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1 Introduction

In the language of statistical physics, an extremal black hole is a zero temperature system

with a huge amount of residual entropy. Understanding which features of a quantum

system can account for a large degeneracy of ground states will not only unveil interesting

properties of quantum gravity, but will also uncover novel quantum systems. Our aim

here is to present statistical systems, or more precisely counting formulas, that have the

potential to account for the entropy of an extremal black hole.

Our inspiration arises from supersymmetric black holes in string theory, with the most

famous example being the D1D5P system first considered by Strominger & Vafa [1]. This

is a situation where there has been remarkable success in accounting for the entropy of

black holes in string theory not only at leading order, but also various classes of subleading

corrections. Despite the specificity of the system, there is more than one lesson to draw

from this example. The lesson we want to emphasis here is the following: the function that

naturally captures the microstates is a Siegel Modular Form (SMF).

From a physics perspective, SMFs can be seen as a class of generating functions for

families of CFT2 with increasing central charge. Similar to a grand canonical partition

function, in addition to having a Boltzmann factor associated to, for instance, the energy,

they also have a fugacity associated to the central charge of the theories. They usually

appear as generating functions of supersymmetric (BPS) states, such as in [2–4] among

many other examples, for reasons that will become clearer later on. What is powerful

about these types of generating functions is the mathematical structure that underlies

them. The symmetry group of a SMF is not just the ordinary modular group SL(2,Z),

but the larger Siegel modular group Sp(4,Z). This is the key feature that allows us to find

that the degeneracy of states is exponentially large for a wide range of parameters even

when the temperature of the system is zero.

In the following we would like to give an overview of both sides of this problem. On the

macroscopic side, black holes do have very robust features which any microscopic proposal

should account for. This robustness in gravity is what we would like to translate into data

of the quantum system. On the microscopic side, which is the main emphasis of this work,

we want to illustrate not only how one can construct generating functions with the desired

features, but also present a procedure to extract the entropy systematically.

1.1 The black hole side of the problem

An important open question is to describe the entropy of a black hole, SBH, in terms of a

suitable microscopic degeneracy, d(Q), i.e.

SBH = ln d(Q) . (1.1)

This equality can be made rather precise for a class of supersymmetric black holes.1 In

particular there is compelling evidence that there is a reasonable definition of SBH after

1For non-extremal (finite temperature) black holes the identification in (1.1) is much more delicate in a

full quantum theory due to Hawking radiation, among other effects. For extremal but not supersymmetric

black holes, there might be an analogous definition but this will depend on the details of the solution and

the theory; it is not clear that an extremal black hole is generically well defined in the full quantum theory

or if it is an emergent IR state.
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local and non-local corrections are taken into account: in string theory, this includes both

α′ and gs corrections. Our focus will be in building candidates for d(Q) with the guidance

of universal features encoded in SBH. In the following we will review such features and

how they can constraint potential candidates for d(Q).

The most systematic procedure to evaluate SBH for extremal black holes is given by

the quantum entropy function, which was first introduced in [5, 6]. Comprehensive reviews

are given in [7, 8]. In a nutshell, the quantum entropy function is defined via a path integral

Z(Q)AdS2 =

∫

Dφe−Sgrav . (1.2)

Here the subscript “AdS2” indicates that the path integral is performed on the near horizon

geometry with suitable boundary conditions that allow for single centered black holes.

The path integral is over all fields (massless and massive), and Sgrav is an effective action

containing both boundary terms in addition to all interactions of these fields. We use Q
as a shorthand to denote the electric and magnetic charges carried by the black hole.

From here the entropy of the black hole is defined as follows. First, in general Sgrav will

have a divergent piece due to infinite volume effects of AdS2. To regulate this divergence

we introduce a cutoff L and eventually take L → ∞. One of key the observations in [5, 6] is

that from general principles of AdS2/CFT1, Z(Q)AdS2 can be interpreted as the partition

function of a dual quantum mechanical system sitting at the boundary of AdS2 on a

Euclidean circle of length L. This allows us to interpret

Z(Q)AdS2 = TrCFT1(e
−LH) −−−−→

L→∞
d(Q)e−E0L , (1.3)

where E0 is the ground state energy and L is the length of the boundary circle in AdS2;

the infrared limit is L → ∞. The macroscopic entropy is hence given by2

SBH = ln d(Q) = lim
L→∞

(

1− L
d

dL

)

lnZ(Q)AdS2 . (1.4)

We stress that this relation is derived from general principles of AdS2/CFT1, which are

carefully discussed in the above references. The strength of this method lies in the fact

that it can capture the local contributions due to the Wald entropy and non-local quantum

corrections.

We are interested in a regime where SBH is governed by the two derivative theory of

gravity for which the black hole is a smooth solution. More concretely, we want a regime

where the near horizon geometry of the black hole is weakly curved. It is well known that

the contribution to SBH from the two derivative theory is proportional to the area of the

horizon (AH). This two derivative action also predicts the leading quantum logarithmic

corrections controlled by AH in Planck units. These are the contributions to Z(Q)AdS2

that arise from the one-loop effective action of all massless fields in the low energy theory.

This includes local and non-local contributions at the one-loop level.

2Z(Q)AdS2
can also contain contributions from exponentially suppressed geometries which we are ignor-

ing. Strictly speaking, we should write in (1.4) the symbol ≈ where we mean that we are only extracting

the contribution from the largest exponential contribution.
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Logarithmic corrections to black hole entropy are very powerful: they are governed by

low energy data that probe non-trivially any theory of quantum gravity that attempts to

account for the black hole microstates. As such, they are a successful and robust test in

several situations [9–12]. For CHL models both d(Q) and its 4D(5D) supersymmetric black

hole counterpart are known explicitly, and the agreement is remarkable (see appendix C for

a quick review of this class of black holes). Logarithmic corrections have been computed

as well for several other supersymmetric configurations [13, 14] and using novel techniques

in [15–17]. There are also very interesting results for non-extremal black holes [18, 19].

Many of these examples do not have a microscopic counterpart yet, but their logarithmic

corrections will give key clues to building a microscopic description. Understanding the

statistical nature of these corrections gives a powerful insight in the quantum nature of the

black hole.

To summarise, a two derivative theory of gravity predicts that

SBH =
AH

4G
+ w ln

AH

4G
+ · · · , for

AH

4G
≫ 1 , (1.5)

where w is some numerical coefficient that depends mostly on the number of massless modes

in the spectrum, among other features of the solution. Our emphasis will be in building new

examples d(Q) whose asymptotic growth has exactly this form. We approach the problem

from the mathematical side, and will not be able to give a description of the matching

black hole. But if a match can be found, our results give a statistical interpretation to not

just the leading area law term but also w.

1.2 The microscopic side of the problem

On the microscopic side we know that for many black holes the entropy formula SBH can

be accounted for by modular invariance. If the partition function in question is given

by some modular function or a Jacobi type form, we can use SL(2,Z) invariance to ob-

tain its asymptotic growth. If it has non-vanishing polar part, then we will get Cardy

growth [20], i.e.

d(E) ∼ e2π
√

c
6
E . (1.6)

This is exactly the right behavior to give the Bekenstein-Hawking entropy SBH [1]. Note

however that (1.6) only holds in the regime where E ≫ c. In the language of gravity

this means that the black hole has to be very heavy. In general we would however expect

SBH to also hold for small black holes. The natural supergravity regime is c ≫ 1, but not

necessarily E ≫ c. An arbitrary Jacobi form will usually not obey (1.6) in this regime

— that is, it will not have an extended Cardy regime. If we want to find forms that can

count the entropy of black holes, we therefore need quite special forms, or, more precisely,

families of forms.

The best known example of this is the Siegel modular form χ10, or rather its recipro-

cal, which is the generating function appearing in the counting of 1/4-BPS dyons in four

dimensions [2]. We interpret it as the generating function of a family of Jacobi forms. Its

symmetries are not simply the expected SL(2,Z), but are enhanced to the Siegel modular

group Sp(4,Z). Its Fourier coefficients d(E) then have an extended Cardy regime, which
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allows it to be interpreted as describing the entropy of the D1D5P black hole in four di-

mensions. It is very natural to suspect that the extended Cardy regime and the enhanced

symmetry group should be related; see also [21]. This motivates the study of other SMFs.

Our general strategy is therefore to investigate the space of SMFs and their general-

izations, so-called Siegel paramodular forms.3 In the D1D5P case Sp(4,Z) transformations

is one of the key symmetries that allows one to compute the dominant contribution to

the entropy and its logarithmic corrections. We apply the same strategy to more general

SMFs. Our goal is to work out the final result in terms of only a few properties of the

underlying form. In fact we find that the result depends only on the weight of the SMF,

the position of its poles, and some properties of the residue at the poles.

As we sample the space of SMFs, we will be interested in identifying SMFs that have

the correct features to account for black hole entropy. Following the criteria discussed

in [22–24], a necessary feature we will require to make this identification is:

There is an extended Cardy regime: the exponential growth in (1.6) is valid

even if E ∼ c ≫ 1. This is the natural scale in supergravity where we expect

black holes to dominate the ensemble.

We will identify several SMFs that satisfy this condition. And within this class it is

important to make two further distinctions:4

1. The Cardy regime extends also to c ≫ E ≫ 1. Moreover, the perturbative part of

the spectrum, i.e. polar states, does not exhibit Hagedorn growth. This corresponds

to a very sparse low energy spectrum, which hints that there is a supergravity regime.

2. The Cardy regime breaks down for c ≫ E ≫ 1, and a Hagedorn spectrum takes its

place. This type of behavior is more compatible with a string theory spectrum (with

no semi-classical supergravity regime).

We will elaborate more on these conditions as we go along with our analysis. Having an

extended Cardy regime should be viewed as necessary for the SMFs to have a black hole

(or gravitational) interpretation, but it might not be sufficient. Moreover, satisfying the

first condition is necessary for there to be a supergravity description of the black hole. In

our opinion, satisfying this requirement is a very compelling reason to study these cases

further. And an important part of our results is that we can meet the first condition for

examples that deviate significantly from the well known case of χ10 and cousins examples.

In some cases we can find physical interpretations of the Siegel modular forms we study.

For instance, 1/χ10 is, up to an overall factor, the generating function of the symmetric

orbifold of K3. Similar forms exist for the symmetric orbifolds of higher dimensional

Calabi-Yau manifolds. The ultimate goal would of course be to identify the CFT and

gravity (string) dual of those forms. We discuss some steps in that direction.

3To avoid cluttering, we will refer to both Siegel modular forms and Siegel paramodular forms as SMFs.
4Demanding that the Cardy regime extends for c ≫ E ≫ 1 is a much stronger condition than that

demanded in [22]. Therefore, their notion of sparseness (which allows Hagedorn growth) is much looser

than ours.
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2 Siegel modular forms

Our starting point is to consider generating functions which are of the form

Φ(ρ, τ, z) =
∑

m,n,l

d(m,n, l)pmqnyl , (2.1)

where p = e2πiρ, q = e2πiτ , and y = e2πiz; for now the domain of (m,n, l) is unspecified

and it will be narrowed as needed. We can alternatively write

Φ(ρ, τ, z) =
∑

m

ϕk,m(τ, z)pm , (2.2)

where the Fourier coefficients of ϕk,m are given by d(m,n, l). We are interested in cases

where ϕk,m(τ, z) is a Jacobi form, where k is the weight and m is the index. The definition

of Jacobi forms and some of their properties are listed in appendix A. In addition, here we

will be interested in a rather specific class of generating functions Φ: we will also consider

functions that are symmetric up to a sign under the exchange of p and q,

Φ(ρ, τ, z) = (−1)kΦ(τ, ρ, z) . (2.3)

This transformation, combined with the transformation properties of Jacobi forms, gener-

ates the full Siegel modular group Sp(4,Z), so that Φ has the transformation properties of

a so-called Siegel modular form (SMF).

In the following we will review various properties of SMFs. In addition to its transfor-

mation properties with respect to Sp(4,Z), we will discuss its zeros and poles, introduce

the concept of exponential lift, and present generalizations for paramodular groups.

2.1 Basic definitions and properties of SMFs

In this section we will summarise the key features of SMFs we will use; for a more complete

and mathematical discussion see [25, 26], and for a review of SMFs in string theory see

e.g. [7, 27]. We start with classical holomorphic Siegel modular forms of degree g = 2 of

the full group Sp(4,Z) of weight k, whose space we denote by Mk = Mk(Γ2). We take5

Ω =

(

τ z

z ρ

)

. (2.4)

The Siegel upper half plane H2 is given by

det(ℑ(Ω)) > 0 , Tr(ℑ(Ω)) > 0 . (2.5)

A matrix γ ∈ Sp(4,Z) is given by

γ =

(

A B

C D

)

, (2.6)

5In comparison to, e.g., [7] we have z = v and τ = σ, and relative to [28], we have ω = σ.
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with the 2× 2 blocks satisfying

ABT = BAT , CDT = DCT , ADT −BCT = 12 . (2.7)

The action of γ on Ω is given by

γ(Ω) = (AΩ+B)(CΩ+D)−1 . (2.8)

A Siegel modular form Φ(Ω) of weight k is a holomorphic function on the Siegel upper

half plane that satisfies

Φ((AΩ+B)(CΩ+D)−1) = det(CΩ+D)kΦ(Ω) . (2.9)

Note that
(

σ1 0

0 σ1

)

∈ Sp(4,Z) , (2.10)

exchanges ρ ↔ τ ; SMF of even weight are invariant under this transformation.

By definition SMFs are holomorphic. This in particular implies that they have non-

negative weight. The space of classical Siegel modular forms generated by just five gener-

ators, E
(2)
4 , E

(2)
6 , χ10, χ12, χ35, whose weights are given by their subscripts [29, 30]. Here

E
(2)
4,6 are the genus 2 Eisenstein series of weight 4 and 6. The only relation between those

generators is that χ2
35 can be expressed as a polynomial of the other four generators. The

ring of Siegel modular forms is thus given by

Mk = C[E
(2)
4 , E

(2)
6 , χ10, χ12]⊕ χ35 · C[E(2)

4 , E
(2)
6 , χ10, χ12] . (2.11)

We will present explicit properties of these forms in section 3.2. We say Φ is a cusp form if

lim
t→∞

Φ

(

τ 0

0 it

)

= 0 , (2.12)

and denote the space of such cusp forms Sk.

For Φ ∈ Mk, we can write down a Fourier expansion in p = e2πiρ, i.e.

Φ(Ω) =
∑

m

ϕk,m(τ, z)pm . (2.13)

The coefficients ϕk,m of this expansion are then Jacobi forms of weight k and index m (see

section 8 of [25]). To see this explicitly, note that

γ =











a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1











, with ad− bc = 1 , (2.14)

gives the coordinate transformation

τ 7→ aτ + b

cτ + d
, z 7→ z

cτ + d
, ρ 7→ ρ− cz2

cτ + d
. (2.15)
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This gives the correct transformation behavior for ϕk,m in (A.1). Moreover the transfor-

mation

γ =











1 0 0 µ

λ 1 µ 0

0 0 1 −λ

0 0 0 1











, (2.16)

leads to the other transformation property for Jacobi forms in (A.2). It is interesting

to note that Sp(4,Z) is generated by (2.10), (2.14), and (2.16) [26]: these are the basic

ingredients to construct a SMF.

For our purposes, holomorphic SMF do not have the right properties. In particular

their Fourier-Jacobi coefficients ϕk,m are true Jacobi forms, whose coefficients only grow

polynomially. For black hole entropies, we expect exponential (or, more precisely, Cardy

type) growth. We will therefore also consider meromorphic SMF. In that case the ϕk,m will

still have the correct Jacobi form transformation properties, but they are no longer true

Jacobi forms, but rather weak Jacobi forms, or even meromorphic Jacobi forms, in which

case the Fourier coefficients can have exponential growth (see appendix A). Meromorphic

SMF can be obtained from rational functions of classical SMF. In the physics literature

the best known example for this is
1

χ10
, (2.17)

the reciprocal of the Igusa cusp form χ10. The goal of our paper is to go beyond this case.

2.2 SMFs for paramodular groups

Next we want to generalize the concept of Siegel modular forms to so-called paramodular

groups, that is certain subgroups of Sp(4,R).

The paramodular group ΓN of level N is defined as [31]

ΓN :=











Z NZ Z Z

Z Z Z N−1Z

Z NZ Z Z

NZ NZ NZ Z











∩ Sp(4,Q). (2.18)

We denote by Mk(ΓN ) the space of Siegel modular forms of weight k under ΓN . The

paramodular group has an extension

Γ+
N = ΓN ∪ ΓNVN , VN =

1√
N











0 N 0 0

1 0 0 0

0 0 0 1

0 0 N 0











. (2.19)

Note that ΓN contains both (2.14) and (2.16). The Fourier-Jacobi identity of a form

Φ ∈ Mk(ΓN ) thus again leads to Jacobi forms of weight k and index m. Note however that

– 8 –
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Φ has to be invariant under










1 0 0 0

0 1 0 N−1

0 0 1 0

0 0 0 1











, (2.20)

which means that all non-vanishing powers of p are multiples of N . It follows that we get

a family of Jacobi forms with index Nm rather than just m as in the original case.

2.3 Exponential lifts

Through the Fourier-Jacobi expansion, we know how to obtain Jacobi forms from SMF.

Let us now discuss the converse question: given some type of Jacobi form, can we lift it

to a SMF? It turns out that this is possible for certain forms, and that there are in fact

two types of lifts: additive and exponential lifts. Our focus will be mostly on the later; the

additive lift will play a minor role around (3.14).

The exponential lift is described in Theorem 2.1 of [32], which first portion states:

Let ϕ ∈ Jnh
0,t be a nearly holomorphic Jacobi form of weight 0 and index t with

integral coefficients

ϕ(τ, z) =
∑

n,l

c(n, l)qnyl . (2.21)

Define

A =
1

24

∑

l

c(0, l) , B =
1

2

∑

l>0

lc(0, l) , C =
1

4

∑

l

l2c(0, l) . (2.22)

Then the exponential lift of ϕ is the product

Exp-Lift(ϕ)(Ω) = qAyBpC
∏

n,l,m∈Z
(n,l,m)>0

(1− qnylptm)c(nm,l) , (2.23)

where (n, l,m) > 0 means m > 0 ∨ (m = 0 ∧ n > 0) ∨ (n = m = 0 ∧ l < 0), and

it defines a meromorphic modular form of weight 1
2c(0, 0) with respect to Γ+

t .

It has a character (or a multiplier system if the weight is half-integral) induced

by v24Aη × v2BH . Here vη is a 24th root of unity, and vH = ±1.

Note that if ϕ has a pole at τ = i∞, i.e. if it really is a nearly holomorphic form, then

the infinite product contains terms with negative n. If ϕ is a weak Jacobi form, then we

actually have C = tA.

There is an analogue statement for forms of half-integer weights. We can use the Hecke

operator U2 (see appendix A.3) which maps any ϕ(τ, z) ∈ J0,d/2 to ϕ(τ, 2z) ∈ J0,2d. (The

converse is obviously not true.) For half-integer t, we can then apply the above theorem to

ϕ|U2 to get a Siegel paramodular form in M0(Γ
+
4t), possibly with a multiplier system. Note

that half-integer index weak Jacobi forms have automatically c(0, 0) = 0, so that their lifts

have weight 0.
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The exponential lift can be naturally split into two factors, namely

Exp-Lift(ϕ)(Ω) = qAyBpC
∏

(n,l)>0

(1− qnyl)c(0,l) ×
∏

n,l,m∈Z
m>0

(1− qnylptm)c(nm,l) . (2.24)

Here (n, l) > 0 means n > 0 ∨ (n = 0 ∧ l < 0). The second factor can be naturally written

in terms of Hecke operators T−(r), namely as

exp



−
∑

r≥1

r−1ptrϕ|T−(r)



 =
1

Φϕ
. (2.25)

If ϕ is some elliptic genus or partition function χ of a CFT, then Φϕ is the generating

function for the partition functions of the symmetric orbifolds of that theory,

Φχ =

∞
∑

r=0

ptrχ(τ, z; Symr(M)) . (2.26)

A famous example of this is the Igusa cusp form χ10, which is the exponential lift of the

weak Jacobi form 2φ0,1. Another example is χ35, which is the exponential lift of a nearly

holomorphic Jacobi form of weight 0 and index 1, namely φ0,1|T2 − 2φ0,1. We will return

to this in sections 3.2 and 4.1.

2.4 Zeros and poles

Let us now discuss the zeros and poles of meromorphic SMF that can be cast as exponential

lifts, which is the second portion in Theorem 2.1 of [32]. These zeros and poles are located

on the divisors of the SMF, and for a SMF that has a product expansion (such as (2.23)) it

is rather simple to identify them: choosing τ, z, ρ such that qnylptm = 1 in one of the factors

will make that factor vanish, so that the product either vanishes or diverges. Because of

the invariance under Γ+
t , divisors will always come as orbits of Γ+

t .

To describe the divisors of lifted SMF, it is useful to introduce Humbert surfaces:

this is how we will package the orbits of Γ+
t . We are following section 1.3 of [32] here.

Define ℓ = (e, a,− b
2t , c, f) with e, a, b, c, f ∈ Z and gcd(e, a, b, c, f) = 1. We define its

discriminant as

D(ℓ) = 2t(ℓ, ℓ) = b2 − 4tef − 4tac . (2.27)

It turns out that there is a natural action of Γ+
t on ℓ that leaves D(ℓ) invariant. ℓ then

defines a divisor in H2 via the quadratic equation

tf(z2 − τρ) + tcρ+ bz + aτ + e = 0 . (2.28)

The crucial observation in [32] is that all zeros and poles of SMF that are exponential lifts

are given by Humbert surfaces HD(b). These divisors can always be written as

HD(b) = π+
t ({Z ∈ H2 : aτ + bz + tρ = 0}) , (2.29)
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where π+
t is the set of images of Γ+

t . The discriminant D is given by D = b2 − 4ta and b

mod 2t. This determines its position, but each divisor has its on multiplicity (or degree).

In general, the divisors of the exponential lift (2.23) are given by the Humbert surfaces

∑

D,b

mD,bHD(b) , (2.30)

and the multiplicities mD,b are given by

mD,b =
∑

n>0

c(n2a, nb) , (2.31)

where c(n, l) are the Fourier coefficients of the underlying form ϕ. From this we see that the

Humbert surface of maximal discriminant D comes from the term with maximal polarity

of ϕ ∈ Jnh
0,t .

In the following section an important case will be the Humbert surface H1(1) for

exponential lifts of weak Jacobi forms. Note that due to the transformation

γ =











1 t 0 0

0 1 0 0

0 0 1 0

0 0 −t 1











∈ Γ+
t , (2.32)

which maps z 7→ z + tρ, the divisor z = 0 is in H1(1). The behavior near z = 0 will be

vital as we extract asymptotic formulas. The crucial identity here is the ‘Witten index’

identity, i.e. for ϕ ∈ Jweak
0,t ,

∑

l

c(n, l) = 0 , ∀n > 0 .

The leading zero or pole near z = 0, up to numerical coefficients, is then

qAptA
∏

m>0

(1− ptm)24A
∏

n>0

(1− qn)24A
∏

l<0

(1− yl)c(0,l)

∼ zm1,1qAptA
∏

m>0

(1− ptm)24A
∏

n>0

(1− qn)24A

= zm1,1η(τ)24Aη(tρ)24A (2.33)

with

m1,1 =
∑

l<0

c(0, l) . (2.34)

Note that the zero (or pole) has indeed multiplicity m1,1.

2.5 Mapping to CFT variables

To end this section, we will set our conventions on how some basic data of a SMF is mapped

to CFT jargon. In particular, we will translate quantities such as (m,n, l) to the quantum

numbers, anomalies and Casimir energies.
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Very broadly speaking, from its definition, a SMF is intimately related to Jacobi forms

via (2.13). And a Jacobi form, as reviewed in appendix A.2, can be thought as a generalized

partition function of a system whose algebra contains at least one copy of Virasoro and a

U(1) Kac-Moody current. For instance, ϕk,m can be interpreted as the Elliptic genus of a

SCFT or the partition function of a chiral theory. Hence, we can interpret ϕk,m as

TrH(q
L0−c/24yJ0) , or TrRR

(

(−1)F (−1)F̄ qL0−c/24q̄L̄0−c/24yJ0
)

, (2.35)

where L0 and J0 are the zero modes of the Virasoro algebra and Kac-Moody current

respectively. If we denote E and J the eigenvalues of L0 and J0, the relation to the

notation used above is straight forward:

E = n , J = l . (2.36)

The index m of ϕ is the level of the Kac-Moody algebra, i.e. the anomaly in the current

OPE. An ‘effective’ central charge can be inferred from the most polar term in ϕk,m. We

recall that polar terms are those whose discriminant is negative: ∆ = 4nm − l2 < 0. In

this sense the maximal polarity is the analogous of the Casimir energy of the ground state.

If we denote the most polar term as (n0, l0), then we identify schematically the an effective

central charge as6
√

l20 − 4n0m =
ceff
24

. (2.37)

For weak Jacobi forms l0 is bounded by the index m, while for nearly holomorphic forms

(n0, l0), are arbitrary. In either case, a large ‘c’ limit is closely related to a large m

limit, and for this reason it is useful to think of m as controlling the central charge. For

supersymmetric examples this can be made more sharp since c = 6m, but this relation is

not generic.

SMFs that have the most natural interpretation as describing a family of CFTs are

those that can be cast as an exponential lift. Calling ϕk,t in (2.23) the seed, then the

resulting SMF is the generating function of symmetric products of ϕk,t. The coefficient of

qm, that is the weak Jacobi form of index m, then corresponds to the symmetric orbifold

or order r := m/t. If we denote by D the discriminant of the most polar term in the seed,

then this r-th symmetric orbifold has a polar term of maximal polarity

Dr2 = D
m2

t2
= l20 − 4n0m, (2.38)

where on the right-hand side l0 and n0 are the data of the most polar state in the r-th

symmetric orbifold.

6Strictly speaking, here we use “effective central charge” to denote the quantity that controls the asymp-

totic growth of states at very high energies, i.e. the Cardy regime. Its precise relation to the central charge

can be derived depending on the physical origin of ϕ, but for now (2.37) is enough.
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3 Asymptotic growth and log tails

In this section we will obtain the asymptotic behavior of the Fourier coefficients of a class

of meromorphic SMF. Our analysis follows very closely the results in [4, 7, 33], which

is specific to the reciprocal of the Igusa cusp form χ10 and its cousin functions for CHL

models. As we will show, the key is to exploit the zeros of Φ(Ω): this will allow us to

identify generating functions that have the desired physical properties and, moreover, we

can extract the leading and subleading behavior easily.

3.1 Poles and growth behavior

To start, lets estimate the leading growth behavior. For reasons that will become clear

shortly, it will be useful to introduce some notation. In particular we will introduce so(2, 1)

vectors, whose inner product is given by

X · Y = (X1, X2, X3) · (Y 1, Y 2, Y 3) = X1Y 2 +X2Y 1 − 2X3Y 3 . (3.1)

Using this notation, the Fourier coefficients of the reciprocal of Φ(Ω) are given by

d(Q) =

∫

C
dτdρdz e−2πiQ·Y 1

Φ(Ω)
, (3.2)

where, relative to (2.1), d(Q) ≡ d(m,n, l) and

Q := (m,n, l/2) , Y := (τ, ρ,−z) . (3.3)

The integration contour C in (3.2) is chosen according to the domain in which we want

to compute the degeneracy, though many asymptotic properties are not sensitive to the

details of this choice. We will elaborate more on this as we examine our examples.

Our goal is to obtain an asymptotic formula for d(Q), i.e. we want to estimate the

Fourier coefficients in a regime where all the entries in Q are large, and Q2 is positive. We

schematically write this scaling regime as

Q2 ≫ 1 . (3.4)

Typically these states correspond to black hole states. The gravitational counterpart

of (3.4) is roughly AH/4G ≫ 1, i.e. a smooth and weakly curved black hole solution.

More importantly, we are looking for examples where the growth is exponentially large

in this regime. To achieve this, we will consider functions Φ(Ω) that obey the following

properties

1. 1/Φ(Ω) is a meromorphic SMF with poles in the Siegel upper half plane. The simplest

way to build such a function is by taking the reciprocal of a cusp SMF.

2. Φ(Ω) can be cast as an exponential lift as defined in section 2.3.

Let’s briefly justify our choices. If 1/Φ(Ω) is meromorphic it is rather easy to perform at

least one of the integrals in (3.2): we can simply do a residue integral around the appropriate
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contour.7 This simplifies greatly the integrand, since to extract d(Q) in principle we only

need the residues of 1/Φ(Ω). Our second choice is more restrictive, but rather powerful.

If Φ(Ω) has a product expansion it is possible to read off the residues at a given pole, and

moreover to locate of all divisors in Φ(Ω). This is crucial since we really don’t want to

keep track of every detail in d(Q): we want a practical algorithm to estimate the largest

contribution in (3.2) for large values of Q.

With these ingredients in hand we can make a first estimate of the behavior of d(Q).

Since we are considering exponentials lifts, the poles of 1/Φ(Ω) are given by the Humbert

surfaces (2.28), which is nothing more complicated than a quadratic equation for Y . To

identify the most dominant pole, we will need to add one assumption: for Q2 ≫ 1 we can

assume that the integrand in (3.2) is dominated by the explicit exponential factor. This in

particular means that the residue of Φ(Ω) does not compete with e−2πiQ·Y ;8 of course this

assumption has to be checked (and refined) for each example, but for now we will take it

as given. Hence, in order to find the most dominant pole in the regime (3.4) we need to

extremize

f(λ) = Q · Y + λ

(

−1

2
t f Y 2 + β · Y + e

)

. (3.5)

Here the Lagrange multiplier λ constrains Y to be on the divisor (2.28). Adapting the

notation used in section 2.4 to the so(2, 1) notation used here, we have

β :=

(

t c, a,
b

2

)

. (3.6)

Extremizing f(λ) gives

λ = ±i

√

2Q2

D
, Ymax =

1

tf

(Q
λ

+ β

)

, (3.7)

where

β2 + 2tfe = −1

2
D , Q2 = 2

(

mn− l2

4

)

, (3.8)

and D is given by (2.27). After neglecting a phase,9 we then get that at the extremum (3.7)

the leading behavior of the Fourier coefficient is

d(Q) ∼ e
−i2π Q

2

tfλ = e
− π

tf

√
2DQ2

, (3.9)

7The meromorphicity of 1/Φ(Ω) highlights that d(Q) depends on the contour: as C crosses a pole we

get a jump in d(Q). This is the well-known phenomenon of wall crossing, and while very interesting, we

will not explore this subject. We will comment on this in section 5.
8Checking the validity of this assumption relies on the value of Y near the saddle point. For our

discussion, we see from (3.7) that as Q2 ≫ 1 we roughly have Y ∼ O(1) and hence the residue of Φ(Ω) near

this most dominant pole is of order one. However, this is a very heuristic argument that we will revisit as

we move along.
9Replacing (3.7) gives

e
−i2π Q2

tfλ
+2πi

Q·β
tf .

Since Q · β/(tf) is a rational number, its potential contribution is at most a phase.
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where we selected the minus sign in (3.7) since D > 0. The dominant contribution is thus

for f = −1 and D of maximal polarity, which leads to

d(Q) ∼ eπ
√
2DQ2/t = eπ

√
(4mn−l2)D/t . (3.10)

At this stage it is useful to compare this result with the ordinary Cardy formula.

Comparing (3.10) with (B.6) we have

D

t2
= (l20 − 4n0m)

1

m2
. (3.11)

This is in agreement with our results in appendix B. Recall that we are considering an

exponential lift of ϕ ∈ Jnh
0,t , and hence we should compare with the r-th symmetric product

of ϕ. The relation in (3.11) shows that the Humbert surface that dominates the residue

is indeed correctly related to the term with maximal polarity in a Jacobi from of degree

m = tr.

As in [7], we can use translation symmetry to restrict further the remaining integers

in (3.6). Taking ρ → ρ + 1/t allows us to set a = 0, translations τ → τ + 1 can be used

to set c = 0. Then shifts z → z + 1 lower b → b − 2t, which is compatible with b mod 2t.

And e is finally fixed by D and b via (3.8). This allows us to identify the most dominant

pole as

t(τρ− z2) + bz + e = 0 . (3.12)

In many of the cases we will discuss in section 3.2 we will be allowed to set e = 0, b = 1

and hence D = 1: this corresponds to the Humbert surface H1(1).

It is important to emphasize that in (3.4) we don’t need for all entries to be equally

large: there can be relative scalings among each component. This leads to a powerful

conclusion: assuming that 1/Φ(Ω) has a pole, we can obtain an asymptotic growth as

in (3.10) for a wide range of energies relative to the central charge. More concretely, in

terms of the components of Q, we have exponential growth in three general cases:

I. n ≫ 1, m ∼ 1 : this is the usual Cardy regime, where the energy of the state is much

bigger than the central charge of the system, which is also proportional to the index.

Recall that the index controls the maximal polarity of the Jacobi form which controls

the validity of the Cardy regime.

II. n ∼ m ≫ 1 : here energies are comparable to the central charge. Gravitational systems

for which this scaling is relevant are, for example, BPS black holes in N = 4, 8

in four dimensional supergravity (see appendix C). The BTZ black hole in three

dimensions [34] falls as well in this category.

III. m ≫ n ≫ 1 : we can naively access the opposite scaling as I due to the exchange

symmetry among ρ and τ of SMFs. Note however that this regime is not the exact

opposite of regime I, since we do not hold n fixed as in the Cardy regime. The access

to this regime does depend on how freely we can choose the contour C as we will

see in the examples. A gravitational system for which this regime is relevant is the

5D BMPV black hole: in the type IIB frame we have m ∼ Q1Q5 and n ∼ P ; see

e.g. [11, 35, 36].

– 15 –



J
H
E
P
0
4
(
2
0
1
7
)
0
5
7

For sake of simplicity, in the above classification we have omitted the scaling properties of

l, but it can easily be incorporated. And of course more variants could be included, but

these three regimes will suffice to illustrate the properties of d(Q).

Even though all three cases listed above have the same leading behavior, given

by (3.10), the subleading corrections are sensitive to the details of the relative scalings

of the components in Q. This is extremely important if we wanted to identify d(Q) with

the entropy of a gravitational system: our aim is to not just capture the leading area con-

tributions, but account for subleading corrections. In the following we will show how to

extract this information and subtleties that might arise.

3.2 New and old examples

In this section we will list a few examples of meromorphic SMF and properties of its Fourier

coefficients. The first two examples mostly involve SMF built out of exponential lifts of

weak Jacobi forms. The later examples are more exotic, and involve the less explored

behavior of χ35 and χ12.

3.2.1 The Igusa cusp form χ10

The most successful example of this program is given by the counting formula that captures

the degeneracy 1/4 BPS black holes in four dimensional N = 4 supergravity. In this case,

the object of interest is10

d(Q) = (−1)l+1

∫

C
dτdρdz e−2πiQ·Y 1

χ10(Ω)
. (3.13)

where χ10 is the Igusa cusp form. In the following we will summarise the procedure done

in [4, 7, 33] to extract the asymptotic growth; this will serve as a guiding principle for the

later cases. In the next example we will derive more general expressions and capture more

broadly the data that governs the logarithmic corrections from the statistical point of view.

To start, it is useful to highlight some basic properties of χ10. As an additive lift we

can write it as

χ10(Ω) =
∞
∑

m=1

(φ10,1|Vm)(τ, z)pm , (3.14)

where

φ10,1 = η18(τ)θ21(τ, z) , (3.15)

and Vm is the Hecke operator in (A.15). For now it is not important the details behind

Vm; in what follows, the important observation is that φ10,1 is the seed. The miracle of χ10

is that it can also be written as an exponential lift, which reads

χ10(Ω) = Exp-Lift(2φ0,1)

= qyp
∏

(r,s,t)>0

(1− qsytpr)2C0(4rs−t2) . (3.16)

10Note that the black hole degeneracy d(Q) has a factor of (−1)l+1 relative to the definition (3.2). This

factor arises from a careful treatment of the helicity quantum numbers when we go from five down to four

dimensions [37, 38].
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Here C0 are the Fourier coefficients of φ0,1 given in (A.6). What is physically interesting

of this example is its intimate relation to the elliptic genera of K3. More concretely

φ0,1 =
1

2
χ(τ, z;K3) , (3.17)

and hence another way to write the Igusa form is as

1

χ10(Ω)
=

Ẑ(Ω)

φ10,1(τ, z)
, (3.18)

where

Ẑ(Ω) =
∞
∑

m=−1

χ(τ, z; Symm+1(K3))pm

= p−1
∏

r>0,s≥0,t

(1− qsytpr)−2C0(4rs−t2) . (3.19)

Equation (3.18) has an interesting physics interpretation. As whole, (3.18) counts four

dimensional 1/4-BPS dyons. The factor of Ẑ(Ω), while it is not a SMF, it is the counting

formula for the Strominger-Vafa 5D black hole. The factor of φ10,1(τ, z) arises from placing

the 5D black hole on Taub-Nut: it counts bound states of the Kaluza-Klein monopole and

the center of mass motion of the black hole. This is know as the 4D-5D lift [3, 4, 39]. It is

both remarkable and powerful that χ10 has the capacity to capture the degeneracy of BPS

4D and 5D configurations.

We now discuss the asymptotic behavior of the Fourier coefficients (3.13). As we

outlined above, we will first perform a residue integral around the most dominant pole.

The positions of the zeros of χ10 are given by H1(1), and from (3.12) we deduce that the

most dominant pole in the regime (3.4) is given by

τρ− z2 + z = 0 . (3.20)

As in [7], it is convenient to map this pole to z = 0 for the simple reason that the residue

there takes the form given in (2.33). The Sp(4,Z) element that maps does the trick is

γ =

(

A B

C D

)

=











0 1 −1 0

0 1 0 0

1 0 0 0

−1 0 0 1











, (3.21)

which acts as

Ω̂ := γ(Ω) = (AΩ+B)(CΩ+D)−1 , (3.22)

and the individual components transform as

τ =
1

2ẑ − ρ̂− τ̂
, ρ =

ẑ2 − ρ̂τ̂

2ẑ − ρ̂− τ̂
, z =

ẑ − ρ̂

2ẑ − ρ̂− τ̂
. (3.23)
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Under such a transformation (3.20) goes to ẑ = 0 and the integrand (3.13) will change as

d(Q) = (−1)l+1

∫

C
dτdρdz e−2πiQ·Y 1

χ10(Ω)

= (−1)l+1

∫

C
dτ̂dρ̂dẑ e−2πiQ·Y det(CΩ+D)3+k 1

χ10(Ω̂)
. (3.24)

We have used (2.9), and for χ10 we have k = 10. The Jacobian of the transforma-

tion (3.21) is

det(CΩ+D)3 = (2ẑ − ρ̂− τ̂)−3 . (3.25)

Following (2.33), near ẑ = 0 we have

1

χ10(Ω)
=

1

(2πiẑ)2
η(τ̂)−24Aη(ρ̂)−24A + · · · , (3.26)

where

A =
1

24

∑

l

c(0, l) =
k + 2

12
. (3.27)

The first equality expresses A in terms of φ0,1 (which is the seed in the exponential

lift (3.16)); the second equality highlights the fact that the weight of the SMF fixes the

weight of the residue, that is the power of the η functions. Note that here m1,1 = 2 which

follows from (2.34) and (A.6).

Performing a contour integral around a contour C that encloses (3.20) gives

d(Q) ≈ (−1)l

4π2

∫

dτ̂dρ̂ e
− 2πi

ρ̂+τ̂
(mτ̂ρ̂−n+lρ̂)

η(τ̂)−24Aη(ρ̂)−24Agres(τ̂ , ρ̂) , (3.28)

with

gres(τ̂ , ρ̂) = 2πi

(

e2πiQ·Y d

dẑ

(

e−2πiQ·Y det(CΩ+D)3+k
)

)

ẑ=0

. (3.29)

The derivative comes from the fact that we have a quadratic pole. Here the symbol “≈”

reflects upon the fact that we are only considering the pole (3.20); corrections to (3.28)

are exponential suppressed for large Q and come from considering other integer values of

f in H1(1). These corrections are tractable, hence a generalization to an exact formula for

d(Q) is rather feasible.

It is convenient to redefine variables in (3.28): we introduce complex variables τ1,2
which are defined as

ρ̂ =: τ1 + iτ2 , τ̂ =: −τ1 + iτ2 , (3.30)

and we have

d(Q) ≈ 1

4π2

∫

dτ1dτ2 e
π
τ2

(m(τ21+τ22 )+n−lτ1) η(−τ1 + iτ2)
−24Aη(τ1 + iτ2)

−24Agres(τ1, τ2) , (3.31)

and (3.29) becomes

gres(τ1, τ2) = −4πi(−2iτ2)
−(k+4)

(

(3 + k) +
π

τ2
(n− lτ1 +m(τ21 + τ22 ))

)

. (3.32)
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Equation (3.31) gives a systematic way on how to compare the statistical degeneracy to

a dual holographic system. In particular to extract the leading contribution and its log-

arithmic correction, the next and final step is to estimate this integral by a saddle point

approximation.

As Q2 ≫ 1, the position of the saddle point is governed by the explicit exponential

term in (3.31), and its location is given by

τ∗1 =
l

2m
, τ∗2 =

1

2m

√

2Q2 , (3.33)

and the leading contribution to (3.31) becomes

d(Q) ≈ eπ
√
2Q2

η(−τ∗1 + iτ∗2 )
−24Aη(τ∗1 + iτ∗2 )

−24Agres(τ
∗
1 , τ

∗
2 )

(

2
(τ∗2 )

2

√
2Q2

)

, (3.34)

where the last term in parenthesis is the contribution of the measure in (3.31). From (3.33)

one can see that for Q2 ≫ 1 the most dominant term is the explicit exponential factor

in (3.31), and it justifies our initial assumption in (3.5). The η-functions, while they can

contribute with exponential contributions if its entries are small, give subleading corrections

in this large charge limit. This class of corrections to d(Q) are as well interesting (they

are usually interpreted as higher derivative corrections), but not our present focus; see,

e.g., [7, 40] and references within.

Note that the leading exponential in (3.34) is in agreement with (3.10): for χ10 we have

D = 1 and t = 1. This is the universal correction that in the gravitational language would

be the “area law” and in the CFT it mimics the Cardy growth of states. However, we want

to make a contrast among these regimes and how subleading corrections are sensitive to

them. In the following we will record the leading and subleading logarithmic correction in

physically different scaling regimes for which (3.34) holds.

I. n ≫ 1, m ∼ O(1) : without loss of generality, it is convenient to introduce a scale Λ ≫ 1

and take

n ∼ Λ2 , m ∼ Λ0 , l ∼ Λ . (3.35)

In this regime we have

τ∗1 ∼ Λ , τ∗2 ∼ Λ , Q2 ∼ Λ2 , (3.36)

and the asymptotic growth behaves as

ln d(Q) ≈ π
√

2Q2 − 12 ln τ∗2 + · · ·
≈ π

√

2Q2 − 12 lnΛ + · · · , (3.37)

where we included the logarithmic correction and used that k = 10. Note that the

logarithm in this scaling regime is independent of the eta-functions: only gres and

the measure in (3.34) contribute. This is in complete agreement with the expected

correction in the Cardy regime in (B.6). From the standpoint the Fourier decompo-

sition in (3.14) of χ10, this correction is rather predictable since it is the universal
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contribution that is controlled by modular properties of φ10,1. From the standpoint

of the exponential lift in (3.16), this data is more intricate: k is controlled by the low

lying coefficients in φ0,1.

II. n ∼ m ≫ 1 : here we set

n ∼ Λ , m ∼ Λ , l2 ∼ Λ2 , (3.38)

which gives

τ∗1 ∼ Λ0 , τ∗2 ∼ Λ0 , Q2 ∼ Λ2 . (3.39)

Since the moduli τ1,2 do not scale, the only logarithmic correction arises from the

explicit dependence of Q in (3.34), i.e. from gres and the measure factor. The degen-

eracy is

ln d(Q) ≈ π
√

2Q2 + (1− 1) ln
√
Q+ · · ·

≈ π
√

2Q2 + · · · . (3.40)

This reproduces the results in [7, 9]. Note that the logarithmic correction will vanish

every time we have a pole of order 2 and τ1,2 do not scale with Λ. In general, this

will be the easiest regime to capture since the moduli are of order one.

III. m ≫ n ≫ 1 : if now instead we take the m to be arbitrarily large, we have

n ∼ Λ , m ∼ Λ2 , l2 ∼ Λ3 . (3.41)

In this regime we have

τ∗1 ∼ Λ−1/2 , τ∗2 ∼ Λ−1/2 , Q2 ∼ Λ3 . (3.42)

The degeneracy is

d(Q) ≈ π
√

2Q2 + 12 ln τ∗2 + · · ·
≈ π

√

2Q2 − 12 lnΛ1/2 + · · · . (3.43)

In this regime all factors in (3.34) have a non-trivial contribution to the logarithm.

Even though d(Q) here needs to be modified to account for the statistical entropy of

5D black holes, this expression reproduces the logarithmic correction of the BMPV

solution obtained in [11].11 It is also a coincidence, that (3.40) and (3.43) give the

same correction; in our following examples we will generalize this result and the

differences among regimes will be explicit.

The devil is in the details. Each of these scalings regimes has a universal leading con-

tribution, which is identified with the area law contribution in gravity. The logarithmic

corrections are also crucial for this identification: a two derivative theory of gravity makes

a prediction on both the exponential piece (which measures the size of the black hole) and

the logarithmic piece (which captures the perturbative fluctuations of the theory). As we

mentioned before, for χ10 and CHL models, the agreement is a remarkable test of quantum

gravity.

11And in addition, in [11] the scaling differed slightly from (3.41) by including l2 ∼ Λ3+α. This new

parameter α is sensitive to the 4D-5D lift and hence it affects the coefficient in front of the log.
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3.2.2 Exponential lifts of weak Jacobi forms

χ10 is just one of a larger class of SMF that serves our purpose, i.e. the purpose of building

counting formulas with “black hole” features. In this subsection we will identify such SMFs

and quantify the behavior of their Fourier coefficients. These examples involve exponential

lifts of weak Jacobi forms whose modular group is Γ+
t .

Our starting point is to consider

d(Q) =

∫

C
dτdρdz e−2πiQ·Y 1

Φk(Ω)
, (3.44)

where Φk is of the form (2.23) and ϕ ∈ Jweak
0,t . The zeros of Φk are given by (2.29), and we

are assuming they are non-trivial. The procedure to obtain d(Q) follows very closely those

steps for χ10: we first do a contour integral over the most dominant pole which brings the

integral to the form similar to (3.28) and then a saddle point approximation as in (3.34).

As we argued around (3.9)–(3.12), the most dominant pole will be that with maximal

polarity D. And the simplest case is when the dominance is given by D = 1 and b = 1,

i.e. the Humbert surface is H1(1), and it will be the focus of the remainder of this section.

The most dominant pole is then described by the curve

t(ρτ − z2) + z = 0 , (3.45)

As we did for χ10 it is useful to map this pole to ẑ = 0, where we have a simple expression

for the residue. A Γ+
t transformation that accomplishes this is

γ =

(

A B

C D

)

=













0
√
t − 1√

t
0

0 1√
t

0 0
1√
t

0 0 0

−
√
t 0 0 1√

t













, (3.46)

which acts in the individual components as

τ =
1

2tẑ − t2ρ̂− τ̂
, ρ =

ẑ2 − ρ̂τ̂

2tẑ − t2ρ̂− τ̂
, z =

ẑ − tρ̂

2tẑ − t2ρ̂− τ̂
. (3.47)

The contour integral around this pole will generically give (up to numerical factors)

d(Q) ≈
∫

dτ̂dρ̂ e−2πiQ·Y (ẑ=0) η(τ̂)−24Aη(ρ̂)−24Agres(τ̂ , ρ̂) , (3.48)

where we have used that Φk around ẑ = 0 takes the general form (2.33). The difference

relative to (3.28) is that now we have

A =
1

24

∑

l

c(0, l) =
k +m1,1

12
, m1,1 =

∑

n>0

c(0, n) , (3.49)

which generalizes the order of the pole;12 recall that here c(n, l) are the Fourier coefficients

of ϕ in the exponential lift. And the remaining piece in (3.48) is now given by

gres(τ̂ , ρ̂) =
2πi

(m1,1 − 1)!

(

e2πiQ·Y dm1,1−1

dẑm1,1−1

(

e−2πiQ·Y det(CΩ+D)3+k
)

)

ẑ=0

. (3.50)

12We are assuming that m1,1 > 0; otherwise we would have a zero instead of a pole. This is however

easily fix by taking in (3.44) Φk instead of 1/Φk.
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Scaling regime τ∗1,2 Q2 ln Λ

I. n ≫ 1
Λ Λ2 −(k + 2)

n ∼ Λ2, m ∼ O(1), l ∼ Λ

II. n ∼ m ≫ 1
Λ0 Λ2 m1,1 − 2

n ∼ Λ, m ∼ Λ, l ∼ Λ

III. m ≫ n ≫ 1
Λ−1/2 Λ3 m1,1 − 3− k

2n ∼ Λ, m ∼ Λ2, l ∼ Λ3/2

Table 1. Summary of logarithmic corrections to ln d(Q) for SMF built out of weak Jacobi Forms,

and with maximal polarity D = 1. Here Λ ≫ 1 which controls the scaling of Q.

The rest of the steps from here follow very closely as those in section 3.2.1. Changing

variables to ρ̂ = t−1(τ1 + iτ2) and τ̂ = t(−τ1 + iτ2) gives an integral similar to (3.31), and

after making a saddle point approximation we obtain

d(Q) ≈ e
π
t

√
2Q2

η(−τ∗1 + iτ∗2 )
−24Aη(τ∗1 + iτ∗2 )

−24Agres(τ
∗
1 , τ

∗
2 )

(

(τ∗2 )
2

π
√
2Q2

)

, (3.51)

where

τ∗1 =
l

2m
, τ∗2 =

1

2m

√

2Q2 . (3.52)

As expected again, the leading exponential contribution in this case agrees with (3.10).

With these expressions we can easily extract the logarithmic corrections to ln d(Q).

The results for the three cases of interest are in table 1. The two pieces of data that can

affect the logarithmic correction is either the weight of Φk, or the order of the pole. What

is interesting about this result is how this data is controlled by the seed in the exponential

lift: being capable of capturing these logarithmic corrections in a gravitational setup probes

non-trivially ϕ. As we mentioned in section 2.3, ϕ would be the starting point to give a

physical interpretation of Φk as a generating function for a family of CFTs.

It might seem like restricting our attention to SMFs that have H1(1) as the most

dominant divisor is too restrictive. There are however examples of such forms and in

particular for which the results in table 1 applies. These examples were first presented

in [28], and the weak Jacobi forms used in the exponential lifts are related to Elliptic

Genera of Calabi-Yau manifolds. The idea is to take exponential lifts of weak Jacobi forms

whose most polar terms have polarity −1 rather than −t2. Geometrically this means that

some of the Hodge numbers conspire to cancel the leading polar terms. To describe these

examples it is useful to introduce the quantity

χp(M) =
∑

j

(−1)jhj,p(M) , (3.53)

where hj,p are the Hodge numbers of CYd. Note that we are abusing a bit notation: we

hope it is clear when χp refers to a topological invariant versus an example of a SMF or

elliptic genera as used in other sections.
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CY6: As a first example, which is not related to χ10, consider

Φ1(Ω) = Exp-Lift(φ0,3) . (3.54)

The paramodular group is Γ+
3 , the weight is 1, and the first few coefficients of the

Jacobi form are

φ0,3 = φ2
0, 3

2

= y + 2 + y−1 + q(· · · ) , (3.55)

with φ0,3/2 as defined in (A.9).

If χ0 = χ1 = 0, then the relation between φ0,3 is the elliptic genus for a CY6 is

χ(τ, z)CY6 = −χ2 φ0,3(τ, z) , (3.56)

For this specific class of Calabi-Yau manifolds we will have that the divisor is just

H1(1).

CY4: Another example of SMFs is given by

Φ2(Ω) = Exp-Lift(φ0,2) . (3.57)

The paramodular group is Γ+
2 , the weight is 2, and φ0,2 is defined in (A.10). Its

relation to the Elliptic genus for a CY4 is

χ(τ, z)CY4 = −χ1 φ0,2(τ, z) , (3.58)

where CY4 has χ0 = 0. And as expected the only divisor in this case is H1(1).

CY3: In this case we have

Φ(3)(Ω) = Exp-Lift(φ0, 3
2
(τ, 2z)) . (3.59)

The paramodular group is Γ+
6 , but it is important to note that the weight is zero

(the subscript ‘3’ here refers to CY3). What is interesting of this example is that the

divisor is H1(1)−H1(5): we have both a pole and a zero. In a sense, Φ(3) is for Γ
+
6

what the J-function represents for SL(2,Z). Having a zero and a pole does not affect

in an obvious manner our derivations, but it might be interesting to explore if such

feature has any physical repercussions.

The relation between φ0, 3
2
to the elliptic genus of CY3 is

χ(τ, z)CY3 =
1

2
e(M)φ0,3/2(τ, z) , (3.60)

where

e(M) =
3

∑

p=0

(−1)pχp(M) = 2(h1,1 − h2,1) . (3.61)

Note that depending on the sign of e(M) we would either want to consider in (3.44)

Φ(3) itself or its reciprocal. Assuming that e(M) > 0, we have

k =
1

2
c(0, 0) = 0 , m1,1 =

1

2
e(M) , (3.62)
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which is the data that governs the logarithmic corrections. While Φ(3) is not the

counting formula for N = 2 BPS black holes in 4D, it is interesting to compare

the coefficients of the log corrections; the results in [10] predict that logarithmic

correction to the black hole entropy is (2− e(M)/24) lnΛ2 which does not match any

of the regimes listed in table 1.

Before addressing other SMFs, let us discuss briefly what are potential differences and

obstacles if we have a form where the most dominant Humbert surface is not H1(1). So

far, there are two important technical features in our derivations: identifying the most

dominant pole, and the explicit expressions of the residue around that pole. The first

feature is straightforward and transparent, which is outlined in (3.5)–(3.12). However,

there is an important issue that we have not addressed so far. Basically we need to discuss

our choice of contour that encloses this pole and if this imposes significant restrictions on

the saddle point.

In a nutshell, our contour is restricted by the convergence of the expansion of the SMF.

This is important since we are taking reciprocals of cusp forms which contain poles and we

have to decide on which side of the pole we stand. Fortunately, the potential restrictions

for H1(1) are rather simple: we are expanding 1/Φ(Ω) around z = 0, and to guarantee

convergence we choose

|y| < 1 ⇒ Imz > 0 . (3.63)

Our contour C has to lie within this domain, and therefore any further manipulation of the

variables has to be compatible with this restriction. In particular, our saddle point (3.7)

needs to be compatible with (3.63), which requires

Imzmax =
l

2tf |λ| > 0 . (3.64)

Therefore, our derivations so far only apply if the U(1) quantum number is positive. But

this is rather mild condition that does not tamper with the main portion of our results in

table 1. More generally, the convergence condition (3.63) depends on the Humbert surface

in play. As we will see in our next example, the specification of the contour dramatically

tampers with the growth in d(Q).

Our second obstacle is the residue at a given pole. In certain cases, such as H1(1)

and ϕ ∈ Jweak, we can write simple expressions such as (2.33) which allow us to derive

universal results for d(Q) that are applicable in a wide regime of charges. For general

Humbert surfaces the task is more difficult. In the next subsection we will show how we

can overcome some of these difficulties for Humbert surfaces of the type HD(0).

3.2.3 χ35

Let us now return to classical SMF. The Igusa modular form χ35 is the first SMF of odd

weight with respect to Γ1 = Sp(4,Z). The most common definition of χ35 is given in terms

of a theta series which can be found in e.g. [25]. For our purposes it is better to write it as
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an exponential lift (2.23) as in [32]. Explicitly we have

χ35 = Exp-Lift(ϕ
(2)
0,1)(Ω)

= q3yp2
∏

(n,l,m)>0

(1− qnylpm)f
(2)
1 (4nm−l2) . (3.65)

Here the seed in the lift is the nearly holomorphic Jacobi form

ϕ
(2)
0,1 = (T2 − 2)φ0,1 , (3.66)

with T2 the Hecke operator (A.15). That is, the function c(2)(mn, l) = f
(2)
1 (4mn − l2) is

given by the Fourier coefficients of ϕ
(2)
0,1. We can evaluate (A.15) acting on φ0,1 explicitly

to obtain

f
(2)
1 (N) = 8f1(4N) + 2(

(−N

2

)

− 1)f1(N) + δ
(4)
0,Nf1(N/4) , (3.67)

where δ(k) is the periodic Kronecker delta,
(−N

2

)

is the Kronecker symbol and f1(N) are

the Fourier coefficients of φ0,1.

The exponential lift (3.65) is rather interesting. Although the Hecke operators Tp map

Jacobi forms to Jacobi forms of the same weight and index, their action on weak Jacobi

forms is not as nice. In particular, they do not map weak Jacobi forms to weak Jacobi

forms. For example, the function ϕ
(2)
0,1 has coefficients with 4n− l2 < −1, and therefore is

not holomorphic. However, it is a nearly holomorphic Jacobi form. Its first few Fourier

coefficients are given by

ϕ
(2)
0,1(τ, z) = q−1+ y−2+ 70+y2+ q

(

70y−2 + 32384y−1 + 131976 + 32384y + 70y2
)

+ · · · .

(3.68)

The generator χ35 can thus be written as the exponential lift of a nearly holomorphic

Jacobi form. Moreover, for y = 1, we have

ϕ
(2)
0,1(τ, 0) = q−1 + 72 + 196884q + 21493760q2 + · · ·

= 72 + J(q) , (3.69)

with J(q) the J-function. This gives an elegant tie of χ35 to near-extremal CFTs as

defined [41] which would be interesting to study further. The first few Fourier coefficients

of χ35 are

χ35 = q2yp2(q − p)
[

1− y−2 + q
(

y−4 + 69y−2 − 69− y2
)

+ p
(

y−4 + 69y−2 − 69

−y2 + q(−y−6 + 32384y−3 + 129421y−2 − 129421− 32384y + y4)
)

+ · · ·
]

, (3.70)

and the first few terms of its Fourier-Jacobi decomposition are

χ35 = p2
(

φ−1,2

5159780352

(

E3
4 − E2

6

)3
)

+p3

(

φ−1,2

(

E3
4 − E2

6

)2

644972544

(

18E2
4E6φ−2,1 − 11E3

4φ0,1 − 7E2
6φ0,1

)

)

+ · · · , (3.71)
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where E4,6 are the Eisenstein series with E3
4 −E2

6 = 1728∆ and the other Jacobi forms are

defined in (A.6).

In relation to our goal, the question is: could χ35 count the entropy of a black hole?

Or more broadly, could it have a gravitational (or stringy) interpretation? To answer that,

as for the other examples, let us consider the asymptotic growth of

d(Q) =

∫

C
dτdρdz e−2πiQ·Y 1

χ35(Ω)
. (3.72)

Recall that we take the reciprocal so that we can have exponential growth in the Cardy

regime. To estimate the growth of d(Q) we need to analyze its divisor, which are given

by the surfaces H1(1) and H4(0). For H1(1), the pole is in the orbit of z = 0 and around

there we have13

χ35 = 4πiz η(τ)72η(ρ)72(J(p)− J(q)) + · · · . (3.73)

While this has an elegant structure, it is not the dominant pole as Q2 ≫ 1. Nonetheless,

as a side remark note that the residue of 1/χ35 is governed by the J-function and powers

of the η-function; this will give a drastically different behavior for d(Q) relative to 1/χ10,

as we will show below.

In the asymptotic regime the focus has to be on H4(0) (the Humbert surface with

maximal discriminant) for which the relevant poles are the images of

p = q . (3.74)

However, relative to a pole at y = 1 and the analysis around (3.63), this pole is more subtle:

our contour is restricted by the convergence of the expansion which will affect dramatically

d(Q). Given (3.65), we want to expand 1/χ35 in the regime14

∣

∣pq−1
∣

∣ < 1 ⇒ Imρ > Imτ . (3.75)

The inequality clearly breaks the exchange symmetry ρ ↔ τ . Throughout our approxima-

tions to estimate d(Q) we have to respect (3.75). In particular, the saddle point (3.7) has

to be compatible with this inequality, and this leads to

n > m . (3.76)

This sharpens our second regime from n ∼ m to a strict inequality. It won’t be impossible

to access our third regime, when m ≫ n ≫ 1; as we will see below it will just require a

more detailed inspection of the contour and the residue.

For n > m, we can proceed as we did before with our approximations and test their

validity. An interesting feature, absent in other examples, is that in the case of χ35 special

care is needed because the residue will have additional poles at finite values of (ρ, τ, z).

13We note that there is a typo in [29] for the residue of χ35. The steps to derive this residue follow closely

from those in [42].
14We could as well be on the other side of the pole (3.74) by choosing instead

∣

∣qp−1
∣

∣ < 1. Physically we

are making a choice if either p or q capture the polar contribution of the CFT. Regardless of this choice

our results are unchanged.
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To proceed, lets evaluate the contribution of the surface H4(0). Using (3.12) we need to

integrate around

(τρ− z2) + 1 = 0 , (3.77)

where we used that for χ35 we have t = 1, D = 4, b = 0 and e = 1. Solving for ρ and

performing the contour integral gives

d(Q) ≈ 2πi

∫

C
dτdz exp

(

−2πinτ − 2πilz − 2πimz2

τ
+

2πim

τ

)

fres(τ, z) , (3.78)

where fres(τ, z) is the residue of 1/χ35 around (3.77). We choose a contour C such that

one has Im(ρ) > Im(τ). If we do a saddle point approximation, where we assume that the

integral is dominated by the explicit exponential factor, we obtain

d(Q) ∼ 2πi e4π
√

Q2/2fres(τ⋆, z⋆)

(

τ2⋆
2m

)

, (3.79)

with

τ⋆ = i

√

2m2

Q2
, z⋆ = − lτ⋆

2m
. (3.80)

We can easily see that the constraint Im(ρ) > Im(τ) implies n > m.

One might be concerned about the behavior of the residue at (3.77) and hence the

validity of (3.79). It is a difficult problem to extract an exact formula for the residue, so

the best we can do at this stage is to proceed as follows. First we expand χ35 in powers of

ρ̂ = ρ− (z2 − 1)/τ , that is,

χ35(Ω) = h

(

z2 − 1

τ
, τ, z

)

ρ̂+O(ρ̂2) . (3.81)

The residue is then simply

fres(τ, z) =
1

h
(

z2−1
τ , τ, z

) . (3.82)

On the other hand we can expand χ35 first in powers of z and then in powers of ρ̂, that is,

χ35(Ω) = 4πi∆(−1/τ)3∆(τ)3J ′(−1/τ)zρ̂+O(z2, ρ̂2) , ∆(τ) = η(τ)24 , (3.83)

where we used the fact that ρ̂ = ρ + 1/τ + O(z2) and (3.73). This implies that we must

have

h

(

z2 − 1

τ
, τ, z

)

= 4πi∆(−1/τ)3∆(τ)3J ′(−1/τ)z +O(z2) , z ≪ 1 . (3.84)

where J ′(τ) is the derivative of the J-function. Moreover, using the fact that

J ′(−1/τ) = τ2J ′(τ) , (3.85)

we have J ′(i) = 0, and therefore fres(τ, z) has a pole at (z, τ) = (0, i). At this point we also

have ρ = i and thus the pole (z, τ) = (0, i) lies precisely at the boundary Im(ρ) = Im(τ).
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Since the contour C is chosen to lie inside the region Im(ρ) > Im(τ), for n > m we

really don’t need to know the exact expression for fres if we only want to estimate the

leading growth and its logarithmic correction. In the intermediate regime where n & m

(close to the inequality (3.76)) the moduli near the saddle point (3.80) does not scale as

m ∼ Λ. And in the regime n ≫ m, the robustness and universality of the Cardy regime

guarantees that the residue cannot affect the position of the saddle, which implies that

fres should not diverge as τ⋆ → i0+. Therefore, for n > m the growth will be exponential

as in (3.79); and the logarithmic corrections will be dominated by the weight (k = 35) as

n ≫ m, and by the order of the pole (m4,0 = 1) for n & m.

However when m > n one has that Im(ρ) < Im(τ) at the saddle point (3.80). Therefore

one has to deform the initial contour C to pass through the new saddle point and as a

consequence it will have to cross the boundary Im(ρ) = Im(τ). Since the pole of fres(τ, z)

at (z, τ) = (0, i) lies precisely at this boundary, when deforming the contour we will pick

the contribution of this pole, and thus

d(Q) ∼ 2πi e4π
√

Q2/2fres(τ⋆, z⋆)

(

τ2⋆
2m

)

− 2π2 e2π(m+n)

∆(i)6J ′′(i)
, m > n . (3.86)

For m ∼ n, with m > n, τ⋆ and z⋆ are O(1) and so fres cannot become large. Moreover,

since we have the strict inequality m+ n > 2
√

Q2/2, we can approximate

d(Q) ∼ e2π(m+n) , m > n ≫ 1, (3.87)

which shows that for m > n the degeneracy has Hagedorn growth instead of Cardy growth,

characteristic of the regime n > m.

3.2.4 χ12

As a last example we now turn to χ12: this is a SMF of weight 12 under Sp(4,Z). It is a

cusp form defined by

χ12 =
1

N
(

E
(2)
12 − (E

(2)
6 )2

)

, (3.88)

where E
(2)
12,6 are the Eisenstein series of genus two defined in [25] and N is a normalization

such that the coefficient of qpy is set to one. The first few coefficients are

χ12 = p
(

q(y−1 + 12 + y) + q2(10y−2 − 88y−1 − 132− 88y + 10y2)
)

+ · · · , (3.89)

and the few terms in the Fourier-Jacobi expansion of χ12.

χ12 = p
E3

4 − E2
6

1728
φ0,1 + p2

(

E3
4 − E2

6

864

(

6E4φ
2
−2,1 − φ2

0,1

)

)

−p3
(

E3
4 − E2

6

6912

(

63E4φ
2
−2,1φ0,1 − 60E6φ

3
−2,1 − 7φ3

0,1

)

)

+ · · · . (3.90)

To our knowledge, χ12 cannot be written as a exponential lift of the form (2.23).

However, we can still use it to build counting formulas with ‘black hole’ features. In [30]
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it is shown that χ10 and χ12 do not share any zeroes.15 This in particular implies that the

Fourier coefficients of a combination such as

Φ(Ω) =
χ12

χ10
, (3.91)

will have the desired features. The strategy taken in section 3.2.1 still applies with only

minor modifications: we will have

d(Q) ≈ (−1)l

4π2

∫

dτ̂dρ̂ e−
2πi
ρ̂+τ̂

(nτ̂ ρ̂−m+lρ̂) gres(τ̂ , ρ̂) , (3.92)

where we integrated over the pole ẑ = 0, and the hatted variables are given in (3.23). In

contrast to (3.28), note that we don’t have a contribution from the residue since near ẑ = 0

the behavior is [30]

χ12 = η(τ̂)24Aη(ρ̂)24A + · · · , (3.93)

and hence the contribution from the residue in (3.26) cancels against χ12. The results

for the asymptotic behavior are also very simple: following the results in table 1 we have

k = −2 and m1,1 = 2. Therefore, for all three scaling regimes we find

ln d(Q) ∼ π
√

2Q2 + 0× lnQ , Q ≫ 1 . (3.94)

One important assumption we are making in this example is that the contour of in-

tegration is further restricted by the addition of χ12 relative to the one used for χ10. We

have not found evidence of such restriction, but we do not have a rigorous proof.

4 Physical interpretation of SMFs

In this section we will discuss physical interpretation of SMFs from a CFT2 perspective

and a gravitational perspective. On the CFT side the emphasis will be on how and when

can we interpret our examples in terms elliptic genera of SCFTs. On the gravitational side

we will suggest how we could read off more detailed information about the gravitational

theory besides its black hole features.

4.1 CFT origin of a SMF

We would now like to give a physical interpretation to at least some of the SMFs that we

have been discussing. For those that can be cast as an exponential lift, the interpretation

is simple: as illustrated by (2.25), we can easily interpret it as the generating function of

symmetric products (up to the contribution of possible prefactors), and the only challenge

is to interpret the Jacobi form that enters in the exponential lift. In this section we want to

deviate from this class of examples. Without resorting to a product expansion of a SMF,

we want to discuss if it is possible to interpret them as generating functions of generalized

partition functions such as the elliptic genus of families of SCFTs.

As discussed in the section 2, the key observation is that the coefficients of the Fourier-

Jacobi expansions of a SMF of weight k, that is its expansion in p, are Jacobi forms of

15We thank Miranda Cheng and Gerard van der Geer for discussions on this point.

– 29 –



J
H
E
P
0
4
(
2
0
1
7
)
0
5
7

weight k and index m. It is thus natural to try to interpret those forms as for instance

the elliptic genera of a family of CFTs. An immediate problem however is that the Jacobi

forms have weight k, whereas we want forms of weight 0. To address this we can try to

pull out an overall prefactor of weight k. More precisely, we define a Siegel Modular Form

Φ (possibly of negative weight) to be of Elliptic Genera type if it can be written as

Φ(Ω) = pℓM(q, y)
∞
∑

m=0

pmϕ0,m(q, y) , (4.1)

for some holomorphic weak Jacobi forms ϕ0,m(q, y) that have zero weight and index m and

for some prefactor pℓM(q, y) with ℓ ∈ Z. Note that M(q, y) has weight k under SL(2,Z)

transformations. If a SMF is of Elliptic Genera type, it can naturally be interpreted as

coming from a family of supersymmetric 2d CFTs theories. The SMF is then built by

taking the generating function of the elliptic genus and multiplying it with some prefactor

pℓM(q, y). The prefactor can sometimes be given a physical interpretation as for χ10. We

now discuss this property in a class of examples. First, we consider holomorphic SMF,

which are in the ring given in (2.11).

The Fourier-Jacobi expansion of χ10 is given by

χ10 =
p

1728

(

E3
4 − E2

6

)

φ−2,1 (1− 2pφ0,1 + · · · ) , (4.2)

as can be seen from the exponential lift expression. The prefactor pℓM(q, y) is thus

pφ10,1(τ, z) (see (A.6)), and we can indeed get a family of weak Jacobi forms of weight

0. Note that this is simply a consequence of the fact that χ10 can be written as an expo-

nential lift, and the prefactor is the first factor in (2.24). A slightly different example is

χ12, which to our knowledge can not be written as an exponential lift. Unlike χ10, the first

term of its Jacobi-Fourier is not a prefactor of all other terms. However, note that

χ12 =
E3

4 − E2
6

1728

(

pφ0,1 + 2p2(6E4φ
2
−2,1 − φ2

0,1) + · · ·
)

, (4.3)

and since χ12 is a cusp form, in general, we can consider

Z :=
χ12

∆(τ)
, ∆(τ) = η(τ)24 =

E3
4 − E2

6

1728
, (4.4)

where Z is holomorphic and hence each term in the p expansion will be a weak Jacobi

form of weight 0 and increasing index. These Jacobi forms are constrained by the fact that

χ12 was holomorphic and that it had an expansion in terms of Jacobi forms with no polar

terms, which therefore only have polynomial growth. The exponential growth thus comes

from ∆(q) in the denominator. Using this fact, one can show that the coefficients of the

weak Jacobi forms of (4.4) obey the property

c(4mn− l2) = 0, 4mn− l2 < −4m . (4.5)

This means they don’t have the most polar terms as would be allowed for a generic weak

Jacobi form of that index. As a consequence, the asymptotic growth of the coefficients is
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given by (B.6) with n0 = −1 and l0 = 0, namely

c(4mn− l2) ∼ e
4π

√

(

n− l2

4m

)

(4.6)

which is much slower than the usually Cardy type growth. Giving these weak Jacobi forms

a CFT interpretation, it means for instance the vacuum does not contribute to the elliptic

genus. It would be interesting to see what type of gravity interpretation can be given to

such an object.

The issue with holomorphic SMF is thus that we will never get proper Cardy growth

that increases with the index n. To get such exponential growth, we need to consider

meromorphic SMF. The simplest types of examples are reciprocals of a holomorphic SMF.

For example, in the previous section we saw that 1/χ10 was a SMF of elliptic genera type.

More precisely, we can use (4.2) to write

1

χ10
=

1
p

1728

(

E3
4 − E2

6

)

φ−2,1

1

1− 2pφ0,1 + · · ·

=
1

p
1728

(

E3
4 − E2

6

)

φ−2,1
(1 + 2pφ0,1 + · · · ) = Ẑ

pφ10,1
(4.7)

Because we could pull out the factor of (E3
4 −E2

6)φ−2,1, the p expansion in the parentheses

of (4.7) only contains positive powers of the generators and is therefore a holomorphic

weak Jacobi form. In fact, for χ10 we know this is precisely the generating function of

the symmetric orbifold of K3. The prefactor in this case has a physical intrepretation

as counting degrees of freedom coming from the KK monopole as well as the center of

mass modes.

Note that it was crucial here that we could pull out an overall prefactor which left the

remaining expansion starting as 1 + O(p). This allowed us to use the geometric series to

invert the denominator. This procedure would not work for instance for 1/χ12: from (4.3)

we see that the denominator contains a factor of φ0,1, which, when expanding, would lead

to higher and higher poles in the Jacobi forms of the expansion. In fact one may ask

whether the reciprocal of any other holomorphic SMF gives a form of elliptic genera type.

We have checked this explicitly for any element of the ring up to weight 20 and none of

those SMF have such a property.

We can however consider examples of the form

χ12

χ10
=

1

p φ−2,1

∑

m

pmϕ0,m . (4.8)

For some weight zero weak Jacobi forms of increasing index. These will have an exponential

growth of the form

c(4mn− l2) ∼ e4π
√
nm . (4.9)

coming mostly from 1/χ10 although χ12 will give potentially interesting subleading correc-

tions. The weak Jacobi forms are not exactly the symmetric orbifolds of K3. It would be

very interesting to give them a physical interpretation. For example, it would be interesting
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to check whether they correspond to an orbifold by a different oligomorphic permutation

group [23, 24, 43].

Finally, note that χ35 is a somewhat special example. It is not of elliptic genera type

in the sense we defined it here, but it can still be given a natural CFT interpretation. From

the exponential lift we know that the family of CFTs is again a symmetric orbifold of a

nearly holomorphic Jacobi seed form rather than a weak Jacobi form. If we are willing to

work with such nearly holomorphic forms, we can then give an interpretation to both χ35

and its reciprocal.

4.2 The gravitational dual of a SMF

We have provided examples of SMFs that have an extended Cardy regime. This suggests

that we could attribute this growth to a black hole within the natural ranges where a

semi-classical gravitational description is valid. The question is, if we can identify the

specific gravitational dual theory. In this section we suggest how to give a more refined

bulk interpretation of our results, and in particular how to interpret the residue formula.

This is best understood for χ10. We will review previous work on the spectrum of chiral

primaries on AdS3 [44, 45] and its interpretation as gas of BPS multiparticle states. From

here we would like to suggest a similar interpretation for our other examples, and leave it

as future work to test this interpretation.

For exponential lifts of weak Jacobi forms for which the dominant pole is in H1(1), we

found the residue formula (2.33) for the Fourier coefficients. Since this is an exact formula,

we can study further corrections to the leading saddle point contribution, and try to extract

information on the spectrum of the gravity dual. In particular, the pole at ẑ = 0 and its

images under modular transformations has the special feature that their residue factorize.

Near ẑ = 0 one finds

1

Φk(Ω̂)
=

1

ẑm1,1
η(τ̂)−24Aη(tρ̂)−24A + · · · , A =

k +m1,1

12
(4.10)

where k is the weight of the modular form Φk and m1,1 is the order of the pole. We can

recast (3.48) as

d(Q) ≈
∫

dτ1dτ2 e
π
tτ2

(n−lτ1+m(τ21+τ22 )) η(t(−τ1 + iτ2))
−24Aη(τ1 + iτ2)

−24Agres(τ1, τ2) (4.11)

where we have neglected the contribution coming from the other poles, gres is given

by (3.50), and we have defined ρ̂ = t−1(τ1 + iτ2) and τ̂ = t(−τ1 + iτ2). For simplicity

we scale all charges uniformly, i.e. m ∼ n ∼ Λ2 ≫ 1, so that τ1,2 ∼ O(λ0). In this regime

we can approximate

gres ∼
√

Q2
m1,1−1

τ
−1−k−m1,1

2 , (4.12)

so that

d(Q) ∼
∫

dτ1dτ2 τ
−1−k−m1,1

2 e
π
tτ2

(n−lτ1+m(τ21+τ22 ))η(t(−τ1+ iτ2))
−24Aη(τ1+ iτ2)

−24A , (4.13)
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where we ignored overall factors of Q2. This formula contains more information than just

the leading black hole entropy area formula. To illustrate how much is captured by it, let

us discuss the case of χ10, for which t = 1 and A = 1.

An interesting portion to interpret from this formula is the infinite products in the η-

functions. For χ10 the infinite product arises from a trace over a gas of multiparticle BPS

particles: in [45] they show that this piece comes from contributions of the 5D supergravity

multiplets which includes the graviton, vectors and hypermultiplets and also from (anti)-

M2 branes wrapping holomorphic two cycles on the Calabi-Yau.

Lets discuss in a bit more detail how the analysis of [45] breaks down for M-theory

on AdS3 × S2 × M with M a Calabi-Yau 6-fold. Here one has thermal AdS3. To relate

to the black hole problem we have to perform a modular transformation, which takes the

complex structure of the boundary torus τ to −1/τ . For the extremal black hole that

we are interested we have τ = iφ0, where 1/φ0 can be identified with the radius of the

M-theory circle in the near horizon geometry (C.15) of the black hole. The analysis of the

supergravity modes is standard: the massless spectrum consists of the graviton multiplet,

nV = h1,1 − 1 vectormultiplets and nH = 2(h2,1 + 1) hypermultiplets. The spectrum on

AdS3 × S2 ×M organizes into short representations of SL(2,R) × SU(1, 1|2) that can be

found in [44, 46]. The trace that one obtains after summing over the supergravity modes is

Zsugra =
∞
∏

n=1

(1− ζn)−nχ(M) , ζ = e
− 2π

φ0 (4.14)

where χ(M) = 2(h1,1 − h2,1) is the Euler character of the Calabi-Yau manifold M .

The most interesting part comes from tracing over the BPS states due to (anti)-M2

branes wrapping holomorphic two cycles inM . This can be shown to equal the Gopakumar-

Vafa BPS invariants partition function [45]: that gives

ZM2 =
∏

na>0,k>0

(

1− ζke
−2πna

ta

φ0

)kd0na ∏

na>0,r>0

2r−2
∏

l=0

(

1− ζr−l−1e
−2πna

ta

φ0

)(−1)r+l
(

2r−2
l

)

drna

,

(4.15)

and ZM2 for the anti-M2 brane trace. Here ta denotes the complexified Kahler class of the

holomorphic cycle, that is, ta = pa + iφa in the near horizon variables. The first product

comes from M2 branes wrapping genus zero curves while the second corresponds to the

wrapping of genus r curves.

If M has the form T 2 × K3 then the counting simplifies considerably. Firstly the

supergravity modes contribution (4.14) is trivial since we have χ(M) = 0. On the other

hand the M2 brane contribution is independent of the parameter ζ and gives simply

ZM2 =

∞
∏

n1>0

(1− e
−2πn1

t1

φ0 )−χ(K3) , χ(K3) = 24 , (4.16)

where, in this case, t1 is the Kahler parameter of T 2. For χ10, the gravity counting (4.16)

is precisely the infinite product in (4.13), with a suitable identification of the supergravity

variable t1/φ0 = (p1 + iφ1)/φ0 with τ2 + iτ1.
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Both (4.16) and (4.13) are valid in a large central charge limit, i.e. m ≫ 1 and τ1,2 ∼
Λ0. However we know that at finite central charge the counting of chiral primaries on

AdS3 suffers from a stringy exclusion principle [47] and the result of [45] does not take

this into account. In addition the expressions (4.16) and (4.13) are not spectral flow

invariant. The large central charge limit allows us to relax both the stringy exclusion

principle and the spectral flow symmetry, and thus sum over all the chiral primaries in

supergravity with no restriction. It is interesting to note that for χ10 one can take into

account the exclusion principle in [47] by studying instead (4.11). In [48, 49] the result

for the microscopic degeneracy is shown to be a finite sum of Bessel functions, which is

suggestive of a Rademacher expansion. As a matter of fact, the factors that multiply

the Bessel functions can be identified with the polar coefficients [49] in a mock-Jacobi

expansion [27]. Since under spectral flow from R to NS sector, the polar state degeneracy

is mapped to the counting of chiral primaries, one can use the residue formula to make

interesting predictions about the spectrum of KK fields of the dual bulk theory. Moreover,

on a general note the study of the polar coefficients gives non-trivial information about

both perturbative and non-perturbative corrections to black hole entropy. It would be

interesting to address these corrections using localization techniques as in [48, 50, 51].

The general lesson that we draw from χ10 is that the residue can be interpreted as

counting fluctuations around the black hole, and these fluctuations are governed by the

gravitational modes in question: basically counting the chiral primaries in the supergravity

spectrum. Since (4.11) and (4.13) is as well applicable for other SMFs, it is rather natural

to speculate that we can give a gravitational interpretation for our examples in section 3.2.2

that involve elliptic genera of other Calabi-Yau manifolds. The task we have ahead of us is

to craft the appropriate supergravity theory which has the right spectrum to account for

all the factors in (4.13).16 We leave the answers to these questions for future work.

5 Discussion

The goal of this work was to generalize the black hole microstate counting from the well-

known examples such as χ10 to more general setups. We have shown that many of the

methods used in the original setup can also be applied for general Siegel modular forms.

More importantly, we also found novel examples of SMFs that satisfy the criteria in sec-

tion 1.2: SMFs that have the correct features to account for black hole entropy, and seem-

ingly a supergravity regime, includes the exponential lifts of Elliptic Genera of Calabi-Yau

manifolds in section 3.2.2, and the combination of χ12 and χ10 in section 3.2.4. This shows

how we can easily build and characterize SMFs that have the potential to describe black

holes or other gravitational systems.

We found that the leading contributions and the logarithmic corrections only depend

on some very elementary data, namely the weight of the form, the poles and their residues;

and we have cast this data also in terms of the Jacobi form that defines the exponential

lift of the SMF. This gives the logarithmic correction in (1.5) a microscopic interpretation

16Note that if we consider a different Calabi-Yau manifold in (4.15) and (4.16), we will not obtain (4.13).

This makes it more challenging to decode which gravitational theory is the dual to the examples listed in

section 3.2.2.
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in terms of CFT data. In this sense the entropy is quite universal. For forms with the

same type of poles as 1/χ10, that is with divisors given by H1(1) listed in section 3.2.2, we

were able to repeat the original arguments fully and thus give complete results. For more

complicated divisors, it is clear that the same methods still work, but doing the analysis

will require some more work. We were able to obtain the entropy in some of the regimes,

but our analysis for χ35 shows that the results can be different, such as having a Hagedorn

regime rather than Cardy regime. The main technical issues here are obtaining efficient

expressions for the residue, and choosing the contours of integration carefully. It will be

very interesting to explore the behavior of d(Q) for more general Humbert surfaces. A first

direction along this lines is when the Humbert surface is HD(0), i.e. extending the analysis

of χ35 for other SMFs.

This is related to a second point. In this paper we only considered the growth of black

hole states, that is states with polarity Q · Q > 0. To investigate potential gravity duals,

knowing the perturbative spectrum, i.e. the polar states, is just as important. The growth

of these states will for instance help to decide whether we are looking at a supergravity

theory, or a full blown string theory. Moreover the growth will be related to how far

the Cardy regime extends. Our results for χ35 for instance indicate that the polar states

grow like Hagedorn. Using similar techniques as in [52], one can indeed check this explicitly.

This is in contrast to χ10, where the polar states agree with just the supergravity spectrum,

which of course grows much more slowly. We expect that the examples in section 3.2.2 can

also be identified with a supergravity theory, which we will settle in future work.

Ultimately of course the goal is to decide if our SMF have gravity duals. For this we

still need to better understand the spectrum, as discussed in section 4.2. It is particularly

important to understand in what cases we have supergravity growth and a Cardy regime

that extends even to E ≪ c, and in which cases we have Hagedorn growth. In the former

case, it may be possible to construct corresponding supergravity solutions. In the latter

case, we should not expect such supergravity solutions, since the duals will be intrinsically

stringy. Moreover the appearance of nearly holomorphic Jacobi forms suggests that some

of the duals will have less supersymmetry than what we are used to. We leave this for

future work.

In the context of finding counting formulas with black hole features, it would be in-

teresting to explore if we can relax the condition of having Sp(4,Z) as a symmetry. This

exchange symmetry among ρ and τ is usually interpreted in the gravitational theory as

electro-magnetic duality. This is a symmetry we know does not persist at the full quantum

level for many black holes (such as N = 2 theories in 4D and 5D solutions). It would

be interesting to investigated if we can achieve an extended Cardy regime by exploiting a

different symmetry of the generating function. Along these lines, an interesting example is

to understand in this language the counting formula for BPS states in N = 8 supergravity:

there are exact formulas for the index [53, 54], and it would be interesting to investigate if

there are related forms with similar mathematical properties.

Finally, we would like to mention wall crossing phenomena. They are intimately related

to the meromophicity of the generating functional, leading to interesting properties related

to Mock modularity [27]. On the gravitational side the interpretation of wall crossing is

in terms of multicentered black holes [38, 55]. In contrast to χ10, where the order of the
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pole is m1,1 = 2, our other examples have generically higher order poles, a phenomenon

that also appeared in a different context in [56]. This may have interesting repercussions

for the phase space of black holes.
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A Jacobi forms

A.1 Properties of Jacobi forms

A Jacobi form ϕk,m(τ, z) is a holomorphic function on H × C → C that has the following

defining properties: first, under modular transformations

ϕk,m

(

aτ + b

cτ + d
,

z

cτ + d

)

= (cτ + d)k exp

(

2πimcz2

cτ + d

)

ϕk,m(τ, z) , ∀
(

a b

c d

)

∈ SL(2,Z) ,

(A.1)

and second, under translations

ϕk,m (τ, z + λτ + µ) = exp
(

−2πim(λ2τ + 2λz + µ)
)

ϕk,m(τ, z) , λ, µ ∈ Z , (A.2)

and it has Fourier expansion

ϕk,m(τ, z) =
∑

n≥0,l
4mn≥l2

c(n, l)qnyl , q = e2πiτ , y = e2πiz . (A.3)

We define the discriminant ∆ := 4nm− l2. The coefficients c(n, l) then only depend on ∆

and l (mod 2m), and in fact only on ∆ if m is prime. We will denote the space of Jacobi

forms of weight k and index m by Jk,m.

There are several special cases and generalizations of Jacobi forms which have to

do with the summation range in (A.3). Jacobi cusp forms are Jacobi forms for which

c(0, l) = 0. In particular they vanish at the cusp τ = i∞.

Weak Jacobi forms are holomorphic functions that satisfy (A.1) and (A.2), but for

which we don’t impose the condition that c(n, l) = 0 if ∆ < 0. One can however show that

we have c(n, l) = 0 if ∆ < −m2, leading to a Fourier expansion

ϕk,m(τ, z) =
∑

n≥0,l
4mn−l2≥−m2

c(n, l)qnyl . (A.4)

Note that we are still only summing over n.
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Nearly holomorphic Jacobi forms finally satisfy (A.1) and (A.2), but are allowed to

have a pole at the cusp q = 0. More precisely, ϕ is a nearly holomorphic Jacobi form if

there is a non-negative n such that ∆(q)nϕ is a Jacobi form. In total we thus have the

inclusions

Jcusp ⊂ J ⊂ Jweak ⊂ Jnh . (A.5)

We will mostly work with weak Jacobi forms. A few commonly used weak Jacobi forms are

φ10,1(τ, z) = η(τ)18θ1(τ, z)
2 ,

φ−2,1(τ, z) =
θ1(τ, z)

2

η(τ)6
,

φ0,1(τ, z) = 4

(

θ2(τ, z)
2

θ2(τ)2
+

θ3(τ, z)
2

θ3(τ)2
+

θ4(τ, z)
2

θ4(τ)2

)

,

φ−1,2(τ, z) =
θ1(τ, 2z)

2

η(τ)3
, (A.6)

where η(τ) and θi(τ, z) are the usual Dedekind eta function and theta functions, and

θi(τ) ≡ θi(τ, 0). In some portions of the text we use ∆(τ) ≡ η(τ)24 = 1
1728(E

3
4 − E2

6). In

fact, the ring of weak Jacobi forms of integer index is freely generated,

Jweak = C[E4, E6, φ0,1, φ−2,1, φ−1,2]/(432φ
2
−1,2 − φ−2,1φ

3
0,1 + 3E4φ

3
−2,1φ0,1 − 2E6φ

4
−2,1) .

(A.7)

The space Jweak
k,m of weak Jacobi forms of weight k and index m is given by appropriate

polynomials of the generators. The space of half-integer index weak Jacobi form is closely

related to Jweak
k,m . We have

Jweak
2k,m+ 1

2

= φ0, 3
2
Jweak
2k,m−1 , Jweak

2k+1,m+ 1
2

= φ−1, 1
2
Jweak
2k+2,m , (A.8)

where

φ0, 3
2
(τ, z) =

θ1(τ, 2z)

θ1(τ, z)
= y−1/2

∞
∏

n=1

(1 + qn−1y)(1 + qny−1)(1− q2n−1y2)(1− q2n−1y−2)

φ−1, 1
2
(τ, z) =

θ1(τ, z)

η(τ)3
= −y−1/2

∞
∏

n=1

(1− qn−1y)(1− qny−1)(1− qn)−2 (A.9)

Another weak Jacobi form used in the main text is

φ0,2(τ, z) =
1

2
η(τ)−4

∑

m,n∈Z
(3m− n)

(−4

m

)(

12

n

)

q
3m2+n2

24 y
m+n

2

= (y + 4 + y−1) + q(y±3 − 8y±2 − y±1 + 16) + q2(· · · ) . (A.10)

A.2 Jacobi forms as partition functions

Jacobi forms appear in physics quite often in the form of generalized partition functions.

Consider a fermionic CFT with a U(1) current J . In the Ramond sector partition function
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with the fermion parity operator (−1)F inserted, τ and z are then the chemical potentials

of the weight and U(1) charge respectively. Eq. (A.1) is then a direct consequence of the

modular transformation properties of genus 1 amplitudes. Eq. (A.2) is usually interpreted

as invariance under spectral flow by one unit.

The most common setup for this is the elliptic genus of theories with at least N = (2, 2)

superconformal symmetry. In that case we can define the elliptic genus as

χ(τ, z) = TrRR(−1)F (−1)F̄ qL0−c/24q̄L̄0−c/24yJ0 , (A.11)

which due to right-moving supersymmetry is indeed independent of q̄. Left-moving super-

symmetry gives the constraint

L0 −
c

24
= (G0)

2 ≥ 0 , (A.12)

which means that in (A.3) n ≥ 0. It follows that χ is a weak Jacobi form, in fact of weight

0 and index m = c/6. A typical example of this is the non-linear sigma model on K3,

whose elliptic genus is simply

χK3(τ, z) = 2φ0,1(τ, z) . (A.13)

For Calabi-Yau threefolds, there is a one-dimensional vector space. The elliptic genus

depends only on the Hodge numbers and is given by

χ(τ, z) = (h1,1 − h2,1)φ0,3/2(τ, z) =
1

2
e(M)φ0,3/2(τ, z) . (A.14)

Note that generically we expect the elliptic genus to be a weak Jacobi form, and not a

Jacobi form. The coefficients of Jacobi forms grow only polynomially, whereas we expect

the underlying CFT to have Cardy growth, which agrees with the exponential growth of

weak Jacobi forms. In this supersymmetric setup we can in particular spectrally flow by

half a unit from the NS sector to the Ramond sector and vice versa. The left-moving NS

vacuum is then mapped to the term yc/6, which is clearly a polar state, so that the resulting

form is a weak Jacobi form. It is however possible that due to an enhanced symmetry, the

Witten index of the right-moving states that couple to the left-moving vacuum vanishes,

so that this term does not appear in the elliptic genus, and similar for all other polar

terms. Unless such cancellations happen however, we will get a weak Jacobi form and not

a Jacobi form.

On the other hand we can try to generalize the elliptic genus to CFTs with less su-

persymmetry. To ensure that the resulting partition function is (nearly) holomorphic, we

need either a chiral (purely left-moving) theory, or at least N = 1 supersymmetry for the

right-movers, so that we can repeat the Witten index argument. On the left-moving side

we need a U(1) current. Eq. (A.1) is then automatically satisfied, see e.g. [57, 58] and ref-

erences therein. To satisfy (A.2), it is enough to have something similar to integer spectral

flow. A sufficient condition for that is to only have states of integer U(1) charge: the idea

is that we can bosonize the U(1) current, and under suitable integrality conditions on the

charges, eiφ is then a local operator that induces integral spectral flow. In such a theory we
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no longer have the condition that n ≥ 0, which would allow for nearly holomorphic Jacobi

forms as partition functions.

More generally, ϕk,m(τ, z) are also the building blocks of for chiral CFTs, as well

as warped CFTs [59, 60]. And in particular, many of the properties of exponential lifts

discussed here in principle apply to these non-supersymmetric theories. For example, it

is simple to construct a SMF for symmetric products of the Monster CFT in [61]. But

unfortunately other examples not involving supersymmetry are much less developed.

A.3 Hecke operators

Ref. [26] defines three types of Hecke operators acting on φ =
∑

n,r c(n, r)q
nyl:

Up : Jk,m → Jk,mp2

Vp : Jk,m → Jk,mp

Tp : Jk,m → Jk,m (A.15)

Note that they all map Jacobi forms to Jacobi forms. Up simply maps φ(τ, z) 7→ φ(τ, pz),

so that

φ|Up =
∑

n,l

c(n, l/p)qnyl . (A.16)

(Our convention is to take c(n, l) = 0 if its arguments are non-integer or outside the original

summation range.) From this it is clear that it also maps weak Jacobi forms to weak Jacobi

forms. In [32] this is essentially the operator Λp.

Vl is probably the best known Hecke operator. It acts as

φ|Vp =
∑

n,l

∑

a|(n,l,p)
ak−1c

(

np

a2
,
l

a

)

qnyl . (A.17)

It is again clear that this also maps weak Jacobi forms to weak Jacobi forms. Physically

it is related to cyclic orbifolds, and therefore shows up crucially in symmetric orbifold

partition functions. In [32] this is essentially the operator T−(p).

Tp finally is the operator in [32] denoted by T0(p). For φ with weight k = 0 it gives a

new form with coefficients

cp(n, l) = p3c(p2n, pl) +Gp(n, l,m)c(n, l) +
∑

λ mod p

c

(

n+ λl + λ2m

p2
,
l + 2λm

p

)

(A.18)

where the Gauss sum is

Gp(n, l,m) = −p+
∑

a,b mod p

exp

(

2πi
na+ lab+mab2

p

)

. (A.19)

Very importantly, Tp does not map weak Jacobi forms to weak Jacobi forms: in general it

will give nearly holomorphic Jacobi forms instead.
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B Logarithms in the Cardy regime: n ≫ m

In this appendix we derive the logarithmic correction to the leading asymptotic growth of a

Jacobi form in the Cardy regime; this is the regime that we denote I in section 3. Consider

the follow integral

d(n, l) =

∫

dτdz e−2πiτn−2πizlϕk,m(τ, z) , (B.1)

where ϕk,m(τ, z) is a weak Jacobi form of weight k and level m. We want to estimate d(n, l)

for large values of n and l, and the easiest is to do a saddle point approximation. First we

rewrite (B.1) as

d(n, l) =

∫

dτdz
1

τk
exp

(

−2πinτ − 2πilz − 2πimz2

τ

)

ϕk,m

(

−1

τ
,
z

τ

)

, (B.2)

where we used (A.1). Assuming that the saddle is at some small imaginary value of τ and

z of order one,17 we can approximate ϕk,m

(

− 1
τ ,

z
τ

)

by its most polar term

ϕk,m

(

−1

τ
,
z

τ

)

∼ exp

(

−2πin0

τ

)

exp

(

2πil0z

τ

)

, (B.3)

where we assigned to the most polar state charges (n, l) = (n0, l0), i.e. the state with most

negative discriminant ∆.18 This gives at leading order

d(n, l) ∼
∫

dτdz
1

τk
exp

(

−2πinτ − 2πilz − 2πimz2

τ

)

exp

(

−2πin0

τ

)

exp

(

2πil0z

τ

)

. (B.4)

The saddle point of the above integral is at

τ⋆ =

√

n0 − l20/4m

n− l2/4m
,

z⋆ =
l0
2m

− lτ⋆
2m

. (B.5)

We assumed that the original integral was dominated by the behavior of ϕk,m at τ → i0+

and z ∼ O(1): this requires that n− l2/4m ≫ |n0− l20/4m| and n0− l20/4m < 0. For many

systems, the discriminant of the most polar term is related to the central charge c of the

system, i.e. n0 − l20/4m ∼ c, hence we are estimating d(n, l) for n ≫ c. Performing the

saddle point approximation gives

d(n, l) ∼ τ2−k
⋆ exp

(

− 4πi

τ⋆

(

n0 −
l20
4m

))

∼ τ2−k
⋆ exp

(

2π

√

(

− 4n0 +
l20
m

)(

n− l2

4m

)

)

. (B.6)

17One can weaken the assumption that τ is small, but this requires further restrictions on the spectrum

of ϕ(τ, z) which are not needed for the purposes of this section. See e.g. [22] for a recent discussion on such

restrictions.
18There could be a degeneracy associated to the most polar state, but it is negligible within the approx-

imation taken here.
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The leading exponential contribution is the usual Cardy formula; the polynomial contri-

bution controlled only by the weight of ϕk,m. These corrections should be compared with

the analogous logarithmic correction in other scaling regimes.

C Black hole near-horizon geometry and attractor equations

In this appendix we revisit the D1-D5-P-KK system in IIB string theory on K3×S1× S̃1.

This configuration preserves four out of sixteen supercharges of four dimensional N = 4

supergravity. We describe the brane Kaluza-Klein monopole configuration and the black

hole near-horizon geometry that it gives rise to. As we show, it is easier to analyze the

geometry from the IIA point of view where the attractor equations are naturally embedded

in N = 2 supergravity. We will map first the configuration to IIA and then to M-theory

where it has an interpretation as a MSW string.

This configuration consists of Q5 D5-branes wrappingK3×S1, Q1 D1-branes wrapping

S1, K Kaluza-Klein monopoles associated with the circle S̃1 and n units of momentum

along the circle S1. For K = 1 this is equivalent to putting the D1-D5-P system on the

background of a Kaluza-Klein monopole. Since the Taub-Nut geometry approaches R3×S̃1

at infinity while it is R4 near the origin, this provides a five/four dimensional connection,

which relates the four dimensional black hole to the BMPV black hole. Following [62], we

start by performing a mirror symmetry transformation on K3, which take us to a D3-brane

configuration. We have now Q1 D3-branes wrapping γ × S1 and Q5 D3-branes wrapping

γ̃ × S1 where γ, γ̃ are a pair of dual 2-cycles in K3. A T-duality along the circle S̃1 takes

the D3 to D4 branes wrapping γ × S1 × Ŝ1 and similarly for the dual cycle, with Ŝ1 the

T-dual circle. The Kaluza-Klein monopoles map to K NS5-branes wrapping K3 × S1.

From the M-theory point of view we have Q1 M5-branes wrapping γ × S1 × Ŝ1 × S1
M ,

Q5 M5-branes wrapping γ̃ × S1 × Ŝ1 × S1
M , K M5-branes on K3 × S1 × Ŝ1 × S1

M and n

units of momentum along the circle S1 where S1
M is the M-theory circle. From the eleven

dimensional point of view we can reduce instead along the circle S1. For convenience denote

the circle S1 by S̄1
M so we know that we are reducing M-theory along this circle. The

final configuration corresponds to a MSW string configuration consisting of an M5-brane

wrapping the cycle P×S̄1
M where P is a four cycle in the class P = paΣa ∈ H4(K3×Ŝ1×S1

M )

and Σ = (γ× Ŝ1×S1
M , γ̃× Ŝ1×S1

M ,K3). In addition one has n units of momentum along

the circle S̄1
M . From the type IIA point of view, this configuration gives rise to a D4-D0

black hole. We have pa D4-branes wrapping cycles Σa and n D0-branes. To introduce D2-

branes we can start form the IIB configuration and consider momentum along the circle

S̃1. Under the chain of dualities described above this gives rise to D2-branes wrapping

2-cycles dual to Σa.

Summarizing one has the IIA D-brane configuration

D4 : paΣa, Σa ∈ H4(Z) (C.1)

D2 : qaΣ̃
a, Σ̃a ∈ H2(Z) (C.2)

D0 : q0 (C.3)
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For example, for the D1-D5-P-KK configuration one has Σ1 = K3 and Σa 6=1 = γa × T 2

with γa ∈ H2(K3,Z). Similarly Σ̃1 = T 2 and Σ̃a 6=1 = γ̃a.

It is also useful to map the D1-D5-P-KK system to a configuration in Heterotic string

theory compactified on T 6, consisting only of NS-NS charges. This theory has a U-duality

group G consisting of the following factors

G(Z) = SL(2,Z)× SO(6, 22;Z) . (C.4)

The SL(2,Z) factor is responsible for electric magnetic duality while the second factor

corresponds to the T-duality group. A dyon charge configuration transforms in the funda-

mental of SL(2,Z) and in the vector representation of SO(6, 22;Z). Lets denote the dyon

configuration by the vector

Γ =

(

Qi

P i

)

, i = 1 . . . 28 . (C.5)

Here Qi and P i are respectively the electric and magnetic charge vectors. The subscript

i denotes that it transforms under the vector representation of SO(6, 22;Z). In addition,

the dyon Γ transforms under electric-magnetic duality as

(

Q′i

P ′i

)

=

(

a b

c d

)(

Qi

P i

)

,

(

a b

c d

)

∈ SL(2,Z) . (C.6)

It is natural to associate to the dyon the following T-duality invariant combinations

Q2 ≡ QiLijQ
j , P 2 = P iLijP

j , Q · P ≡ QiLijP
i , (C.7)

where Lij is the SO(6, 22) invariant metric. Furthermore, it is easy to check that the triplet

(Q2, P 2, Q.P ) transforms under the vector representation of SO(1, 2) or the symmetric

representation 3 of SL(2,Z).

Under the map from Heterotic on T 4 × S1 × S̃1 to IIA on K3 × S1 × S̃1, the charges

are assigned in the following way

Qi = (q0, p
1, qa) ,

P i = (−q1, p
0, pa) . (C.8)

We have not included the charges corresponding to momentum/winding and NS-5/KK

monopole associated with the circles on T 4. For example q0 D0-branes map to momentum

along the circle S1 while p1 D4-branes wrapping K3 map to p1 units of winding along the

circle S1. The T-duality invariants are therefore

Q2 = 2q0p
1 +Dabqaqb ,

P 2 = −2q1p
0 +Dabp

apb ,

Q · P = p0q0 − p1q1 + paqa , (C.9)

where Dab is the intersection matrix of K3, that is, Dab =
∫

γa ∧ γb.
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We now describe the near-horizon geometry of the four dimensional D4-D2-D0 black

hole. The analysis is valid for any Calabi-Yau manifold and relies only on the four di-

mensional N = 2 supergravity. Further details of the attractor equations can be found

in [63].

The ten dimensional near-horizon metric is

ds210 =
L2

4

(

−(r2 − 1)dt2 +
dr2

r2 − 1
+ dθ2 + sin2(θ)dφ2

)

+ ds2CY . (C.10)

The graviphoton field is given by

F 0 = φ0dr ∧ dt , (C.11)

while the remaining nV vectormultiplet gauge fields, that couple to the D2 charges, have

field strength

F a = −φadr ∧ dt+ pa sin(θ)dθ ∧ dφ , (C.12)

with pa the magnetic charges. The scalar fields, on the other hand, are determined in terms

of the electric fields and the magnetic charges, that is,

LX0 = φ0, LXa = φa + ipa , (C.13)

with p0 = 0. The remaining hypermultiplet scalar fields are freely adjustable parame-

ters throughout the black hole geometry. Finally the Kahler form of the Calabi-Yau is

determined by

J ∝ pa

L
. (C.14)

The M-theory lift of this configuration corresponds to promoting the graviphoton gauge

field as the Kaluza-Klein gauge field associated with the M-theory circle. The uplifted

geometry contains now a local AdS3 factor,

ds211 =
L2

4

[

ds2AdS2
+

1

(φ0)2
(

dy − φ0(r − 1)dt
)2

+ dΩ2

]

+ ds2CY , (C.15)

where ds2AdS2
and dΩ2 denote unit size metrics for AdS2 and S2 respectively, and y is the

M-theory circle. The vector-multiplet gauge fields uplift to

Aa
5D = −φa

φ0
dy +Aa

Dirac , (C.16)

with Aa
Dirac the Dirac monopole gauge field that gives rise to the magnetic flux (C.12).

The attractor equations relate the values of the scalar fields to the charges of the black

hole in the following way

Im(LFI) = qI , I = 0 . . . nV , (C.17)

where FI = ∂XIF(X) with F(x) the prepotential of N = 2 supergravity. The attractor

equations (C.17) arise from the extremization of the functional

S(φ, p, q) = −πqIφ
I + πImF(φ+ ip) . (C.18)
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This fact has led to the conjecture that the black hole partition function equals the square

of the topological string partition function ZBH = |Ztop|2 [64]. Recently, it was shown that

S(φ, p, q) follows from a localization computation on AdS2 × S2 [50].

In the two derivative approximation the prepotential is a polynomial of the scalar

fields. For the K3× T 2 compactification one has

F(X) = −1

2

X1

X0

23
∑

a,b=2

DabX
aXb . (C.19)

Note that a, b run over the 2-cycles of K3. This leads to the following attractor solutions

φa = −qa
φ0

p1
+ pa

φ1

p1
,

φ1 = −Q · P
P 2

φ0 ,

φ0 =
p1P 2

√

Q2P 2 − (Q · P )2
. (C.20)

For a more general Calabi-Yau compactification, the two derivative prepotential (C.19)

is instead given by

F(X) = −1

6

b2
∑

a,b,c=1

Dabc
XaXbXc

X0
, (C.21)

where Dabc is the intersection matrix and b2 is the dimension of H(1,1), the Kahler class.

The attractor equations are modified as

φa = −qaφ0 ,

φ0 =

√

P 3/6

q̂0
, (C.22)

where q̂0 = q0 −Dabq
aqb/2 is the spectral flow invariant charge combination, and we have

defined P 3 = Dabcp
apbpc and Dab = Dabcp

c.

Note that the attractor equations are invariant under the scaling symmetry

φI → λφI , qI → λqI , pI → λpI , I = 0 . . . nV . (C.23)

When λ ≫ 1 the M-theory circle radius 1/φ0, in units of the AdS length L, becomes very

small. This corresponds to the string-theory limit. In the other limit, that is when q ≫ 1

and p is kept fixed we have that 1/φ0 is of order one or bigger and thus the theory is well

described in M-theory.

The number of 1/4BPS states of D1-D5-P-KK system is describe by the reciprocal of

χ10. The notation used here mapped to the one used in section 3.2.1 is as follows. The

T-duality invariants (C.7) in terms of the charge vector (3.3) is

Q2 = 2n , P 2 = 2m, l = Q · P , (C.24)
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and hence 2Q2 = Q2P 2 − (Q · P )2. The entropy (C.18) for a two derivative supergravity

prepotential is SBH = π
√
2Q2, and in N = 4 supergravity the logarithmic correction

vanishes. On the microscopic side this corresponds to the results in (3.40). It is important

to emphasize that the dictionary (C.24) is what dictates the scaling regime for which we

need to evaluate d(Q); without this data there is room for ambiguity.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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