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Piezospintronic effect in honeycomb antiferromagnets
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The emission of pure spin currents by mechanical deformations, the piezospintronic effect, in antiferromagnets
is studied. We characterize the piezospintronic effect in an antiferromagnetic honeycomb monolayer in response
to external strains. It is shown that the strain tensor components can be evaluated in terms of the spin
Berry phase. In addition, we propose an experimental setup to detect the piezospin current generated in the
piezospintronic material through the inverse spin Hall effect. Our results apply to a wide family of two-dimensional
antiferromagnetic materials without inversion symmetry, such as the transition-metal chalcogenophosphate
materials MPX3 (M = V, Mn; X = S, Se, Te) and NiPSe3.
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I. INTRODUCTION

Spintronics is one of the most promising areas in condensed
matter from the point of view of development of novel devices
that can enhance or directly replace conventional electronics
[1,2]. This has motivated intense studies to understand the mu-
tual relation between spin currents and magnetic properties [3].
In this context, antiferromagnets (AFs) have recently gained
attention due to their favorable properties [4] and abundance
in nature [5]. Compared with conventional ferromagnets, AFs
lack macroscopic magnetization [7] and, furthermore, can be
operative at much higher frequencies than ferromagnets [6].
The absence of stray fields makes them robust against pertur-
bation due to magnetic fields. Moreover, AFs have also opened
a new branch in spintronics by hosting topological matter, such
as Weyl semimetals [8] and topological insulators [9].

AFs can also be the cornerstone of spin-current generation.
It has been shown that spin angular momentum can be
transported through AF|NM (normal metal) heterostructures,
in the form of pumped spin and staggered spin currents
[10], associated with the dynamics of the magnetization and
staggered field (Néel order), respectively. An alternative route
for the generation of spin currents has recently been proposed,
which is based on the coupling between mechanical distortions
and spin degrees of freedom, namely, the piezospintronic effect
[11]. Unlike the related piezoelectric [12] and piezomagnetic
[13] effects, this phenomenon is restricted to appearing in
systems with the concomitance of time reversal (T ) and
inversion (I) symmetry breaking. Although, in principle,
a crystal might display simultaneously the piezoelectric,
piezomagnetic, and piezospintronic effects.

From a phenomenological point of view, a magnetic crystal
under mechanical deformations gives rise in a linear response
to a spin dipolar moment, P s

σ ;j = ∑
kl λσ ;jklukl , with λ the

piezospintronic pseudotensor [15], where σ and j label
the spin and position components, respectively, and ukl =
(∂luk + ∂kul)/2 the strain tensor [16], with �u the deformation
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field (sketched in Fig. 1). Under inversion λ changes sign
and therefore, like the piezoelectric [12] and piezomagnetic
[13] effects, the piezospintronic effect is restricted to crystals
lacking a center of inversion. Similarly, the spin dipole
moment is odd under time reversal, so a system with a
nonvanishing piezospintronic tensor must have broken time
reversal invariance.

The spin dipolar moment and spin currents are linked [11],
through the standard definition [14] of spin currents, by

J s
σ,j = dP s

σ ;j

dt
. (1)

It is intuitive to realize that crystal classes invariant under T I
will respond with a pure spin current to an external strain,
i.e., displaying exclusively the piezospintronic effect, without
giving rise to charge currents. The simple way to understand
this is to require T and I symmetry breaking, and thus,
each spin component manifests opposite piezoelectric effects
[15,16]. Under inversion the direction of each piezoelectric
effect is reversed, while the spin labels remain unchanged and
thus there is a reversal of the piezospin current. An additional
spin reversal, through the action of T , will restore the original
current. Therefore, it is expected that crystal classes invariant
simultaneously under spin reversal and spatial inversion will
respond with a pure spin current to an external deformation.
Some AF structures, like antiferromagnetic honeycombs,
represent natural systems in which to explore this effect
since they bring together alternating spin configurations that
additionally break inversion symmetry.

In this work we present detailed calculations concerning
the piezospintronic tensor of an antiferromagnetic honeycomb
lattice. These calculations were performed within the tight-
binding approximation. In heterostructures such as AF|NM
(normal metal) this effect can be tested via inverse spin Hall
effect (ISHE) measurements [17].

The paper is organized as follows. In Sec. II, we compute
the piezospintronic properties of an AF honeycomb lattice.
In Sec. III we propose an experimental setup to measure the
piezospintronic spin current generated at the interface with an

2469-9950/2017/96(10)/104419(5) 104419-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.96.104419


ULLOA, TRONCOSO, BENDER, DUINE, AND NUNEZ PHYSICAL REVIEW B 96, 104419 (2017)

FIG. 1. Antiferromagnetic honeycomb lattice in the xy plane.
Red and blue spheres represent the different spin species, spin-up
and -down, respectively, whose spin polarizations are along the
z direction. Note that this structure lacks T and I symmetries
but is invariant under the T I transformation, thus fulfilling the
requirements to exhibit a pure piezospintronic response. In the
tight-binding approximation the first nearest neighbors of each site are
described by the vectors �δi , with a0 the unperturbed lattice constant.
Strains along the x and y directions are schematically depicted and
represented by strain deformation fields ux and uy , respectively.

NM through the ISHE in the NM. Finally, we finish in Sec. IV
with discussion and conclusions.

II. ANTIFERROMAGNETIC HONEYCOMB

A. Model

We consider a honeycomb lattice with a staggered spin array
lying in the xy plane, as described in Fig. 1. The antiparallel
lattices of spins, represented by the red and blue spheres in
Fig. 1, are oriented along the z axis with spin polarization
�

A,B
i = ±�z. Under spatial inversion around the center of the

unit cell, represented by the rhombus in Fig. 1, the position
of both sublattices is reversed, i.e., the blue and red spheres
are interchanged. A subsequent time reversal operation flips
the local spin and thus reverts the effect of spatial inversion.
The system is invariant under T I and therefore we expect it
to display a pure piezospintronic effect. Complementing the
local exchange term in our model we also consider hopping to
nearest neighbors. The net Hamiltonian is

H = −
∑

〈i, j〉,σ
ti j (c

†
iσ c jσ + H.c.) + �

∑
i ;σ,σ ′

ηic
†
iσ σ z

σσ ′ciσ ′,

(2)

where c
†
iσ (ciσ ) is the operator that creates (annihilates) an

electron with spin σ at site i , and ηi = ±1, depending on
the sublattice. The hopping matrix element is ti j , the energy
difference between the spin species is �, and σ z is the z

component of the Pauli matrix vector. The Hamiltonian in

Eq. (2) is Fourier transformed to momentum space and written
as

Ha =
(

� γk

γ ∗
k −�

)
, Hb =

(−� γk

γ ∗
k �

)
,

H =
(
Ha 0
0 Hb

)
,

with γk = ∑
i ti,i+�δi

exp(i�k · �δi). In the following we label tj
the hopping amplitude connecting a site with its neighbor �δj

(see Fig. 1). At this point we can draw an analogy between
the model Hamiltonian we are proposing and the tight-binding
model of boron-nitride (BN) monolayers [18]. Sharing the
honeycomb structure we see how our model reduces to the
BN for each spin species, but with an opposite role for each
sublattice. The effect we are looking for follows from the
piezoelectric response of BN and will share all symmetry
properties with it.

B. Piezospintronic tensor of a honeycomb antiferromagnet

As the crystal belongs to the point group 6̄m2 (D3h) [15],
following the symmetry analysis of BN we can conclude the
following property of the piezospintronic tensor [18]: all the
components of the tensor are 0 except for

λz;yyy = −λz;yxx = −λz;xyx .

Our task is then reduced to the evaluation of only one of the
components of the tensor, e.g., λz;yyy . We evaluate the net spin
dipolar moment created by a deformation of the lattice along
the y direction. With the deformation the different hopping
amplitudes will change; a simple geometrical analysis leads to

dt1 = dt2 = 1

2
dt3 =

(
∂t

∂a

)
duyy,

where t is the hopping amplitude at an interatomic distance a.
The net spin dipolar moment generated is given by [19]

dPS
z;y = At1

z,ydt1 + At2
z,ydt2 + At3

z,ydt3,

where Atα
z,y is defined as

Atα
z,y ≡ ∂Ps

z;y

∂tα

and can be evaluated in terms of spin Berry phases [11,20],
which depend on the electronic Bloch states |φν〉 as

Atα
i,j = −

∑
ν

∫
BZ

d2k

(2π )2
nν(k)Im

〈
∂φν

∂kj

∣∣∣∣σi

∣∣∣∣∂φν

∂tα

〉
. (3)

The symmetry of the hexagonal lattice enforces a relation
among the different Atα

i,j that reads At1
z,y = At2

z,y = − 1
2 At3

z,y ,
leading to the final expression for the piezospintronic tensor,

λz;yyy = −1

2

(
∂t

∂a

)
At3

z,y . (4)

The integrand in the expression for At3
z,y is displayed in Fig. 2.

It displays well-defined maxima around the corners of the
Brillouin zone (BZ).

The integral is complicated and needs to be evaluated
numerically; the obtained result is displayed in Fig. 3. Around
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FIG. 2. Berry curvature in the first Brillouin zone of an antifer-
romagnetic honeycomb [see Eq. (3)]. The integral of this function
leads us directly to the value of the piezospintronic tensor λz;yyy

[see Eq. (4)]. Due to the presence of the local energy � there is an
asymmetry in the two sublattices, which opens a gap in the spectra
around the Dirac points.

one of the Dirac points of the Brillouin zone, however, the
Berry curvature can be approximated analytically, yielding

At3
z,y = − sign(�)

6πa0t
. (5)

The independence of the magnitude of � in this result
arises from the expression of the eigenstates |φν〉 in the
long-wavelength limit. As its j th component is proportional
to tkj we can replace ∂tj → ∂kj

, obtaining an expression
proportional to a Chern number [21].

III. DETECTION OF PIEZOSPIN CURRENTS

Now we propose an experimental setup to perform indirect
detection of the spin current generated by the piezospintronic
effect. We consider two adjacent materials, as shown in Fig. 4,
one being piezospintronic and the other being a normal metal

Δ [t3]

A
t 3 z
,y

(2
π
)2

a
0
t 3

FIG. 3. Result of the integration of At3
z,y for an antiferromagnetic

honeycomb as a function of the local energy �. The blue line
corresponds to the numerical integration of the Berry curvature in
the first Brillouin zone. The red line shows the exact calculation
in the long-wavelength limit. The maximum (minimum) value of
the curve is 2π/3 (−2π/3) as we expect from the long-wavelength
approximation [see Eq. (5)].

d

μz(y)
y

x

uyy

NM

Js,z Jq

FIG. 4. Schematic setup for the detection of piezospin currents.
The proposal is based on similar geometries as used for measurement
of the spin Seebeck effect [25]. Under a strain uyy a spin current
Js,z = Js,z ŷ is induced in the piezospintronic material and injected
into the NM. In turn this results in a spin accumulation μz(y) on the
NM (translation symmetry in z is assumed). Due to the spin-orbit
coupling in the NM a transverse charge current Jq will be generated
along the x direction, i.e., as an ISHE signal.

with strong spin-orbit coupling (SOC). As is well known, due
to SOC, a charge current Jq flowing in the NM converts into
a pure spin current (spin Hall effect), and vice versa (ISHE)
[17]. Based on the above effect we expect to measure a charge
Hall current as a result of the piezospin current induced at the
interface. The process of injection of a spin current into a metal
has been widely studied, for example, in Ref. [22]. We consider
that a spin current is generated in the piezospintronic material
with no loss of spin angular momentum in the bulk. Thus,
the total spin current at the interface is Js

σ (y = 0) = Js,σ . For
simplicity, perfect transmission of spin current through the in-
terface is assumed. Under this assumption we calculate analyt-
ically the charge current generated in the normal metal in terms
of the spin current emitted from the piezospintronic material.

To analyze the connection between the spin and the charge
currents in the metallic material we solve the spin diffusion
equation for the spin accumulation [23] μs(x),

∇2μs = μs

�2
s

, (6)

where �s stands for the characteristic spin diffusion length
of the NM. The boundary conditions for Eq. (6) enforce
continuity for the spin current, which reads

∂yμs |y=0 = −G0

σ
Jnet

s,z, (7)

∂yμs |y=d = 0, (8)

where G0 = 2e2/h is the quantum of conductance, and σ and
d are the conductivity and the thickness of the NM. Jnet

s,z is
the net spin current flowing through into the NM. The net
spin current is the sum of the injected piezospin current, as
given in Eq. (1), and a backflow spin current Jback

s in the
opposite direction due to the induced spin accumulation on
the NM side of the interface. In the calculation of the spin Hall
current we disregard spin transfer torques generated by the
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spin current in the normal metal acting on the antiferromagnet.
Moreover, without loss of generality the piezospin current is
considered to flow in the y direction and polarized along the
z axis. Additionally, in the bulk of the NM spin and charge
currents are related through the relations

Jq = σ

e
∇μ − σ ′

2e
∇ × μs , (9)

2e

h̄
Js,z = − σ

2e
∂yμs − σ ′

e
z × ∇μ, (10)

with μ the electronic chemical potential and σ ′ the spin Hall
conductivity in the NM [24]. Solving Eqs. (6)–(10) leads to an
induced Hall charge current density along the x direction〈

J x
q

〉 = �
∑
kl

λz;ykl

dukl

dt
,

where � = 2e
h̄

�s

d
tan θH tanh ( d

2�s
), the Hall angle is θH =

arctan [σ ′/σ ], and 〈. . . 〉 denotes the thickness average. This
effect can be measured by making use of materials with
a huge potential for spintronic devices [26], for example,
the transition-metal chalcogenophosphates MPX3 (M = V,
Mn; X = S, Se, Te) and NiPSe3. These materials are two-
dimensional semiconductors in which the transition-metal
atoms of the compound are organized in a honeycomb lattice.
Recent theoretical studies [27,28] have shown that these
materials might exhibit a Néel order in the ground state which
is not affected under strain. Nevertheless, this setup also works
with materials without T I symmetry. In this case there will
be an additional piezoelectric response, but the charge current
generated in that process will generate a transversal signal in
the metal which will not affect the Hall signal.

It is worth commenting that a reciprocal effect is also
expected. From Onsager’s relations [29,30] a stress is expected
in response to a spin current injected into the system,

sij =
∑
lm

λ̃l;mij Js
l;m, (11)

where s stands for the stress tensor [16] appearing in response
to the spin current Js . This converse piezospintronic effect
might lead to novel mechanisms for detecting pure spin
currents. In fact, this effect might be useful in the mechanical
resonance of the piezospintronic material. One idea is to con-
sider an AF-ferromagnet interface with the ferromagnet under
a ferromagnetic resonance. By spin pumping a spin current
will be injected into the piezospintronic. With the proper
excitation frequency, due to the reciprocal piezospintronic
effect [see Eq. (11)], the piezospintronic material might get
into a mechanical resonant state.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have discussed the possibility of generating
and detecting pure spin currents via the piezospintronic effect
in honeycomb antiferromagnets. We discuss the principal
characteristics of this effect and the symmetry properties
that lead to a pure spin current in response to strain. We
characterize the piezospintronic response of a honeycomb an-
tiferromagnetic layer, which fulfills the symmetry conditions
to develop a pure piezospintronic response, and calculate its

piezospintronic tensor. In the long-wavelength approximation
we show that the relevant coefficients of the piezospintronic
tensor are proportional to a Chern number. Finally, we propose
an experimental setup to measure the spin current generated
in this way by converting it into an electric current through the
ISHE. This work extends the grounds for spin-mechanics [31]
systems because it provides a direct coupling between spin
current and strain.
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APPENDIX: CALCULATION OF THE BERRY PHASE

To calculate the Berry phase we use the coherent states

|n〉 =
(

eiϕ cos θ/2
sin θ/2

)

along the direction of the vector

n =
(∑

i

ti cos(k · �δi),
∑

i

ti sin(k · �δi),�

)
, (A1)

where θ and ϕ are the polar and azimuthal angles, respectively,
in spherical coordinates. In this representation Eq. (3) can be
written as

At
z,j =

∫
BZ

d2k

(2π )2
Im 〈∇Qn| × |∇Qn〉 ,

where Q = t,kj . Hence, we can calculate the relevant
contribution

At3
z,y =

∫
BZ

d2k

(2π )2

sin θ

4

(
∂θ

∂t3

∂ϕ

∂ky

− ∂θ

∂ky

∂ϕ

∂t3

)
. (A2)

The numerical solution of this integral is shown by the blue
line in Fig. 3.

In the long-wavelength limit we perform an expansion of the
eigenstates in k around the Dirac point K+ = (4π/3

√
3a0,0).

Around this point Eq. (A1) becomes

nK+ = (− 3
2a0tkx,− 3

2a0tky,�
)
,

which, following Eq. (A2), leads us to the expression

At3
z,y = −2

∫
d2k

(2π )2

3a0t3�
(
9a2

0 t23
(
k2
x + k2

y

) + 4�2
)3/2 .

The result of this integral is exactly Eq. (5) and is shown by
the red line in Fig. 3.
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