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Green’s function formalism for spin transport in metal-insulator-metal heterostructures
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We develop a Green’s function formalism for spin transport through heterostructures that contain metallic
leads and insulating ferromagnets. While this formalism in principle allows for the inclusion of various magnonic
interactions, we focus on Gilbert damping. As an application, we consider ballistic spin transport by exchange
magnons in a metal-insulator-metal heterostructure with and without disorder. For the former case, we show
that the interplay between disorder and Gilbert damping leads to spin current fluctuations. For the case without
disorder, we obtain the dependence of the transmitted spin current on the thickness of the ferromagnet. Moreover,
we show that the results of the Green’s function formalism agree in the clean and continuum limit with
those obtained from the linearized stochastic Landau-Lifshitz-Gilbert equation. The developed Green’s function
formalism is a natural starting point for numerical studies of magnon transport in heterostructures that contain

normal metals and magnetic insulators.

DOLI: 10.1103/PhysRevB.96.174422

I. INTRODUCTION

Magnons are the bosonic quanta of spin waves, i.e., oscilla-
tions in the magnetization orientation in magnets [1,2]. Interest
in magnons has been revived recently because enhanced
experimental control has made them attractive as potential
data carriers of spin information over long distances and
without Ohmic dissipation [3]. In general, magnons exist in
two regimes. One is the dipolar magnon with long wavelengths
that is dominated by long-range dipolar interactions and
which can be generated, e.g., by ferromagnetic resonance
[4,5]. The other type is the exchange magnon [6], which is
dominated by exchange interactions and which generally has
higher frequency and therefore perhaps more potential for
applications in magnon-based devices [3]. In this paper, we
focus on transport of exchange magnons.

Thermally driven magnon transport has been widely investi-
gated, and it is closely related to spin pumping of spin currents
across the interface between insulating ferromagnets (FMs)
and normal metals (NMs) [7-9] and detection of spin current
by the inverse spin Hall effect [10]. The most often studied
thermal effect in this context is the spin Seebeck effect, which
is the generation of a spin current by a temperature gradient
applied to a magnetic insulator that is detected in an adjacent
normal metal via the inverse spin Hall effect [11,12]. Here,
thermal fluctuations in the NM contacts drive spin transport
into the FM, while the dissipation of spin back into the NM
by magnetic dynamics is facilitated by the above-mentioned
spin-pumping mechanism.

The injection of spin into a FM can also be accomplished
electrically, via the interaction of spin-polarized electrons in
the NM and the localized magnetic moments of the FM.
Reciprocal to spin-pumping is the spin-transfer torque, which,
in the presence of a spin accumulation (typically generated
by the spin Hall effect) in the NM, drives magnetic dynamics
in the FM [13,14]. Spin pumping likewise underlies the flow
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of spin back into the NM contacts, which serve as magnon
reservoirs. In two-terminal setups based on YIG and Pt,
the characteristic length scales and device-specific parameter
dependence of magnon transport have attracted enormous
attention, both in experiments and theory. Cornelissen et al.
[15] studied the excitation and detection of high-frequency
magnons in YIG, and they measured the propagating length of
magnons, which reaches up to 10 um in a thin YIG film at room
temperature. Other experiments have shown that the polarity
reversal of detected spins of thermal magnons in nonlocal
devices of YIG is strongly dependent on temperature, YIG
film thickness, and injector-detector separation distance [16].
It can be seen that the interfaces are crucial by, e.g., changing
the interface electron-magnon coupling, which was found to
significantly alter the longitudinal spin Seebeck effect [17].
A linear-response transport theory was developed for
diffusive spin and heat transport by magnons in magnetic
insulators with metallic contacts. Among other quantities, this
theory is parametrized by relaxation lengths for the magnon
chemical potential and magnon-phonon energy relaxation
[18,19]. In a different but closely related development, Onsager
relations for the magnon spin and heat currents driven by
magnetic field and temperature differences were established
for insulating ferromagnet junctions, and a magnon analog of
the Wiedemann-Franz law was also predicted [20,21]. Wang
et al. [22] considered ballistic transport of magnons through
magnetic insulators with magnonic reservoirs—rather than the
more experimentally relevant situation of metallic reservoirs
considered here—and used a nonequilibrium Green’s func-
tion formalism (NEGF) to arrive at Landauer-Biittiker-type
expressions for the magnon current. The above-mentioned
works are either in the linear-response regime or do not
consider Gilbert damping and/or metallic reservoirs. So far, a
complete quantum-mechanical framework to study exchange
magnon transport through heterostructures containing metallic
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FIG. 1. Illustration of the system in which magnon transport
in a ferromagnet (orange region) is driven by a spin accumulation
difference Ap; — Apg and temperature difference 7, — Ty between
two normal-metal leads (blue regions). Spin-flip scattering at the
interface converts electronic to magnonic spin current. Here, S is the
local spin density in equilibrium.

reservoirs that can access different regimes, ranging from
ballistic to diffusive, large or small Gilbert damping, and/or
small or large interfacial magnon-electron coupling, and that
can incorporate Gilbert damping, is lacking.

In this paper, we develop the nonequilibrium Green’s
function formalism [23] for spin transport through NM-FM-
NM heterostructures (see Fig. 1). In principle, this formalism
straightforwardly allows for adding arbitrary interactions, such
as scattering of magnons with impurities and phonons, Gilbert
damping, and magnon-magnon interactions, and provides a
suitable platform to study magnon spin transport numerically,
in particular beyond linear response. Here, we apply the
formalism to ballistic magnon transport through a low-
dimensional channel in the presence of Gilbert damping. For
that case, we compute the magnon spin current as a function
of channel length both numerically and analytically. For the
clean case in the continuum limit, we show how to recover our
results from the linearized stochastic Landau-Lifshitz-Gilbert
(LLG) equation [24] used previously to study thermal magnon
transport in the ballistic regime [25] that applies to clean
systems at low temperatures such that Gilbert damping is the
only relaxation mechanism. Using this formalism, we also
consider the interplay between Gilbert damping and disorder,
and we show that it leads to spin-current fluctuations.

This paper is organized as follows. In Sec. II, we discuss
the nonequilibrium Green’s function approach to magnon
transport, and we derive an expression for the magnon spin
current. Additionally, a Landauer-Biittiker formula for the
magnon spin current is derived. In Sec. III, we illustrate
the formalism by numerically considering ballistic magnon
transport, and we determine the dependence of the spin current
on the thickness of the ferromagnet. To further understand
these numerical results, we consider the formalism analytically
in the continuum limit in Sec. IV, and we also show that
in that limit we obtain the same results using the stochastic
LLG equation. We present a further discussion and outlook in
Sec. V.

II. NONEQUILIBRIUM GREEN’S
FUNCTION FORMALISM

In this section, we describe our model and, using Keldysh
theory, arrive at an expression for the density matrix of the
magnons from which all observables can be calculated. The
reader interested in applying the final result of our formalism
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FIG. 2. Schematic for the NM-FM-NM heterostructure and no-
tation for the Green’s functions and self-energies. The array of
circles denotes the localized magnetic moments, while the two
regions outside the parabolic lines denote the leads, i.e., reservoirs of
polarized electrons. Moreover, J /L,if, denotes the interface coupling,
and Ty, and Apy g denote the temperature and spin accumulation
for the leads. The properties of the magnons are encoded in Q;Tj),(t,l’),
the retarded magnon Green'’s function, and the magnon density matrix
pj,j-- The number of sites in the spin-current direction is N. The
self-energies =M@ »L.&) 518 @) are due to Gilbert damping and
the left and right lead, respectively.

may skip ahead to Sec. II E, where we give a summary on how
to implement it.

A. Model

We consider a magnetic insulator connected to two nonmag-
netic metallic leads, as shown in Fig. 2. For our formalism,
it is most convenient to consider both the magnons and the
electrons as hopping on the lattice. Here, we consider the
simplest versions of such cubic lattice models; extensions, e.g.,
to multiple magnon and/or electron bands, and multiple leads
are straightforward. The leads have a temperature 7,z and a
spin accumulation Ay g that injects spin current from the
nonmagnetic metal into the magnetic insulator. This nonzero
spin accumulation could, e.g., be established by the spin Hall
effect.

The total Hamiltonian is a sum of the uncoupled magnon
and lead Hamiltonians together with a coupling term:

Hio = Hew + B + He. (D

Here, Hpy denotes the free Hamiltonian for the magnons,

T T T
Z Jj,j/bj/bj + Z Ajbjbj = Z hj/,_,‘bj,bj,
(J,J" J (j.J"

@)
where b; (b}) is a magnon annihilation (creation) operator.
This Hamiltonian can be derived from a spin Hamiltonian
using the Holstein-Primakoff transformation [26,27] and
expanding up to second order in the bosonic fields. Equation
(2) describes hopping of the magnons with amplitude J;
between sites labeled by j and j on the lattice, with an on-site
potential energy A; that, if taken to be homogeneous, would
correspond to the magnon gap induced by a magnetic field
and anisotropy. We have taken the external field in the —z

Hpy = —
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direction, so that one magnon, created at site j by the operator
13;, corresponds to spin +/i.
The Hamiltonian for the electrons in the leads is

A = — Z Z Z t lﬁk(,ﬂ/fk/ar +He, @)

re{L,R} (k,k') o€, |

where the electron creation (1//,1”) and annihilation (Y, )
operators are labeled by the lattice position k, spin o, and an
index r distinguishing left (L) and right (R) leads. The hopping
amplitude for the electrons is denoted by " and could in princi-
ple be different for different leads. Moreover, terms to describe
hopping beyond nearest neighbor can be straightforwardly
included. Below we will show that microscopic details will
be incorporated in a single parameter per lead that describes
the coupling between electrons and magnons.

Finally, the Hamiltonian that describes the coupling be-
tween metal and insulator, ﬁc, is given by [28]

He =Y (Jlubi¥f oy +Hel), (4)

T kK

with the matrix elements J7.;,, that depend on the microscopic
details of the interface. An electron spin that flips from up
to down at the interface creates one magnon with spin +/7 in
the magnetic insulator. This form of coupling between elec-
trons and magnons derives from interface exchange coupling
between spins in the insulators with electronic spins in the
metal [28].

B. Magnon density matrix and current

Our objective is to calculate the steady-state magnon
Green’s function (G, (t,1') = (B},(t’)éj(z)), from which all
observables are calculated (note that time-dependent operators
refer to the Heisenberg picture). This “lesser” Green’s function
follows from the Keldysh Green’s function,

iG;.j(t.1) = Tl p(t) Te= (b; (1B (1)1, (5)

with §(fy) the initial (at time f#) density matrix, C* is the
Keldysh contour, and Tr[- - -] stands for performing a trace
average. The time-ordering operator on this contour is defined
by

Te=(O()O' ) = 0(1,1)O(1)O'(t) £ (' ,H)O' (1) O (1),
(6)

with 6(z,t') the corresponding Heaviside step function, and
the + (—) sign applies when the operators have bosonic
(fermionic) commutation relations. In Fig. 2 we schematically
indicate the relevant quantities entering our theory.

We compute the magnon self-energy due the coupling
between magnons and electrons to second order in the coupling
matrix elements J;;;x. This implies that the magnons acquire
a Keldysh self-energy due to lead r given by

RE' (1) = Z e (T Yoo
b
X Grirypy (8,8 G ey (2 ,1), @)
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FIG. 3. Feynman diagram for the spin-flip processes emitting and
absorbing magnons that are represented by the wavy lines. The two
vertices indicate the exchange coupling at one of the interfaces of the
magnetic insulator (sites j,j’) and normal metal (sites k,k’, k" ,k"").
Gy and Gyry,y denote the electron Keldysh Green’s function of
one of the leads.

where G0 (t,t') denotes the electron Keldysh Green’s
function of lead r, which reads

Gitrro (1,1) = —i (TexPiro OV, (1))
= 0(t,1)G o (0.1) + 0" GG, (1), (8)

The Feynman diagram for this self-energy is shown in Fig. 3.
While this self-energy is computed to second order in J;,;/,
the magnon Green’s function and the magnon spin current,
both of which we evaluate below, contain all orders in J ;;kk,,
which therefore does not need to be small. In this respect,
our approach is different from the work of Ohnuma et al.
[29], who evaluate the interfacial spin current to second order
in the electron-magnon coupling. Irreducible diagrams other
than that in Fig. 3 involve one or more magnon propagators
as internal lines and therefore correspond to magnon-magnon
interactions at the interface induced by electrons in the normal
metal. For the small magnon densities of interest to use here,
these can be safely neglected and the self-energy in Eq. (7)
thus takes into account the dominant process of spin transfer
between metal and insulator.

The lesser and greater component of the electronic Green’s
functions can be expressed in terms of the spectral functions
Akk/;r(e) via

. l‘l/r(f
—iGG.,e = Apir(€)N ,
iGlye Kk (€) F( i, )

iGluwe —Akkf,(e)[l—NF< “)} 9)
ksT,

with Np(x) = (¢* + 1)~! the Fermi distribution function, 7}
the temperature of lead r (kg being Boltzmann’s constant),
and u,,, the chemical potential of spin projection o in lead 7.
As we will see later on, the lead chemical potential is taken
to be spin-dependent to be able to implement nonzero spin
accumulation. The spectral function is related to the retarded
Green’s function via

Akk’;r (6) =

which does not depend on spin as the leads are taken to
be normal metals. While the retarded Green’s function of
the leads can be determined explicitly for the model that
we consider here, we will show below that such a level of
detail is not needed but that, instead, we can parametrize the
electron-magnon coupling by an effective interface parameter.

—2Im[G{p, (o)1, (10)
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As mentioned before, all steady-state properties of the
magnon system are determined by the magnon lesser Green’s
function leading to the magnon density matrix. It is ultimately
given by the kinetic equation [23,30]

A A de s _
P = (BB 1) = / GOt IS

1)

where /iX; ;/(¢,t') is the total magnon self-energy discussed
in detail below, of which the “lesser” component enters in
the above equation. In the above and what follows, quantities
with suppressed site indexes are interpreted as matrices, and
matrix multiplication applies for products of these quantities.
The retarded (4) and advanced (—) magnon Green’s functions
satisfy

[eF —h—hEP()]IGF () = 1, (12)

where e* = € £ i0. The magnon self-energies have contribu-

tions from the leads, as well as a contribution from the bulk
denoted by AX™M:

h%(e) =hz™Ee) + > hT'(e). (13)
re{L,R}

From Eq. (7) we find that for the retarded and advanced
component, the contribution due to the leads is given by

dE/ deﬂ
AY B ey = Jr (Y /— —
1 (© kk%;w S @m)J (2m)

X Apyry(€) Apriy (")

Nr(Gt) = Nr(51)
X

_ei + € —¢”

(14)

whereas the “lesser” self-energy can be shown to be of the
form

€ — AHfr
kaT,

with Ng(x) = [¢* — 1]~ the Bose-Einstein distribution func-
tion and A, = 44 — i,y the spin accumulation in lead r.

Having established the contributions due to the leads,
we consider the bulk self-energy A%, which in princi-
ple could include various contributions, such as magnon-
conserving and -nonconserving magnon-phonon interactions,
or magnon-magnon interactions. Here, we consider magnon-
nonconserving magnon-phonon coupling as the source of
the bulk self-energy, and we use the Gilbert damping phe-
nomenology to parametrize it by the constant «, which for
the magnetic insulator YIG is of the order of 10~*. Gilbert
damping corresponds to a decay of the magnons into phonons
with a rate proportional to their energy. This leads, therefore,
to the contributions

(€)= 2iNB< >Im[ﬁ25’$)(€)]’ (1)

FM,<, \ _ € FM, (+)
;5 (6) = 2NB(kBTFM>hE‘i’j/ (e),
RN M) = —iaes; i, (16)

where Try is the temperature of the phonon bath. We note
that in principle the temperature could be taken to be position-
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dependent to implement a temperature gradient, but we do not
consider this situation here.

With the results above, the density-matrix elements p;,
can be explicitly computed from the magnon retarded and
advanced Green’s function and the “lesser” component of
the total magnon self-energy using Eq. (11). The magnon
self-energy is evaluated using the explicit expression for the
retarded and advanced magnon self-energies due to leads and
Gilbert damping /i ©™; see Eq. (16).

We are interested in the computation of the magnon spin
current (jy,;;-) in the bulk of the FM from site j to site j’,
which in terms of the magnon density matrix reads

(Jmsjjr) = —ihj jpj.j —c.c.), a7
and it follows from evaluating the change in time of the local
spin density, sid (5}13 j)/dt, using the Heisenberg equations of
motion. The magnon spin current in the bulk thus follows
straightforwardly from the magnon density matrix.

While the formalism presented so far provides a complete
description of the magnon spin transport driven by metallic
reservoirs, we discuss two simplifying developments below.
First, we derive a Landauer-Biittiker-like formula for the spin
current from metallic reservoirs to the magnon system. Second,
we discuss how to replace the matrix elements J7, ,, by asingle

phenomenological parameter that characterizes the interface
between metallic reservoirs and the magnetic insulator.

C. Landauer-Biittiker formula

In this section, we derive a Landauer-Biittiker formula
for the magnon transport. Using the Heisenberg equations of
motion for the local spin density, we find that the spin current
from the left reservoir into the magnon system is given by

. hd — -
jlk = _§<E Z(‘/fguwﬂ - %Llﬂku)>
k
2 L% < /
=-7 ZRG[(J ik 8 ke (1,11 (%)
Jikk'

in terms of the Green’s function
i (t.1) = (Pl (W ()b, (19)

This “lesser” coupling Green’s function g;kk,(t,t’) is calcu-
lated using Wick’s theorem and standard Keldysh methods as
described below.

We introduce the spin-flip operator for lead r,

Al (1) = Tl OV (1), (20)
so that the coupling Green’s function becomes
8w (t.1) = i{df, (b (1)) @1)

The Keldysh Green’s function for the spin-flip operator is given
by

I (2,2) = —i(Tcoodkkr;,(t)dT/,k/,/;r(t/)), (22)
and using Wick’s theorem we find that
T (t,8") = =1 G, | (0,8)G G (1),

T (t,87) = =1 Gy (0 ,)G g, (8,1,
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ke (t.1)) = —i0(t — 1) [ Gy (1.1)G oy (1.1)
—Goprpr (0 DG g (1.1))], (23)

where we used the definition for the electron Green’s function
in Eq. (8).

Applying the Langreth theorem [30] and Fourier transform-
ing, we write down the lesser coupling Green’s function in
terms of the spin-flip Green’s function and magnon Green’s
function,

8 (€) = Z J, e ( Q(H(E)Hkkk'kw(f)
j k!/k!//
< L.(-)
+ G5 (O (€), 24

where the retarded and “lesser” magnon Green’s function are
given by Eqs. (11) and (12). Using these results, we ultimately
find that

. de € —Aug €e—Au
L= | = | Np| —=E2) = N[ —==2 ) |T
]S /27‘[ |: B( kBTL ) B kBTR ( )
de € — Auyg €
—Ng[—==2) =N
+/27T|: B( kBTL ) B<kBTFM):|

x Tr[ATH ()G ()T ™ ()G ()], (25)

with the transmission function
T(e) = TelAM ()G (O (G (1. (26)
In the above, the rates il'Y/R(¢) are defined by
Al (€) = —2Im[AZ"P(e)] 27
and

AT™(e) = 2 Im[AE™ ()], (28)

and they correspond to the decay rates of magnons with energy
€ due to interactions with electrons in the normal metal at
the interfaces, and phonons in the bulk, respectively. This
result is similar to the Landauer-Biittiker formula [23] for
electronic transport using single-particle scattering theory. In
the present context, a Landauer-Biittiker-like formula for spin
transport was first derived by Bender et al. [28] for a single
NM-FM interface. In the absence of Gilbert damping, the
spin current would correspond to the expected result from
Landauer-Biittiker theory, i.e., the spin current from the left
to the right lead is then given by the first line of Eq. (295).
The presence of damping results in leakage of spin current
due to the coupling with the phononic reservoir, as the second
term shows. Finally, we note that the spin current from the
right reservoir into the system is obtained by interchanging the
labels L and R in the first term, and the label L is replaced by
R in the second one. Due to the presence of Gilbert damping,
however, we have in general that j& # —jX.

D. Determining the interface coupling

We now proceed to express the magnon spin current
[Eq. (25)] in terms of a macroscopic, measurable quantity
rather than the interfacial exchange constants J7, ;.. For
A, K € (with €f the Fermi energy of the metallic leads),
which is in practice always obeyed, we have for low energies
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and temperatures that

Rz () ~ :Fz— >

kk k//k///
X A i (€p) A ki (€F)(€ — Apy). (29)

Here, we also neglected the real part of this self-energy, which
provides a small renormalization of the magnon energies but
is otherwise unimportant. The expansion for small energies in
Eqg. (29) is valid as long as € < €p, which applies since € is
a magnon energy, and therefore is at most on the order of the
thermal energy. Typically, the above self-energy is strongly
peaked for j,j’ at the interface because the magnon-electron
interactions occur at the interface. For j, j’ at the interface we
have that the self-energy depends weakly on varying j, j’ along
the interface provided that the properties of the interface do
not vary substantially from position to position. We can thus
make the identification

RELC ) > Fin' (e — Ap,)8; 85, 30)

kk’(‘[ )j k7 k"

with j, the positions of the sites at the rth interface, and n"
parametrizing the coupling between electrons and magnons
at the interface. Note that n” can be read off from Eq. (29).
Rather than evaluating this parameter in terms of the matrix
elements J;,, and the electronic spectral functions of the
leads Ay (), we determine it in terms of the real part
of the spin-mixing conductance g™, a phenomenological
parameter that characterizes the spin-transfer efficiency at
the interface [31]. This can be done by noting that in the
classical limit, the self-energy in Eq. (30) leads to an interfacial
contribution, determined by the damping constant " /N, to the
Gilbert damping of the homogeneous mode, where N is the
number of sites of the system perpendicular to the leads, as
indicated in Fig. 2. In terms of the spin-mixing conductance,
we have that this contribution is given by [32] g™ jAms, N
with s, the saturation spin density per area of the ferromagnet
at the interface with the rth lead. Hence, we find that

ghvr

r —_—

drs,’ @D
which is used to express the reservoir contributions to the
magnon self-energies in terms of measurable quantities. The
spin-mixing conductance can be up to 5% nm~2 for YIG-Pt
interfaces [33], leading to the conclusion that n can be of order
1-10 for that case.

E. Summary on implementation

We end this section with some summarizing remarks on
implementation that may facilitate the reader who is interested
in applying the formalism presented here. First, one determines
the retarded and advanced magnon Green’s functions. This
can be done given a magnon Hamiltonian characterized by
matrix elements 4 ; in Eq. (2), mixing conductances for the
metal-insulator interfaces, g™, and a value for the Gilbert
damping constant, «, from which one computes the retarded
self-energies at the interfaces in Eq. (30) with Egs. (31) and
(16). The retarded and advanced magnon Green’s functions
are then computed via Eq. (12), which amounts to a matrix
inversion. The next step is to calculate the density matrix for
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TABLE 1. Parameters chosen for numerical calculations based on
the NEGF formalism (unless otherwise noted).

Quantity Value

J 0.05eV
Apr )T 2.0 x 1073
n 8
AT 2.0 x 1073
kpTem/J 0.60

the magnons using Eq. (11), with as input the expressions for
the “lesser” self-energies in Egs. (15) and (16). Finally, the
spin current is evaluated using Eq. (17) in the bulk of the FM
or Eq. (25) at the NM-FM interface. In the next sections, we
discuss some applications of our formalism.

III. NUMERICAL RESULTS

In this section, we present results of numerical calculations
using the formalism presented in the previous section.

A. Clean system

For simplicity, we consider now the situation in which the
leads and magnetic insulators are one-dimensional. The values
of various parameters are displayed in Table I, where we take
the hopping amplitudes J; ;; = J(§; jy4+1 + 85 j—1), 1.e., J; jv
is equal to J between nearest neighbors, and zero otherwise.
We focus on transport driven by spin accumulation in the
leads and set all temperatures equal,i.e., 7, = T =Tpm = T.
We also assume both interfaces have equal properties, i.e.,
the magnon-electron coupling parameters obey n’ = n% = 7.
First we consider the case without disorder and take A; = A.

We are interested in how the Gilbert damping affects the
magnon spin current. In particular, we calculate the spin
current injected in the right reservoir as a function of system
size. The results of this calculation are shown in Fig. 4 for
various temperatures. (The dependence on the strength of the
interface coupling is discussed in Appendix C.) The results
show that for a certain fixed spin accumulation, the injected
spin current decays with the thickness of the system for
N > 25 for the parameters we have chosen. We come back to
the various regimes of thickness dependence when we present
analytical results for clean systems in the continuum limit in
Sec. IV. From these results we define a magnon relaxation
length dyeox using the definition

]m(d) X exp(_d/drelax)v (32)

applied to the region N > 25 and where d = Na, with a the
lattice constant. The magnon relaxation length depends on
system temperature and is shown in Fig. 5. We attempt to fit
the temperature dependence with

Y1 V2
drelax(T*) = a()/o + ﬁ + F)’ (33)
with yo,y1,¥» constants and 7* defined as the dimensionless
temperature 7* = kgT/J. The term proportional to y; is
expected for quadratically dispersing magnons with Gilbert
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FIG. 4. System-size dependence of spin current ejected in
the right reservoir for a =6.9 x 1072, 5 = 8.0, and various
temperatures.

damping as the only relaxation mechanism [15,25]. The
terms proportional to yp and y, are added to characterize
the deviation from this expected form. Our results show that
the relaxation length does not have only ~1/+/T behavior.
This is due to the finite system size, the contact resistance that
the spin current experiences at the interface between the metal
and the magnetic insulator, and the deviation of the magnon
dispersion from a quadratic one due to the presence of the
lattice.

B. Disordered system

‘We now consider the effects of disorder on the spin current
as a function of the thickness of the FM. We consider a one-
dimensional system with a disorder potential implemented by
taking A; = A(1 + §;), where §; is a random number evenly
distributed between —§ and § (with § < 1 and positive) that
is uncorrelated between different sites. In one dimension, all
magnon states are Anderson-localized [34]. Since this is an

150
1451
71 Y2
1401 drclzl.x/a =Yo+ +—
v T
< 135¢
~
K]
~§ 130 — Fitted curve
125F
1201
115t . . . .
0.0 0.2 0.4 0.6 0.8

T*=ksT/J

FIG. 5. Magnon relaxation length as a function of dimensionless
temperature 7* for o« = 6.9 x 1072, n = 8.0. The fitted parameters
are obtained as yp = 114.33, y; = 0.96, and y, = 0.32.
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FIG. 6. Spatial dependence of local magnon current for the
case without Gilbert damping and disorder (« = 0,6 = 0), without
disorder (o = 6.9 x 1073,8 = 0), without Gilbert damping (a =
0,6 = 1.5 x 1073), and both disorder and Gilbert damping (& =
6.9 x 1073,8 = 1.5 x 1073). The interface coupling parameter is
taken equal to n = 0.8.

interference phenomenon, it is expected that Gilbert damping
diminishes such localization effects. The effect of disorder
on spin waves was investigated using a classical model in
Ref. [35], whereas Ref. [36] presents a general discussion
of the effect of dissipation on Anderson localization. Very
recently, the effect of Dzyaloshinskii-Moriya interactions on
magnon localization was studied [37]. Here we consider how
the interplay between Gilbert damping and the disorder affects
the magnon transport.

For a system without Gilbert damping, the spin current
carried by magnons is conserved and therefore independent of
position regardless of the presence or absence of disorder. Due
to the presence of Gilbert damping, the spin current decays as a
function of position. Adding disorder on top of the dissipation
due to Gilbert damping causes the spin current to fluctuate
from position to position. For large Gilbert damping, however,
the effects of disorder are suppressed as the Gilbert damping
suppresses the localization of magnon states. In Fig. 6 we
show numerical results of the position dependence of the
magnon current for different combinations of disorder and
Gilbert damping constants. The plots clearly show that the
spin current fluctuates in position due to the combined effect
of disorder and Gilbert damping, whereas it is constant without
Gilbert damping, and it decays monotonically in the case with
damping but without disorder. Note that for the two cases
without Gilbert damping, the magnitude of the spin current
is different because the disorder alters the conductance of the
system, and each curve in Fig. 6 corresponds to a different
realization of disorder.

To characterize the fluctuations in the spin current, we
define the correlation function

Umzjoja1 = Jmijoj+1)?
(mzj.j+1)?

C; = , (34)

where the bar stands for performing averaging over the
realizations of disorder. Figure 7 shows this correlation
function for j = N — 1 as a function of Gilbert damping
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FIG. 7. Correlation function C; that characterizes the fluctuations
in the spin current for j = N — 1 as a function of the Gilbert damping
constant for three strengths of the disorder potential. The curves
are obtained by performing averaging over 100 realizations of the
disorder. The interface coupling parameter is taken equal to n = 0.8.

for various strengths of the disorder. As we expect, based
on the previous discussion, the fluctuations become small as
the Gilbert damping becomes very large or zero, leaving an
intermediate range where there are sizable fluctuations in the
spin current.

IV. ANALYTICAL RESULTS

In this section, we analytically compute the magnon
transmission function in the continuum limita — 0 for a clean
system. We consider again the situation of a magnon hopping
amplitude J; ;- that is equal to J and nonzero only for nearest
neighbors, and a constant magnon gap A; = A. We compute
the magnon density matrix, denoted by p(x,x’), and retarded
and advanced Green’s functions, denoted by G (x,x”;¢).
Here, the spatial coordinates in the continuum are denoted by
x,x’,.x”, ... . Wetake the system to be translationally invariant
in the y-z plane, and the current direction as shown in Fig. 1
to be x.

In the continuum limit, the imaginary parts of the various
self-energies acquired by the magnons have the form

Im[AX" P x’;6)] = —if (€ — pn,)8(x — x,)8(x — x),
Im[AZ™M P (x x';€)] = —xed(x —x), (35)

where x, is the position of the rth lead, and where 7" is the
parameter that characterizes the interfacial coupling between
magnons and electrons. We use a different notation for this
parameter, as in the continuum situation its dimension is
different with respect to the discrete case. To express 7" in
terms of the spin-mixing conductance, we have that 7j" =
g™ /4ms", where § is now the three-dimensional saturated
spin density of the ferromagnet.

We proceed by evaluating the magnon transmission func-
tion from Eq. (26). We compute the rates in Eq. (27) from the
self-energies Eqgs. (35) and find for the transmission function
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in the first instance that
T(e) = 47" 7% (e — Apr)(e — Aug)
d
x f e xp xp, @ )8 (Kpoxr.i ), (36)
(2m)

where q is the two-dimensional momentum that results from
Fourier transforming in the y-z plane. The Green’s functions
g®(x,x',q; €) obey [compare Eq. (12)]

d2
[(1 +ia)e + Ad—2 —A¢® - A
X

+i Y (e — Ap)S(x — xr)]g&)(x,x’,q;e)

re{L,R}

= 8(x —x'), 37)

where A = Ja?. This Green’s function is evaluated using stan-
dard techniques for inhomogeneous boundary value problems
(see Appendix A) to ultimately yield

dq

G 1(q.))>,  (38)

T(e) = 4i2(e — A )(e — Apg) /
with

1(q.€) = Ax[(A’* — 7i*(e — Ajur)(e — Apg)) sinh(kd)
— i Afik(2e — A — Apg)cosh(d)]™,  (39)

withk = /(Aq> + A — € — iae)/A and where d = xg — x.
Note that at this point we have taken both interfaces to be equal
for simplicity, so that #i* = 7® = 7. In terms of an interfacial
Gilbert damping parameter «’, we have that 7 = do/.

Let us identify the magnon decay length

A
o
where A = \/A/kgT is proportional to the thermal de Broglie
wavelength. Equipped with a closed, analytic expression, we
may now, in an analogous way to that of Hoffman et al. [25],
investigate the behavior of Eq. (38) in the thin FM (d « I)
and thick FM (d > ) regimes. To do so, we take Auy, =0
so that the second term in Eq. (25) vanishes and the spin
current is fully determined by the transmission coefficient T(¢).
Before analyzing the result for the spin current more closely,
we remark that the result for the transmission function may also
be obtained from the linearized stochastic Landau-Lifshitz-
Gilbert equation, as shown in Appendix B.

/

’

A. Thin-film regime (d < /)

In the thin-film regime, the transmission coefficient T(¢)
exhibits scattering resonances near € = ¢,4 for given ¢, where

1 n?m?

€nq _ o 1 NI

A Y Tet e
and n is an integer and where £ = \/A/A is the coherence
length of the ferromagnet. When the ferromagnet is sufficiently
thin (d <« A/a!/? = \/al), one finds that these peaks are well
separated, and the transmission coefficient is approximated as

PHYSICAL REVIEW B 96, 174422 (2017)

a sum of Lorentzians: T = Y -, T,, where

rLre
T,(e) = Anqm (40)
with
Apgle) = L (41)

(€ — €ng)? + (I'n/2)?

as the spin wave spectral density. The broadening rates are
givenby I)M = 2, I = 20/€, T = 2a'(e — ur), Tpiy =
4d/e, F,’f#o =4a'(e — ug), and T, =TIM 4+ TL + TR In
the extreme small dissipation limit (i.e., neglecting spectral

broadening by the Gilbert damping), one has
A,q(€) = 2md(e — €,q), 42)
and the current has the simple form j& = > j,, where
2 d*q TETR N E9) — y, ((Ea AR ’
@Qr)? T, kT ksT

(43)

jn:

where T'2, TR and '™ are all evaluated at € = €,4. Equation
(43) allows one to estimate the thickness dependence of the
signal. If ugr < €,q When d < g™ /s, then o > o and
TECR/TIM ~ L~ 1/d; when d > g /sa, then o <
and jfcl ~ 1/d?. The enhancement of the spin current for
small d is in rough agreement with our numerical results in
the previous section, as shown in Fig. 4.

B. Thick-film regime (d > I)

In the thick-film regime, the transmission function becomes

(4Ad)2FfFf\/(e — €0g)® + (FSM/2)2672K,d
|(4AK > — (d)PTLTR — idd AT R S(ic,)|

T(e) ~

where F)f/R/FM = Ff;g/FM, k, = Re[x], and S(k,) is the sign

of k.. For @ < 1, we have « = ik,(1 +iae/2Ak?), where
ke = /q® + &2 — €/A. For energies € > A(q*> + £72), k, is
imaginary, and the contribution to the spin current decays
rapidly with d. When, however, € < A(q®> + £72), k, is real,
and «k, = —a(q? + £72)/2k, ~ a/A (for thermal magnons),
so that the signal decays over a length scale [ o 1/+/T, in
agreement with our numerical results, as shown in Fig. 5.

C. Comparison with numerical results

To compare the numerical with the analytical results, we
plot in Fig. 8 the transmission function as a function of energy.
Here, the numerical result is evaluated for a clean system
using Eq. (26) while the analytical result is that of Eq. (38).
While they agree in the appropriate limit (N — oco,a — 0),
for finite N there are substantial deviations that are due to
the increased importance of interfacing coupling relative to
the Gilbert damping for small systems and the deviations
of the dispersion from a quadratic one.
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FIG. 8. Magnon transmission function as a function of energy.
The parameters are chosentobe A /J = 0.2, = 0.069, and n = 8.0.

V. DISCUSSION AND OUTLOOK

We have developed a NEGF formalism for exchange
magnon transport in a NM-FM-NM heterostructure. We
have illustrated the formalism with numerical and analytical
calculations, and we determined the thickness dependence of
the magnon spin current. We have also considered magnon dis-
order scattering and shown that the interplay between disorder
and Gilbert damping leads to spin-current fluctuations.

We have also demonstrated that for a clean system, i.e.,
without disorder, in the continuum limit the results obtained
from the NEGF formalism agree with those from the stochastic
LLG formalism. The latter is suitable for a clean system
in the continuum limit where the various boundary condi-
tions on the solutions of the stochastic equations are easily
imposed. The NEGF formalism is geared toward real-space
implementation, such that, e.g., disorder scattering due to
impurities is more straightforwardly included, as illustrated
by our example application. The NEGF formalism is also
more flexible for systematically including self-energies due
to additional physical processes, such as magnon-conserving
magnon-phonon scattering and magnon-magnon scattering,
for studying time-dependent situations [40], and, for example,
for treating strong-coupling regimes into which the stochastic
Landau-Lifshitz-Gilbert formalism has no natural extension.

Using our formalism, a variety of mesoscopic transport fea-
tures of magnon transport can be investigated, including, e.g.,
magnon shot noise [38]. The generalization of our formalism
to elliptical magnons and magnons in antiferromagnets is an
attractive direction for future research.
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APPENDIX A: EVALUATION OF THE MAGNON GREEN’S
FUNCTION IN THE CONTINUUM LIMIT

In this Appendix, we evaluate the magnon Green’s function
in the continuum limit that is determined by Eq. (37). For
simplicity, we take the momentum q equal to zero and suppress
it in the notation, as it can be trivially restored afterward. The
Green'’s function is then determined by

d2
+ice +i i (e — A — A— — H
|:e ice ki Z 7" (e U)8(x — x,) + I i|
re{L,R}
x gBP(x,x";€) = 8(x — x). (A1)

To determine this Green’s function, we first solve for the states
x = (x) that obey

d2
*iceti i (e — Au)8(x —x,)+A— — H
|:e ice =i Z 7" (e w)d(x — x,) + s i|
re{L,R}
x xE(x) = 0. (A2)

Integrating this equation across x = x; and x = xy leads to
the following boundary conditions:

x =gt Eie — Appxt(e) + AL =0, (A3)

x = xp i€ — Apr)xtOrp) — AL =0, (A4)
For x; < x < xg, the general solution is
xE(x) = Be'*+* 4 Ce™ih+, (A5)

with k+ = /(e £ iae — H)/A. We write the solution obeying
the boundary condition at x = x; as

Xi () = €T g O, (A6)

With the boundary condition at x = x; [Eq. (A4)], we find
that

<1
Cy= [Aki = ?L(E — AML)]ez”‘ixL.
Aky F (e — Apr)

For the solution obeying the boundary condition at x = xg,
we write

Xg () = Bye™* 4 e7iher, (A7)
With the boundary condition at x = x [Eq. (A4)], we have
A(i Bokse™ % — jkye~kevr)
= +ifif (€ — pp)(Bre™* 4 e ),

so that

_ |:Aki:|:ﬁR(e — AMR)i|e‘2ikixR
AkyFijR(e — Aug) '

The Green'’s function is now given by [39]

AL

for x > x’
+ (! )
gH e =1 2" (A8)
Xz () xg (") forx < x’
AWi(x’) ’
with the Wronskian
+ +
dXR(x/) L * dXL (x/)

+ +
L4 (x/)=xL(X’)T X&) i
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Inserting the result for the Green’s function in Eq. (36) and
using that k; = ix and k_ = (k;)*, we obtain Eqs (38) and
(39) after restoring the q dependence and taking 7i® = 1.

APPENDIX B: STOCHASTIC FORMALISM FOR SPIN
TRANSPORT IN A FERROMAGNET

Here, we show how to recover our analytical results from the
stochastic Landau-Lifshitz-Gilbert equation, generalizing the
results of Ref. [25] to the case of nonzero spin accumulation in
the metallic reservoirs. The dynamics of the spin density unit
vector n is governed by

(1+oanx)in+nx (H+h)—Anx V’n=0, (Bl)

where H = A2 is the effective applied magnetic field (in units
of energy) and h is the bulk stochastic field [24]. We assume
a spin accumulation g’ = Apugz in the right normal metal,
while the spin accumulation in the left lead is taken to be zero.
The boundary condition at x = 0 reads

Jjs(x =0) = — ASn x d,n|,
gN
_|: [nx(nxu)~|—nxhn]+nxh’] ,
4 0
(B2)
andatx =d,
js(x =d) = —Asn x o,n|,_,

gN ) ,
:—[4—(nxﬁn)+nth] . (B3)
s x=d

Defining ¥ (x,t) = n(X,t)+/§/2, where n = n, — in,, we lin-
earize the dynamics around the equilibrium orientation n =
—z. Fourier transforming,

d?
w(X,q,G) / / ry 1et/ﬁ 7”'J_q‘(//-(x rl,t)
the bulk equation of motion reads
A(3% — )y = hv/5. (B4)

The bulk transformed stochastic field 4 = h, — ih, obeys the
fluctuation dissipation theorem:

(h*(x,q,6)h(x’,q,€")) = 2Q2r) a(i?/5)e

3 — x)8(q — q')é(e — €)
tanh[e/2kpT]

(BS)

The boundary conditions, Eqs. (B2) and (B3), become,
respectively,

Ad Y — i%(e —Apg) = 5—% (B6)
at x = 0and
Ad, ¢+z ew— Iy (B7)
V25

at x = d, where we have taken the coupling at both inter-
faces to be equal. Similarly, the interfacial stochastic fields
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FIG. 9. System-size dependence of spin current ejected in the
right reservoir for o = 6.9 x 1072, kzT/J = 0.048, and various
values of interface coupling 7.

obey

(h3(q.e)h(q.€")
_ 2Qn)’/di’5(e — Apg)d(q — q)8(e — €')
B tanh[(e — Aug)/2ksT]

(B3)
and

2027 )} o' dh*5e8(q — q')8(e — €')
tanh[e/2kpT]

(h}(q.€"hy(q,€) =

(B9)

Using Egs. (B4)-(B9), one finds the current on the left side
of the structure, j =z - j;(x = 0), to be of the form

P G Sy L O
2 ) (522 s

where T(¢) is the transmission coefficient in Eq. (38). Hence,
for a clean system and in the continuum limit, the results of
the stochastic Landau-Lifshitz-Gilbert equation coincide with
those of the NEGF formalism given by Eq. (25).

APPENDIX C: DEPENDENCE OF MAGNON SPIN
CURRENT ON INTERFACE COUPLING

In Fig. 9 we show the magnon spin current as a function of
the sample size for various values of the interface coupling
n. For small values of this coupling, the current vanishes
quadratically, as expected. For large values of this coupling,
the magnon spin current becomes independent of 5. This is
the limit of a transparent interface where the magnon current
is limited only by magnon scattering in the system.
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