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In mixed-mode surveys, mode differences in measurement bias, also
called measurement effects or mode effects, continue to pose a problem
to survey practitioners. In this paper, we discuss statistical adjustment of
measurement bias to the level of a measurement benchmark mode in the
context of inference from mixed-mode data. Doing so requires auxiliary
information, which we suggest collecting in a re-interview administered
to a sub-set of respondents to the first stage of a sequential mixed-mode
survey. In the re-interview, relevant questions from the main survey are
repeated. After introducing the design and presenting relevant statistical
theory, this paper evaluates by Monte Carlo simulation the performance
of six candidate estimators that exploit re-interview information. In the
simulation parameters are systematically varied that define the size and
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type of measurement and selection effects between modes in the mixed-
mode design. Our results indicate that the performance of the estimators
strongly depends on the true measurement error model. However, one es-
timator, called the inverse regression estimator, performs particularly well
under all considered scenarios. Our results suggest that the re-interview
method is a useful approach to adjust measurement effects in the presence
of non-ignorable selectivity between modes in mixed-mode data.

KEYWORDS: Error adjustment; Measurement bias; Measurement
error; Missing data; Mixed-mode survey.

1. INTRODUCTION

Sequential mixed-mode surveys combine multiple modes of data collection se-
quentially to optimize the trade-off between survey non-response and data col-
lection costs. Usually, a sequential design starts with a cost-efficient mode
(e.g., web data collection), and non-respondents to the first stage are
approached by another mode (e.g., face-to-face). This second stage often
strongly improves survey response, perhaps resulting in a reduction in survey
non-response bias (Klausch, Hox, and Schouten, 2015). However, any mode
has particular measurement error properties, and this makes certain modes
more or less suitable for the measurement of specific target variables. For ex-
ample, socially desirable answering can introduce systematic measurement er-
ror and thus bias in estimates of statistics describing sensitive characteristics.
This behavior is stronger in interviewer-administered than in self-administered
modes. Generally, when one or more modes in a design have higher systematic
error than others, the measurement bias of linear estimates (e.g., means or
totals) is increased when compared to a design using only the best measure-
ment mode. This problem is one of the major challenges of mixed-mode
designs (De Leeuw, 2005).

The present paper contributes to the growing body of literature that dis-
cusses statistical adjustment of differences in measurement bias between
modes, also called measurement effects (Suzer Gurtekin, 2013; Kolenikov and
Kennedy, 2014; Vannieuwenhuyze, 2015). We focus on the scenario when
effects cannot be prevented by designing questionnaires that measure equally
accurately under all modes (Dillman, Smyth, and Christian, 2009). The pri-
mary difficulty in estimating and adjusting measurement effects is confounding
with selection effects in mixed-mode data. Selection effects denote a difference
in the true score distributions between mode-specific response samples
(Vannieuwenhuyze and Loosveldt, 2013). This article suggests an innovative
approach to the confounding problem in the important case when selection
effects depend on the target variable and thus cannot be explained by auxiliary
information. This selection mechanism is missing not at random, MNAR
(Little and Rubin, 2002). We suggest using a research design called the mixed-

410 Klausch et al.

Downloaded from https://academic.oup.com/jssam/article-abstract/5/4/409/4201740
by Universiteitsbibliotheek Utrecht user
on 20 February 2018

Deleted Text: 1 Introduction
Deleted Text:  
Deleted Text: which 
Deleted Text: u
Deleted Text: <xref ref-type=


mode re-interview (Schouten, van den Brakel, Buelens, van der Laan, and
Klausch, 2013; Klausch, Schouten, and Hox, 2017), which is similar to an in-
ternal calibration design used in epidemiology (Guo and Little, 2013). In the
re-interview, respondents to the first stage of the mixed-mode design are
re-approached under a second mode, where relevant questions from the main
survey are repeated. This additional information is exploited in estimation. In
the following, we provide a conceptual introduction to the measurement bias
adjustment problem and the re-interview design (section 2), describe adjust-
ment by six candidate estimators (sections 3), and evaluate their performance
in a simulation study (section 4).

2. THE SEQUENTIAL MIXED-MODE RE-INTERVIEW
DESIGN

The data from a mixed-mode survey with two modes are sketched in figure 1, i
(extensions to more modes are provided in the Supplementary material). We
distinguish three types of variables: the “true” scores of a target variable, Y;
variable Y as measured by mode m1, Y ð1Þ; and variable Y as measured by mode
m2, Y ð2Þ (Klausch, Schouten, and Hox, 2017). Response is characterized by
white areas, and unavailable data are characterized by grey areas. The true
scores Y are unobserved, whereas Y ð1Þ and Y ð2Þ are partly observed; non-
respondents to m1 are followed up in m2, resulting in some response under ei-
ther m1 (field A) or m2 (field D). The unobserved outcomes (field B and C) are
called “potential”. Non-response to both modes is omitted from the figure.

2.1 The Problem

Our objective is to estimate the mean of Y over units that respond to at least
one of the modes; that is, over all the rows in figure 1, denoted �Yrmm (i.e., the
mixed-mode mean; cf. definition in section 3.1). Measurement error in Y ð1Þ

and Y ð2Þ may bias the estimator obtained by simply averaging the observed
values of Y ð1Þ and Y ð2Þ across all respondents. We seek to reduce the mean
squared error (MSE) of this naı̈ve unadjusted estimator. However, it is impossi-
ble to correct the measurement bias of both modes because true scores are un-
known. We, therefore, assume one mode is a measurement benchmark (gold
standard) setting its observed scores equal to Y, whereas the alternative mode
is denoted focal mode. This choice depends on the combination of mode and
question that evokes the least or no measurement error. For example, in a sur-
vey of alcohol use, answers on the phone or in person often suffer from social
desirability bias and recall error. In a mixed-mode survey, self-administration
(e.g., web) may, therefore, be set as the measurement benchmark.

To adjust measurement bias, we need to estimate the potential benchmark
outcomes of either Y ð1Þ or Y ð2Þ, which requires solving a missing data prob-
lem. Furthermore, due to confounding of measurement and selection effects,
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a difference in respondent means on Y ð1Þ and Y ð2Þ can denote a measurement
effect, a selection effect, or a combination. Using only the data collected by
a simple sequential design, adjusting measurement bias is, therefore, not fea-
sible. However, sometimes exogenous covariates are available, such as sam-
pling frame information. One possible assumption is that, conditional on
this data, the observed and missing distributions of the benchmark outcomes
are equal; the outcomes are then missing at random, or MAR (Rubin, 1976;
Little and Rubin, 2002). Under this assumption, estimation is straight-
forward. We study the case when alternative assumptions to MAR are
considered more plausible.

2.2 Design and Use of a Re-Interview Extension

The re-interview method is an alternative way to collect auxiliary data. The de-
sign consists of a sequential mixed-mode survey, where additionally a subset
of respondents in m1 is followed up in m2 (figure 1, ii). The re-interview data
create overlap, so that we observe the outcomes in both modes in this subset of
respondents (field E). This information is exploited during estimation. For sim-
plicity, figure 1 (ii) shows the situation when all m1 respondents are re-inter-
viewed, and hence field F denotes re-interview non-response. However,
sub-sampling of m1 is possible and desirable in practice, as discussed below. If
sub-sampling is used, response and non-response of units in fields E and F that
are not sub-sampled is not observed.

Four aspects of the re-interview design are highlighted. First, re-interview
studies are practically feasible. For example, Schouten et al. (2013) and
Klausch, Hox, and Schouten (2015) executed a large-scale re-interview

Figure 1. Missing data pattern of two sequential mixed-mode surveys: left (i) a sim-
ple sequential design, right (ii) a sequential design with re-interview. The true scores
Y are not observed. Respondents in m1 and m2 provide Y ð1Þ (field A) and Yð2Þ (field D).
Field B denotes potential outcomes on Yð1Þ due to non-response in m1. Field C
denotes potential outcomes Y ð2Þ due to response in m1. Re-interview data in (ii) cre-
ate overlap between the m1 (field A) and m2 (field E) response distributions. If sub-
sampling is used for the re-interview, a random part of fields E and F is not observed.
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experiment in the Dutch Crime Victimization Survey (CVS), approaching
respondents and non-respondents to the initial mode (e.g., web or mail) again
in face-to-face. Another example is the American Community Survey by the
US Census Bureau, which has used re-interview studies for estimating sur-
vey error on regular basis (Shin, 2012).

Second, the introduction of a re-interview to an ongoing mixed-mode design
does not impact the standard fieldwork of the sequential mixed-mode survey.
Since m1 respondents are re-interviewed after their Y ð1Þ answers have been
recorded, the additional measurement occasion cannot “bias” the regular
measurement process.

Third, the re-interview fieldwork incurs additional costs, but these can be
reduced by restricting the re-interview to a sub-sample. An investment is justi-
fied only when moderate to large measurement bias is anticipated. Efficient sub-
sampling schemes of m1 respondents and non-respondents can be developed. An
optimal scheme depends on benchmark mode, overall sample size, the response
rate in m1, and the response rates in the re-interview and follow-up in m2, besides
the particular error properties of the survey outcome variable. We also expect
costs per re-interview to be slightly larger than for a follow-up unit. However,
the trade-off between gain in MSE and required investment is complex and left
for future study. In the simulation, we focus on moderate re-interview sample
sizes.

Fourth, when adding the re-interview measurement to a sequential mixed-mode
design, the repeated measurements in m2 potentially may be influenced by the ear-
lier measurement occasion. We assume that the measurement error model in the
re-interview and the regular m2 model are identical and call this assumption
“measurement equivalence”. The assumption has to be scrutinized in practice; see
the discussion section (Forsman and Schreiner, 1991; Biemer and Forsman,
1992).

2.3 Relationships to Earlier Literature

Measurement bias adjustment of regression coefficients has been discussed
in epidemiological applications using so-called calibration samples (e.g.,
Freedman, Midthune, Carroll, and Kipnis, 2008; Guo and Little, 2011,
2013). A sample is available where benchmark measurements are observed
together with outcomes under measurement error. Three adjusted estimators
are applied. First, regression estimation regresses benchmark outcomes on
outcomes under measurement error and uses the relationship to predict
benchmark outcomes in the study set. Second, classical calibration proceeds
by regressing outcomes with measurement error on benchmark outcomes
and then inverting the regression equation to predict benchmark outcomes.
Below, this estimator is referred to as inverse regression. Third, multiple im-
putation draws repeatedly from the conditional distributions of the bench-
mark outcomes in the study set to predict potential outcomes. All estimators
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assume that benchmark outcomes in the study set are MAR conditional on
auxiliary data.

Unlike this research, the present study evaluates the performance of mean
estimators when benchmark outcomes are missing not at random (MNAR) as
opposed to MAR. That is, we assume response to a mode depends on the value
of the partly unobserved target variable. MNAR holds, because auxiliary data
are absent in the re-interview design (figure 1), and the observed information
insufficiently explains the missing data mechanism, as it is partly observed un-
der random measurement error.

Estimating means of variables that are MNAR is possible in pattern mixture
models (PMM) as discussed in Little (1994) who demonstrates that, under nor-
mality, maximum likelihood estimators for means of MNAR variables are
equivalent to the classical calibration (inverse regression) estimator. Using a
calibration sample, West and Little (2013) apply the PMM approach and dem-
onstrate good performance of the estimator. They also demonstrate substantial
bias of multiple imputation and propensity score weighting estimators under
MNAR.

The missing data setting in the re-interview design differs from West and
Little (2013) and other classical calibration designs, in that the re-interview
sub-sample can suffer from MNAR non-response causing a non-monotone
missing data pattern. Patterns assumed in previous approaches are monotone
as the calibration samples are complete. Our estimation strategy is detailed
in section 3.3.

3. MEASUREMENT BIAS ADJUSTMENT

This section discusses the candidate estimators used in adjusting for measure-
ment bias in re-interview designs. We first present a statistical model for the
data generating process and then discuss a set of six adjusted estimators.

3.1 Fixed Response Model

For the simple sequential mixed-mode survey, we assume a fixed response model
(Cochran, 1977) that separates all units i ¼ 1; . . .;N in a population of size N
into two response strata (units participating in either m1 or m2) and a non-
response stratum. Since we focus on the respondent mean in this paper (cf. sec-
tion 2), the non-response stratum is ignored in the following. Let fixed indicator
variables r1i and r2i ¼ 1� r1i identify membership of unit i in the response strata

of modes j ¼ f1; 2g, and Nrj ¼
PN

i¼1 rji be the population sizes. Let Pj ¼ Nrj=N

denote the relative size of the strata, and let �Yrj ¼ N�1
rj

PN
i¼1 rjiyi be the stratum

mean, where yi is the true score of unit i on continuous target variable y. The

mixed-mode mean is then given by �Yrmm ¼ N�1PN
i¼1 yi ¼ P1 �Yr1 þ P2 �Yr2 . The
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contrast SEð�Yr1 ; �YrmmÞ ¼ �Yr1 � �Yrmm ¼ P2ð�Yr1 � �Yr2Þ denotes the selection ef-
fect (SE) of the mode 1 respondent mean, �Yr1 , relative to overall mean �Yrmm . It
can be seen that the relative SE between modes, i.e., SEð�Yr1 ; �Yr2Þ ¼ �Yr1 � �Yr2 , is
dependent on SEð�Yr1 ; �YrmmÞ and if SEð�Yr1 ; �YrmmÞ 6¼ 0; SEð�Yr1 ; �Yr2Þ 6¼ 0 follows.
The relative SE between modes is a major motivation for conducting mixed-
mode surveys.

When a re-interview is added to the sequential mixed-mode design, the
population response stratum in m1 is split into a re-interview response and
re-interview non-response stratum. Whether a unit is sub-sampled for the re-
interview is a property of the design, addressed in the estimation section 3.3. Let
rre;i (“re” for re-interview) denote the indicator whether unit i, which is a re-
spondent in m1 (r1i ¼ 1, field A), also responds in the re-interview. Note rre;i

is not defined if r1i ¼ 0. Then, Pre ¼ Nrre=Nr1 denotes the relative size of the
re-interview response stratum to the number of m1 respondents in the popu-
lation, where Nrre ¼

PN
i¼1 rre;i. Let the population mean in the re-interview

response stratum be �Yrre ; then the contrast SEð�Yrre ; �Yr1Þ ¼ �Yrre � �Yr1 denotes
the re-interview SE, which occurs when systematically different respondents
participate in the re-interview than in m1. Such effects are practically rele-
vant, because a different mode is offered (m2), and there is respondent
burden.

3.2 Measurement Model

Each mode is associated with a question-specific measurement error model de-
scribing the relation of true scores yi to the observed outcomes in mj, denoted
yð jÞi , as (Biemer and Stokes, 1991)

yð jÞi ¼ lð jÞ þ kð jÞðyi þ uð jÞi Þ 8 i; (1)

where kð jÞ is a scale parameter equal to 1 if mj measures on the scale of
the true score, and uð jÞi is an independently and identically distributed mea-
surement error term with uð jÞi � iidð0; ðrð jÞu Þ

2Þ. The parameter lð jÞ is sys-
tematic measurement error common to all units, whereas ðrð jÞu Þ

2 denotes
the variance of measurement errors in the population and is called the ran-
dom measurement error. We assume independence of true scores yi and
measurement errors uð jÞi for all i and j. Let cj ¼ corðY ð jÞ; YÞ be the popu-
lation correlation between Y ð jÞ and Y. The variance of random errors
ðrð jÞu Þ

2 is related to the population variance of true scores Y, denoted r2
Y ,

and cj by the identity

ðrð jÞu Þ
2 ¼

1� c2
j

c2
j

r2
Y : (2)

Biemer and Stokes (1991) call cj the reliability coefficient.
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The measurement equivalence assumption, mentioned in section 2.2,
implies that the random error uð jÞi is independent of response to the main inter-
view or the re-interview and that model parameters lð jÞ and kð jÞ are the same
in all response strata.

3.3 Candidate Estimators Using Re-Interview Data

The unadjusted estimator of the mixed-mode mean is

b�Y unadj

rmm
¼ 1bN r1 þ bN r2

XN

i¼1

Iidiðr1iy
ð1Þ
i þ r2iy

ð2Þ
i Þ; (3)

where di denote design weights determined by the sampling design D as in-
verse of inclusion probability of unit i and I denotes the indicator for the out-
come of random sampling, where EDðIiÞ ¼ d�1

i , and N̂rj ¼
PN

i¼1 Iidirji. Its

bias is Bðb�Y unadj

rmm
Þ � P1ððkð1Þ � 1Þ�Y r1 þ lð1ÞÞ þ P2ððkð2Þ � 1Þ�Y r2 þ lð2ÞÞ where

the two terms denote weighted measurement biases contributed by modes 1
and 2. If m1 or m2 represent a measurement benchmark, one of the measure-
ment bias terms is zero. We now suggest six candidate estimators that can cor-
rect for this bias using re-interview data. As discussed in section 2, this
requires estimating the potential benchmark outcomes (figure 1, ii) by using
missing data methods. If mode 1 is the benchmark, figure 1 (ii) shows that
benchmark outcomes in field B are missing and need to be estimated, but the
re-interview (in the focal mode) lacks observations in field F. If mode 2 is the
benchmark, outcomes in field F need to be estimated, but focal mode outcomes
in field B are missing. Estimators for both situations follow the same form. For
brevity, we give estimators for the case when m1 is the benchmark. The situa-
tion when m2 is the benchmark follows analogously.

To introduce random sub-sampling of m1 respondents, let indicator sre;i

determine whether unit i is selected for a re-interview. Furthermore, let Ps

¼
PN

i¼1 sre;i=
PN

i¼1 r1i denote the proportion of sub-sampled respondents for
the re-interview. If Ps¼ 1, all m1 respondents are approached for a re-
interview, whereas choices Ps < 1 make the design cost efficient. The sug-
gested estimators all assume simple random sub-sampling.

We consider two classes of estimators referred to as p-estimators and y-esti-
mators, respectively (S€arndal and Lundström, 2005; Kang and Schafer, 2007).
The p-estimators estimate the propensity of respondents to reply under the
benchmark mode and apply it for calibrating a selective sub-group (i.e., re-
sponse sample in benchmark mode) to a reference group (i.e., the mixed-mode
response sample). Denote the propensity for unit i to be observed in the bench-
mark mode m1 by pi and estimate it as:
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pi ¼ Pðr1i ¼ 1jyð2Þi ; r2i ¼ 1 [ ðrre;i ¼ 1 \ sre;i ¼ 1ÞÞ

¼ 1

1þ exp ð�ðh0 þ h1yð2Þi ÞÞ
8 i:

(4)

In the re-interview setting there are missing observations due to re-interview
non-response and sub-sampling, which requires conditioning model (4) on
observed auxiliary vector yð2Þ and the set of all i for which
r2i ¼ 1 [ ðrre;i ¼ 1 \ sre;i ¼ 1Þ. The inverse propensity weighting (IPW) esti-
mator is (Rosenbaum, 1987):

b�Y ipw

rmm
¼ 1bN 1 þ bN 2

XN

i¼1

Iidiy
ð1Þ
i rre;isre;ibp�1

i þ
XN

i¼1

Iidiy
ð1Þ
i ð1� rre;isre;iÞ

 !

¼ 1bN 1 þ bN 2

XN

i¼1

Iidiy
ð1Þ
i ðrre;isre;i

ð1� bpiÞbpi
þ 1Þ 8 i: (5)

As can be seen from the first equation, the estimator consists of two sums. The
first sum is a standard weighting estimator of the total of benchmark Y ð1Þ

across the group of re-interview respondents and focal mode respondents
(r2i ¼ 1 [ ðrre;i ¼ 1 \ sre;i ¼ 1Þ). However, it omits the set of re-interview
non-respondents and units not sub-sampled (Field F), for which the total
is given by the second sum of benchmark outcomes. If m2 is benchmark, pi

¼ Pðrre;i ¼ 1 \ sre;i ¼ 1jyð1Þi ; r1i ¼ 1Þ follows. An alternative IPW estimator
omits units not sub-sampled and applies sub-sampling weights P�1

s . This
estimator uses pi ¼ Pðrre;ijyð1Þi ; r1i ¼ 1; sre;i ¼ 1Þ and has very similar perfor-
mance if sub-sampling weights are not extreme.

Unlike p-estimators, y-estimators seek good predictions of the potential
benchmark outcomes yð1Þ using a suitable model for yð1Þ and finally sum over
the joint vector of observed and predicted scores (Kang and Schafer, 2007). A
general form of the y-estimator is

b�Y yest

rmm
¼ 1bN 1 þ bN 2

XN

i¼1

Iidiðr1iy
ð1Þ
i þ r2ibyð1Þi Þ 8 i; (6)

where ŷð1Þi represent the estimated potential (unobserved) benchmark outcomes
for respondents in the focal mode (m2). The y-estimator is based on a y-model
that describes the relationship of benchmark to alternative mode outcomes. It
is then assumed that the model also holds in the response stratum to mode m2

and can be used to transform observed focal mode yð2Þ to benchmark yð1Þ

(Little and Rubin, 2002). An intuitive y-model corrects each focal mode out-
come yð2Þi by the fixed observed mean difference in the re-interview sample as
a simple estimate of measurement effect, i.e.,
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byð1Þi ¼ yð2Þi � ðb�Y ð2Þre � b�Y ð1Þre Þ; (7)

where b�Y ð2Þre and �̂Y
ð1Þ
re the respondent means of focal and benchmark mode out-

come in the re-interview. We call this the “fixed-effect” estimator, denoted as

�̂Y
fe

rmm
. While it may be realistic to omit scale differences between modes for

some types of survey variables, it may be too simplistic for many others. Two
estimators for survey data with non-response that account for these scale

differences are the ratio estimator (�̂Y
ratio

rmm
), which uses prediction

ŷð1Þi ¼ yð2Þi

�̂Y
ð1Þ
re

�̂Yre
ð2Þ ; (8)

and a standard or generalized regression estimator (�̂Y
greg

rmm
), which uses

prediction

ŷð1Þi ¼ �̂Y
ð1Þ
re � b̂reð�̂Y

ð2Þ
re � yð2Þi Þ; (9)

(S€arndal and Lundström, 2005), where bre denotes the (population) “slope” of
the linear regression of Y ð1Þ on Y ð2Þ in the re-interview stratum. Unlike the re-
gression estimator which uses focal outcomes yð jÞ as covariates, the inverse re-
gression estimator (IREG) models yð2Þ as outcome in yð2Þi ¼ n0 þ nrey

ð1Þ
i þ �i,

and then inverts the regression equation to impute yð1Þ (Brown, 1990; Little,
1994)

ŷð1Þi ¼ �̂Y
ð1Þ
re �

1
n̂re

�̂Y
ð2Þ
re � yð2Þi

� �
: (10)

In practice, the parameters bre, nre, as well as �Y ð2Þrre
and �Y ð1Þrre

, are estimated by
their sample analogues in the re-interview response stratum. Bootstrapped stan-
dard errors provide a robust method for variance estimation, because no
closed-form variance expressions of the above point estimators currently exist.

Finally, we consider simultaneous multiple imputation for measurement er-
ror adjustment (Guo and Little, 2013) using the MICE algorithm (multiple im-
putation by chained equations; van Buuren, 2012). The procedure specifies the
conditional distributions of benchmark and focal mode outcomes as normal
regression models and initially completes the missing data by draws from the
observed distributions (fields A for Y ð1Þ and EþD for Y ð2Þ, respectively). The
procedure then alternates between the two variables predicting the potential
outcomes by drawing from their predictive distributions, converging to the bi-
variate distribution like a Gibbs sampler. We evaluate this procedure with five
imputed data sets pooled by Rubin’s rules.
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3.4 Residual Bias of the Adjusted Estimators

We approximate the bias of the fixed-effect, ratio, regression, and inverse re-
gression estimators (cf. proof in Supplementary material) and give conditions
for unbiasedness of MICE. For the first three we have:

Bð�̂Y
fe

rmm
Þ � Pjðð1� kð jÞÞð�Yrre � �YrjÞÞ; (11)

Bðb�Y ratio

rmm
Þ � Pjðlð jÞ

�Y rre � �Y rj

kð jÞ�Y rre þ lð jÞ
Þ; (12)

Bð�̂Y
greg

rmm
Þ � Pjðð1� kð jÞbreÞð�Yrre � �YrjÞÞ; (13)

where bre ¼ r2
Y=ðkð jÞðr2

Y þ ðrð jÞu Þ
2ÞÞ and index j¼ 1, 2 indicates the focal

mode. Bias of the ratio and GREG estimator are approximated using Taylor
linearization (S€arndal and Lundström, 2005), where the remainder terms van-
ish in large samples. Bias of IPW is hard to approximate analytically and is
simulated instead. However, we expect IPW to perform similarly to GREG.

From (11)–(13), �̂Y
fe

rmm
; �̂Y

ratio

rmm
, and �̂Y

greg

rmm
are unbiased if the contrast

SEð�Yrre ; �YrjÞ ¼ �Yrre � �Yrj ¼ 0. If m2 is benchmark, this is simply the re-

interview SE, SEð�Yrre ; �Yr1Þ. If m1 is benchmark, SEð�Yrre ; �Yr2Þ ¼ SEð�Yrre ; �Yr1Þ
þP�1

2 SEð�Yr1 ; �YrmmÞ depends on re-interview SE and SE of mode 1 relative to
�Yrmm . Only when both SEs balance, SEð�Yr1 ; �YrmmÞ ¼ �P2SEð�Yrre ; �Yr1Þ, or are
zero, are the estimators unbiased. Note again that SEð�Yr1 ; �YrmmÞ 6¼ 0 is a major
reason to conduct mixed-mode surveys and SEð�Yrre ; �Yr1Þ ¼ 0 is unlikely (cf.
section 3.1). In practice, we, therefore, expect bias in these estimators regard-
less of benchmark.

However, further conditions may create unbiasedness. From (11), �̂Y
fe

rmm
is

unbiased if kð jÞ ¼ 1 and, from (12), �̂Y
ratio

rmm
is unbiased if lð jÞ ¼ 0. Thus, �̂Y

fe

rmm

corrects a systematic error difference between modes if there is no scale differ-

ence and conversely �̂Y
ratio

rmm
if there is no systematic error. From (13), �̂Y

greg

rmm
is

unbiased if kð jÞbre ¼ 1 and thus r2
Y=ðr2

Y þ ðrð jÞu Þ
2Þ ¼ 1. The bias of GREG

thus does not depend on kð jÞ and is determined by the size of random error var-
iance. As the focal mode usually measures with error, GREG is biased in most
scenarios.

The bias of MICE is hard to derive, but it is well known that imputation esti-
mators are consistent under MAR (Little and Rubin, 2002). However, no auxil-
iary data is available outside the focal and benchmark outcomes that would
allow MAR in the re-interview design. Due to random measurement error in
the focal mode, response is MNAR for benchmark outcomes even if focal out-
comes were fully observed (if the SE between modes is not zero). Consistency
of the MICE estimator therefore requires mean equality of the observed and
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unobserved parts of benchmark Y (cf. figure 1 ii). If m1 is benchmark, it is suf-
ficient if SEð�Yr1 ; �YrmmÞ ¼ 0, so that there is no SE between m1 and m2. For the
m2 benchmark,

SEð�Yr1 ; �YrmmÞ ¼
P1PrePs

P1ð1� PrePsÞ
SEð�Yrre ; �Yr1Þ (14)

is sufficient, so that both SEs are zero or balanced. As in the discussion above,
these situations are unlikely in practice. Note the conditions of MICE and
GREG differ (13), and this difference emerges due to the missing data pattern
of the re-interview design. Whereas MICE completes all data, GREG omits
focal mode non-respondents for which benchmark data is already available. As
for GREG, however, MICE is unbiased if rð jÞu ¼ 0 as then Y ð1Þ and Y ð2Þ are
linear combinations of each other. In other situations, we expect the estimators’
performances to differ.

By analogy to (13), IREG is approximately unbiased:

Bð�̂Y
ireg

rmm
Þ � Pjðð1� kð jÞv�1

re Þð�Yrre � �YrjÞÞ ¼ 0; (15)

because v�1
re ¼ ðkð jÞÞ

�1. This property of the IREG estimator is a result of the
measurement equivalence assumption. We return to this point in the
discussion.

4. SIMULATION STUDY

In practice, the distributions of Y and the response and measurement model
parameters are unknown. In this section we assess the potential effects that dif-
ferent choices of the parameters have on the root mean square error (RMSE) of
the unadjusted and adjusted estimators, by Monte Carlo simulation.

4.1 Simulation Set-up

Tables 1 and 2 give an overview on the parametrization of the response and
measurement models. There are five parameters to be specified in the fixed re-
sponse model. Three of these parameters were “fixed” and two were varied
(“free”), as listed in table 1. We fixed the values for �Yrmm ¼ 1; P1 ¼ 0:5, and
Pre¼ 0.6. Values of P1 and Pre were based on a web - face-to-face mixed-
mode re-interview design (Schouten et al., 2013; Klausch, Hox, and Schouten,
2015), where about 50 percent (¼ P1) of respondents replied in web and about
60 percent (¼ Pre) of web respondents participated in the face-to-face re-inter-
view. We sub-sample every second m1 respondent for the re-interview
(Ps ¼ 0:5).
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The strength of selectivity between modes, SEð�Yr1 ; �YrmmÞ, and the strength
of re-interview selectivity, SEð�Yrre ; �Yr1Þ, represented the free parameters in the
response model. SEð�Yr1 ; �YrmmÞ was varied from absent (0 percent) to strong se-
lectivity (650 percent relative effect to �Yrmm ¼ 1). SEð�Yrre ; �Yr1Þ was either set
to 0 or to 50 percent bias relative to �Yr1 (i.e., SEð�Yrre ; �Yr1Þ ¼ 0:5 �Yr1 ). Within

Table 1. Parametrization of the Super-Population Response Model in the
Simulation

Parameter Value(s) in simulation Description

Fixed:
�Yrmm 1 Mixed-mode mean
P1 0.5 Rel. response rate to mode 1
Pre 0.6 Response rate in re-int.
ðPsÞ� (0.5)* (Prop. of sub-sampled m1 resp.)*

Free:
SEð�Yr1 ; �YrmmÞ f�0:5;�0:25; 0; 0:25; 0:5g Selection effect of mode 1
SEð�Yrre ; �Yr1Þ f0; 0:5�Yr1g Re-interview selection effect
Dependent:
�Yr1 Dep. on �Yrmm ; SEð�Yr1 ; �YrmmÞ Response stratum mean of m1
�Yr2 Dep. on �Yrmm ; �Yr1 ;P1 Response stratum mean of m2
�Yrre Dep. on �Yr1 ; SEð�Yrre ; �Yr1Þ Response stratum mean in re-int.
P2 0.5, dep. on P1 Rel. response rate to mode 2
r2

Y Dep. on SEð�Yr1 ; �Yr2Þ; SEð�Yrre ; �Yr1Þ Population variance of Y

prop.: proportion; resp.: response/respondents; re-int.: re-interview; rel.: relative
* Ps is a feature of the sampling design, not the super-population response model.

Table 2. Parametrization of the Super-Population Measurement Model in the
Simulation

Parameter Value(s) in simulation Description

Fixed:
lðbÞ 0 Benchmark mode systematic error
kðbÞ 1 Benchmark mode scale parameter
ðrðbÞu Þ

2 0 Benchmark mode error variance
Free:
b {1, 2} Benchmark mode, b 6¼ j
lðjÞ f�0:3; 0; 0:3g Focal mode systematic error
kðjÞ f0:75; 1; 1:25g Focal mode scale parameter
cj f0:1; 0:2; . . .; 1g True-observed score correlation
Dependent:
j {1,2}, dep. on b Focal mode, b 6¼ j
ðrðjÞu Þ

2 Dep. on cj and r2
Y Focal mode error variance
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each response stratum, true scores yi were generated from three Gaussian
super-populations: yi � Nð�Yrre ; 1Þ if r1i ¼ 1 \ rre;i ¼ 1; yi � Nð�Yrnre ; 1Þ if
r1i ¼ 1 \ rre;i ¼ 0; and yi � Nð�Yr2 ; 1Þ if r1i ¼ 0. The resulting population re-
sponse distribution of Y is a mixture of Gaussians with �Yrmm ¼ 1 and popula-
tion variance r2

Y , which is a function of the within-stratum variance (set to 1)
and the between-stratum variances determined by the selection effects.

In the measurement model we distinguish two situations with either m1 or
m2 as the benchmark. We write b ¼ f1; 2g for benchmark mode and j ¼ f1; 2g
for focal mode (j 6¼ b). The measurement model then has six further parameters
that need to be specified (table 2). The parameters of the benchmark measure-
ment model were fixed: lðbÞ ¼ 0; kðbÞ ¼ 1, and ðrðbÞu Þ

2 ¼ 0. The parameters
of the focal mode were varied (1). We introduced either no systematic error,
lð jÞ ¼ 0, or moderate systematic measurement error (630 percent relative to
the population mean). The scaling parameter kð jÞ was varied for moderate
scale differences, scaling yð jÞ up (kð jÞ ¼ 1:25) and down (kð jÞ ¼ 0:75). The
variance of random error ðrð jÞu Þ

2 was controlled by varying true-observed
score correlation cj between 0.1 (very high error variance) and 1 (no error var-
iance). We sampled u from a normal distribution, i.e., uð jÞi � Nð0; ðrð jÞu Þ

2Þ.
A full factorial design was applied across the free parameters, giving rise to
5 � 2 � 2 � 3 � 3 � 10 ¼ 1800 separate super-population conditions. For each
condition, we generated a population of size N¼ 100,000 from the super-
population. We then drew K¼ 1,000 simple random samples with expected
size nsample¼ 2,500 without replacement from each population. Every second
m1 respondent was randomly selected for a re-interview (Ps ¼ 0:5), yielding
on average a moderate re-interview sample size (expected re-interview
nre ¼ ðP1ÞðPreÞðPsÞnsample ¼ 375). For each data set we computed the six ad-
justed estimators as well as two unadjusted estimators. Specifically, the first
unadjusted estimator is given by (3) and the second one is given by

�̂Y
unadj2

rmm
¼ 1

N̂r1

XN

i¼1

Iidir1iy
ð1Þ
i : (16)

This estimator mimics the estimator for a single-mode survey in the first mode
rather than the mixed-mode design. We finally estimated the root MSE as

^RMSEð�̂YrmmÞ ¼ ðK�1PK
k¼1 ð�̂Yrmm;k � �Ypop

rmm
Þ2Þ1=2 where �Ypop

rmm
is the true pop-

ulation mean for the given condition. Since �Ypop
rmm
� 1 ¼ �Yrmm , the estimated

RMSE also has the interpretation as an approximate relative RMSE

(¼ ^RMSEð�̂YrmmÞ=�Yrmm ).

4.2 Results

Figures 2–5 illustrate the key results of the simulation. Each figure plots the es-
timated RMSE of the two unadjusted and the six adjusted estimators for three
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levels of focal mode kð jÞ against the correlation between Y ð1Þ and Y ð2Þ observed
in the re-interview (“re-interview correlation”). This correlation can be compared
to re-interview correlations for several variables from the Crime Victimization
and Labor Force Survey ranging from 0.39 to 0.75 (Schouten et al., 2013). In
the simulation the re-interview correlation is primarily impacted by the size of
random error in the focal mode, which is a function of the population correla-
tion cj (2) which is varied systematically from 0.1 to 1 (table 2).

All figures display the condition where focal mode systematic measurement
error was set to þ30 percent (lð jÞ ¼ 0:30) of the mixed-mode mean
(�Yrmm ¼ 1). We provide the figures for the 0 percent and –30 percent conditions
in the Supplementary material. The results presented here for þ30 percent
generally held for these conditions. We highlight the few exceptions below.
Furthermore, we focus on RMSE, but we provide bias and variance plots in
the Supplementary material. Considering the variance plots, it can be seen that
in most scenarios the variance component of RMSE only plays a dominant
role for small to moderate re-interview correlations. For high correlations, the
dominant component of RMSE is bias. This result may, however, be impacted
by the size of the re-interview sample (nre¼ 375 in the present study).

4.2.1 RMSE when mode 1 is the benchmark. Figures 2 and 3 display m1 as
benchmark. Figure 2 shows the condition when a re-interview SE was intro-
duced (þ50 percent of �Yr1 ), whereas it was absent (0 percent) in the results
shown in figure 3. Each separate line represents a different SEð�Yr1 ; �YrmmÞ, intro-
duced by varying �Yr1 from –50 percent to þ50 percent of �Yrmm . We limit the
vertical axis to 0.50 (equivalent to 50 percent relative RMSE). Higher RMSE
is not displayed.

The RMSE of the unadjusted estimator varied considerably across kð2Þ and

SEð�Yr1 ; �YrmmÞ. If kð2Þ ¼ 1, RMSE was constant across SEð�Yr1 ; �YrmmÞ at

Bð�Yunadj
rmm
Þ ¼ Pjlð2Þ ¼ 0:5 � 0:3 ¼ 15%, but RMSE was much higher, up to

40 percent, for kð2Þ > 1 and lower, 1 to 15 percent, for kð2Þ < 1. As expected,
using only m1 to estimate �Yrmm (“Unadjusted Mode 1” estimator, equation
(16)) led to bias, and a large RMSE (dominated again by its bias term).

The IREG estimator outperformed the other adjusted estimators in most
cases. Whereas the estimator was unbiased (15), its variance could, however,
be considerable when focal mode random error was high (i.e., at low
re-interview correlations). However, IREG’s RMSE fell below 10 percent for
a re-interview cor> 0.50 and below 5 percent for cor> 0.70 (figure 2).
Without re-interview SE, these values improved slightly (figure 3).

In a few cases, IREG was inferior to the alternative adjusted estimators.
Note that MICE had small error in the trivial case when there was no SE be-
tween m1 and m2, SEð�Yr1 ; �YrmmÞ ¼ 0 (cf. section 3.4). As expected, MICE
performed differently than GREG, which had small RMSE if SEð�Yr1 ; �YrmmÞ
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Figure 2. RMSE of adjusted and unadjusted estimators for benchmark mode
b 5 1, meas. bias lð2Þ50:30, and a re-interview SE of 50% relative to �Yr1

(SEð�Yrre ; �Yr1Þ50:5�Yr1 ). IREG performs best if re-interview cor>0.50, followed closely
by ratio which is biased more strongly. Fixed-effect performs well under kð2Þ ¼ 1 only.
All others show high RMSE under some conditions.
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Figure 3. RMSE of adjusted and unadjusted estimators for benchmark mode
b 5 1, meas. bias lð2Þ50:30, and no re-interview SE (SEð�Yrre ; �Yr1Þ50). IREG per-
forms well if re-interview cor>0.50. Ratio shows high RMSE under some conditions.
Fixed-effect performs well under kð2Þ ¼ 1 only. All other estimators show high RMSE
under some conditions.
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Figure 4. RMSE of adjusted and unadjusted estimators for benchmark mode
b 5 2, meas. bias lð1Þ50:30, and a re-interview SE of 50% relative to �Yr1

(SEð�Yrre ; �Yr1Þ50:5�Yr1 ). IREG, ratio and fixed-effect perform well. However, fixed-ef-
fect can only fully reduce RMSE when k 1ð Þ¼1 and ratio maintains residual RMSE on a
low level.
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Figure 5. RMSE of adjusted and unadjusted estimators for benchmark mode
b 5 2, meas. bias lð1Þ50:30, and no re-interview SE (SEð�Yrre ; �Yr1Þ50). All adjusted
estimators except MI perform well.

Adjusting Measurement Bias in Sequential Mixed-Mode Surveys 427

Downloaded from https://academic.oup.com/jssam/article-abstract/5/4/409/4201740
by Universiteitsbibliotheek Utrecht user
on 20 February 2018



¼ �0:25 in figure 2 and if SEð�Yr1 ; �YrmmÞ ¼ 0 in figure 3, as it was then approx-
imately unbiased (13). Otherwise, GREG and MICE showed high (>10
percent) RMSE, unless re-interview correlation was very high (>0.90). RMSE
of IPW followed GREG closely. The fixed-effect estimator performed well if
kð2Þ ¼ 1 as bias then vanishes (11). However, if kð2Þ 6¼ 1, the estimator had se-
rious error (figure 2). Similarly, the ratio estimator had moderate RMSE when
re-interview selectivity was 50 percent (figure 2), but RMSE increased drasti-
cally for 0 percent (figure 3). The ratio estimator performed slightly better if
systematic term lð2Þ ¼ 0, since its bias then vanishes; see Supplementary ma-
terial (12). However, it then had higher variance which increased further for
lð2Þ ¼ �0:30.

4.2.2 RMSE when mode 2 is the benchmark. Figures 4 and 5 display the sce-
narios with and without re-interview SE for the m2 benchmark. The IREG esti-
mator again performed well, if re-interview correlations exceeded a moderate
level (>0.40) and regardless of the size of the re-interview SE. IREG even had
somewhat smaller RMSE at each level of re-interview correlation compared to
the m1 benchmark.

The bias of GREG now depends on the size of the re-interview SE (13),
SEð�Yrre ; �Yr1Þ, leading to biased GREG in figure 4 and no bias in figure 5 where
SEð�Yrre ; �Yr1Þ ¼ 0 (the remainder being variance). IPW performed comparably.
As can be seen in figure 5, both estimators outperformed IREG here, making
them better alternatives if the re-interview can be considered non-selective rel-
ative to m1. This may be achievable by design, but we judge this scenario less
likely in practice (cf. section 3.1). Again MICE performed differently than
GREG and IPW, as expected. MICE had low RMSE in figure 5, when, trivi-
ally, SEð�Yr1 ; �YrmmÞ ¼ SEð�Yrre ; �Yr1Þ ¼ 0. Elsewhere MICE showed higher error,
except in figure 4 when SEð�Yr1 ; �YrmmÞ ¼ 0:25 where (14) holds approximately.
MICE performed better than GREG and IREG here and also well when
SEð�Yr1 ; �YrmmÞ ¼ 0:5.

The fixed-effect estimator performed better than under the m1 benchmark.
Variance was negligible for re-interview cor>0.35, i.e., where RMSE graphs
are, roughly, horizontal. Without a re-interview SE, the fixed-effect estimator
then was unbiased (11), so that RMSE approached zero (figure 5). With a re-
interview SE, some residual bias remained, but it was small (<10 percent) for
our choices of kð1Þ (figure 4). We can quantify maximum absolute bias for this
simulation at 9.38 percent; see (11). Similarly, the ratio estimator had low
RMSE regardless of kð1Þ in the Figures shown where lð1Þ ¼ 0:3.
The maximum absolute bias here was 5.66 percent (for
SEðYr1 ; YrmmÞ ¼ 0:5; kð1Þ ¼ 0:75; equation (12)). However, bias was larger
when lð1Þ ¼ �0:3; see Supplementary material. In addition, variance was sen-
sitive to random error then or when lð1Þ ¼ 0.
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5. DISCUSSION

The present paper introduced a new approach for estimating and adjusting
measurement bias (also called measurement effects) in mixed-mode surveys
towards a benchmark mode using re-interview data. This data is obtained from
a subset of respondents to the first mode in a sequential design. The design cre-
ates partial overlap between the response distributions of both modes, which is
subsequently exploited in a set of six adjusted candidate estimators. We evalu-
ated by simulation whether any of the estimators outperform the unadjusted es-
timator in terms of RMSE. Earlier literature that attempts to estimate or adjust
measurement effects can be criticized for potentially high bias, because
researchers assumed that selection is MAR, conditional on weak auxiliary
information (Vannieuwenhuyze and Loosveldt, 2013; Vannieuwenhuyze,
2015). This study is among the first to demonstrate how estimating and
adjusting measurement effects in the presence of MNAR selection effects
is practically feasible (see also West and Little, 2013).

The final choice of estimator depends on the analyst’s expectations about
the measurement error model of the focal mode, the choice of benchmark
mode, and the anticipated selection effects (SEs). The inverse regression esti-
mator (IREG) generally performed well in all considered scenarios, except
when re-interview correlation was small. The IREG estimator did well even if
mode-specific response depends on the target variable, which is a common sit-
uation in survey practice. The ratio and fixed-effect estimators are viable alter-
natives if systematic error lð jÞ ¼ 0 or scale parameter kð jÞ ¼ 1 in the focal
mode, respectively. This decision depends on the type of survey question.

Use of GREG, IPW, and MICE was shown to be problematic if there are
selection effects between modes and m1 is benchmark. Since absence of such
effects is an unrealistic situation – mixed-mode surveys are designed to evoke
selection effects – we recommend against these estimators unless there is addi-
tional exogenous information on which data are MAR. We considered the situ-
ation when such data are not available. If m2 is benchmark, GREG and IPW
outperform IREG if the re-interview is not selective relative to m1 (figure 5).
Careful design (e.g., long time lags) may help to justify this assumption, but
we still consider it strong because the re-interview switches the mode.

Given that the analyst often has insufficient information on the type of
measurement error model and selection mechanism, the IREG estimator may
be the safest option in practice, but its use requires at least a moderate re-
interview correlation of 0.50, or ideally 0.70, to control its variance. A mixed-
mode re-interview study by Schouten et al. (2013) shows that such correlations
are empirically observable.

Earlier research has studied measurement error adjustment using calibration
samples similar to the re-interview sample (cf. section 2.3). This literature
focusses on measurement bias of regression coefficients under MAR and finds
that IREG is biased and GREG and multiple imputation are unbiased
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(Freedman et al., 2008; Guo and Little, 2011, 2013). Our results differ because
of a difference in estimands (regression coefficients versus means) and because
these references assume MAR. Estimating means in a PMM, West and Little
(2013) compared a Bayesian variant of IREG to multiple imputation and IPW
in a MNAR setting. They found IREG performs best (there referred to as
PMM), whereas multiple imputation and IPW performed badly unless data are
MAR. These findings match ours. Contrary to us, the authors report similar
performance of imputation and IPW, whereas in our results, MICE
and GREG/IPW differed. This difference emerges because the estimators
handle the non-monotone pattern of the re-interview design differently
(cf. section 3.4).

Some limitations of the present study introduce paths for further research.
First, our design focused on two modes. We note that the method can be ex-
tended for use with more modes in a relatively straightforward way. The choice
of re-interview mode then becomes a central decision, however, as discussed
for the cases of the Dutch Labor Force Survey and the American Community
Survey in the Supplementary material.

Second, we assumed a specific measurement model conditional on which
IREG is unbiased. When the model does not hold, our version of IREG may
fail. Future research should, therefore, extend the theory and results about
IREG to more complex measurement models (e.g., heteroscedasticity and
non-linearity).

Third, we assumed measurement equivalence between the re-interview and
mode two. The time lag between occasions, which may lie in the range of sev-
eral weeks, is important for assuring the validity of the assumption, because
longer lags increase chances of answers being forgotten. Nevertheless, there
remains the possibility that re-interviews do not produce the same measure-
ments as standard interviews (Biemer and Forsman, 1992). Future empirical
research should address this question (Forsman and Schreiner, 1991).

Fourth, we assumed a measurement benchmark. Even a well-reasoned
benchmark mode choice may not be optimal, especially if none of the modes
in the design measures without error. It may then still be useful to adjust to-
wards the most plausible mode, because this measure most likely still reduces
total survey error.

Finally, we assumed a large sample and did not take into account the cost of
the re-interview, which is determined by the size and mode of the re-interview
sample. For fixed survey budgets, a re-interview decreases overall sample size,
leading to an increase in sampling error of the re-interview mixed-mode design
compared to a design without re-interview. Future research should address the
trade-off between cost and efficiency and determine the most efficient sub-
sampling designs. Further important extensions of the methodology include
estimation for discrete outcomes and complex samples.
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Supplementary Material

Supplementary materials are available online at https://academic.oup.com/jssam.
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