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a b s t r a c t

We propose a novel geometric model of time-reversal-invariant
topological insulators in three dimensions in presence of an ex-
ternal electromagnetic field. Their gapped boundary supports rel-
ativistic quantum Hall states and is described by a Chern–Simons
theory, where the gauge connection takes values in the Maxwell
algebra. This represents a non-central extension of the Poincaré
algebra and takes into account both the Lorentz and magnetic-
translation symmetries of the surface states. In this way, we derive
a relativistic version of the Wen–Zee term and we show that the
non-minimal coupling between the background geometry and the
electromagnetic field in the model is in agreement with the main
properties of the relativistic quantum Hall states in the flat space.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

It is well known that there exists a deep relation between topological phases of matter and gauge
theories. In fact, at ground state, topological matter can be described by suitable topological quantum
field theories [1–4], which can be classified in terms of their topological invariants and underlying
gauge groups. For instance, the interacting edge states of topological phases can be derived from
suitable gauge theories [5]. Another further example is the Berry phase, which plays a crucial role
in several topological systems and represents a geometric phase related to a gauge connection (Berry
connection) in the momentum space [6]. The Abelian Berry phase is given in terms of a U(1) principle
bundle, formally the same one that appears in electromagnetism. This picture can be naturally
extended to non-Abelian phases. In recent years, there have been several efforts and proposals con-
cerning the geometric properties of topological phases due to their importance in quantummatter. For
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instance, an effective geometric language has been employed to describe quantum thermal properties,
such as the thermal Hall effect [7–12]. Novel topological responses of quantum topological fluids, such
as Hall viscosity [13,14], appear when these systems are coupled to a curved background [15–21].
Geometry has been also employed in the study of scattering processes in topological insulators [22,23]
and in the analysis of ripples and novel emergent phenomena in graphene [24–26]. Furthermore,
advanced geometric theories, based on non-commutative geometry [27–29] and holography [30–34]
have been employed in the study of fractional quantum Hall states, non-Fermi liquids, strongly-
correlated systems, etc. (for other recent applications of curved-space formalism to condensedmatter
systems, see, e.g. Refs. [35,36]). Importantly, the geometric properties of quantum systems can be
based on the gauge principle: the coupling between matter and spacetime is identified by gauging
the global spacetime symmetries of the matter field [37]. In the case of Dirac materials [38,39], the
quasiparticles are given by Dirac fermions and the Lorentz symmetries (i.e. rotations and boosts)
emerge at ground state. Thus, in order to study these phases in curved spacetime, one has to gauge
the Lorentz group and replaces the derivative with the covariant derivative, where the corresponding
spin connection takes values in the Lorentz algebra [37]. The presence of the external magnetic field
induces in the quantum states further symmetries, calledmagnetic translations, which are the proper
symmetries of a (infinite) plane in presence of a constant magnetic field [40–42]. Although these
symmetries play a crucial role in the understand of the quantum Hall fluids, such as their incom-
pressibility, so far, they have not yet properly incorporated in any geometric model of relativistic
topological phases (for the non-relativistic case, see, e.g. Refs. [21,43]).

The main goal of this paper is to present a novel geometric model of time-reversal-invariant
topological insulators in three dimensions [3,38,39] that takes into account both Lorentz symmetries
and magnetic translations. The corresponding geometric action on the gapped boundary, where
the gap is induced by an external electromagnetic field, is implemented by gauging the Maxwell
algebra [44–47]. This represents a non-central extension of the Poincaré algebra. It allows us to define
a new effective topological field theory for the gapped boundary, given by a Chern–Simons theory
with a gauge connection that takes value in the 2 + 1-dimensional Maxwell algebra [48–50]. The
final action, written in terms of dreibein, spin connection [37] and electromagnetic gauge potential
contains threemain elements. The first one is the standard Abelian Chern–Simons term that describes
the quantum Hall conductance [2]. The second one is given by a purely geometric contribution
that describes the torsional Hall viscosity [15] and is compatible with a geometric theory recently
proposed for topological superconductors [12]. Importantly, these terms define an effective exotic AdS
gravitational model [51] dual to a unitary CFT with chiral central charge c = 1. Finally, the third one
contains a novel non-minimal coupling between the Abelian gauge field and the curved background
and resembles to a relativistic version of the Wen–Zee theory [52] proposed in the study of quantum
Hall fluids on a curved background. We will show that in the flat limit, our model is in agreement
with the main properties of relativistic quantum Hall states. The paper is structured as follows: In
Section 2, we summarize themain properties of three-dimensional topological insulators, by focusing
in their effective description in terms of Dirac Hamiltonian. Then, we derive in Section 3 an effective
geometric action by integrating out the Dirac field. By applying the holographic correspondence, we
show that the gravitational theory is dual to a CFT with central charge c = 1, which describes one-
dimensional Diracmodes propagating along defect lines created on the gapped boundary. In Section 4,
we introduce the Maxwell algebra and we show that it correctly takes into account the magnetic
translations, induced on the boundary of the system by the presence of an external electromagnetic
field. We show in Section 5 that the model found in Section 3 can be nicely extending by gauging
the Maxwell algebra. This allows us to derive new geometric terms and one of them resembles to the
Wen–Zee term in quantum Hall states. We present our conclusions in Section 6.

2. Three-dimensional topological insulators

We start by summarizing the main properties of three-dimensional topological insulators in the
quantum-field-theory framework. The microscopic Hamiltonian is H =

∑
pψ

†
ph(p)ψp, where p ∈

[0, 2π ) × [0, 2π ) × [0, 2π ) and h(p) is a generic kernel Hamiltonian belonging to the class AII of
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free-fermion models [3,39]. It is well known that the continuum real-space Hamiltonian is a Dirac
Hamiltonian

H =

∫
d3x ψ†(iξ j∂j + i ζ m)ψ, (1)

where j = 1, 2, 3, ξ j = σ 1
⊗ σ j, ζ = σ 3

⊗ I2×2, I2×2 is the identity matrix, σ j are the Pauli matrices,
m is the Dirac mass and ψ is a four-component spinor. Due to the charge conservation in topological
insulators, we can study their topological response to the presence of an external electromagnetic
field Aµ. Thus, the corresponding fermionic action defined on a Lorentzian manifoldM can be written
as follows

S3D[ψ,ψ] =

∫
M
d4x ψ (i γ µ∂µ + γ µAµ − m)ψ, (2)

where µ = 0, 1, 2, 3, ψ = ψ†γ 0, and γ j
= γ 0ξ j are the Dirac matrices. Because we are considering a

U(1) dynamical gauge field, we have to add up to the above action the Maxwell term

SM[Aµ] =
1
4

∫
M
d4x FµνFµν, (3)

where Fµν = ∂µAν − ∂νAµ is the Faraday tensor. In order to derive the topological effective theory
that describes the three-dimensional topological insulator in the low-energy limit, we integrate out
the spinor field in the partition function of S3D[ψ,ψ, Aµ]. The corresponding effective action S3Deff [Aµ]
defined by

eiS
3D
eff [Aµ]

=

∫
Dψ Dψ eiS

3D
[ψ,ψ,Aµ], (4)

has always a topological term that becomes dominant at low energy and describes the properties of
the ground state. This term in 3 + 1 dimensions is proportional to the axion topological term and the
final effective bosonic action is simply given by

S =
1
4

∫
M
d4x

(
FµνFµν +

θ

8π2 ϵ
µναβ FµνFαβ

)
, (5)

where θ = π in the case of topological insulators in the non-trivial Z2 topological phase [3].
Importantly, only when θ = 0, π the time-reversal symmetry in the bulk is respected by the effective
action (5). However, the presence of an electromagnetic field breaks the time-reversal symmetry on
the boundary and generate a mass term in the two-dimensional helical Dirac modes. These massive
modes coupled to Aµ are represented by a 2 + 1-dimensional massive Dirac action similarly to that
one expressed in Eq. (2). In this case the corresponding topological effective action is given by Chern–
Simons theory that can be simply derived by employing the Stokes theorem on the topological axion
term in Eq. (5). In fact, this is a total derivative that gives rise to an Abelian Chern–Simons term on
the boundary. This topological quantum field theory describes the Hall conductance of relativistic
quantumHall states on the surface [3]. For simplicity, we consider the system defined on a Lorentzian
manifoldM = R ×6 where space-like part6 has periodic boundary conditions in x and y, while the
periodicity in z is broken in order to have a boundary made by two disconnected surface. Similarly to
the case of topological superconductors [53], here thewhole gapped boundary can be seen an effective
two-dimensional topological phase belonging the class A [39] and supports topological protected
effective edge modes. These one-dimensional Dirac edge modes are trapped by the defect lines that
can be created on the gapped surfaces by employing a couple of local Zeeman fields [54]. In the
next section, we will show that the holographic correspondence, already employed in the case of
topological superconductors [12], is still valid in the case of topological insulators and allows us to
derive the right value of the chiral central charge associated to the chiral Dirac modes.

3. Holographic correspondence in topological insulators

In order to derive an effective geometric theory for the three-dimensional topological insulator,
we first observe that the Dirac theory is invariant under the global Poincaré group. In other words, in
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the low-energy limit, topological insulators support further emergent relativistic symmetries, given
by Lorentz boosts and rotations, and spacetime translations. By gauging these symmetries, we can
understand how the system behaves under local geometric transformations that preserve locally the
Poincaré group. This approach has been also employed in the study of geometric defects in topological
phases and in the generalization of the Luttinger theory [55], where a minimal coupling between
fermions and the background geometry has been used in order to derive thermal quantum effects,
such as the thermal Hall effect [7–12]. The gauging procedure in the fermion theory is made by
replacing the standard derivative with a covariant derivative and by introducing the tetrads, which
allows us to write the Dirac action in the curved spaceMc , given by

S3D[ψ,ψ, Aµ, ωµ, eµa ] =

∫
Mc

d4x |e|ψ (i γ̂ µDµ − m)ψ, (6)

where |e| is the determinant of the tetrads eµa , γ̂ µ = eµa γ a and Dµ = i∂µ + Aµ + ωµ, where ωµ is the
spin connection [37]. Clearly, in the flat limit, we recover (2), because in that case |e| = 1, ωµ = 0
and eµa γ a

= δ
µ
a γ

a
= γ µ. Importantly, we are interested to a torsion-full spin connection that is able

to take into account also possible dislocations in the system. [15,56,57]. More important, this choice
is compatible with the fact that in the gauge-theory language, ωµ and eµa are independent fields, with
the former related to the Lorentz symmetries and the latter related to the spacetime translations. This
has important implications in the derivation of the topological effective theory in curved space. By
integrating out fermions, we have that [58]

S3Dtop[Aµ, ωµ, eµ] =
1

32π

∫
Mc

d4x ϵµναβ FµνFαβ

− k
∫
Mc

d4x ϵµναβ tr
[
RµνRαβ +

1
η2

(
TµνTαβ − Rµνeαeβ

)]
, (7)

where k =
1

192π and η is a dimensionful parameter related to the Hall viscosity [15,59]. Here,
Rµν = Rab

µν i [γa, γb]/4 and Tµν =
i
2γaT

a
µν , are the Riemann and torsion tensor, respectively given

by

Rab
µν = ∂µω

ab
ν − ∂νω

ab
µ + ωa

µ cω
cb
ν − ωa

ν cω
cb
µ ,

T a
µν = ∂µeaν − ∂νeaµ + ωa

µ be
b
ν − ωa

ν be
b
µ. (8)

In the action (7), we recognize the Pontryagin invariant [60] in the second term, while the third term
is proportional to the Nieh–Yan invariant [61]. However, this is not the conclusive topological action
because, so far, we have omitted possible contributions in the effective action induced by theMaxwell
term. In fact, the Maxwell theory in 3 + 1 dimensions supports the duality symmetry, defined by the
following transformation

Fµν → F ′

µν = Fµν cos θ + F̂µν sin θ (9)

where θ is an angle and F̂µν =
1
2ϵµναβF

αβ . However, this symmetry holds only in the flat case and is
broken by quantum effects when the theory is defined on a generic curved spacetime, as shown in
Refs. [62–64]. It is possible to show that the duality anomaly induces a topological term proportional
to the Pontryagin invariant, similarly to that one found in the fermionic sector. Thus, We replace k
with k′

= 2k in Eq. (7), in order to define the total effective topological theory. Notice, that this
replacement applies also to the Nieh–Yan term because its coupling constant, proportional to 1/η2, is
neither quantized and nor relevant in the holographic correspondence, as we will see below.

We can now easily derive the two-dimensional effective theory S2Dtop,k on the gapped boundary by
employing the Stokes theorem due to the fact that S3Dtop is a total derivative. We find that

S2Dtop,k[ωµ, eµ, Aµ] =
2
8π

∫
d3x ϵµνλAµ∂νAλ

− 2k′

∫
d3x ϵµνλtr

(
ωµ∂νωλ +

2
3
ωµωνωλ+

1
η2

Tµνeλ

)
, (10)
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where the factor 2 in front of both terms takes into account both the two disconnected surfaces.
The second line in this action describes the exotic AdS gravity [51], which, differently from the
standard Einstein–Hilbert theory, breaks parity and time-reversal symmetry. This is agreement with
the symmetries of the gapped boundary and allows us to employ the holographic correspondence
in order to derive the corresponding topological chiral central charge [12]. It is possible to derive its
value by analyzing the holographic stress–energy tensor, defined on the (asymptotic) boundary of
AdS2+1 [65]. It can be shown that the holographic stress–energy tensor τ uv = τ ui e

iv is not symmetric,

τ [uv]
= τ uv − τ vu =

2π k′

|e|
ϵ ij Ruv

ij , (11)

where Ruv
ij (u, v = 0, 1) is the Riemann tensor defined on the asymptotic boundary. The failure of τ [uv]

to be symmetric implies that on the (1 + 1)-D asymptotic boundary there is a gravitational (Lorentz)
anomaly [8]. This quantum anomaly appears in the dual chiral CFT and is proportional to the chiral
central charge c [8,11]

τ
[uv]
CFT =

c
48|e|

ϵ ij Ruv
ij . (12)

Due to the AdS2+1/CFT1+1 correspondence, Eqs. (11) and (12) imply that [66,67]

c = 192π k = 1. (13)

In otherwords, the CFT describes a single one-dimensional Diracmode trapped by defect lines created
on the gapped boundary of the three-dimensional system.We can also see these defects as an effective
boundary of the two-dimensional relativistic quantum Hall fluid.

4. Magnetic translations and the Maxwell algebra

In the previous section, we have seen that a geometric model is compatible with the main
properties of a three-dimensional topological insulator with gapped boundary. However, in presence
of an external magnetic field, there are further symmetries, calledmagnetic translations tu [40,41,68],
that have not yet encoded in the geometric model. It is well known that in the (relativistic) quantum
Hall states, the ordinary spacial translations are replaced by tu, which are the proper symmetries of
an (infinite) plane in presence of a constant magnetic field. They are defined as follows

tu = ei uaK
a
, (14)

where u = {ua} = {ux, uy} is the finite translation vector, such that tu : xa → x′
a = xa + ua, while the

generators Ka are given by

Ka = pa − Aa, [Ka, Kb] =
i
l2
ϵab, (15)

where pa are the standardmomenta that commute, i.e. [pa, pb] = 0 (to not confuse with the operators
in Eq. (17)), Aa is the gauge potential and l = 1/

√
q B is themagnetic length, with B themagnetic field

and q the electric charge. At this point, it can be easily shown that

[tu, tv] = −2i sin
(

1
2 l2

ϵabuavb

)
tu+v. (16)

This defines the magnetic translation algebra, also known as Girvin–Plazmann–MacDonald (GMP) al-
gebra [40],which is at the base of the area-preserving diffeomorphisms on the plane [41,69],which ex-
plains the incompressibility of quantum Hall fluids. Moreover, the area-preserving-diffeomorphisms
is mathematically described through theW∞ algebra, which allows to derive also theWen–Zee term,
as shown in Ref. [21]. Thus, at least in non-relativistic topological phases, the Wen–Zee theory is
related to the area-preserving diffeomorphisms and magnetic translations. What is the situation in
the case of relativistic systems? [70]

In the next section, we will propose a novel geometric model by considering the Maxwell algebra
as fundamental algebra of the relativistic quantum Hall states. This algebra represents a non-central
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extension of the 2 + 1-dimensional Poincaré algebra and takes into account the presence of an
electromagnetic field in theMinkowski spacetime [48–50]. This allows us to fully encode themagnetic
translations in our geometric model. At a more formal level, the adoption of the Maxwell algebra
represents a modification of the tangent bundle in contrast with the more conventional approach
(employed also in the previous section) where one introduces a U(1) principle bundle [37]. The
Maxwell algebra in 2 + 1 dimensions is then defined by the following commutators

[Pa, Pb] = ϵabcZ c, [Ja, Jb] = ϵabc Jc, [Ja, Pb] = ϵabcPc,

[Ja, Zb] = ϵabcZ c, [Pa, Zb] = [Za, Zb] = 0, (17)

where a, b, c = 0, 1, 2, Pa are the generators of spacetime translations, Ja =
1
2ϵabc J

bc are the dual
generators of Lorentz rotations and boosts and Za are the new generators of the Maxwell algebra. The
corresponding (internal) invariant metric �AB = ⟨XA, XB⟩, with XA = (Pa, Ja, Za) and A, B = 0, .., 8, is
identified through the following relations

⟨Pa, Pb⟩ = γ ηab, ⟨Ja, Jb⟩ = α ηab, ⟨Ja, Pb⟩ = 0,

⟨Ja, Zb⟩ = γ ηab, ⟨Pa, Zb⟩ = ⟨Za, Zb⟩ = 0, (18)

where α and γ are real parameters. Importantly, this algebra is not semi-simple and this implies that
thematrix formof�AB (with�AC�

BC
= δBA) does not coincidewith that one of�AB [71]. In otherwords,

the Casimir operator W = �ABXAXB is not equivalent to W ′
= �ABXAXB, which has an important

implication in the construction of the gauge invariant action as we will see in the next section.
We can easily see that the Maxwell algebra takes into account both the Lorentz symmetries and

the (spatial) magnetic translations of the relativistic quantum Hall states. For simplicity, we avoid the
Lorentz rotations and boosts and we focus on the first spatial anti-commuting relations defined in
Eq. (17), i.e.

[Pa, Pb] = ϵabZ0. (19)

With the following identifications

Pa ≡ l Ka, Z0
≡ i, (20)

we exactly recover the anti-commuting relations in Eq. (15) and consequently we find the magnetic
translation algebra defined in Eq. (16).

5. Generalized Wen–Zee term and Hall viscosity

As we have seen in Section 3, the U(1) gauge field and the curved background do not mix at the
level of the effective action. This is in contract with the situation in non-relativistic systems, where
the Wen–Zee term characterizes the topological states defined on curved surfaces [52]. In that case,
the Abelian spin connection ω̂λ is coupled to the electromagnetic gauge field through the Wen–Zee
term

SWZ =
ν s̄
4π

∫
d3x ϵµνλAµ∂νω̂λ, (21)

where ν is the filling factor and s̄ is the shift. This action in a torsionless background describes the
Hall viscosity in term of the parameter s̄, which corresponds to the intrinsic angular momentum of
the low-energy excitations of the quantum Hall fluid. In relativistic topological systems, a relativistic
version of Wen–Zee term is not obvious, mainly because in these cases the spin connection is non-
Abelian and the Hall viscosity is given in terms of the torsional viscosity [15] (note that a relativistic
version of this term has been proposed so far only in the hydrodynamic approach [70]).

We now show that a relativistic Wen–Zee term on the gapped boundary can be consistently
derived by gauging the 2 + 1-dimensional Maxwell algebra introduced in the previous section. The
gauge connection Aµ that takes values in this algebra and is given by

Aµ = AA
µXA =

1
β

eaµPa + ωa
µJa + Âa

µZa, (22)
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where β is a dimensionful parameter and Âa
µ are three Abelian gauge fields. In terms of the curvature

tensor Fµν , we find

Fµν = FA
µνXA = T a

µνPa + Ra
µν Ja + F̂ a

µνZa, (23)

where T a
µν and Ra

µν are the torsion and Riemann tensor, respectively, while

F̂ a
µν = ∂µÂa

ν − ∂ν Âa
µ + ϵabc

(
1
β2 ebµ ecν + ωb

µÂ
c
ν + Âb

µω
c
ν

)
. (24)

The most general Chern–Simons action based on the Maxwell algebra is then given by

SCS[Aµ] = −
1
4π

∫
d3x ϵµνλ

[(
1
2
�ABAA

µF
B
νλ −

1
3
�CDf DABA

A
µA

B
νA

C
λ

)
+

(
1
2
�ABAµAFνλB −

1
3
�CDf ABD AµAAνBAλC

)]
, (25)

where f DAB are the structure constants, such that [XA, XB] = f DABXD (a similar relation holds for f ABD ).
Let us now expand the above actions in terms of the physical gauge fields. In order to simplify the
notation, here we employ the form formalism in the final topological action

SCS[e, ω, Â] =

∫
tr[ϱ1CS(ω) + ϱ2e ∧ Dωe

+ ϱ3̂A ∧ (R + ϱ4 e ∧ e) + ϱ5̂A ∧ DωÂ], (26)

with

CS(ω) = ω ∧ dω +
2
3
ω ∧ ω ∧ ω. (27)

The trace is taken on the gauge index, Dω = d + ω is the exterior covariant derivative, such that
T = Dωe, and ϱi are functions of the parameters α, β and γ (18),(22), namely

ϱ1 = −
α

4π
, ϱ2 = −

1
4πβ2

(
γ +

1
γ

)
,

ϱ3 = −
1
2π

(
γ +

1
γ

)
, ϱ4 =

α

4πβ2γ 2 , ϱ5 =
α

4πγ 2 . (28)

By comparing these parameters with those ones in Eq. (10), we find α = γ 2
= 1/12, β2

= 26
√
3 η2,

and η2 is proportional to the inverse of the torsional Hall viscosity.
Bear in mind that so far we have dealt with three independent U(1) gauge fields Âa

µ even if only
one can be associated to the physical electromagnetic field. This is identified with

Â0
µ ≡ Aµ, (29)

while Â1
µ and Â2

µ can be seen as auxiliary fields. Notice that if we fix to zero these two gauge fields,
then we lose the gauge invariance of the theory. At this point, several comments about the action in
Eq. (26) are necessary in order to clarify and strength the main properties of our model. Firstly, the
Chern–Simons action in Eq. (26) represents a natural but non-trivial generalization of the effective
theory found in Eq. (10). Moreover, we have found also a relativistic version the Wen–Zee term (21)
given by the third term in Eq. (10).
Secondly, the torsional Hall viscosity derived in Ref. [15] remains unchanged here. In fact, we can
calculate the stress–energy tensor T µa by varying the action with respect to the dreibein eaµ

T µa =
δSCS
δ eaµ

= −ϵµνλ
(

1
24πη2

Taνλ +
1

48π2η2
ϵabc Âb

νe
c
λ

)
. (30)

Here, we find an extra contribution to the stress–energy tensor given by the above second term.
However, both terms are proportional to the inverse of η2, which is only dimensionful parameter
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and is related to the torsional Hall viscosity. Thus, our relativistic Wen–Zee term does not contribute
to the Hall viscosity because ω and e are independent fields due to the non-null torsion. Importantly,
the torsional Hall viscosity appears also in the flat limit as we see now. The current J µ associated
to the variation of the action with respect to the electromagnetic gauge field Aµ in the Minkowski
spacetime (i.e. ωµ = 0 and eaµ = δaµ), is given by

J i
=
δSCS
δ Ai

⏐⏐⏐⏐
flat

= ϵ ik
1
2π

Ek, (31)

with i, k = x, y and

J 0
=
δSCS
δ A0

⏐⏐⏐⏐
flat

=
1
2π

(B + B0), (32)

where B0 = −
1

24πη2
, and Ek and B represent the electric and magnetic field, respectively. Eq. (31)

represents the standard quantum Hall law, while Eq. (32) is the Chern–Simons Gauss law [72] and
contains a novel contribution induced by the torsional Hall viscosity. In the flat limit, this can see as
an effective constant magnetic field B0 for a simple reason. As shown in Ref. [73], the torsional Hall
viscosity for the gapped boundary of three-dimensional topological systems, is proportional to the
external constant magnetic (Zeeman) field that induces a Dirac mass in the surface states. Moreover,
always in the flat background, the fourth term in the action (26) that depends on the electromagnetic
field, reduces to a chemical potential term, namely

1
96π2η2

∫
d3x ϵµνλϵ0ab eaµAνe

b
λ

⏐⏐⏐⏐
flat

−→

−→

∫
d3x κA0 ≡

∫
d3x IµAext

µ , (33)

where κ =
1
2π B0 is the chemical potential, while

Iµ =
1
2π

ϵµνλ∂νAλ, Aext
i =

B0

2
ϵijxj, (34)

are the topological current and an external gauge potential, respectively. This exactly reproduces the
constant magnetic background in the quantum Hall fluids and is also in agreement with the chemical
potential term derived in Ref. [74]. We then conclude that our geometric model is compatible with
the main properties of the relativistic quantum Hall states.

6. Conclusions

In this work, we have proposed a new geometric model of topological insulators based on the
Maxwell algebra. This is a non-central extension of the Poincaré algebra that takes into account the
symmetries of the gapped boundary states, i.e. the Lorentz symmetries and magnetic translations.
The Chern–Simons theory that describes these states is built in terms of a gauge connection that takes
values in the Maxwell algebra. The standard U(1) Chern–Simons theory is consistently reproduced
in this model together with gravitational terms and two novel ones that represent a non-minimal
coupling between the electromagnetic field and the curved background. We have shown that the
purely gravitational part of the theory is compatible with the presence of one-dimensional Dirac
modes propagating along the defect lines created on the gapped boundary. The corresponding
CFT with chiral central charge c = 1 has been derived through the holographic correspondence.
Importantly, our approach can be applied also to topological phases, such as two-dimensional Chern
insulators, where the magnetic translations (under suitable geometric conditions) occur without the
presence of any external electromagnetic field [75,76]. In conclusion, our theory opens the way to the
application of Maxwell geometry in topological phases of matter.
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