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The gyromagnetic factor is an important physical quantity relating the magnetic-dipole moment of a particle
to its spin. The electron spin g-factor in vacuo is one of the best model-based theoretical predictions ever made,
showing agreement with the measured value up to ten parts per trillion [J. Schwinger, Phys. Rev. 73, 416 (1948);
R. S. Van Dyck, Jr. et al., Phys. Rev. Lett. 59, 26 (1987); D. Hanneke et al., Phys. Rev. Lett. 100, 120801 (2008);
T. Aoyama et al., Phys. Rev. Lett. 109, 111807 (2012)]. However, for electrons in a material the g-factor is
modified with respect to its value in vacuo because of environment interactions. Here, we show how interaction
effects lead to the spin g-factor correction in graphene by considering the full electromagnetic interaction in the
framework of pseudo-QED [A. Kovner et al., Phys. Rev. B 42, 4748 (1990); N. Dorey et al., Nucl. Phys. B 386,
614 (1992); S. Teber, Phys. Rev. D 86, 025005 (2012); 89, 067702 (2014); E. C. Marino, Nucl. Phys. B 408, 551
(1993)]. We compare our theoretical prediction with experiments performed on graphene deposited on SiO2 and
SiC, and we find a very good agreement between them.

DOI: 10.1103/PhysRevB.95.245138

I. INTRODUCTION

The electron dispersion relation in solid-state materials
strongly depends on the crystal-lattice geometry. In the case of
graphene, the honeycomb lattice leads to a zero-mass relativis-
ticlike dispersion, E±(k) ≈ ±vF |k|. This characteristic allows
us to relate the electrons in graphene to free Dirac massless par-
ticles in (2+1) dimensions (D) [1]. However, the fact that the
photons propagate with the speed of light c and the electrons
move with the Fermi velocity vF � c/300 [2] has important
consequences upon the physical properties of the system.

Until a few years ago, graphene was believed to be an
effectively noninteracting system. The recent measurement of
the fractional quantum Hall effect [3–5], which is a typical
feature of strongly correlated systems, however, has changed
this paradigm. The relevance of interactions in graphene was
further confirmed by the experimental observation of the renor-
malization of the Fermi velocity [6–8], as had been theoreti-
cally predicted earlier [9–13]. More recently, higher-order loop
calculations have been performed [14]. However, most of the
theories found in the literature consider only static interactions
because vF � c. Dynamical effects, nevertheless, have proven
to be important in some cases, by generating novel quantum
topological states that would not arise in the static limit [15].

Even though the electrons in graphene are constrained to
move on a plane, the electromagnetic field through which
they interact spreads in 3D. Integrating away out-of-the-plane
photons, one obtains an effective interaction that is nonlocal
in space and time. Despite being fully 2D, it conveys all
properties of the genuine 3D electromagnetic interaction. This
interaction has been called pseudo-QED (PQED) because
it involves pseudodifferential operators, but sometimes the
names reduced QED and large-N QED2+1 are also used in
the literature [16,17]. It has been shown to respect causality
[18], scale invariance, the Huygens principle, and unitarity
[19], apart from exhibiting a 1/R static Coulomb potential.
Actually, the propagator in pseudo-QED in coordinate space

coincides with the one of QED2+1 in momentum space [18],
and these two theories are dual to each other [19].

Motivated by the relevance of electron-electron interactions
in graphene, and by the fact that the Fermi velocity is much
different than the speed of light, we investigate in this paper the
spin gyromagnetic factor in graphene by using the anisotropic
PQED, which contains a term that breaks Lorentz invariance
in the quantum-field-theory formalism. Since the nonlocal
gauge field produces the full electromagnetic interaction,
independently on whether the matter is relativistic or not [20],
we can easily include the Lorentz violating term in the matter
field. We then calculate the spin g-factor (gs) and show that it
compares very well to the experimental data available in the
literature [21,22]. Our results set the importance of interactions
in determining the g-factor in graphene in particular and 2D
relativistic condensed-matter systems in general — similarly
as in the case of QED3+1 [23–26].

This paper is divided as follows. In Sec. II, we present
the anisotropic version of the PQED theory together with the
rules needed to compute Feynman diagrams. In Sec. III, we
discuss how the tree-level vertex diagram leads to corrections
to the bare g-factor gs = 2 due to interaction effects. The
detailed calculation of the correction is performed in Sec. IV,
and a comparison of our results with experiments on the spin
g-factor of graphene deposited on different substrates is shown
in Sec. V. We present our conclusions in Sec. VI.

II. ANISOTROPIC PSEUDO-QED

The anisotropic version of the PQED is given by the
Lagrangian

L = −1

2
Fμν

1√
�

Fμν + ψ̄κ (iγ 0∂0 + ivF γ i∂i − �)ψκ

− eψ̄κ

(
γ 0A0 + vF

c
γ iAi

)
ψκ + ζ

2
Aμ

∂μ∂ν

√
�

Aν, (1)
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where Fμν is the usual field-intensity tensor of the U(1) gauge
field Aμ, which intermediates the electromagnetic interaction
in 2D (pseudo-electromagnetic field), � is the d’Alembertian,
and ψ̄κ = ψ†

κγ0 is the Dirac spinor, with κ representing a sum
over valleys (K and K ′). Here, we use the Dirac basis for the
γ matrices and consider the 4 × 4-spinor representation ψ†

κ =
(ψ	

A↓,ψ	
B↓,ψ	

A↑,ψ	
B↑)κ , with A and B denoting the sublattices

in graphene and ↑ and ↓ the different spins. The parameter ζ

is the gauge fixing (we adopt Feynman’s gauge ζ = 1), and
� is a gap that may occur due to a sublattice asymmetry in
case of graphene deposited on substrates (which also acts as
an infrared regularization parameter) [27].

The Feynman’s rules of the model yield the fermion
propagator SF ,

SF (p̄) = i
γ μp̄μ + �

p̄2 − �2
, (2)

where for Dirac matrices γ μ = (γ 0,γ i), p̄μ = (p0,vF p), and
p̄2 = p2

0 − v2
F p2. The photon propagator reads

Gμν(p) = −ic

2ε
√

p2

[
gμν −

(
1 − 1

ζ

)
pμpν

p2

]
, (3)

where pμ is the four-momentum given by pμ = (p0,cp),
p2 = p2

0 − c2p2, gμν = (1, − 1, − 1), and ε is the electric
permittivity. The interaction vertex is given by

�
μ

0 = −ie(γ 0,β γ j ), (4)

where β ≡ vF /c.
The pole of the fermion propagator provides the energy dis-

persion relation p0 = E(p) = ±
√

v2
F p2 + �2. When � = 0,

we reproduce the tight-binding result for monolayer graphene.
The first term present in the Maxwell Lagrangian in Eq. (1)

is nonlocal and renders the canonical dimension of the gauge
field equal to 1, in units of mass. The same holds for the Dirac
field. Therefore, the coupling constant e is dimensionless in the
2+1 space-time, and the theory is renormalizable, analogously
to QED3+1. Here, we calculate the one-loop correction to the
vertex diagram using the dimensional regularization procedure
as a way to obtain finite Feynman amplitudes, which do not
depend on the regulator [28].

III. THE (2+1)D VERTEX FUNCTION

We start by analyzing the S-matrix element M for the
scattering from an external field, represented by the tree-level
diagram in Fig. 1 and written down as [29]

iM(2π )δ(p′0 − p0) = −ieū(p̄′)�μu(p̄) · Ãext
μ (p′ − p), (5)

FIG. 1. Tree-level diagram.

where ū and u are normalized solutions of the free Dirac
equation [30], and Ãext

μ (p̄) is the Fourier transform of Aext
μ (x),

which is a classical external potential. By splitting the different
vertex contributions in Eq. (5), we obtain

iM(2π )δ(p′0 − p0) = −ieū(p̄′)�0u(p̄)φ̃ext(q)

+ ieβū(p̄′)�u(p̄) · Ãext(q), (6)

with p′ − p = q. Here, φ̃ext and Ãext are the scalar and the
vector potential, respectively. Lorentz invariance allows us to
write the vertex �μ as

�μ = C1γ
μ + C2(p̄′μ + p̄μ) + C3(p̄′μ − p̄μ), (7)

where Ci’s are scalar functions of the momentum and/or the
fermionic mass. By applying the Ward identity qμ�μ = 0 in
Eq. (7), we find that C3 = 0. Therefore,

�μ = C1γ
μ + C2(p̄′μ + p̄μ). (8)

Now, using the Gordon identity, we rewrite Eq. (8) as

ū(p̄′)�μu(p̄) = ū(p̄′)
[
γ μF1(q̄2) + iσμνq̄ν

2�
F2(q̄2)

]
u(p̄),

(9)

where F1 and F2 are form factors. At the tree-level diagram,
F1 = 1 and F2 = 0. Plugging the above result into Eq. (5), we
have

iM(2π )δ(q0) = −ieū(p̄′)
[
γ μF1(q̄2) + iσμνq̄ν

2�
F2(q̄2)

]

× u(p̄) · Ãext
μ (q). (10)

So far, we have not specified the space-time dimension of the
system studied. To understand better the problem in (2+1)D,
let us follow the analysis performed in Ref. [29], but now for
μ,ν = 0,1,2.

Focusing on the spatial component of the four-vector po-
tential Aext

μ (x) = [0,Aext(x)], or in the Fourier space Ãext
μ (q̄) =

[0,Ãext(q)], one obtains

iM = +ieβū(p̄′)
[
γ iF1(q̄2) + iσ iν q̄ν

2�
F2(q̄2)

]
u(p̄) · Ãi

ext(q).

(11)

By performing a nonrelativistic expansion of the spinor, i.e.,

u(p̄) =
(√

p̄ · σξ√
p̄ · σ̄ ξ

)
≈

√
�

(
(1 − vF p · σ/2�)ξ
(1 + vF p · σ/2�)ξ

)
,

with ξ being a spinor in the spin space, σ = (1,σ i), and σ̄ =
(1, − σ i), the first term in Eq. (11) yields

ū(p̄′)γ iu(p̄) = 2�vF ξ ′†
(

p′ · σ

2�
σi + σ i p · σ

2�

)
ξ

= 2�vF ξ ′†
[
P jδji1 − iεijkqjσ k

2�

]
ξ, (12)

where P j = p′j + pj . The first term in Eq. (12) is a contri-
bution from the operator p · A + A · p, while the second term
is the magnetic-moment interaction. Notice that although in a
strictly 2D system the momentum pz = 0 (i.e., j = 1,2), the
set of Pauli matrices encounters the possibility of k = 0, 1, and
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2. Hence, for a nonvanishing magnetic moment interaction,
there are two possibilities for the Levi-Civita, ε120 and ε210,
which leads to

i(2�β)ξ ′†
(

2e

2�

)
σ 0

2
ξ
[ − iεij0vF qj Ãi

ext(q)
]

= −i(2�β)gsμBξ ′† σ
0

2
ξ [−∇⊥ · Aext(x)],

= −i(2�β)gsμBSB⊥. (13)

Here, we used that q → −i∂ with ∇⊥ = (∂y, − ∂x), μB =
e/2� is the Bohr magneton, S is the electron’s spin, B⊥ is
a magnetic field perpendicular to the electron’s propagation,
and gs = 2 (noninteracting case).

Proceeding with a similar analysis for the second term in
Eq. (11), we obtain

ū(p̄′)σ iν q̄νu(p̄) = 2�ξ ′†εij0σ0vF qj ξ. (14)

Now, by rewriting the contribution from Eq. (14) as the one in
Eq. (13) and replacing both results together with Eq. (12) into
Eq. (11), we obtain

iM = i(2�β)ξ ′†
(

evF P i1

2�

)
F1ξ · Ãi

ext(q)

− i(2�β)gs(F1 + F2)μBSB⊥. (15)

In the second term of Eq. (15), we observe how interaction
effects can change the value of the spin g-factor, leading to a
corrected g∗

s (F1 = 1),

g∗
s ≡ 2 + 2F2 = 2 + O(α). (16)

In the following section, we calculate the value of this
correction, i.e., the form factor F2.

IV. FORM FACTOR CALCULATION

Our aim in this section is to compute the one-loop correction to the electron’s gyromagnetic factor gs using the anisotropic
pseudo-QED. For this, it is only necessary to calculate the finite part of the spatial component of the vertex represented in Fig. 2.
According to Feynman’s rules, the vertex diagram is given by

iM = +ieβū

∫
d3k

(2π )3

{
�α

0 SF (k̄ + p̄′)γ iSF (k̄ + p̄)�β

0 Gαβ(k)
}
uÃi

cl, (17)

with M = �iÃi
cl, and

�i = − ie3vF

2ε

∫
d3k

(2π )3
ū

⎧⎨
⎩ γ α( 
k̄ + 
p̄′ + �)γ i( 
k̄ + 
p̄ + �)γα

[(k̄ + p̄′)2 − �2][(k̄ + p̄)2 − �2]
√

k2
0 − c2�k2

⎫⎬
⎭u. (18)

To solve Eq. (18) and find the correction to the bare g-factor,
first we rewrite the numerator of the integrand by using the
properties of γ matrices and the Dirac equations for u and
ū. Then, we parametrize the denominator in order to obtain
a single function of the momentum k, thus simplifying the
integrals. By evaluating the integrals over both k0 and k
separately, and focusing on the relevant terms to generate the
anomalous gyromagnetic factor (see the Appendix for details

FIG. 2. One-loop vertex correction.

of the calculations), we find

�i
gy = −ieβū

(
i

2�
F2vF σ iνqν

)
u. (19)

F2 in Eq. (19) is the form factor discussed in Sec. III and is
given by

F2(q2 → 0) = −αβ3R̄(β)

2π
. (20)

where

R̄(β) =
β
√

β2 − 1 + (1 − 6β2 + 4β4) coth−1
[

β√
β2−1

]
β3(−1 + β2)3/2

.

For β � 1 we obtain β3R̄(β) ≈ −(π/2), and the correction
for the gs-factor reads

F2 = �gs = α

4
, (21)

whereas for β ≈ 1 (isotropic or fully relativistic limit) the
correction is given by

�gs = − 4α

3π
. (22)

Although F2 = 0 at the tree-level, it acquires a finite value at
one-loop. The results (21) and (22) show the relevance of using
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the anisotropic description of PQED. The isotropic model
leads to a correction with opposite sign, which decreases the
value of the g-factor. Besides, the isotropic and the anisotropic
theories describe very different physical regimes.

Notice, however, that there is a subtlety in the limit β →
0. If one sets β ≈ 0 from the start, the spatial-component
contribution to the S-matrix element for the scattering from
an external field is null [see Eq. (6)]. This means that there
would be no response to an applied external magnetic field. On
the other hand, if one keeps β and performs the calculations
(taking the limit afterwards), as we showed here, one finds
a correction to the g-factor that is independent of the ratio
vF /c between the velocities. This is in agreement with the
fact that experiments on the g-factor in graphene indicate an
enhancement of its bare value g = 2.

V. COMPARISON WITH EXPERIMENTS

Even though the gyromagnetic factor is an intrinsic property
of the electron in a certain medium, usually it is experimentally
determined by applying a magnetic field B perpendicularly
to a sample and measuring the Zeeman gap �z = gsμBB.
We have shown in Sec. III how interaction effects lead to a
correction to the bare value gs = 2 of the gyromagnetic factor,
and we calculated this correction in Sec. IV. Now, we proceed
to compare our theoretical result to the experiments realized
in graphene.

A. Graphene on SiO2

To experimentally probe the enhancement of the gyro-
magnetic factor due to electron-electron interactions, one
needs relatively strong magnetic fields, which lead to orbital
quantization. As a result, the enhanced g-factor could exhibit
a dependence on the Landau-level index N or on the applied B

field. In metal-oxide semiconductors (MOS), this dependence
has been theoretically evaluated in Ref. [31], where the
authors discuss a theory of oscillatory g-factor. This oscillatory
behavior has been experimentally observed in GaAs/AlGaAs
structures [32]. Recently, an oscillatory g-factor enhancement
has been also proposed to occur in the case of graphene at
strong magnetic fields [33]. However, measurements of the
spin g-factor performed by Kurganova et al. for graphene
grown on a SiO2 substrate for the different values of the
magnetic field, B = 5–7 T, and Landau levels N = 2–10, did
not show the predicted behavior [21]. Instead, the authors
found that the enhancement of the g-factor in graphene in
the strong B-field regime is independent of the Landau level
and is constant for all extracted data—exactly as in the case
of weak magnetic fields. Their result is compatible with the
regime of Gaussian-shaped Landau levels with broadening
� > g∗μBB [21]. Therefore, the computation of the spin
splitting within the dynamical electromagnetic interaction
performed in Sec. IV, in the weak-field regime, is appropriate
to describe the experiment.

By evaluating the corrected g-factor g∗
s multiplied by a

dimensionless parameter, i.e., by the cyclotron mass mc in units
of the electron mass me, we obtain the following equivalence:

mc(n)g∗
s (n)

me

= g∗
s (n)

h̄
√

πn

vF (n)me

. (23)

This expression relates the cyclotron mass mc to the charge
carrier concentration n and to the renormalized Fermi velocity

vF (n) = vF (n0)

[
1 − α0

8εG(n)
ln

(
n

n0

)]
. (24)

Here, α0 = e2/4πε0h̄vF (n0), the vacuum permittivity ε0 = 1,
and εG(n) is the dielectric constant, which was theoretically
and empirically [7] found to depend on the carrier density n

(see Ref. [34] for a thorough discussion about the dielectric
constant in graphene).

It is known that the logarithm in the renormalized Fermi
velocity vF in graphene arises due to electron-electron in-
teractions. For undoped graphene, via renormalization-group
methods one finds that vF depends on the smallest energy scale
of the theory at which the renormalization group (RG) flow is
suppressed, namely, the doping energy ∝ n. If one considers
doped graphene, this logarithmic dependence is not altered
[35], but the effective interaction parameter is modified, i.e.,
α → α∗. We have accounted for this effect by considering a
dielectric function that depends on n.

The parameter g∗
s in Eq. (23) is the effective gs-factor,

which, in the experimental work, is taken to be the constant
parameter that best fits the experimental points [21]. Recalling
that the bare gs-factor in graphene is gs = 2, and replacing
Eqs. (21) and (24) in Eq. (23), we obtain the corrected gs-factor
g∗

s = 2 + 2�gs ,

mc(n)g∗
s (n)

me

=
(

2 + α

2

) h̄
√

πn

mev
0
F

1[
1 + α0

8εG
ln

(
n0
n

)]
= 2[

1 + α0
8εG

ln
(

n0
n

)] h̄
√

πn

mev
0
F

+ e2

8πh̄ε0εGv0
F

[
1 + α0

8εG
ln

(
n0
n

)]2

h̄
√

πn

mev
0
F

,

(25)

where we used α = e2/[4πε0εGh̄vF (n)], with vF (n) being
the renormalized Fermi velocity given by Eq. (24). Note that
screening is taken into account in α and in vF (n). Choosing
the reference value of n0 around the values of n that we want
to describe, and neglecting corrections of order (α0/εG)2, we
may write[

1 + α0

8εG

ln
(n0

n

)]2

≈ 1 + 2α0

8εG

ln
(n0

n

)
to obtain

mcg
∗
s

me

=
{

2[
1 + α0

8εG
ln

(
n0
n

)]
+ α0

2εG

[
1 + 2α0

8εG
ln

(
n0
n

)]
}

h̄
√

πn

mev
0
F

. (26)

In Fig. 3, we plot Eq. (26) for the value of α∗
0 = α0/εG =

0.9 (i.e., εG = 2.44), as given in Ref. [34] for graphene on SiO2

[36]. The theoretical curve exhibits a very good agreement
with the experimental data, indicating that interaction effects
are able to capture the behavior of the g-factor in this material.
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FIG. 3. gs-factor enhanced due to electron-electron interactions.
At high densities, the theoretical red curve is given by Eq. (21),
together with the renormalized value of vF (n) given by Eq. (24),
and the reference value v0

F = 1 × 106 m/s. Here, α = 0.9 (i.e.,
εG = 2.44), which is the bare fine-structure constant for graphene on
SiO2 [34].

This is the main result of this subsection. Notice that there are
no fitting parameters in Fig. 3.

We proceed by investigating how the parameters in the
theory, such as dielectric constant εG and bare Fermi velocity
v0

F , modify the curve obtained in Fig. 3. For ad hoc values
of the dielectric constant εG = 3 (black) and 5 (green), we
plot Eq. (26) in Fig. 4. Upon increasing εG, the curve bends
down for large carrier concentration values. The light-blue
curve, corresponding to the bare value of the g-factor gs = 2
clearly cannot describe the observed data, thus confirming the
relevance of interactions in the description of the spin g-factor.

After having verified the trend of the gs-factor renormaliza-
tion upon varying the dielectric constant εG, as shown in Fig. 4,
we compare the behavior of g∗

s upon fixing εG and varying the
reference point v0

F , which arises within the RG procedure. The
dependence on v0

F may be observed in Fig. 5(a), for the range
of values compatible with the findings of Ref. [7].

FIG. 4. Dependence of the gs-factor on the dielectric constant εG.
The black and green solid curves correspond to different values of the
dielectric constant, chosen ad hoc to be εG = 3 and 5, respectively.
The light-blue solid curve denotes the bare gs = 2 factor [21]. All
the theoretical curves are given by Eq. (21), together with the
renormalized value of vF (n) given by Eq. (24), and the reference
value v0

F = 1 × 106 m/s.

FIG. 5. Dependence of the gs-factor on the reference value v0
F .

(a) The red curve is the same as in Fig. 3, for v0
F = 1 × 106 m/s, and

the yellow and blue curves are given by Eq. (26) with v0
F = 1.25 × 106

m/s and v0
F = 1.75 × 106 m/s, respectively. We use εG = 2.44 for

the three curves. (b) The purple curve is obtained from Eq. (21) for
a non-renormalized v0

F = 1 × 106 m/s and εG = 2.44, which results
in the spin g-factor g∗

s ≈ 2.45.

To complete the analysis, we also compare the value
expected for the renormalization of the gs-factor for the case of
a non-renormalized Fermi velocity. In this case, by using the
dielectric constant εG = 2.44, we obtain the value g∗

s ≈ 2.45,
which is represented by the purple curve in Fig. 5(b). We can
clearly observe the difference between the curves of Figs. 3
and 5(b), where in the first we used a renormalized Fermi
velocity, while in the second we did not.

B. Graphene on SiC(111)

Measurements of the spin g-factor were performed also in
graphene on SiC [22], where the top layer of multilayer epitax-
ial graphene grown on SiC was investigated by high-resolution
scanning tunneling spectroscopy. At ultralow temperatures,
in extremely clean samples, these spin degeneracies may be
lifted and the authors reported a small correction to the bare
spin g-factor �g∗

s ≈ 0.23–0.36. These values g∗
s,K = 2.23

and g∗
s,K ′ = 2.36 (there is a small difference in the value

measured for each of the valleys) are also comparable to the
one obtained by Kurganova et al. [21] for graphene grown on
SiO2, g∗

s = 2.7 ± 0.2.
We now compare these data to our results obtained within

the PQED. In this experiment, the Zeeman splitting was
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FIG. 6. Spin g-factor in graphene grown on SiC. Comparison
between theory and experiments for the spin g-factor. In the experi-
ments, there is an asymmetry between the valleys, indicated by the red
and blue points. They lead to spin g-factors of g∗

s,K = 2.23 ± 0.01 and
g∗

s,K ′ = 2.36 ± 0.01, respectively [22]. The black-solid line, which
provides a good agreement with the experimental data, is obtained by
using Eq. (21) and the fitting parameter α∗

0 = 0.51, since the precise
value of the dielectric constant is unknown. The reference value for
the magnetic field in the RG equations for the renormalized Fermi
velocity used here is B0 = 14 T.

measured, which is given by

�Es = g∗
s (B)μBB. (27)

Inserting the value found for g∗
s = 2 + 2�gs with �gs given

by Eqs. (21) and (24), we obtain [37]

�Es =
⎧⎨
⎩2 + α0

2εG

[
1 + α0

8εG
ln

(
B0
B

)]
⎫⎬
⎭μBB. (28)

We can observe in Ref. [22] that the experimentally detected
spin-splitting does not change much when increasing the
magnetic field from 11 to 14 T. We plot Eq. (28) for the
spin-splitting in Fig. 6 using εG as a fitting parameter. By
using v0

F = 1.08 × 106 m/s [22], we find that εG ≈ 4 for this
sample, which falls within the range of values discussed in
Ref. [38] for monolayer graphene on SiC.

VI. CONCLUSIONS

In this work, we have investigated the corrections to the
spin gyromagnetic factor in graphene that are generated due to
electronic interactions. The calculations were performed in the
framework of the anisotropic pseudo-QED, which is a theory
that takes into account the full electromagnetic interaction
and breaks Lorentz symmetry by considering two different
velocities: c for the photons and vF for the electrons. With these
two ingredients, we have obtained an explicit expression for the

spin g-factor correction, which has allowed us to compare our
theoretical findings with experiments on graphene deposited
on SiO2 and on SiC.

The outcome of the comparison indicates that the renor-
malization of the Fermi velocity is very important to better
describe the experiments. By combining this renormalization
effect and choosing the dielectric constant according to the
substrate, we have shown in Fig. 3 a very good agreement
between our theoretical results and the experimental data. Our
work confirms the importance of electronic interactions in the
description of graphene and indicates that the pseudo-QED
formalism is able to capture its signatures in great detail.
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APPENDIX: FORM FACTOR DETAILED CALCULATION

In this Appendix, we present the details of the calculation of
Sec. IV. By using the anticommutation of the γ matrices and
the Dirac equations in momentum space ū(p̄′) 
p̄′ = ū(p̄′)�
and 
p̄u(p̄) = �u(p̄), we can rewrite Eq. (18) of the main
text as

i�i = 3e3vF

8ε

∫ 1

0
dx

∫ 1−x

0
dy(1 − x − y)−1/2

×
∫

d2k

(2π )2

∫ ∞

−∞

dk0

(2π )

ū(p̄′)
[
k2

0γ
i + V i + Ni

]
u(p̄)(

k2
0 − �

)5/2
.

(A1)

In the equation above, we used the parametric integral

{[(k̄ + p̄′)2 − �2][(k̄ + p̄)2 − �2]
√

k2}−1

= 3

4

∫ 1

0
dx

∫ 1−x

0
dy

(1 − x − y)−1/2

[(k0 + ω0)2 − �]5/2
,

where

� = −A
(
k2 − v2

F A−1ω
)2 + ω2

0 + A−1v4
F ω2,

with A = [−v2
F (x + y) − c2(1 − x − y)], ω0 = (p′

0x + p0y),
and ω = (p′x + py). We performed also the displacement
k0 → k0 − ω0, such that the terms in the numerator of Eq. (A1)
become

V i → [
ω2

0 − 2ω0(p′
0 + p0) + 4p′

0p0
]
γ i + 2γ iγ0p

′0vF γ · k + 2p0vF γ 0γ lklγ
i − 2vF kiω0γ

0 − 2v2
F kiklγ

l + (1/2)v2
F k2γ i

and

Niβ−2 → −4v2
F γ i{(1 − vF )k2 + k · (p′ + p) + p′ · p} + 4vF p′iγ 0ω0 + 4vF kiγ 0ω0 − 2vF (p′

j + pj )γ jγ iγ 0ω0

+ 2vF (p0 − p′
0)γ 0γ · kγ i + 4vF (� − γ 0p′

0)ki + 4v2
F (pi + p′i)γ · k,

where we eliminated the odd terms in k0.
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As a next step, we try to simplify the lengthy expressions. Since we are interested in obtaining the gyromagnetic factor, we
disregard the terms proportional to γ i . After solving the integral over k0, we find

i�i
gy = 3e3vF

16πε

∫ 1

0
dx

∫ 1−x

0
dy(1 − x − y)−1/2

∫
d2k

(2π )2

ū(p̄′)
[

4
3

(−2v3
F A−1ωiω0γ

0 + 2v6
F A−2ωiγ · ω

) + β2Li
]
u(p̄)

A2
[(

k2 − v2
F A−1ω

)2 − �̃
]5/2

,

where Li = 4�v3
F A−1ωi + 4v4

F A−1(pi + p′i)γ · ω and �̃ = (ω2
0 + A−1v4

F ω2)A−1. Displacing k → k + v2
F A−1ω, we find, after

solving the integrals over k,

i�i
gy = − e3vF

16π2ε

∫ 1

0
dx

∫ 1−x

0
dy(1 − x − y)−1/2

(
2v6

F A−2wiγ · ω + β2Li

A2�̃

)
,

where we considered p0 = p′
0 = 0. Therefore, working on mass-shell, we can use that vf γ jpj = �. By using that 2p′i = P i + qi

and 2pi = P i − qi , we can write 2v6
F A−2wiγ · ω → −�v5

F A−2P i(x + y)2 and Li → −2�v3
F A−1P i(x + y). Now, we can use

the Gordon identity

ūP iu = 2�ūγ iu − iūσ iνqνu

and write

�i
gy = −ieβū

(
i

2�
F2vF σ iνqν

)
u.

Hence, the form factor F2 is identified as

F2 = −αβ

2π

∫ 1

0
dx

∫ 1−x

0
dy(1 − x − y)−1/2

⎧⎨
⎩

�2v2
F

[
2(x + y) − (x+y)2

β2(x+y)+(1−x−y)

]
Av2

F (p′x + py)2

⎫⎬
⎭. (A2)

By rewriting the denominator of Eq. (A2) as

v2
F (p′x + py)2 = −�2(x + y)2 + q2xy,

with q2 = (p′ − p)2 and using that q2 → 0, we obtain

F2 = −αβ3R̄(β)

2π
, (A3)

with

R̄(β) =
∫ 1

0
dx

∫ 1−x

0
dy

2(1 − x − y)−1/2

(x + y)[β2(x + y) + (1 − x − y)]
−

∫ 1

0
dx

∫ 1−x

0
dy

(1 − x − y)−1/2

[β2(x + y) + (1 − x − y)]2
. (A4)

In the limit of vF = c = 1, we find ∫ 1

0
dx

∫ 1−x

0
dy

(1 − x − y)−1/2(2 − x − y)

(x + y)
= 8

3
,

which is exactly what is obtained in the isotropic model.
On the other hand, if we solve the integrals in Eq. (A4), we find

R̄(β) =
β
√

β2 − 1 + (1 − 6β2 + 4β4) coth−1
[

β√
β2−1

]
β3(−1 + β2)3/2

. (A5)
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