and q described using the bimodal lognormal distribution with <qa> = 0.1 cm min−1, <qb> = 2.0 
cm min−1, sa = 0.1, sb = 0.5, and the fraction of q assigned to distribution a (Fa) = 0.9, 0.925, 0.95, 0.975, and 0.999.

Fig. 8 SSTM-DPM simulations with a = 0.1, dm = 1000 nm, q1 = q2 = 0.5q = 0.18, l1 = 0.2, and G = 0.0001, 0.001, 0.01, and 0.1 min−1, and q is described 
using the bimodal lognormal distribution with <qa> = 0.1 cm min−1, <qb> = 2.0 cm min−1, sa = 0.1, sb = 0.5, and Fa = 0.975.
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particular, values of v and q in Eq. [17] and [18] were replaced by 
v1 and q1q/q1, respectively, when determining ksw1. In this study, 
q1q/q1 upscales q1 from q1 to q for CFT calculations. The value 
ksw2 was determined in a similar manner to ksw1.

66Results and Discussion
Uniform Model
Colloid filtration theory was used to predict the complex depen-
dency of ksw on dm, d50, and q. Figures 2a and 2b present plots of 
the predicted influence of dm on ksw for several different q (Fig. 2a) 
and d50 (Fig. 2b) values when a = 1. The value of d50 equals 360 
mm in Fig. 2a, and q equals 0.1 cm min−1 in Fig. 2b. Note that ksw 
achieved a minimum when dm ranged between 955 and 1700 nm 
depending on q and d50, and this reflects the optimum microbe 
size for transport (the lowest amount of mass transfer to the SWI 
is a worst-case scenario for pathogen transport). The value of ksw 
also increases in a nonlinear manner with q, with a greater velocity 
dependence predicted for smaller and larger microbes (Fig. 2). The 
dominant mechanism of microbe mass transfer to the SWI occurs 
via sedimentation and interception for larger dm and q, whereas the 
relative importance of diffusion increases for smaller dm and q. In 
addition, the value of ksw also increases with decreasing d50 (Fig. 

2b). The CFT predictions in Fig. 2 are consistent with published 
literature (e.g., Tufenkji and Elimelech, 2004; Messina et al., 2015) 
and are presented to aid the interpretation of subsequent model-
ing results.

Uniform model simulations were conducted to illustrate the influ-
ence of q on pathogen transport and retention. In this case, the 
value of q was correlated with d50 using Eq. [18]. Figures 3a and 3b 
present illustrative examples of the predicted influence of q (0.05, 
0.1, 0.25, 0.5, and 1 cm min−1) on BTCs and RPs, respectively, 
when a = 0.05 and dm = 1000 nm. Other model parameters are 
given in Table 1. The value of q has a strong influence on BTCs 
and RPs because microbe retention depends on both the advec-
tion-controlled residence time and the velocity dependency of ksw. 
Greater microbe retention occurs with decreasing q because of an 
increase in the residence time, even though ksw decreases with 
decreasing q (Fig. 2a). However, this velocity dependency will also 
depend on the microbe size because of differences in ksw with dm 
(Fig. 2). Many previous experimental and modeling studies have 
examined the influence of q on microbe transport and retention, 
and the simulation results shown in Fig. 3 are generally consistent 
with this published literature (e.g., Meinders et al., 1995; Hendry 

Fig. 2. Plots of the predicted influence of microbe diameter (dm) on 
the retention rate coefficient ksw for several different values of (a) the 
Darcy velocity q for a median grain size (d50) of 360 mm and (b) d50 
with a q of 0.1 cm min−1 when using filtration theory and the correla-
tion equation of Messina et al. (2015) with sticking efficiency a = 1. 
See Table 1 for all parameter values.

Fig. 3. Predicted (a) breakthrough curves and (b) retention profiles for 
the uniform model with colloid filtration theory when sticking effi-
ciency a = 0.05, microbe diameter dm = 1000 nm, and Darcy velocity 
q = 0.01, 0.05, 0.1, 0.25, 0.5, and 1 cm min−1. The median grain size 
d50 was determined from q using Eq. [18]. See Table 1 for all param-
eter values.



VZJ | Advancing Critical Zone Science� p. 8 of 13

et al., 1999; Schijven and Hassanizadeh, 2000). However, the 
explicit coupling between q and d50 in CFT predictions has typi-
cally not been considered. Figure 3 was therefore needed to help 
interpret the DPM and SSTM-UM results.

Dual-Permeability Model
Figures 4a and 4b present BTCs from the DPM for different values 
of G (0.0001, 0.001, 0.01, and 0.1 min−1) for a = 0 (Fig. 4a) and a 
= 0.1 (Fig. 4b). Model parameters included dm = 1000 nm, q = 0.36, 
q1 = 0.18, q2 = 0.18, q = 0.1 cm min−1, q1 = 0.02 cm min−1, and 
q2 = 0.08 cm min−1, as well as others given in Table 1. In con-
trast to the UM, the DPM exhibits physical nonequilibrium, with 
breakthrough occurring much earlier than one pore volume and 
extensive concentration tailing in some cases. However, the appar-
ent amount of physical nonequilibrium depends on values of G 
and a . In particular, physical nonequilibrium transport is always 
greatest when G is smallest. The BTCs become more similar as G 
increases when there is no retention (a = 0), such that the appar-
ent influence of preferential f low is diminished and the BTC 
approaches that of a UM. Conversely, increased mixing (higher 
G) when a = 0.1 produces greater amounts of retention in the 

low-velocity region (Fig. 3), and differences in BTCs therefore 
become greater. The DPM has commonly been used for simulat-
ing preferential flow and transport in undisturbed columns and 
at the plot or field scale, and the results shown in Fig. 4 are con-
sistent with this literature (e.g., Gerke and van Genuchten, 1993; 
Šimůnek et al., 2003; Šimůnek and van Genuchten, 2008; Köhne 
et al., 2009a, 2009b; Wang et al., 2014). However, CFT has not 
previously been incorporated into the DPM, and Fig. 4 is needed 
to interpret the SSTM-DPM simulations.

Stochastic Stream Tubes 
with Uniform Model
Figure 5a presents the predicted BTCs when dm = 1500 nm, 
a = 0.0, and q was described using a unimodal lognormal distri-
bution with <q> = 0.05 cm min−1 and s = 0.1, 1, and 2. Other 
model parameters are given in Table 1. Values of s = 0.1, 1, and 
2 were chosen based on the available literature (Woodbury and 
Sudicky, 1991; Jussel et al., 1994; Bradford et al., 1998) to represent 
low, intermediate, and high levels of heterogeneity in q, respectively. 
The corresponding variance in CT/Co is shown in Fig. 5b. In this 
case, the microbe transport behavior is consistent with a conser-
vative tracer because a = 0.0. Note that increasing s produces 
greater amounts of physical nonequilibrium and a larger variance 

Fig. 4. Predicted breakthrough curves for the dual-permeability model 
with colloid filtration theory when sticking efficiency a is (a) 0 and 
(b) 0.1 and the mass transfer coefficient between the fast and slow 
domains (G) = 0.0001, 0.001, 0.01, and 0.1 min−1. Other model 
parameters included microbe diameter dm = 1000 nm, Darcy veloc-
ity q = 0.1 cm min−1, velocity through the slow domain q1 = 0.02 cm 
min−1, velocity through the fast domain q2 = 0.08 cm min−1, volu-
metric water content q = 0.36, q1 = 0.18, and q2 = 0.18. See Table 1 
for all parameter values.

Fig. 5. The (a) mean and (b) variance of predicted breakthrough 
curves for the uniform model applied to individual stream tubes 
(SSTM-UM) when the microbe diameter (dm) is 1500 nm, the stick-
ing efficiency (a) is 0.0, and the Darcy velocity (q) is described with a 
unimodal lognormal distribution with <q> = 0.05 cm min−1 and s = 
0.1, 1, and 2. See Table 1 for all parameter values.
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in CT/Co. Breakthrough occurs earlier with increasing s because 
of the presence of higher velocity stream tubes. The concentration 
tailing is controlled by the amount of lower velocity stream tubes.

Figures 6a and 6b present predicted BTCs and RPs when dm = 
1500 nm, a = 0.01, 0.05, and 0.1, and q was described using a 
unimodal lognormal distribution with <q> = 0.05 cm min−1 and 
s = 1. Other model parameters are given in Table 1. Note that 
small values of a have a large influence on the shape of BTCs 
and RPs. In particular, increasing a produces a greater amount of 
retention, as expected, but also increases the relative importance 
of high-velocity stream tubes. For example, BTCs in Fig. 6a are 
increasingly dominated by earlier breakthrough that is controlled 
by high-velocity stream tubes when a increases. The low-concen-
tration tailing is mainly eliminated with increasing a because 
greater residence times and retention occur in the low-velocity 
stream tubes (Fig. 3). The RP profiles also become more hyper-
exponential with increasing a for a similar reason. The BTCs for 
individual stream tubes tend to separate with increasing time and 
distance due to differences in advection and pathogen removal. 
Slower stream tubes will eventually be depleted of pathogens, and 
the ultimate transport potential will be controlled by the high-
est velocity stream tubes with lower retention. Note that previous 

application of the SSTM-UM to describe microbe transport has 
not used CFT in conjunction with Eq. [18] (Maxwell et al., 2003; 
Bradford and Toride, 2007), so the predicted influence of q on 
retention was only partially examined.

The parameter ksw is proportional to a (Eq. [17]). Consequently, 
other factors that increase pathogen retention will inf luence 
BTCs and RPs in a similar manner to increasing a (Fig. 6). In 
particular, Fig. 2 and 3 indicate that pathogen retention increases 
with smaller and larger values of dm (Fig. 2) and decreasing q 
(Fig. 3). Consequently, smaller (e.g., viruses) and larger (e.g., 
Cryptosporidium oocysts) pathogens are expected to exhibit 
an even larger sensitivity to changes in a than that shown in 
Fig. 6. In addition, the inf luence of physical nonequilibrium 
(early breakthrough and tailing) increases with s (Fig. 5), and 
this also produces greater amounts of retention and even more 
hyper-exponential RPs when a > 0 (Bradford and Toride, 2007). 
Interestingly, a variety of colloids (microbes, latex microspheres, 
and nanoparticles) have been commonly observed at the column 
scale to exhibit a hyper-exponential RP shape that is sensitive to 
the physicochemical conditions (Bradford et al., 2014). The above 
information indicates that this may at least be partially explained 
by differences in the pore-scale velocity distribution that cause 
greater retention in lower than higher velocity regions.

A unimodal lognormal distribution (Eq. [13]) may be inadequate 
to describe natural velocity distributions in the field. The bimodal 
lognormal distribution (Eq. [14]) provides increased flexibility to 
describe more complex velocity distributions that are typical of 
preferential flow. Figures 7a and 7b present illustrative examples of 
predicted BTCs and RPs when dm = 1000 nm and a = 0.1, and the 
field-scale velocity is described using the bimodal lognormal distri-
bution with <qa> = 0.1 cm min−1, <qb> = 2.0 cm min−1, sa = 0.1, 
sb = 0.5, and Fa = 0.9, 0.925, 0.95, 0.975, and 0.999. Other model 
parameters are given in Table 1. Some of the BTCs exhibit multiple 
plateaus after breakthrough due to the presence of the bimodal 
velocity distribution. Decreasing Fa produces greater amounts of 
preferential transport with earlier breakthrough time, increasing 
breakthrough concentrations, and a corresponding decrease in 
the amount of retention. Preferential transport is associated with 
smaller amounts of retention (Fig. 3). Consequently, retention 
profiles were mainly controlled by low-velocity steam tubes. No 
published SSTM-UM studies have used the bimodal lognormal 
PDF for q.

Stochastic Stream Tubes 
with Dual-Permeability Model
Figure 8 presents the mean (Fig. 8a) and variance (Fig. 8b) in 
simulated BTCs when using the SSTM-DPM when G = 0.0001, 
0.001, 0.01, and 0.1 min−1. Similar bimodal lognormal distribu-
tion parameters were used as in Fig. 7 (<qa> = 0.1 cm min−1, <qb> 
= 2.0 cm min−1, sa = 0.1, sb = 0.5, and Fa = 0.975), and dm = 
1000 nm, a = 0.1, l1 = 0.2, and q1 = q2 = 0.5q = 0.18. Other 

Fig. 6. Predicted (a) breakthrough curves and (b) retention profiles for 
the uniform model applied to individual stream tubes (SSTM-UM) 
when the microbe diameter (dm) is 1500 nm, the sticking efficiency 
(a) is 0.01, 0.05, and 0.1, and the Darcy velocity (q) is described using 
a unimodal lognormal distribution with <q> = 0.05 cm min−1 and s 
= 1. See Table 1 for all parameter values.
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model parameters are given in Table 1. Similar to the DPM (Fig. 
4b), increasing G produces greater amounts of retention due to 
enhanced mixing and retention in lower velocity regions. In 
contrast to the DPM (Fig. 4b) and SSTM-UM (Fig. 7a), greater 
amounts of physical nonequilibrium are possible with the 
SSTM-DPM because of the use of both a bimodal lognormal 
distribution for q and high- and low-velocity regions within a 
stream tube. Consequently, the SSTM-DPM with low G pro-
vides a worst-case scenario for determining pathogen transport 
and risk assessment. However, comparison of Fig. 7a and 8a 
reveals that the SSTM-UM and SSTM-DPM approach each 
other as G increases and enhances the mixing within a stream 
tube. The variance in CT was relatively insensitive to the value 
of G (Fig. 8b), suggesting that it was primarily controlled by 
mean breakthrough concentrations (Fig. 8a) and parameters 
of the bimodal lognormal distribution. Wang et al. (2014) pro-
vided illustrative preliminary simulations for the SSTM-DPM 
approach that considered only heterogeneity in high-velocity 
regions embedded in a uniform matrix material and did not 
consider CFT or Eq. [18]. No other studies have been published 
with the SSTM-DPM.

Risk Assessment and Setback Distances
The World Health Organization has recommended a health-
based target for tap water consumption of not more than one 
infection per 10,000 people per year, which is consistent with a 
maximum pathogen concentration on the order of 10−6 N L−1 
(World Health Organization, 2011). In contrast, typical concen-
trations of pathogenic Cryptosporidium and of enteroviruses in 
the effluent of large wastewater treatment plants are on the order 
of 100 N L−1 (e.g., Schijven et al., 2015). Hence, eff luent from 
wastewater treatment plants needs an additional 8 log10 (100 mil-
lion-fold) reduction in pathogen concentration before it can serve 
as drinking water. Soil passage during riverbank filtration, sand 
filtration, and natural and managed aquifer recharge is frequently 
relied on to achieve this reduction in pathogen concentration. 
Runoff water from urban and agricultural settings can have 
much higher pathogen concentrations than treated wastewa-
ter eff luents (e.g., Bradford et al., 2013), and it may therefore 
need greater treatment by soil passage to meet health guidelines. 
Consistent with treated wastewater effluent, an 8 log10 reduction 

Fig. 7. Predicted (a) breakthrough curves and (b) retention profiles for 
the uniform model applied to individual stream tubes (SSTM-UM) 
when the microbe diameter (dm) is 1000 nm, the sticking efficiency 
(a) is 0.1, and the Darcy velocity (q) is described using the bimodal 
lognormal distribution with <qa> = 0.1 cm min−1, <qb> = 2.0 cm 
min−1, sa = 0.1, sb = 0.5, and the fraction of q assigned to lognormal 
distribution a (Fa) = 0.9, 0.925, 0.95, 0.975, and 1. See Table 1 for all 
parameter values.

Fig. 8. The (a) mean and (b) variance of predicted breakthrough 
curves for the dual-permeability model applied to individual stream 
tubes (SSTM-DPM) when the sticking efficiency a = 0.1 and the 
mass transfer coefficient between the fast and slow domains (G) = 
0.0001, 0.001, 0.01, and 0.1 min−1. Other model parameters included 
microbe diameter (dm) = 1000 nm; volumetric water contents overall 
(q) = 0.36, in the slow domain (q1) = 0.18, and the fast domain (q2) = 
0.18; the fraction of total water flow through the slow region (l1) = 
0.2; mean Darcy velocity assigned to lognormal distribution a <qa> = 
0.1 cm min−1 and lognormal distribution b (<qb>) = 2 cm min−1; sa 
= 0.1 and sb = 0.5; and the fraction of q assigned to lognormal distri-
bution a (Fa) = 0.975. See Table 1 for all parameter values.
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in pathogen concentration was assumed to determine the setback 
distance in this work.

Figure 9 illustrates the predicted influence of q on the setback dis-
tance for a continuous input of Cryptosporidium parvum oocyst 
concentration when using the UM and measured model parame-
ters (Bradford et al., 2016) of dm = 4300 nm, a = 0.32, Frev = 0.58, 
krs = 0.0011 min−1, dispersivity = 0.07 cm, porosity = 0.47, and 
assuming no decay. The setback distance increases in nearly a linear 
fashion with q. In addition to q, the required setback distance will 
depend on the pathogen type, the required concentration reduc-
tion, as well as differences in model parameters.

Figure 9 presents the setback distance in terms of the UM but 
it is also valid for individual stream tubes in the SSTM-UM. A 
distribution of water velocities at the field scale will influence 
risk assessment by producing a variance in the pathogen concen-
tration (Fig. 5b and 8b). Risk assessment is strongly influenced 
by the distribution tails that produce a low probability of higher 
concentrations. Figure 9 illustrates this point by showing plots 
of the cumulative density function for q when it is lognormally 
distributed with <q> = 0.2 cm min−1 and s = 0.1, 0.5, 1.0, and 
2.0. Note that the setback distance based on <q> = 0.2 cm min−1 
does not account for the large influence of high-velocity regions on 
risk. Much larger setback distances are needed to ensure adequate 
removal in the highest velocity stream tubes. This is especially true 
when s increases. For example, the maximum setback distance is 
equal to about 1 m when s = 0.1, whereas it is 151 m when s = 2.0.

66Summary and Conclusions
The SSTM was extended to better study pathogen transport and 
fate at the field scale. In particular, unimodal or bimodal PDFs 
for the velocity distribution were considered, and individual 
stream tubes were modified to include UM or DPM transport 
models with additional processes (e.g., filtration theory and 
reversible and irreversible retention). Simulation results demon-
strated that pathogen transport and fate, risk assessment, and 
setback distances are highly dependent on the field-scale veloc-
ity distribution. A distribution of water velocities in the SSTM 
causes greater retention in low-velocity stream tubes because of 
higher residence times, and transport therefore mainly occurs in 
high-velocity stream tubes. Increasing the spread of the velocity 
distribution produces more physical nonequilibrium transport 
that is characterized by breakthrough earlier than one pore 
volume, concentration tailing, and non-exponential retention 
profile shapes. These physical nonequilibrium effects are cou-
pled with ksw and q, with diminished concentration tailing and 
hyper-exponential retention profiles occurring for higher values 
of ksw and lower q. The DPM results demonstrated that exchange 
between high- and low-velocity regions enhanced pathogen reten-
tion and the relative importance of high-velocity regions on 
pathogen transport. In contrast to the UM and DPM, the SSTM 

approach allowed the mean and variance in pathogen concen-
trations to be determined. This concentration variance impacts 
risk assessment and the predicted setback (transport) distance to 
treat water. A worst-case transport scenario occurred with the 
SSTM-DPM, and predicted setback distances were controlled 
by the highest velocity regions of the distribution. However, the 
SSTM-UM approaches the SSTM-DPM when the exchange rate 
between low- and high-velocity domains is high.
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