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a b s t r a c t

Recently, it has been claimed that inflationary models with an inflection point in the scalar potential can
produce a large resonance in the power spectrum of curvature perturbation. In this paper however we
show that the previous analyses are incorrect. The reason is twofold: firstly, the inflaton is over-shot from
a stage of standard inflation and so deviates from the slow-roll attractor before reaching the inflection.
Secondly, on the (or close to) the inflection point, the ultra-slow-roll trajectory supersede the slow-roll
one and thus, the slow-roll approximations used in the literature cannot be used. We then reconsider the
model and provide a recipe for how to produce nevertheless a large peak in the matter power spectrum
via fine-tuning of parameters.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Undoubtedly, the most fascinating resolution of the missing
Dark Matter (DM) problem would be that DM is entirely formed
by black holes generated during inflation, i.e. by primordial black
holes (PBHs).While until very recently it has been thought that this
possibility is ruled out by Cosmic Microwave Background (CMB)
observations, because of a significant numerical mistake in an
earlier work [1], discovered in [2], this possibility has now come
back in full glory. Although there are many possible astrophysical
constraints on PBHs, those are questionable [3,4] and thus, until
further solid astrophysical arguments are given, one should seri-
ously consider the possibility that PBHs constitute the whole (or
most) of DM.

CMB observations are in full compatibility with simplicity:
a stage of single field inflation is consistent with all observa-
tions. [5]. Therefore, although PBHs could in principle be formed
in a multi-fields scenario [6], it is natural to wonder whether
single field scenarios might also generate PBHs. Along this line of
thought, in an important paper Garcia-Bellido and RuizMorales [7]
have recently investigated the idea which posited that a change
of curvature of the inflationary potential from a steeper, where
CMB curvature perturbations are generated, to a shallower one,
generate a large amplification of the power spectrum of curva-
ture perturbations. This amplification can then trigger gravita-
tional collapse and therefore PBH formation. The fascinating fact
is that such a feature of the potential, and indeed a potential that
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closely resembles the one of [7], can naturally appear in Higgs
inflation [8–10].

If inflation is in a slow-roll attractor, when the inflaton ap-
proaches an inflection point (at which the first derivative of the
potential vanishes), naïvely one would expect that the amplitude
of primordial fluctuations would exhibit an infinite enhancement,
since the power spectrum is inversely proportional to the deriva-
tive of the potential. This, of course, cannot be true. In reality, close
to an inflection point (and also close to a near inflection point
used in [7]) the inflaton must either exit from inflation or enter
an ultra-slow-roll regime [11–16]. In such a regime the potential
is flat and the friction due to the expansion is compensated for by
the inflaton’s deceleration, slowing it down rapidly such that the
universe approaches a de Sitter stage.

Although this fact invalidates immediately the analysis of [7], at
first sight the situation is not bad at all as during an ultra-slow-roll
stage the spectrum grows exponentially. Unfortunately though,
unless parameters of the model studied in [7] are appropriately
tuned, the exponential growth of the ultra-slow-roll phase is too
short and yields no significant enhancement. The reason is that,
before entering into the ultra-slow-roll regime, because of the
change of curvature the inflaton shoots-over to a larger veloc-
ity that lies outside the standard inflationary slow-roll attractor.
During that transition the power spectrum decreases typically by
several orders of magnitude so that the subsequent ultra-slow-roll
amplification does not last long enough to even recover the lost
magnitude.

In order to avoid the fatal overshooting and obtain a sizeable
amplification of the power spectrum, one has to reduce the over-
shooting and have a long-lasting ultra-slow-roll phase. In what
follows we give an example in which both are realised and the
amplification is effective.
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2. The overshoot

Consider a flat Friedmann–Lemaître–Robertson–Walker (FLRW)
spacetime with the metric,1

ds2 = −dt2 + a(t)2dx⃗ · dx⃗ . (1)

A quasi-de Sitter stage needed for cosmic inflation is attained
within a FLRW space (1) whenever the principal slow-roll param-
eter,

ϵ ≡ −
Ḣ
H2 ≪ 1 , (2)

where H ≡ ȧ/a is the Hubble parameter and ȧ = da/dt . The
slow-roll attractor of standard inflation is reached whenever both
(geometric) slow-roll parameters, ϵ and

ϵ2 =
ϵ̇

ϵH
(3)

are small, i.e. when ϵ, |ϵ2| ≪ 1. On the other hand, on a slow-roll
attractor, the slow-roll parameters satisfy,

ϵ ≃ ϵsr ≡
M2

p

2
V

′2

V 2 , ϵ2 ≃ 4ϵsr − 2ηsr , ηsr ≡ M2
p
V ′′

V
, (4)

where V (φ) denotes the scalar field (φ) potential, V ′
= dV (φ)/dφ,

Mp = 1/
√
8πGN ≃ 2.2×1018 GeV is the reduced Planck mass and

GN is the Newton constant.
The ultra-slow-roll phase is instead defined by a large ϵ2 but still

a small ϵ. Generically, in ultra-slow-roll,

ϵ ̸= ϵsr , ϵ2 ̸= 4ϵsr − 2ηsr . (5)

In ultra-slow-roll the potential is so flat that the acceleration domi-
nates over the pulling force of the gradient of the potential. In other
words, in ultra-slow-roll the Hubble friction term is compensated
for by the field deceleration,

φ̈ + 3Hφ̇ = −V ′
≃ 0 , (6)

and therefore φ̇ ∝ a−3, leading to ϵ2 ≃ −6.
Although slow-roll and ultra-slow-roll evolutions are funda-

mentally different, the power spectrum of primordial scalar (lin-
ear) curvature fluctuations P , defined in the perturbed metric

ds2 = −dt2 + a(t)2(1 + 2Ψ (t, x⃗))dx⃗ · dx⃗ , (7)

where Ψ is equal to the gauge invariant curvature perturbation ζ
in the comoving gauge δφ = 0, is given by the same formula in
both scenarios, i.e. [14],

P =
H2

8π2ϵM2
p

, (8)

while the Hubble constant evolution is still dominated by the
potential energy, i.e. H2

∝ V . We then see that, at least for the
slow-roll case, the flatter is the potential, the larger is the power
spectrum.

Let us now take this to the extreme, i.e.we aim to follow an in-
flationary trajectory that starts fromadominant potential gradient,
where the inflaton undergoes standard slow-roll, to an ultra-slow-
roll phase where V ′(φusr) ≪ φ̈. In this case the field acceleration
is small with respect to the friction during the slow-roll phase.
However, to reach the ultra-slow-roll regime the acceleration has
to grow enough to overcome the potential gradient (but not too
much otherwise one would exit from inflation). During this stage
the velocity of the scalar, and thus the slow-roll parameter ϵ, grows
(is overshot from the slow-roll phase).

1 In this work we use natural units, in which c = 1 = h̄.

After that, the system transits into an ultra-slow-roll phase
in which the power spectrum, reduced by the higher value of ϵ
and a lower value of the potential in the transition region, starts
exponentially increasing as ∝ e6Nusr , where Nusr =

∫
usr Hdt is

the number of e-folds during the ultra-slow-roll phase. Given that
the total number of e-foldings of inflation is bounded to ∼65 (see
for example [17] for a discussion on this bound), the recipe for
obtaining a large power spectrum at sub-CMB scales is to have a
stage of standard inflation with as small number of e-foldings as
possible and an overshooting epoch that is as short as possible,
followed by an ultra-slow-roll phasewith the number of e-foldings
as large as possible. In what follows we show that the model
discussed in [7] fails to satisfy these requirements.

3. A prototype potential with an inflection point

Inspired by the Higgs inflation at a critical point [9], the authors
of [7] have suggested the following potential for the scalar field,

V (φ) =
λ

12
φ2v2

6 − 4a φ

v
+ 3 φ2

v2(
1 + b φ2

v2

)2 , (9)

where for b = 1 −
1
3a

2
+

a2
3

(
9

2a2
− 1

)2/3
an inflection point is

generated. In [7] the values a = 3/2 and b = 1 are chosen
so that the inflection point appears at φinfl = v. In the original
paper [7] however, b was taken to slightly deviate from 1. The
reason for doing that was the incorrect belief that at the inflection
point the slow-roll parameter ϵ is still proportional to the potential
gradient and thus the power spectrumdiverges there. As discussed
above however, this does not happen. Instead at the inflection
point the system is ultra-slow-rolling rather than slow-rolling and
the formulae for ultra-slow-roll apply. As we checked that the
small detuning introduced in [7] does not qualitatively change the
dynamics of the system (contrary to what claimed in [7]), we will
not use this detuning in what follows.2

For a better comparison we consider here the same parameters
as chosen in [7]. Those are v =

√
0.121Mp, λ = 1.21 × 10−7, and

the initial field value is, φin ≃ 11.72 v.3 By choosing these pa-
rameters one finds that, during the slow-roll phase the geometric
slow-roll parameter ϵ agrees with the slow-roll approximation ϵsr
excellently, as can be seen in Fig. 1. Near the inflection point how-
ever, the slow-roll approximation breaks down (as it is evidenced
by diverging ϵ and ϵsr), and the system enters an ultra-slow-roll
regime, as can be seen from the behaviour of ϵ2 in Fig. 2. Indeed, in
Fig. 2 we see that, as expected, ϵ2 reaches a value of approximately
−6 at the inflection point at time tinfl ≈ 0.0027 × 109/Mp.

The evolution of the power spectrum (in time) is shown in Fig. 3.
There we clearly see that the power spectrum gets suppressed
before exponentially increasing during ultra-slow-roll. However,
the number of e-foldings of the ultra-slow-roll phase is only a
few so that the power spectrum cannot get to the quoted value
of ∼10−4 in [7]. Finally, because of the completely different dy-
namics analysed here and in [7], the systemwith these parameters

2 This comment refers to the potential (9) with the values of parameters chosen
up to the archive version 3 of [7]. After our paper appeared on the archive, the
authors of [7], agreeing with our analysis, have changed all values of parameters
(in version 4) so that slow-roll analysis could be used. The net result is however to
have a way smaller peak of the power spectrum. The reason is that, with these new
values, the authors do no longer have a near inflection point. In addition, in this new
version, the authors claim that they can have a peak in the power spectrum as large
as they want, by opportunely de-tuning the potential. We strongly disagree with
that. In fact, if the detuning is small, our analysis applies, while if it is large, slow-roll
analysis applies while the peak decreases, contrary to what is claimed in [7].
3 Note that from the first to third archive version of [7], where the infection point

plays a fundamental role, these parameters change. We have nevertheless checked
all versions and none of them produce the claimed spectrum.
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Fig. 1. The geometric (ϵ) and approximate (ϵsr) principal slow-roll parameters as a
function of time (in units ofM−1

p = 10−9). Notice that the slow-roll approximation
breaks down before reaching the inflection point and that ϵsr vanishes at the
inflection point, tinfl ≈ 0.00272×109/Mp , while the geometric slow-roll parameter
ϵ defined in (2) remains finite at all times. It is therefore of utmost importance to use
the correct definition of ϵ in the power spectrum (8). In this and in the subsequent
figures for convenience we setMp = 109 for numerical stability.

Fig. 2. The second geometric slow-roll parameter ϵ2 defined in (3) as a function of
time (in units of M−1

p ). The slow-roll approximation breaks down before reaching
the inflection point (tinfl ≈ 0.00272 × 109/Mp), at which ϵ2 reaches a minimum of
ϵ2min ≃ −6. Inflation ends soon thereafter (the second, positive peak in ϵ2 signifies
the end of inflation).

undergoes only about 30 e-foldings of inflation rather than 62
quoted in [7]. This is already suggesting us that there is room in the
numerical choice of the parameters of the system such to increase
the number of ultra-slow-roll e-foldings. In this way, as we shall
show in the next section, we will be able to recover the lost power
due to the over-shoot and indeed obtain a large enhancement of
the power spectrum at smaller than CMB scales.

A more interesting potential than (9) is given by the Higgs
potential non-minimally coupled to gravity as in theHiggs inflation
of [9]. At the near-critical point and for the parameters chosen by
the authors of [10] we have also checked that the same problems
of the previous potential occur, i.e. no significant amplification of
the power spectrum is generated.

4. Enhancing the power spectrum at the inflection point

In this section, as a proof of principle, by using the potential (9)
with appropriately tuned parameters, we show that P can indeed
have a huge amplification at sub-CMB scales. Fixing for comparison
with [7] a total number of e-foldings N ≃ 62, we will then find the
maximal amplification that can be obtained from (9).

Fig. 3. The evolution of the power spectrumP in time with the parameters chosen
as in version 3 of [7]. We see that this model exhibits a significant suppression of
the power spectrum due to the overshoot, followed by a modest amplification due
to the resonance near the inflection point.

In order to have a large peak in the power spectrum, one has to
reduce the overshooting. This means that the region in which the
standard inflation occurs should be not too far from the inflection
point. In order to reduce this distance we can maximise b. In
addition, to provide enough e-foldings for the exponential grow
during the ultra-slow-roll phase, we should also minimise ns.

Firstly then, we consider the potential (9) with b = 1.5, i.e. the
maximal value of b such to keep an inflection point. The inflection
point is then generated for a = 1/

√
2 ≃ 0.707. Using the same

set of cosmological observations as in [7] and considering the
necessary running of the spectral index in order to obtain a peak
in the power spectrum, one has, at k∗ = 0.05 Mpc−1 and, at 95%
confidence level [5],

ln
(
1010A2

s

)
= 3.094 ± 0.068 ,

ns = 0.9569 ± 0.0154 ,

dns

d ln k
= 0.011 ± 0.028 , (10)

where As is the amplitude of scalar fluctuations at k∗.
By keeping ourselves within 2σ distance of the central values

in (10), the peak in the power spectrum is maximised by choosing
ns(k∗) = 0.9415,P(k∗) ≃ 2.06×10−9.4 Again, for comparison, we
will assume as in [7] that the scale corresponding to 62 e-foldings
is k∗.

These values lead to λ ≃ 1.86 × 10−6, v = 0.196Mp, and for
the initial scalar field value φin ≃ 2.2Mp. Finally, our model gives
r ≃ 0.009 and dns/d ln k ≃ −0.002, which amply satisfies the
current bound on the amplitude of primordial gravitational waves,
r < 0.09, and running of spectral index. With these values the
power spectrum reaches a maximum of ∼0.0025, which is a way
larger than the maximum value of [7] of ∼7 × 10−5. A plot of the
power spectrum in terms of the physical wave number (kp) is given
in Fig. 4. In Fig. 5 we instead plot the same potential in terms of e-
foldings counted from the end of inflation. We see that, as in [7],
the maximum is peaked around 33 e-foldings.

Finally, the ultra-slow-roll phase is characterised by two curva-
ture modes: a constant and a growing one [14]. In principle the
growing mode would help in the amplification of the potential,
however, as the ultra-slow-roll phase only last for few e-foldings,
see Fig. 6, the constant mode actually dominates the power spec-
trum.

4 Since we start from an early slow-roll phase, we can approximate ns = 1 −

6ϵsr + 2ηsr .
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Fig. 4. Power spectrum as a function of the physical momentum at Hubble crossing
in Planck units, i.e. kp/Mp ≡

k∗(t)
aMp

=
H(t)
Mp

, where k∗(t) = aH(t). It is clear that the

peak is very narrow and centred in kp∗/MP ≃ 8.79 × 10−6 . More precisely, in this
plot: kp |max−kp |min

kp∗
∼ 3×10−9 , which implies that thewidth of the peak is∼10−14Mp .

Fig. 5. Maximal power spectrum obtained from (9) with respect to the number of
e-foldings from the end of inflation.

Fig. 6. ϵ2(N). From this figure we clearly see that Nusr ∼ a few.

4.1. Is it enough for PBH?

The density of primordial black holes with respect to the total
density of the universe at the formation time is [4]

β =
ρPBH

ρtot
≃

1
2
erfc

(
δc

√
2Pδ

)
, (11)

where δc is the critical density perturbation triggering gravitational
collapse from scalar modes re-entering the horizon (Hubble vol-
ume) during radiation epoch, and Pδ =

k3

2π2 ⟨|δk̃|
2
⟩ is the power

spectrumof the density perturbation δ ≡
δρ

ρ
, where ρ is thematter

density.
In [7] it has been assumed that δ ∼ ζ . However, the two are

related by an important numerical factor.5 During radiation we
have [18] δ =

4
9ζ . The factor 4/9 is easy to understand. In Newto-

nian gauge the Poisson equation provides a factor 2/3 between the
density contrast and the Newtonian potential. Another factor 2/3
comes from treading the Newtonian potential for ζ .

If, as in our case, the large peak in the curvature perturbation
spectrum is very narrow, one then finds that [18]

β ≃
1
2
erfc

(
ζc

√
2P

)
. (12)

In addition, Ref. [7] used the rescaled range of δc found in [19]
instead of the bare ranges that are compatible with earlier works,
e.g. [20]. For this reason, assuming that PBHs are formed dur-
ing radiation domination, one should instead consider δc ≃

0.45 [4,19,20] and thus ζc ≃ 1.01. Then, at the peak we get
β ∼ 10−91,6 which is obviously way too small to produce any
non-negligible late time PBH abundances (we also checked that
enlarging the number of e-foldings to ∼65 does not help much).

This result should not be discouraging. Although the potential
(9) does not serve for the purpose of generating a significant
amount of PBH, we expect that one can always find a suitable po-
tentialwith an inflection point (or better a flat direction) producing
the right amplitude of scalar perturbations to match the observed
abundance of DarkMatter. However, asβ is exponentially sensitive
to small variations of P , we believe that any choice of that poten-
tial should be strongly physically supported or, at the very least,
very stable under quantum corrections. As our paper aims only to
elucidate the correct mechanism of power spectrum enhancement
via an inflection point, the prototypical potential (9) served our
case. Thus, the quest of finding a stable model of inflation, able to
generate the right density of PBH matching current observation, is
left for future research.

5. Conclusions

In this work we have revisited the important question of the
production of primordial black holes (PBHs) by amplified spectrum
of adiabatic cosmological perturbations. We have reanalysed the
fascinating claim of the recent Ref. [7], in which inflation near an
inflection point of the inflaton potential was used to get a resonant
enhancement of the adiabatic power spectrum needed to produce
enough PBHs. We came to the conclusion that understanding the
amplification near the inflection point requires a more careful
analysis than it was done in [7]. The main reason is that near an
inflection point, slow-roll analysis breaks down, as already noticed
in [21].7 Contrary however to [21], where slow-roll was then
enforced by appropriately deforming a potential with an inflection
point, here we have studied the case in which the inflection point
is kept so to generate a large peak in the power spectrum.

Our main result can be summarised as follows: near the in-
flection point the inflaton enters an ultra-slow-roll regime, during
which the standard slow-roll methods (used in [7]) break down.
However, the methods of ultra-slow-roll give a clear picture of
why there is a resonant enhancement. Namely, near the inflection
point V ′(φ) almost vanishes and the inflaton enters into a strongly
decelerating phase during which φ̇ ∝ 1/a3. This then results in a
strong reduction of the principal (geometric) slow-roll parameter,

5 CG would like to thank Jaume Garriga for pointing this out.
6 Had we used δ ∼ ζ and δc = 0.0875, as in [7], we would have obtained

β ∼ 0.04.
7 See also [22] where the authors notice some discrepancies between the exact

and slow-roll analysis for certain classes of potentials with small curvatures.
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ϵ2 ∝ a−6, and consequently to a large amplification of the adiabatic
power spectrum by a factor, P ∝ e6Nusr , where Nusr is the number
of e-foldings that the system spends in ultra-slow-roll.

We have shown that, with a suitable choice of the parameters,
one can get a large amplification of the power spectrum (see Fig. 4).
However, that is unfortunately not enough to produce the required
amount of PBHs needed to explain dark matter.

One would very much like to understand under what general
conditions one gets a strong amplification of the power spectrum.
We have performed an in-depth analysis of that question and
came to the following conclusion. The resonant amplification will
generally be stronger if:

• One reduces the amount of overshooting. This can be achieved
e.g. by pushing the resonance to earlier times in inflation, i.e.
closer to the smallest observed CMB scales.

• One increases the period of ultra-slow-roll. This can be gener-
ally achieved by flattening of the potential. A practical way
of doing that is to put as close as possible the slow-roll region
(in the potential) to the inflection point and to minimise the
scalar spectral index ns.

The enhancement of the power spectrum shown in Fig. 4 is
obtained by tuning of the parameters. We believe this is bound to
be a general feature of any enhancements of the power spectrum
via an inflection point.

An important question is how large the required fine tuning
actually is. Any attempt to answer that question here would nec-
essarily address that question for a specific potential. While the
amount of fine tuning required to get DM from PBHs may be large,
we do not know how large fine tuning is generically, i.e. without
specifying the potential. This may be ever the wrong question to
ask as there may be a physical mechanism that naturally gener-
ates potentials that possess the desired strong resonance. A more
detailed investigation of this fascinating question, and a suitable
potential able to generate an amplitude of scalar perturbations
high enough in order to interpret primordial black holes as dark
matter candidates, is left for future work.

An interesting paper [23] appeared after ours in which the
authors argue that stochastic effects on the inflaton dynamics and
non-Gaussianities, might be important. In particular – in accor-
dance with [24] – the authors of [23] point out that, when this
is the case, the non-Gaussian tail generated by stochastic effects
can contributemost of the PBHs production. These results however
need further confirmation in any region violating slow-roll, as it is
on and around an inflection point (ultra-slow-roll case). We leave
this study for future research.
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