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We report on a comprehensive computer simulation study of the liquid-crystal phase behaviour of
purely repulsive, semi-flexible rod-like particles. For the four aspect ratios we consider, the particles
form five distinct phases depending on their packing fraction and bending flexibility: the isotropic,
nematic, smectic A, smectic B, and crystal phase. Upon increasing the particle bending flexibility,
the various phase transitions shift to larger packing fractions. Increasing the aspect ratio achieves the
opposite effect. We find two different ways in which the layer thickness of the particles in the smectic A
phase may respond to an increase in concentration. The layer thickness may either decrease or increase
depending on the aspect ratio and flexibility. For the smectic B and the crystalline phases, increasing
the concentration always decreases the layer thickness. Finally, we find that the layer spacing jumps
to a larger value on transitioning from the smectic A phase to the smectic B phase. Published by AIP
Publishing. https://doi.org/10.1063/1.5000228

I. INTRODUCTION

Rod-like colloidal particles, DNA strands, carbon nan-
otubes, and filamentous viruses have in common that, if dis-
persed in a fluid at sufficiently high concentrations, they exhibit
various kinds of liquid-crystalline phases. This is because with
increasing concentration, the dispersion runs out of free vol-
ume leading to increasingly ordered states. This class of mate-
rial is usually referred to as lyotropic liquid crystals, which sets
them apart from thermotropic liquid crystals because the driv-
ing force is not energy but, in essence, entropy. This was first
recognised by Lars Onsager in his seminal paper describing the
isotropic-to-nematic phase transition of cylindrical particles
interacting via a hard-core repulsive interaction.1 In agreement
with experiment, the theory predicts the transition to occur at
a volume fraction that decreases inversely proportional to the
aspect ratio of the particles. The impact of the particle bending
flexibility on the isotropic-nematic transition was first investi-
gated theoretically by Khokhlov and Semenov more than thirty
years later,2,3 a decade after others investigated how flexibility
impacts upon the nematic-columnar and the nematic-smectic
A transitions.4–7

Over the past few decades, interest in lyotropic liquid crys-
tals has increased significantly, in part because of potential
applications and in part because of the development of well-
controlled model particles.8,9 Indeed, lyotropic liquid crystals
have been intensively investigated experimentally,10–14 theo-
retically15–19 and with the aid of computer simulations.20–26

In spite of this, our understanding of the isotropic and nematic
phases is most comprehensive, whilst that of the others remains
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much less detailed. In particular, how the flexibility and aspect
ratio impact upon the other liquid crystal transitions has
received much less attention. Here, we aim to fill in this gap
from the perspective of computer simulations, in particular,
because these are much more difficult to address theoretically.
One reason is that the second virial approximation, which
allowed Onsager to accurately describe the isotropic-nematic
transition, no longer holds at densities where the smectic
and columnar phases appear. Another reason is translation-
rotation coupling, which makes density functional and integral
equation theories virtually intractable.7,18,27

We extend earlier simulation studies on semi-flexible
chains by covering a larger range in persistence length, aspect
ratio, and particle numbers and investigate more comprehen-
sively the microscopic structure of the liquid crystalline and
crystalline phases. In agreement with theory and simulation,
we find that particles with longer aspect ratio support over
a larger concentration range and a broader range of bending
flexibilities liquid-crystalline states. This is particularly true
for the nematic and the smectic A phases. We find that the
stability of the smectic B and crystalline phases, recently both
found experimentally in colloidal systems,12,13 to be less sen-
sitive to both the aspect ratio and flexibility, at least for the
ranges investigated. The aspect ratio of our particles varied
between 6 and 11 while the ratio of the bare contour length
and persistence length varied between 0.05 and 0.5. For these
aspect ratios and persistence lengths, all phase transitions are
either second order or weakly first order, except the transi-
tion between smectic A and smectic B that clearly is first
order. The difference in behaviour of the smectic A and B
phases expresses itself most clearly in how the layer spacing
responds to increases in density. For the smectic B phase, the
layer spacing always decreases with increasing density. This
is not so for the smectic A phase, where depending on the
aspect ratio and persistence length, it may increase or decrease,
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depending on whether the increase of the particles density is
translated into reduced layer spacing and/or increased in-layer
density.

The remainder of this paper is structured as follows. In
Sec. II, we describe our model particles that we construct
from overlapping, mutually repulsive bead-spring chains. We
also make explicit our simulation protocol and explain how
we identify the various liquid crystal phases in our simula-
tion data. In Sec. III A, we present the phase diagrams we
obtain and show how the aspect ratio and flexibility influence
the phase transitions. In Sec. III B, we describe the influence
of the phase transitions on the individual particle structure
and smectic layer thickness. We furthermore present a simple
model based on the Onsager theory that explains the changes
in the particle length as a function of density in the isotropic
and nematic phases in the Appendix. Finally, in Sec. IV, we
present our most important conclusions.

II. METHODS AND ANALYSIS

To study the equilibrium properties of semi-flexible rod-
like particles, we perform MD simulations on 4608 bead-
spring chains consisting of n beads of mass m using the soft-
ware package LAMMPS.28 Within a chain, consecutive pairs
of beads interact via a harmonic potential Ur = 1/2κ(r − r0)2,
where κ is the force constant and r0 is the rest distance between
their centres of mass corresponding to half of the bead diam-
eter D. See Fig. 1. Hence, the beads partially overlap in order
to provide a smoother particle surface and to prevent biased
stacking between the rod-like particles in highly congested
phases. A harmonic bending potential Uθ = 1/2κθ (θ � π)2,
where κθ is the bending constant, θ in radians, is assigned to
consecutive bonds between beads to model bending stiffness.
Except for the nearest neighbour beads along the same chain,
all beads interact via a purely repulsive, truncated, and shifted
Lennard-Jones (LJ) potential U = 4ε[(r/D)�12

� (r/D)�6] + ε
for r 6 21/6D and U = 0 for r > 21/6D, with ε = kBT, where kB

is the Boltzmann constant and T is the absolute temperature.
The effective hard sphere diameter of a bead along the chain
Deff is slightly larger than D: Deff ∼ 1.017D. This estimate can
be obtained by comparing the second virial coefficient for our
purely repulsive soft potential to the second virial coefficient
for the hard sphere potential.

We perform isobaric-isothermal (NPT) simulations at var-
ious pressures. To control the temperature and pressure in our

FIG. 1. Schematic representation of the semi-flexible rod-like particles. They
are modeled as a bead-spring chain with diameter D. The beads partially
overlap for a smoother surface, allowing closer comparison with spherocylin-
ders (dashed schematic). The rest distance r0 of the harmonic bond potential
corresponds to half the bead diameter.

simulations, we employ the Nosé-Hoover thermostat and baro-
stat. The thermal energy kBT is our reference energy unit. The
barostat can adjust the rectangular simulation box dimensions
independently, which allows relaxation to the correct layers
spacings in the smectic and crystalline phases. Therefore the
changes in the box shape are anisotropic. Each simulation runs
for 20 000 time units. Our time unit is set by the Lennard Jones
time scale (m/kBT )1/2σ, and we use time steps of 10�3 in these
units in our simulations, implying that our simulations run
2 × 107 time steps. The relaxation times for temperature and
pressure are 0.01 and 0.1 time units corresponding to about
10 and 100 time steps, respectively. Approximately 200 con-
figurations of every run are stored, i.e., one every 100 time
units.

The initial configuration is that of the crystal phase, with
all rod-like particles perfectly aligned, AAA stacked in 16
layers with 18 × 16 particles each, i.e., the layers are identical
copies shifted along the director, and in each layer, there is
perfect hexagonal ordering. That the initial box is very elon-
gated is sensible because the particles themselves have a large
aspect ratio. In the isotropic phase, the box elongation relaxes
and on average becomes isometric albeit the box shape fluctu-
ates considerably, in particular, near the isotropic-to-nematic
phase transition. In the nematic phase, the box can become
very much more elongated than the initial elongation. In the
smectic and crystalline phases, the box anisometry remains
roughly equal to the initial one. If in our simulations, one box
dimension drops below about one particle length, we discard
the run.

The reason why we take the crystal phase as our initial
configuration is that starting from an ordered structure, we
are unlikely to end up in a jammed state. Arguably, the lower
the symmetry of the configuration of particles is, the more
likely it jams on account of the associated decrease in free
volume. Of course, one could argue that this procedure might
give rise to metastable layered phases, that is, the smectic A
and B phases and the crystalline phase. To verify that this is
not the case, we performed compression simulations for one
particular aspect ratio and one degree of flexibility near all
phase transitions that we find in our simulations starting off
the crystalline state. For this purpose, we use a configuration
from the highest concentration of the less ordered phase and
increase the pressure to a value at which the more ordered
phase should appear. We then evolved the system in all cases
by 2 × 107 time steps and evaluated the order parameters (see
below). The order in which the transitions appear is consistent
with the expansion simulations, and the largest disagreement
in the concentration at which the transitions occur is 0.5%.
Hence, we believe that the results of our simulations starting
off the crystal configuration are robust.

We set the elastic constant κ at a large value of 100 kBT /σ2

to ensure minimal entropic stretching of the bonds. In other
words, the average bond length is very close to the rest bond
length of one-half σ. In our simulations, we allow for chains
consisting of n = 13, 15, 17, and 21 beads per chain. We find the
corresponding aspect ratios L0/D in the limit of zero pressure
to be L0/D = 6.46, 7.54, 8.62, and 10.77. For every aspect
ratio, we vary the bending stiffness κθ to obtain a series of
ratios of the contour length L0 and the persistence length Lp,
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FIG. 2. Schematic representation of the liquid crystal phases found in aqueous dispersions of the rod-like fd virus.13 The phase sequence with increasing
concentration is isotropic, nematic, smectic A, smectic B, columnar, and crystal. The double pointed arrow indicates the preferential direction of the aligned
particles, the director. We note that the precise structure of the crystal phase is unknown.

L0/Lp = 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5. The persistence length
we calculated from the equality Lp = κθr/kBT is valid for an
infinitely large number of beads and κθr2/kBT � 1.25

To calculate the corresponding volume fraction φ of any
given configuration, we take the equilibrated volume of the
simulation box V for a given pressure P and define the volume
occupied by the particles as the fixed number of chains N in
the system times the occupied volume v0 by each chain, so
φ = Nv0/V. We approximate the volume of a chain by taking a
spherocylinder with volume v0 = πD3/6 + πD2L0/4.

The equilibrium configurations stored are used to cal-
culate the usual order parameters and the pair correlation
functions of the collection of particles. The order param-
eters quantify (1) the degree of orientation of the chains,
given by the nematic order parameter S2; (2) the organi-
sation in layers perpendicular to the director, given by the
smectic order parameter τ; and (3) the hexagonal ordering
of the closest neighbours within the same layer, which is
described by the bond order parameter ψ6.29–31 With these
order parameters, the isotropic, nematic, smectic A, columnar,
and smectic B or crystal phases can be identified and dis-
tinguished. All these phases are schematically represented in
Fig. 2.

In the isotropic phase, there is only a short-range corre-
lation between the positions and between the orientations of
the chains, and S2 should be zero, but need not be in account
of finite size effects. With the alignment of the particles in the
nematic phase, the order parameter S2 increases abruptly when
crossing the phase boundary, so it can be readily identified. The

FIG. 3. Order parameters as a function of the volume fraction φ for aspect
ratio L0/D = 10.77 and flexibility L0/Lp = 0.05. The nematic order parameter
is S2, the smectic order parameter is τ, and the bond order parameter is ψ6.

same is true for the smectic and bond order parameters τ and
ψ6, allowing us to identify the smectic A phase and the smectic
B or crystal phase. See Fig. 3. Snapshots of the various phases
are given in Fig. 4. The smectic B phase differs from the smec-
tic A and crystal phases in that it does have (quasi) long-range
in-plane bond order but (quasi) no actual long-range positional
order. The smectic A phase has neither, and the crystal phase
has both long-range bond order and positional order. We can-
not distinguish between the smectic B and crystal phase based
only on calculating the correlation function glay

6 of the order
parameter ψ6 due to the finite size of the system. See Fig. 4.
However, we can distinguish between them by considering the
in-layer pair correlation function glay of the centres of mass of
the chains.25,32

As can be seen in Figs. 5(a) and 5(b), there is a clear
difference in glay between two states at different pressures
with equal magnitude of the order parameters S2, τ, and ψ6.
Figure 5(a) exhibits a split second peak in glay, a character-
istic of a crystalline phase that the system with the pressure
shown in Fig. 5(b) does not have. We therefore associate the
absence of peak splitting with the smectic B phase and assume
that the phase transition takes place when the second peak in
the in-layer pair correlation function splits. So, we use the
splitting of the second peak in glay as a proxy for distin-
guishing between the smectic B and the crystal phases. Note
that the smectic B phase that we identify in Fig. 5(b) has a
much noisier glay

6 than that of the crystal phase of Fig. 5(a).

FIG. 4. Snapshots representing the arrangement of particles along the director
for the different phases observed in our simulations for aspect ratio L0/D
= 6.46 and ratio of contour length and persistence length of L/Lp = 0.1. From
left to right with increasing density: isotropic, nematic, smectic A, and smectic
B/crystal. The colour of the particle is a combination of red, blue, and green,
whose intensities are, respectively, proportional to the x, y, and z components
of the orientation of the particle.
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FIG. 5. (a) The ψ6 correlation func-
tion glay

6 (left) and the in-layer pair

correlation function glay (right) as a
function of the distance the centers
of mass of the rods (in units of rod
thickness). The particles have an aspect
ratio L0/D = 10.77, flexibility L0/Lp
= 0.5, and volume fraction φ = 0.63.
The pair correlation function exhibits
peaks characteristic for a crystal phase,
and hence we identify it as such. (b)
The same for a volume fraction of φ
= 0.57. The pair correlation function
does not show the characteristic crys-
tal peaks. Hence at a volume fraction of
φ = 0.57, the particles must in the
smectic B phase. See also the main text.

The difference in the structure of the crystal and smectic B
phases is also evident from the snapshots also presented in
Fig. 5.

In order to determine the crystal symmetry, we compare
the pair correlation function of the centers of mass of the
particles. We distinguish four cases. In the first case, we cal-
culate the pair correlation function for particles in the same
layer. In the second case, we consider pairs of particles in
consecutive layers. In the third and fourth cases, the pair cor-
relation function considers pairs of particles separated by one
and two layers. We expect that all pair correlation functions
must be similar for the AAA crystal structure, whilst the
first and fourth cases should be similar for the ABC struc-
ture. We observe neither of these patterns, implying that we
cannot pinpoint the exact crystal structure. A possible expla-
nation for this is that the ordering between layers is not
so well defined for semi-flexible particles. The fact that we
start off from an initial AAA structure that does not seem
to survive concludes that our simulations are not kinetically
trapped.

III. RESULTS AND DISCUSSION
A. Phase diagrams

The phase diagrams of our particles are presented in Fig. 6.
Recall that our particles are semi-flexible, rod-like chains inter-
acting via a soft-core, repulsive potential. We present phase
diagrams as a function of volume fraction and bending flexi-
bility, ranging from L0/Lp = 0.05 to 0.5, covering particles from
near the rigid-rod limit to semi-flexible chains, for four aspect
ratios, L0/D = 6.46, 7.54, 8.62, and 10.77. We distinguish
between the following phases: isotropic, nematic, smectic A
and smectic B/crystal (Fig. 4). For our set of parameters, we
did not encounter any evidence for a columnar phase. Based on
what we know on the phase behaviour of the fd virus, which

does support a columnar phase, we must conclude that our
particles do not have a large enough aspect ratio for this phase
to appear in the phase diagram.14

Focusing on the aspect ratio L0/D = 6.46 first and repre-
senting the trends observed for the other aspect ratios, Fig. 6
tells us that all phase transitions shift to larger volume fractions
with increasing flexibility. The isotropic-nematic transition
increases approximately linearly with increasing degree of
flexibility, which for large persistence lengths is consistent
with theory and Monte Carlo.20 Both the isotropic-nematic and
the nematic-smectic A transitions are significantly impacted
upon by any bending flexibility. Theoretically, this has been
predicted to be the case albeit these theories are typically valid
in the long-chain and/or large persistence length limits relative
to the width of the particles.2,3,6,7,15–17 The result also agrees
with previous simulation by Bladon and Frenkel.22 We find
that the smectic A phase is strongly destabilised by decreasing
the chain stiffness, in line with results from earlier computer
simulations by Cinacchi and Gaetani on shorter rods and for
smaller box sizes.23

For values of L0/Lp > 0.1, we find a direct transition from
the nematic phase to the smectic B phase, i.e., the smectic
A phase disappears for large enough flexibilities. We notice
that the transitions between the nematic and the smectic B, the
smectic A and the smectic B, and the smectic B and the crystal
phases are much less sensitive to changes in the particle flexi-
bility, and, in fact, to variations in the aspect ratio. The smectic
A phase is more stable for larger aspect ratios and present in the
phase diagram for all flexibilities probed for the aspect ratio
L0/D = 10.77. The transition from the smectic A or nematic to
the smectic B and that from the smectic B to the crystal phase
is only very weakly dependent on the aspect ratio and bending
flexibility of the particles. This is not entirely unexpected, on
the one hand, because the particles in these dense phases are
almost perfectly aligned and, on the other hand, because the
Odijk deflection length λOdijk = Lp〈θ

2〉 turns out to be of the
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FIG. 6. Phase diagrams as a function
of the volume fraction φ and flexibil-
ity L0/Lp for rods with aspect ratios
L0/D = 6.46, 7.54, 8.62, and 10.77. Indi-
cated are the isotropic phase (green cir-
cles), the nematic phase (red stars), the
smectic A phase (blue diamonds), the
smectic B phase (black squares), and the
crystal phase (purple triangles). Corre-
sponding background colours are added
to aid identifying the various phases.
The isotropic-nematic and the nematic-
smectic A phase transitions shift to
higher volume fractions with increas-
ing degree of flexibility. Furthermore
the smectic A phase disappears above
a critical, aspect-ratio-dependent degree
of flexibility. The smectic A-smectic B
or nematic-smectic B and smectic B-
crystal phase transitions shift to larger
volume fractions with increasing degree
of flexibility albeit the effect is relatively
weak. The bars placed at zero flexibility
indicate the simulation results of Bol-
huis and Frenkel for infinitely rigid, hard
spherocylinders for comparison.33

order of the width of the particles in those phases. This implies
that bending modes with smaller wavelengths cannot be sup-
pressed, and that in this limit, the bending flexibility should be
unimportant.15 Practically, this is true if the degree of align-
ment of particles, given by the nematic order parameter S, is
larger than 1 � (3D)/(2Lp). This happens to be the case for the
smectic B and crystal phases for the range of flexibilities that
we cover.

Our simulation results are consistent with those of Bol-
huis and Frenkel for rigid, hard spherocylinders,33 represented
in Fig. 6 by the bars placed at zero flexibility (L0/Lp→ 0). The
agreement is even quantitative for less ordered phases whilst
for the highly ordered phases, the phase transitions in Bolhuis
and Frenkel’s simulations shift to larger concentrations com-
pared to ours. There are several explanations for this. First, our
rod-like chains are slightly compressible. As we shall see in
Sec. III B, excluded-volume interactions cause the chains to
compress in particular in the phases where free volume become
scarce, so in the denser phases. Second, our particles interact
through a soft-core interaction while the rigid rods of Ref. 33
interact via a hard-core potential. Third, our simulation box is
much larger than that of the 1997 study of Bolhuis and Frenkel.
Their particle number was at most 600 whilst in our case, it is
4608, suggesting that finite size effects might also play a role
in the discrepancy.

Regarding the order of the transitions, we can only con-
firm that the transition from the nematic or the smectic A
to the smectic B phase is most definitely of first order: we
observe a clear jump in the density at the pressure where
the transition takes place (results not shown). We find the
isotropic-to-nematic transition to be weakly first order, if at
all, but it seems to become more strongly first order with

increasing aspect ratio, to shift to lower concentrations and
generally to become more stable. This is in line with the
computer simulations of Bolhuis and Frenkel.33 For the other
transitions, we find that, if there are jumps, we do not have the
resolution to observe them. The experiments of, e.g., Grelet
et al. on aqueous dispersions of fd virus particles, which
have an aspect ratio 130, indicate that the nematic-to-smectic
A transition is first order.11–13 The order of the transition
from smectic A to smectic B for fd virus remains unclear.
Fd virus does not transition from smectic B to crystal but to
a columnar phase.12,13 We hypothesise that the large aspect
ratio of the viruses particles somehow stabilises the columnar
phase.

Having discussed the macroscopic (thermodynamic)
properties of our particles, we next investigate in more depth
how the particles and the structure of the more ordered phases
respond to the particle length and flexibility. Interestingly,
we find that the layer thickness in the smectic A phase may
increase or decrease with increasing concentration depending
on the flexibility and aspect ratio of the chain. This increase of
the layer thickness with increasing density is counter-intuitive
but, as we shall see next, it is somehow connected with the
aspect ratio and flexibility.

B. Microscopic structure

Our first probe of the microscopic structure of the various
phases is the actual contour length of the chains relative to
the unperturbed contour length. This is important because our
particles are not only flexible but also slightly compressible.
Hence, we expect that with increasing particle density, they
should become shorter in order to accommodate a decreasing
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free volume. This can be seen as a drawback of our model
particles but in fact allows us to address the question to what
extent the particle flexibility impacts upon the excluded vol-
ume in the isotropic phase, and vice versa if and how excluded
volume interactions impact upon the effective particle bending
flexibility.

In Fig. 7(a), the contour length 〈L〉 is scaled to the refer-
ence contour length L0 for the aspect ratio L0/D = 8.62 as a
function of the volume fraction and the flexibility. The con-
tour length decreases with increasing volume fraction in the
isotropic phase. This decrease does not depend on the particle
flexibility suggesting that volume exclusion in the isotropic
phase is an invariant of the particle flexibility, as has been
presumed in the past.2,3,8,9,17 We observe a small but sudden
increase of the contour length at the isotropic-nematic transi-
tion, except for the most flexible chains for which the transition
seems to become either second order or very weakly first order.
(We note that both the insensitivity of the excluded volume
to chain flexibility in the isotropic phase and the lengthen-
ing of the rods in crossing over to the nematic phase was
observed by Wilson, using a very different flexibility model in
his simulations.34)

FIG. 7. (a) The average change in the contour length of the chains
(〈L〉 � L0)/L0 as a function of the volume fraction φ for various aspect ratio
L0/D = 8.62. The symbols are defined in Fig. 6. The compression and jumps
in length are explained in the main text. (b) The relative end-to-end length
〈Lete〉/〈L〉 as a function of the volume fraction φ for aspect ratio L0/D = 8.62.
Filled circles in magenta represent the prediction for the worm-like chain
model.

Arguably, the reason for this jump is an increased free
volume caused by the alignment of the particles in the nematic
phase.9 This confirms that the transition is first order albeit
more weakly so for the more flexible chains. In the nematic
phase, the contour length decreases with increasing concen-
tration again because of the decrease in free volume with
increasing concentration. We find a much stronger jump on
going from the nematic or smectic A to the smectic B phase.
Simple second virial calculations presented in the Appendix
confirm the observed trends for the isotropic and nematic
phases, explaining also the jump in length.

In Fig. 7(b), the end-to-end length 〈Lete〉 is scaled to the
measured contour length 〈L〉 for aspect ratio L0/D = 8.62 as
a function of the volume fraction and the flexibility. In the
isotropic phase, this end-to-end length apparently depends
only on the ratio L0/Lp. It depends weakly on the concentra-
tion except for the most flexible chains and then only near the
isotropic-to-nematic phase transition. This we argue is again
caused by the excluded-volume interactions not being affected
by particle flexibility. Our measured values for the relative
end-to-end length are in very good agreement with the pre-
diction given by the worm-like chain model, also indicated in
the figure. This confirms that our estimate of the persistence
length for our model chains is accurate. In the liquid crystalline
phases, the end-to-end distance does depend on the concen-
tration and more so the more flexible the particles. This can
straightforwardly be understood by realising that a combina-
tion of persistence and the molecular ordering field attenuates
the bending fluctuations.15,34 The molecular ordering becomes
stronger the larger the particle density. The same is true for the
remaining phase transitions as in fact we already alluded to in
Sec. III A.

Perhaps the most interesting structural feature is how the
average smectic layer thickness depends on the contour length
and persistence length of the particles that we calculate from
the recipe of Ref. 30. In practice, the layer thickness corre-
sponds to the layer height (rod length) plus the spacing between
layers. This is shown in Fig. 8. For all cases, we find that
while transitioning from the smectic A to the smectic B phase,
the layer thickness increases. We speculate that this is due
to the larger degree of in-layer packing possible in the more
strongly ordered smectic B phase. In essence, this is caused by
an increase in free volume. Depending on the aspect ratio and
flexibility, we observe that the layer thickness in the smec-
tic A phase itself may increase or decrease with increasing
concentration. This is not so for the smectic B and crystalline
phases. It seems that in the smectic A phase, increasing the
particle density may translate into a more or less proportional
increase in the in-layer density. If the in-layer density increases
more strongly than the average density, then the layer thick-
ness must increase. Because of the appreciable scatter in the
data, we have not been able to find a clear trend. We also have
no explanation for this phenomenon.

We notice that measurements of the concentration depen-
dence of the layer thickness of smectic A and smectic B phases
of the fd virus show an approximately linear decrease of the
layer thickness with increasing concentration.13 This indeed
is what we obtain for our longest particles. The jumps in layer
thickness that we find at the smectic A-to-smectic B phase
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FIG. 8. The scaled smectic layer thick-
ness versus density φ for various aspect
ratios L0/D. We calculate the layer
thickness from the recipe of Ref. 30.
In practice, the layer thickness corre-
sponds to the layer height (rod length)
plus to the spacing between layers. The
symbols are introduced in Fig. 6. The
smectic layer thickness is scaled to the
measured average contour length of the
particles at that volume fraction. Note
the sizeable jump in the layer thick-
ness at the smectic A-to-smectic B phase
transition. Furthermore, the layer thick-
ness decreases as a function of the vol-
ume fraction for the smectic B and crys-
tal phases. For the smectic A phase,
there is a change in the layer thickness
behaviour according to the aspect ratio
and flexibility.

transition are not observed in the experiments on fd viruses. In
addition, the actual layer thickness scaled to particle lengths
are also smaller for fd viruses than for the particles in our sim-
ulations. On the other hand, we should not expect quantitative
agreement with measurements on fd virus solutions on account
of their much larger aspect ratio.

IV. CONCLUSION

We perform molecular dynamics simulations to study the
influence of flexibility and aspect ratio on the phase behaviour
of purely repulsive, rod-like particles. Our particles have aspect
ratios between 6 and 11 and ratios of the contour length over
the persistence length between 0.05 and 0.5, i.e., we cover the
range from very stiff to slightly flexible particles. By mea-
suring the nematic, smectic, and bond-order parameters and
analysing correlation functions, we are able to distinguish
five different phases. In order of increasing volume fraction,
these include isotropic, nematic, smectic A and B, and crystal
phases. Of those phases, we probe the structure of the parti-
cles and their arrangement, in particular, in the smectic and
crystalline phases.

In agreement with theoretical predictions and previ-
ous simulations, we conclude that the isotropic-nematic and
nematic-smectic A phase transitions are sensitive functions of
the aspect ratio and the flexibility of the particles. For the for-
mer, the larger the aspect ratio is, the lower the volume fraction
at the transition. For the former and the latter, the larger the
flexibility is, the larger the volume fraction at the transition.
In fact, the smectic A phase disappears for a sufficiently large
ratio of the contour length over the persistence length, which
is a measure for the bending flexibility of the particles. We find

the transitions to the other more highly ordered phases to be
much less influenced by both the aspect ratio and the flexibility
of the particles.

On increasing the concentration and going from the
isotropic phase through the various liquid-crystalline phases
to the crystal phase, we find that the end-to-end distance of the
particles increasingly approaches their contour length. This is
not entirely surprising because the more strongly ordered the
phase is, the more the bending fluctuations are suppressed. In
fact, we find, at least for our model bead-chain particles, that
bending fluctuations are essentially completely suppressed in
smectic B and crystalline phases, explaining the insensitivity
of their stability to the persistence length. In other words, the
particles in those phases are stretched to their contour length
and resemble rigid rods.

The layer spacings that we find in the smectic A, smectic
B, and crystal phases exceed the contour length of the parti-
cles. Interestingly and counter-intuitively, these layer spacings
need not decrease with increasing concentration of particles,
at least in the smectic A phase. We find that depending on
the aspect ratio and flexibility, spacing may actually increase.
This is possible provided that the increasing concentration is
more than compensated for by an in-layer density increase. We
verified this and not surprisingly, this turns out to be the case
in our simulations. We have not been able to pinpoint under
what conditions this happens and also do not have an explana-
tion for this phenomenon. Connected to this, we also find that
the layer spacing increases upon going from the smectic A to
the smectic B phase. This arguably is caused by the increase
in free volume across the transition. The layer spacing in the
smectic B and crystalline phases does behave as expected, that
is, decrease with increasing concentration.



244901-8 de Braaf et al. J. Chem. Phys. 147, 244901 (2017)

If we compare our phase diagrams with that of fd viruses
in aqueous solution, then all phases are reproduced, except for
the columnar phase that for fd viruses occurs for concentra-
tions in between the smectic B and crystal phases is stable. Of
course, our particles are much shorter and perhaps it is that sup-
presses the columnar phase in our simulations. The existence
of the columnar phase in dispersions of monodisperse rod-like
particles remains somewhat enigmatic and has been the sub-
ject of a lot of debate in the literature.35 It has been suggested
that explicit modeling of the electrostatics stabilises that phase
albeit we cannot exclude the possibility that it is a question of a
combination of flexibility and large-enough aspect ratio.7 The
challenge is to reach aspect ratios large enough to investigate
this hypothesis.
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APPENDIX: ONSAGER THEORY OF LINEARLY
COMPRESSIBLE HARD RODS

We observe in our simulations, the contraction of the
average contour length of the chains for increasing volume
fractions on account of their finite extensional compressibil-
ity. At the isotropic-nematic phase transition, there is also a
discontinuity in their contour length, with the particles in the
nematic phase being slightly longer. A similar discontinuity
occurs at the phase transition towards the smectic-B-crystal
phase. These two observations can be rationalised with the-
oretical predictions that we obtain by applying the Onsager
theory to extensible rods.

To this end, we consider a system of N bead-spring
chains in a volume V at temperature T. Each rod consists of
n beads connected with n � 1 harmonic bonds with elastic
constant κ and rest length r. Each chain has total rest length
L0 = (n � 1)r and diameter D. The contour length L changes
with the concentration of the dimensionless concentration
c = Biso

2 ρ, with ρ = N /V being the number density of par-
ticles. The free energy F can be written as a function of the
orientational distribution function f (Ω) and the compression
of the chain x = L/L0

F[ f ]
NkBT

= A + ln c + σ[ f ] + cρ[ f ]x2 + K(x − 1)2, (A1)

where A is a constant, ln c is the ideal gas distribution, σ[ f ]
is the orientation entropy, cρ[ f ]x2 is the packing entropy, and
K(x � 1)2 is related with the potential energy of the harmonic
springs with

K =
κL2

0

2(n − 1)kBT
. (A2)

The third and fourth terms mentioned previously are given by
the expressions

σ[ f ] =
∫

f (Ω) ln (4πf (Ω))dΩ (A3)

and

ρ[ f ] =
4
π

∫
| sin γ |f (Ω)f (Ω′)dΩdΩ′, (A4)

where |sin γ| is the angle between the chains with orientation
Ω and Ω′.

In the isotropic phase, the normalised distribution function
is f (Ω) = 1/4π, resulting in an orientational entropy σ[ f ] = 0
and a packing entropy ρ[ f ] = 1. The free energy for the
isotropic state becomes

F iso

NkBT
= A + ln c + cx2 + K(x − 1)2. (A5)

The equilibrium condition for x, ∂
∂x

[
F iso

NkBT

]
= 0, leads to the

compression in the isotropic phase,

xiso =
K

c + K
. (A6)

For the nematic phase, we follow a similar procedure as
Odijk.16 We assume the orientational distribution function to
be Gaussian and obeys cylindrical and inversion symmetry as
follows:

f (θ) =



α/4π exp
(
−αθ2/2

)
, if 06θ 6 π/2

α/4π exp
(
−α(π − θ)2/2

)
, if π/2 < θ 6 π

,

(A7)
where the normalisation is only accurate for α � 1.
For this distribution, we have for the orientational entropy
σ[ f ] ∼ ln α � 1 and for packing entropy ρ[ f ] ∼ 4/

√
απ.8

The free energy for the nematic state is then

Fnem

NkBT
= A + ln c + ln α − 1 +

4cx2

√
απ

+ K(x − 1)2. (A8)

From this expression, we find equilibrium values α = 4c2x4/π
and

xnem =
1
2

+

√
1
4
−

2
K

. (A9)

For xnem, there is also a negative root solution that we ignore
for being physically unrealistic. For K → ∞, xnem = 1. For
K < 8, the compression becomes imaginary, meaning that the
nematic phase becomes unstable.

Equations (A6) and (A9) describe the behaviour of the
mean length of our chains in the isotropic and nematic phases.
We now calculate the coexistence concentration. Coexis-
tence between two phases occur when the osmotic pressure
Π = �(∂F/∂V )N ,T and chemical potential µ = (∂F/∂N)V ,T

are equal for both states, µiso = µnem and Πiso = Πnem.
From these equations, we then calculate the coexistence
concentrations for the isotropic ciso and the nematic phase
cnem.

We now add flexibility to our previous model to study how
it affects the discontinuity in the average length of the chains at
the isotropic-nematic phase transition. Our starting point is the
expression derived by Odijk15,16 describing the orientational
entropy for semi-flexible particles, L/LP �1. For the isotropic
phase, there is no change of the orientational entropy. For the
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FIG. 9. Scaled average length of the chains x = L/L0 as a function of the
dimensionless concentration c, for K = 150 and flexibilities L0/LP = 0, 0.05,
0.1, 0.2, 0.3, 0.4, and 0.5. The green dashed line represents the isotropic phase,
the red lines represent the nematic phase, and the black dots connect the points
of coexistence.

nematic phase, there is the extra term σOdijk = L0αx/4LP, and
then the orientational entropy is

σ = ln α − 1 +
L0αx
4LP

. (A10)

With this new orientational entropy, the free energy for
the nematic phase becomes

Fnem

NkBT
= A+ln c +ln α−1+

L0αx
4LP

+
4cx2

√
απ

+K(x−1)2. (A11)

Solving the equilibrium value for α and x, we obtain the
compression of the chain as a function of the dimensionless
concentration. These and the coexistence concentrations are
calculated numerically.

Finally, we compare the simulations with the model
calculations. We specifically perform the calculations for
K = 150 and for flexibilities L0/LP = 0, 0.05, 0.1, 0.2, 0.3, 0.4,
and 0.5, as can be seen in Fig. 9. These values coincide with
the simulated values, except L0/LP = 0, the rigid rod limit that
we did not simulate. Despite the approximations of our model,
we find qualitative similarities between these results and our

simulation results. First, the decrease of the average length
of the chain with increasing concentration for both isotropic
and nematic phases. Second, the discontinuity in the average
length decrease with the increase of flexibility.
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