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1. Introduction

Topological materials are, nowadays, a rich and well developed 
research field in condensed-matter physics. The study of two-
dimensional (2D) topological systems started in the early 80s, 
with the experimental discovery of the integer quantum Hall 
effect in GaAs [1]. Thereafter, the deep relation between this 
novel phase and the topological invariant induced by a non-
trivial Berry phase was theoretically unveiled [2]. An essential 
feature of these quantum states is that time-reversal symmetry 
is broken in the bulk. However, the recent discovery of 2D 
two-dimensional topological insulators (TIs) [3–6] has opened 
the way to the exploration and classification of a vast number 
of novel materials, also in higher dimensions. In 3D, similar 
versions of 2D TIs have been firstly theoretically formulated 
[7] and then experimentally discovered [8, 9]. These systems 
support surface gapless modes, topologically protected by the 
non-trivial topological number in the gapped bulk.

Although the free-fermion topological phases have been 
completely classified for all dimensions in terms of their 
symmetries [10, 11], much less is known about the complete 

classification and characterization of interacting systems, 
where a variety of quantum phenomena and quasi-particles 
emerge in the low-energy regime. This is the case of anyons in 
fractional quantum Hall states [12–14] and fractional topolog-
ical insulators [15, 16], which carry fractional electric charge 
and spin, Cooper pairs (bound states of spin-up and spin-down 
electrons) in topological superconductors [17], and excitons, 
i.e. particle-hole bound states in bilayer systems [18–22]. At 
the microscopic level, Hubbard-like Hamitonians have been 
employed in the study of exciton condensation in mono-
layer [23] and bilayer graphene [24], bilayer quantum Hall 
systems [18, 25, 26] and in 3D thin-film TIs in the class AII 
[27–29]. In the latter case, the electron-hole pairs residing on 
the surface states can condense to form a topological exciton 
condensate. This kind of condensation can be seen as an elec-
tronic superfluid with dissipationless electronic transport and 
could enable ultra-low-power and energy-efficient devices, 
as already proposed in [30]. At a theoretical level, mean-field 
theory studies show the presence of an excitonic gap induced 
by the short-range part of the Coulomb interaction between 
the surface states [27].
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In this paper, we propose a precise and self-consistent deri-
vation of the gauge theory describing the short-range interac-
tion in thin films of TIs. In these materials, the free-surface 
states are defined in terms of massless Dirac fermions and the 
corresponding interactions are encoded in quantum electro-
dynamics (QED). Our theoretical model is based on the fact 
that the massless Dirac fermions are confined on the 2D sur-
faces, while the virtual photons that mediate their quantum 
electromagnetic interactions are free to propagate in the 3D 
surrounding space. This approach has been already success-
fully employed in the study of several quantum systems, such 
as graphene [31, 32], transition-metal dichalcogenides [33], 
and the edge modes of 2D TIs [34]. The local part of our effec-
tive-field theory is given by a generalized 2  +  1-D Thirring 
model, which has important applications in both condensed-
matter and particle physics [35–38], and represents one the 
main results of this paper. Importantly, our approach fixes 
uniquely the value of its coupling constant, which turns out 
to be proportional to the electric charge and the width of our 
thin-film TI.

Moreover, if on one hand our work reproduces the effec-
tive local Hubbard-like model proposed in [27], on the other 
hand it does not require any mean-field theory approx imation 
for the identification of the exciton mass gap. By solving 
the Schwinger-Dyson equation  [39] for the 2  +  1-D effec-
tive field theory in the strong-coupling regime, we show that 
the mass generation in the exciton condensation is induced 
dynamically. The dynamical mass generation is due to the 
breaking of the chiral symmetry [40–43], and represents a non- 
perturbative phenomenon, beyond the standard mean-field theory.

2. The model

We start our analysis with the description of two gapless sur-
face states in 3D thin-film TIs in class AII. They support an 
odd number of topologically protected helical massless Dirac 
fermions, which are described by a 2  +  1-D Dirac theory. We 
then consider the interactions in and between the two surfaces 
by including a quantum dynamical U(1) gauge field coupled 
to the Dirac fermions. This is encoded in the standard QED 
by introducing a minimal coupling between the gauge poten-
tial Aµ and the fermionic current Jµ. Importantly, while the 
masless fermions are confined on the surfaces of the mat erial, 
the virtual photons that carry the electromagnetic interac-
tion are free to propagate in the 3D space. This is the crucial 
assumption that will allow us to derive an effective 2  +  1-D 
projected theory. Thus, for simplicity, we consider a single 
Dirac fermion per surface, such that our system is described 
by the following QED-like action

S =i�
∫

d3r
(
ψ̄tσ̄

µ∂µψt + ψ̄bσ
µ∂µψb

)

−
∫

d4r
(ε0c

4
FαβFαβ + eJα3+1Aα

)
,

 

(1)

where ψb and ψt denote fermionic fields with ψ̄i = ψ†
i σ

0, which 
are constraint to propagate on the top (t) and bottom (b) sur-
faces of the TI, respectively. Here, σµ are 2 × 2 Pauli matrices 

with µ = 0, 1, 2, and we adopt σ̄µ = −σµ, meaning that the 
two fermions have opposite helicity. The differential elements 
are given by d3r = v dx dy dt  and d4r = c dx dy dz dt , with v 
and c the Fermi velocity and the speed of light, respectively. 
The coupling constant between the matter current and the 
gauge field e is the electric charge carried by each fermion. ε0 
is the vacuum dielectric constant, Fαβ = ∂αAβ − ∂βAα is the 
field-strength tensor, Jα3+1 = jαt + jαb = ψ̄tσ

αψt + ψ̄bσ
αψb, 

and α,β = 0, 1, 2, 3.
We will focus on the interaction between the two fermionic 

species ψt,b, which in our context represent quasi-particles and 
quasi-holes confined on two different surfaces. As illustrated 
in figure 1, the surfaces of the 3D TI are separated by a dis-
tance d, which is the width of the thin-film, and we describe 
the surface Dirac fermions by imposing the following con-
straints on the matter current

jαt,b(t, x, y, z) =
{

jµt (t, x, y)δ(z − d/2),
jµb (t, x, y)δ(z + d/2). (2)

Because the fermions interact with a dynamical quantum 
electromagnetic field, we can integrate out the gauge field to 
obtain the effective non-local interaction term

Seff
int = −e2

2

∫
d4rd4r′Jα3+1(r)

1
(−�)

J3+1
α (r′). (3)

By imposing the constraints given in equation  (2) we are 
effectively describing the system as a single surface living in 
the middle of the thin-film. Hence, equation (3) becomes

Seff
int = −e2

2

∫
d3rd3r′jµκ(r)Vκρ(r − r′) jρµ(r

′), (4)

where Vκρ(r − r′) = [1/(−�)]ξκρ
, κ, ρ = t, b and ξκρ repre-

sents the different values at which the Green’s function has to 
be evaluated.

Although the system from now on may be treated as an 
effectively two-dimensional surface, the information about 
the thin-film width d is carried within the projection. As 
known in the literature [28, 29, 44], the exciton condensation 
in thin-films may only occur when the inter-surface distance d 
is smaller than an in-plane distance a, i.e. d/a < 1. We intro-
duce this minimal in-plane distance a in our model by shifting 
the coordinates of the quasiparticles as follows: r → r − a/2 
and r′ → r′ + a/2. In this way, equation (4) becomes

Seff
int = −e2

2

∫
d3rd3r′jµκ(r − a/2)Vκρ(r − r′ − a) jρµ(r

′ + a/2),

 (5)

Figure 1. The surfaces of a 3D TI separated by a distance d.
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and now the effective interaction carries the information about 
the length a.

The explicit values of ξκρ are

ξtt : z = z′ = d/2, ξtb : z = d/2 and z′ = −d/2,
ξbt : z′ = d/2 and z = −d/2, ξbb : z = z′ = −d/2,

where, after the projection, the top and bottom components 
represent two different flavors in the effective middle plane. 
For both ξtt and ξbb, we obtain similar results as found in [45], 
namely

[
1

(−�)

]

ξii

=
1
2

∫
d3k
(2π)3

eik·(r−r′−a)
√

k2

=
1

4π2(|r − r′ − a|2 + a2)
,

 

(6)

where a settles a minimum distance between the quasiparti-
cles, implying a cutoff on the momenta kmax = 1/a. The terms 
ξtb and ξbt yield

[
1

(−�)

]

ξij

=
1
2

∫
d3k
(2π)3

e−d
√

k2 eik·(r−r′−a)
√

k2
. (7)

Now, by considering that d|k| < 1 [29, 44, 46], we expand the 
exponential exp(−d|k|) ≈ 1 − d|k| and perform the integra-
tion over k to find
[

1
(−�)

]

ξij

≈ 1
4π2(|r − r′ − a|2 + a2)

− d
2
δ3(r − r′ − a).

 (8)
Here, we used the approximation

∫
d3k
(2π)3 eik·(r−r′−a) ≈ δ3(r − r′ − a). (9)

We can finally summarize the results for the effective interac-
tion Vκρ after the projection

Vtt = Vbb =
1

4π2|r − r′ − a|2
,

Vtb = Vbt ≈
1

4π2|r − r′ − a|2
− d

2
δ(r − r′ − a),

where we neglected terms proportional to a2 ≈ 0. By plug-
ging back the interactions above into equation  (5), we may 
write down Seff

int  as a long and a short-range contribution (see 
appendix A for details).

3. Single-surface description

The aim of this section  is to describe a two-surface system 
in terms of a single effective surface with two species of fer-
mions. Our 2  +  1-D effective action after the projection is 
given by

Seff = i�
∫

d3r
(
ψ̄tσ

µ∂µψt − ψ̄bσ
µ∂µψb

)

− e2

2ε0c

∫
d3r′

∫
d3r jµκ Vκρ jρµ,

 

(10)

where κ, ρ = t, b represent the different surfaces. Now, 
we can rewrite the action (10) in terms of a single spinor 
Ψ = (ψt,ψb)

�. For the kinetic part, we obtain

ψ̄tσ
µ∂µψt − ψ̄bσ

µ∂µψb = Ψ̄γµ∂µΨ, (11)

where the 4 × 4 γ-matrices are defined as [38]

γµ =

(
σµ 0
0 −σµ

)
,

with

γ0 =

(
σ0 0
0 −σ0

)
, γτ = i

(
στ 0
0 −στ

)
.

Here, τ = 1, 2, γµ ≡ σ0 ⊗ σµ, and ⊗ represents the tensor 
product. The fermionic currents can be written in terms of the 
new spinors

jµt =
1
2
Ψ̄(1 + σ0)⊗ σµΨ, (12)

jµb =
1
2
Ψ̄(1 − σ0)⊗ σ̄µΨ, (13)

where 1 ⊗ σµ = −iγµγ3γ5, with

γ3 = i
(

0 1
−1 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
.

Once we have expressed all contributions to the effective 
action (10) in terms of four-component spinors Ψ̄ and Ψ, we 
can write down the following single-surface action

Seff[Ψ̄,Ψ] =
e2

2ε0c

∫
d3r′

∫
d3rJ µ

35
1

4π2|r − r′|2
J 35
µ

+ �
∫

d3r
[

iΨ̄γµ∂µΨ+
e2d

8�ε0c

(
J µJµ + J µ

35J
35
µ

)]
,

 

(14)

where J µ ≡ Ψ̄γµΨ and J µ
35 ≡ Ψ̄γµγ3γ5Ψ.

4. Dynamical gap generation

In the previous section, we derived an effective single-surface 
interacting model (see equation (14)), which involves both a 
short- and a long-range interaction. The former corresponds to 
a generalized Thirring model [37, 42], while the latter is sim-
ilar to the non-local field theory studied in [31, 33, 43]. These 
kinds of interactions have been already studied separately in the 
context of dynamical mass generation in [40–43]. This mech-
anism is relevant in interacting quantum-field theories and 
is related to the dynamical breaking of a classical symmetry 
due to quantum effects. In fact, all three interaction terms in 
our effective action (14) are invariant under chiral symmetry, 
which is dynamically broken at the quantum level. In the first 
part of this section, we will focus on the short-range interac-
tions J µJµ + J µ

35J 35
µ . By following the approach developed 

in [40], we will show that in the strong-coupling regime both 
Thirring-like terms yield the same mass generation, and their 
combined action leads to a larger critical number of fermion 
flavors Nc, as compared to a single Thirring term. At last, we 
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will add the long-range interaction and show that the excitonic 
gap is then enhanced, in agreement with the results found in 
[23, 47] for the case of Gross-Neveu theory.

4.1. Short-range interactions

Firstly, let us focus on the dynamical mass generated due to 
the Thirring-like interactions of equation (14). In the large-N 
approximation, we can write down the effective Lagrangian as

Leff[Ψ̄,Ψ] = i�Ψ̄aγ
µ∂µΨa

+
g

2N

(
Ψ̄aγ

µγ3γ5ΨaΨ̄āγµγ
3γ5Ψā + Ψ̄aγ

µΨaΨ̄āγµΨā
)
,

where g = e2dN/4ε0c. Here the indexes a, ā denote a sum 
over N fermion flavors.

Through a Hubbard-Stratonovich transformation, we 
introduce two auxiliary vector fields Wµ

n  (n = 1, 2) and two 
scalar fields φn in a way to preserve gauge symmetry. Thus, 
we obtain

Leff[Ψ̄,Ψ, W1, W2,φ1,φ2] = i�Ψ̄aγ
µDµΨa

−
∑

n=1,2

1
2g

(
Wµ

n −
√

N∂µφn

)2
, 

(15)

where Dµ = ∂µ − (i/
√

N)γ3γ5W1
µ − (i/

√
N)W2

µ. By fol-
lowing a similar procedure as adopted in [40], we introduce a 
non-local gauge-fixing term of the form

−1
2

[
∂µWµ +

√
N
ζ(∂2)

g
φ

]
1

ζ(∂2)

[
∂νWν +

√
N
ζ(∂2)

g
φ

]

for each gauge field Wµ
n  in the Lagrangian (15). As a result, 

we obtain

Leff[ψ, ψ̄, W1, W2] + Leff[φ1,φ2]

= i�Ψ̄aγ
µDµΨa −

1
2g

Wn
µWµ

n − 1
2
∂µWµ

n
1

ζ(∂2)
∂νWν

n

− 1
2g

[
ζ(∂2)φn

]
φn −

1
2
∂µφn∂

µφn,

 

(16)

where the gauge-fixing term decoupled the φ-boson fields, 
which have also been rescaled as 

√
N/gφn → φn. The double 

index n indicates a summation over the fields. Notice in  
equation  (16) that only the strong-coupling regime g → ∞ 
preserves gauge symmetry, leading to a massless gauge 
boson. We shall return to this point later in the Schwinger-
Dyson analysis.

Once we have obtained the gauge theory in equation (16), 
we proceed by defining the Feynman rules needed for calcu-
lating the mass generation. The full fermion propagator reads

S( p) =
i

A(−p2)γµpµ − B(−p2)
, (17)

where A represents a correction to the fermion-field wave 
function, and B is the order parameter of the chiral symmetry, 
which preserves parity in 2  +  1 dimensions. The Schwinger-
Dyson equation for the fermion two-point function is given by

S−1( p) = S−1
0 ( p)− iΣ( p), (18)

where S0 = i/γµpµ is the free-fermion propagator. The self-
energy Σ contains the contribution from both types of local 
interaction, and it is determined by

−iΣ = − 1
N

∫
d3k
(2π)3 γ

µγ3γ5S(k)Γνγ3γ5G1
µν( p − k)

− 1
N

∫
d3k
(2π)3 γ

µS(k)ΓνG2
µν( p − k).

 

(19)

Γν  and Gn
µν  are the full-vertex function and the full gauge-

boson propagators, respectively. Here, we will adopt the bare-
vertex approximation, i.e. Γν = γν . The explicit expression 
for the full gauge-boson propagator reads

Gn
µν(k) = iGn

0(−k2)

(
gµν − η(−k2)

kµkν
k2

)
, (20)

where G1
0 = 1/(g−1 −Π), G2

0 = 1/(g−1 +Π), and η is a 
non-trivial function of the momentum related to the non-local 
gauge approximation [40]. The function Π(−k2) emerges 
from the one-loop polarization tensor, inducing dynamics to 
the gauge fields Wn

µ through interaction effects.
In the strong-coupling regime (g → ∞), both contributions 

in equation  (19) reduce to a single term. By replacing the 
respective Γν  and Gn

µν  functions into equation (19) and using 
that [γµ, γ3γ5] = 0, we obtain

[A( p2)− 1]γµpµ − B( p2)

=
2
N

∫
d3k
(2π)3

γµ(Aγαkα + B)γν

(A2k2 + B2)Π(q2)

(
gµν − η

qµqν
q2

)
,

 

(21)
where q = p − k . We also performed a transformation to the 
Euclidean space (k0 → ikE

0 ).
By taking the trace over γ-matrices in equation  (21), we 

obtain two coupled equations: one related to the renormaliza-
tion of the fermion wavefunction and another related to the 
generation of the fermionic mass. Within the non-local gauge-
fixing picture, the fermion wavefunction is not renormalized. 
This means that A( p2) = 1, and it leads to both

0 =
2

Np2

∫
d3k
(2π)3

1
(k2 + B2)Π

[(η − 1) p · k

− 2η
(k · q)( p · q)

q2

]
,

 
(22)

and

B =
2
N

∫
d3k
(2π)3

B(3 − η)

(k2 + B2)Π
, (23)

where equation (22) is used to determine η(q2). After some 
calculations, one finds that in the massless gauge boson limit 
g → ∞, η = 1/3 is a constant (see appendix B for details). 
Within the Schwinger-Dyson equations, this limit is only 
defined for a nonzero polarization-tensor contribution, i.e. 
Π(q2) �= 0, as seen in equation  (23). Hence, the quenched 
approximation Π(q2) = 0 sometimes used in the literature 
[43] to simplify calculations can only be used here in the case 
of a massive gauge boson.
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We proceed with the computation by considering the mass-
less gauge boson limit with η = 1/3, which yields

B =
128
3N

∫
d3k
(2π)3

B

(k2 + B2)
√
( p − k)2

, (24)

where we used Π(q2) =
√

q2/8. The integrals over k in equa-
tion (24) are performed in spherical coordinates. We first inte-
grate over the solid angle, and then split the remaining integral 
over positive values of k into two regions,

B =
64

3π2N

{∫ p

0
dk

k2B(k2)

k2 + B2(k2)

1
| p|

+

∫ Λ

p
dk

k2B(k2)

k2 + B2(k2)

1
|k|

}
,

 

(25)

where the virtual-momentum k is, respectively, less or greater 
than the external momentum p. Here, Λ is a cutoff and 
p = | p|. Now, we transform the integral equation (25) into a 
differential equation, and by considering p2 + B2( p2) ≈ p2, 
we obtain

p2 d2B
dp2 + 2p

dB
dp

+
64

3π2N
B = 0. (26)

The solution of equation (26) reads

B( p) =
√

m
p

[
C1 cos

(
λ ln

p
m

)
+ iC2 sin

(
λ ln

p
m

)]
, (27)

where we have introduced the infrared parameter m such that 
the ratio p/m is dimensionless and the solution obeys the nor-
malization condition B(m) = m. C1 and C2 are coefficients to 
be determined according to the ultraviolet (UV) and infrared 
(IR) boundary conditions. The parameter λ indicates the 
behavior of the solutions of equation (26), and it is given by

λ =
1
2

√
256

3π2N
− 1. (28)

We see in equation  (28) that there is a critical value 
Nc = 256/3π2 ≈ 8.6 determining the point at which the 
solution changes from oscillatory to exponential. This crit-
ical number is twice the one in QED2+1 with a non-local 
gauge fixing. For values of N > 256/3π2, the solutions in 
equation  (27) are real exponentials, with a contribution that 
increases in the UV limit. Hence, the only possible solution in 
this regime is B( p) = 0 (trivial solution; no mass generation) 
[48]. For N < 256/3π2, we obtain the oscillatory solutions 
(27). This implies that B( p) �= 0, and consequently, the chiral 
symmetry has been broken by the dynamical generation of a 
fermion mass.

The IR and UV boundary conditions are, respectively,
[

dB( p)
dp

]

p=m
= 0, and

[
p

dB( p)
dp

+ B( p)
]

p=Λ

= 0. (29)

The IR condition yields a relation between the coefficients C1 
and C2, C1 = 2iλC2. By using this result in the UV condition, 
we obtain an expression for m

m = Λexp

[
− 1
λ
arctan

(
4λ

4λ2 − 1

)]
. (30)

The solution (27) can be rewritten as

B( p) = mF
( p

m
,λ
)

, (31)

with

F
( p

m
,λ

)
=

√
m
p

[
cos

(
λ ln

p
m

)
+

1
2λ

sin
(
λ ln

p
m

)]
.

So far, we have shown that the Thirring-like interactions 
derived within the dimensional-reduction method break the 
chiral symmetry and generate a mass in the fermionic sector 
with a critical number Nc that is twice the value of the stan-
dard Thirring model derived in [40]. This makes sense in the 
strong-coupling regime because the contributions of both 
Thirring-like interactions sum up, yielding the multiplicative 
factor 2 in equation (21).

4.2. Long-range interaction

At last, we investigate the effect of the long-range interaction 
in the strong-coupling regime. First, we rewrite the long-range 
interaction of equation (14) in terms of a gauge theory, e.g.

Hµν 1√
�

Hµν + ḡhµJ µ
35, (32)

where Hµν = ∂µhν − ∂νhµ and ḡ is the coupling constant. 
This non-local gauge theory is similar to the one studied in 
[43], where the authors also showed the breaking of chiral 
symmetry.

By adding the contribution of the long-range interaction to 
Σ( p) and following a standard procedure, we obtain a differ-
ential equation similar to equation (26), but with a different 
coefficient multiplying the fuction B( p). In other words, we 
obtain a different parameter λ, namely

λ′ =
1
2

√
4
N

(
64

3π2 +
8
π2

)
− 1, (33)

where 32/Nπ2 is the long-range contribution. The new param-
eter λ′ leads to a critical number Nc = 352/3π2 ≈ 11.8. Thus, 
the difference between the effect caused by the short- and 
the long-range interaction is mainly associated to the critical 
number of fermions (or critical coupling) below which the 
symmetry is dynamically broken.

Our results show that the short-range interaction yields the 
major contribution to the dynamical mass generation when 
compared to the long-range one. However, both interaction 
effects add up in a way to increase the value of the critical 
fermion flavor Nc for the occurrence of exciton condensa-
tion. This dynamical mechanism is driven mainly by the pres-
ence of electronic interactions between the surfaces of 3D TI 
thin-films, and is robust only when the surfaces are strongly 
interacting. The resulting gap is time-reversal invariant and 
represents a signature of excitonic bound states.
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4.3. Application: Bi2Se3 thin-film

Here, we apply our theoretical results about the dynamical gap 
generation to Bi2Se3 thin films. This material is one of the 
most investigated three-dimensional topological insulators [9, 
49], together with Bi2Te3 [50]. Experimentally, the size of the 
gap depends on the material, on the thickness of the film, and 
on the substrate where the material is grown. In particular, 
the width of the sample drives the transition from a trivial 
insulator to a quantum spin Hall insulator, up to the limit in 
which the material presents the characteristics of a true three-
dimensional topological insulator. This transition has been 
theor etically and experimentally investigated in [9].

In our manuscript, to describe these thin films, we adopted 
the regime where the distance between the surfaces d—the 
width of the 3D TI—is smaller than the in-plane average 
separation a between electrons and holes. In general, one 
would not expect interactions between the surfaces of a 3D 
TI because of the high values of the bulk dielectric con-
stant. However, the bulk dielectric constant depends on the 
thickness of the material and decreases for thinner samples  
[51, 52]. In this limit, the effect of electronic interactions 
becomes relevant. As we have shown, in the strong coupling 
regime there is a gap generation in each of the surfaces.

Within these assumptions, by using equation (30) we are 
able to estimate the excitonic gap generated at zero temper-
ature. This estimative depends on the material and di electric 
constant of the substrate via the cutoff Λ, which in the case 
of Bi2Se3, for a single Dirac mode (N = 1), is 0.1 eV [29]. 
By considering these parameters, we theoretically esti-
mate λ � 1.65 and determine the maximum value for the 
gap, m ≈ 0.07 eV, arising from the electronic interactions. 
Interestingly, this value agrees with the gap measured through 
ARPES for a thin-film thickness of 4 nm in Bi2Se3 [9].

5. Conclusions

It was theoretically proposed that the excitonic bound states at 
zero magnetic field may have important technological appli-
cations such as for dispersionless switching devices [53], or 
in the design of topologically protected qubits [54], or in heat 
exchangers [30]. It is also well known that TI-based electronic 
devices are attractive as platforms for spintronic applications. 
In this work, we provide further theoretical support for exciton 
condensation in thin-film 3D TIs by investigating the influ-
ence of electromagnetic interactions in these systems.

We started by considering that the photons propagate 
through the 3D surrounding space where the material is 
immersed, while the mobile electrons propagate on the two 2D 
surfaces of the 3D TI. Upon projecting the photon dynamics 
to these two 2D surfaces, we found the effective intra- and 

inter-surfaces interaction in the system. The problem was then 
mapped into a single surface one, in which the top and bottom 
layers appear as flavors of a single fermionic spinor. Within a 
single-surface picture, we showed that the fermions interact 
via two effective short-range and one long-range interaction 
terms. By using a Hubbard-Stratonovich transformation, we 
introduced the corresponding effective gauge theory and ana-
lyzed the dynamical gap generation through the Schwinger-
Dyson equation. This gap term is time-reversal invariant and 
is associated to the chiral symmetry breaking.

Our results indicate that the combined effect of short- and 
long-range interactions that emerge from projecting QED 
enhance the value of the critical fermion flavor number Nc in 
comparison to models that only include short- or long-range 
interaction. They also confirm the existence and robustness of 
excitonic bound states in thin-film TIs in the non-perturbative 
regime. Notice that these results are achieved in the strongly-
coupling regime, which is usually difficult to access with 
analytic techniques due to the failure of the standard perturba-
tion-theory approach.

The method used here can be extended to multi-layer sys-
tems, which involve a larger number of fermion species. This 
will allow one to analyze the chiral-symmetry breaking and 
dynamical mass generation in experimentally available sam-
ples of multi-layered Dirac materials. At present, the multi-
layer samples are of higher quality than the corresponding 
single-layer ones, and it is therefore essential that theoretical 
investigation tackle those more complex, multi-flavor systems. 
Furthermore, the same method can be used to study lower-
dimensional excitonic bound states, which have been recently 
proposed in two parallel nanowires [55]. This problem will be 
analyzed in future work.
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Appendix A. Effective interactions after projection

After the projection, we obtain the following interaction terms

Vtt = Vbb =
1

4π2|r − r′ − a|2
,

Vtb = Vbt ≈
1

4π2|r − r′ − a|2
− d

2
δ(r − r′ − a).

where a2 ≈ 0. By plugging back these results into equa-
tion (5), we find
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Seff
int = −e2

2

∫
d3rd3r′jµt,b(r − a/2)

1
4π2|r − r′ − a|2

jt,bµ (r′ + a/2)

− e2

2

∫
d3rd3r′jµt,b(r − a/2)

[
1

4π2|r − r′ − a|2
− d

2
δ(r − r′ − a)

]
jb,t
µ (r′ + a/2)

= − e2

2

∫
d3rd3r′jµt,b(r − a/2)

1
4π2|r − r′ − a|2

jt,bµ (r′ + a/2)
︸ ︷︷ ︸

r→r+a/2; r′→r′−a/2

− e2

2

∫
d3rd3r′jµt,b(r − a/2)

1
4π2|r − r′ − a|2

jb,t
µ (r′ + a/2)

︸ ︷︷ ︸
r→r+a/2; r′→r′−a/2

+
e2d
4

∫
d3rjµt,b(r + a/2) jb,t

µ (r + a/2)
︸ ︷︷ ︸

r→r−a/2

= −e2

2

∫
d3rd3r′jµt,b(r)

1
4π2|r − r′|2

jt,bµ (r′)− e2

2

∫
d3rd3r′jµt,b(r)

1
4π2|r − r′|2

jb,t
µ (r′) +

e2d
4

∫
d3rjµt,b(r) jb,t

µ (r).

 (A.1)

Appendix B. η-function in the strong coupling 
regime

By rewriting equation (22) of the main text in spherical coor-
dinates, we obtain

0 =
1

Np2

∫ ∞

0

k2dk
(2π)2

1
k2 + B2

∫ π

0
dθ sin θ

×
[
f1(q2, k2, p2) cos θ − f2(q2, k2, p2) sin2 θ

]
,

 (B.1)

where

f1(q2, k2, p2) ≡ G̃0(q2)(η + 1)
√

k2p2,

and

f2(q2, k2, p2) ≡ G̃0(q2)2ηk2p2

q2 .

Here, we denote G̃0 = limg→∞ G0, in the massless gauge 
boson limit. Now, we integrate by parts the first integral over 
θ in equation (B.1), which yields

∫ π

0
dθ sin θ cos θf1 = −

∫ π

0
dθ sin3 θ

df̃1
dq2 , (B.2)

where we used that q2 = p2 + k2 − 2
√

k2p2 cos θ and 
f̃1 =

√
k2p2f1. Replacing the result (B.2) into equation (B.1), 

we find

0 =
1
N

∫ ∞

0

dk
(2π)2

k4

k2 + B2

×
∫ π

0
dθ sin3 θ

{
d[(η + 1)G̃0]

dq2 +
2ηG̃0

q2

}
,

 (B.3)

with

d[(η + 1)G̃0]

dq2 +
2ηG̃0

q2 =
1
q4

[
d(ηG̃0q4)

dq2 + q4 dG̃0

dq2

]
.

Thus, η satisfies the following differential equation

d(ηG̃0q4) = −q4 dG̃0

dq2 dq2,

and

η(q2) =
2

G̃0(q2)q4

∫ q2

0
G̃0(ζ

2)ζ2dζ2 − 1

=
2Π(q2)

q4

∫ q2

0

ζ2

Π(ζ2)
dζ2 − 1 =

1
3

,

 

(B.4)

where Π(q2) =
√

q2/8.
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