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a b s t r a c t 

In the field of paleoceanographic modeling, the different positioning of Earth’s continental configurations 

is often a major challenge for obtaining equilibrium ocean flow solutions. In this paper, we introduce 

numerical parameter continuation techniques to compute equilibrium solutions of ocean flows in the ge- 

ological past, where we change the continental geometry and allow the flow to deform using a homotopy 

parameter. The methods are illustrated by computing equilibrium three-dimensional global ocean circu- 

lation patterns over the last 65 Ma under a highly idealized atmospheric forcing. These results already 

show interesting major transitions in ocean circulation patterns due to changes in ocean gateways, that 

may have been relevant for Cenozoic climate transitions. In addition, the techniques are shown to be 

computationally efficient compared to the established continuation spin-up approach. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Major climate transitions have occurred during the last 65

a of Earth’s history ( Zachos et al., 2001a ). One of the most

rominent ones was the Eocene-Oligocene Transition (EOT) which

appened at about 34 Ma. From oxygen isotope data, it has been

educed that deep sea temperatures decreased by several degrees

C (an isotopic δ18 O signal of 1.2–1.5 ‰ ) over a period of about

0 0,0 0 0 years ( Zachos and Kump, 2005 ). It is generally thought

hat a crossing of a critical boundary in atmospheric greenhouse

as levels (e.g. pCO 2 ) was responsible for the EOT and led to the

rowth of a continental scale ice sheet on Antarctica ( DeConto

t al., 2008 ). However, the fact that the transition appears to

onsist of two 40,0 0 0 year steps separated by a plateau of about

0 0,0 0 0 years ( Coxall et al., 2005 ) suggests that also additional

rocesses have been at work. 

Using a highly idealized climate model, Tigchelaar et al.

2011) proposed that the first step in the EOT was due to changes

n the global ocean circulation, whereas during the second step,

and-ice changes occurred. The ocean circulation changes involved

 transition between different patterns of the Meridional Over-

urning Circulation (MOC), and the associated meridional heat

ransport, due to changes in paleobathymetry. Such transitions are
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elated to the well-known bifurcation behavior of the present-day

tlantic MOC induced by freshwater forcing changes ( Stommel,

961 ). The study of global ocean circulation patterns versus paleo-

athymetry is usually done by computing equilibrium patterns for

ach bathymetry. However, determining such equilibrium patterns

s highly computationally demanding as at least a few thousand

ears of simulation are needed to reach reasonable equilibrium

onditions (see e.g., Lunt et al., 2017 ). 

An alternative to such transient simulations is the application

f continuation methods, where steady states are calculated di-

ectly versus parameters. Since the early work of Keller (1977) ,

hese methods have been applied in many areas of fluid mechan-

cs ( Dijkstra et al., 2015 ), and more recently also on problems in

cean- and climate dynamics ( Primeau, 2002; Simonnet et al.,

0 05; Dijkstra, 20 05 ). There are basically two numerical ap-

roaches: one is (Jacobian) matrix-based and the other is matrix

ree. Within the matrix-based techniques, large systems of lin-

ar equations have to be solved which requires tailored solvers

 de Niet et al., 2007; Thies et al., 2009 ). In the matrix-free ap-

roaches, one only needs the tendency terms of the equations

ut the schemes often have convergence problems when applied

o three-dimensional ocean models ( Bernsen et al., 2009 ). The

atrix free techniques may also be used to significantly accelerate

pin-up simulations of ocean models ( Khatiwala et al., 2005;

ernsen et al., 2008; Merlis and Khatiwala, 2008 ). 

Omta and Dijkstra (2003) used such a continuation approach to

tudy equilibrium wind-driven ocean circulation patterns within a
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Fig. 1. Sketch of a single step in the bathymetry continuation scheme. The starting 

solution (top left panel) is depicted as a streamline around a topography. Changing 

to a rotated topography generates new ocean and land points, to which the state is 

adjusted using the predictor (bottom left). A continuation in the homotopy param- 

eter deforms the predicted solution (bottom right) and converges at a new point on 

the branch (top right). 
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reduced gravity shallow-water model with several paleobathyme-

tries of the last 65 Ma. They found three major transitions of the

surface ocean flow during this period: (i) the appearance of the

Antarctic Circumpolar Current in the Oligocene, (ii) the disappear-

ance of the Tethys flow and (iii) the reversal of the Atlantic-Pacific

volume transport in the early Miocene. The last transition was

shown to be purely geometrically driven involving the relative

positions of the different continents. The continuation techniques

used by Omta and Dijkstra (2003) are, however, not suited to

determine steady state three-dimensional ocean circulation pat-

terns (e.g. by using the fully implicit thermohaline circulation

model (THCM) in de Niet et al., 2007 ) under a deformation of the

bathymetry of the model. 

In this paper, we present a novel continuation method to do

so; it consists of a predictor followed by a homotopy continuation

and is described in Section 2 . We apply this method to deter-

mine equilibrium flows for 5 Ma intervals during the Cenozoic

using paleobathymetries constructed in Baatsen et al. (2016) ,

using highly idealized atmospheric forcing conditions. The results

in Section 3 focus on the major changes in volume transports

through gateways and the Meridional Overturning Circulation

in the different ocean basins. We also present details on the

performance of the continuation methodology. A summary and

discussion concludes the paper ( Section 4 ). 

2. Methods 

The methods presented in this paper require an ocean model

with a few non-standard capabilities, most importantly the

availability of a Jacobian matrix, either explicit or via an action

( Bernsen et al., 2010 ). Spatial discretization of the model equations

gives a system of the form 

B 

dx 

dt 
= F (x , k ) , (1)

where x ∈ R 

n is an n -dimensional state vector, containing un-

knowns ( u, v, w, p, T, S ) at each grid point. Bathymetry data

is available for each element in the state through the vector k

∈ {0, 1} n . The dependency on k is made explicit to stress that

bathymetry acts as a parameter in the context of this paper. F is a

nonlinear operator F : R 

n × { 0 , 1 } n → R 

n , arising from the spatial

discretization. Fixed points of the model will satisfy F (x , k ) = 0 ,

hence F ( x, k ) will be referred to as the residual. It is impor-

tant to note that the Jacobian matrix J of F with respect to x ,

with elements J i j = 

∂ F i 
∂ x j 

, is assumed to be available. B ∈ R 

n ×n is

a diagonal matrix determined by the dependencies of the dis-

cretization on time derivatives. As B is singular (e.g. due to the

discretized continuity equation) the problem (1) is a system of

differential-algebraic equations (DAEs). 

Bathymetry at the i th grid point is defined by the land mask 

k i = 

{
1 land point, 
0 ocean point. 

(2)

The land mask affects operators F and J by providing spatial

information for the boundary conditions. Moreover, at land points

we set F i = 0 , J i j = 0 for j � = i and J ii = 1 , in order to ensure trivial

updates in a transient or Newton–Raphson process, reducing the

computational effort. 

Given a collection of p land masks { k 

0 , k 

1 , . . . , k 

p−1 } , we

aim to traverse a branch of fixed points from one mask to

another. That is, find steady states x 0 , x 1 , . . . , x p−1 such that

F (x 0 , k 

0 ) = F (x 1 , k 

1 ) = · · · = F (x p−1 , k 

p−1 ) = 0 , for gradually

changing bathymetries k 

j , j = 0 , . . . , p − 1 . 

The steady states can be calculated efficiently using a continu-

ation method in the atmospheric forcing, as described in Bernsen

et al. (2010) , for each paleobathymetry. In a multiple equilibria
egime, however, it is not guaranteed that this approach computes

xed points that are located on the same branch. In order to con-

truct a single branch, steady states should be computed using a

redictor-corrector-type scheme, which, at its core, is a sequential

rocess. We aim to obtain a new state x j at bathymetry k 

j from

 previous state x j−1 , using only the difference in constraints that

rise from different bathymetries, hence without changing the

xternal physical forcing. 

In the remainder of this section we will discuss a continuation

pproach relying heavily on deformations induced by a homotopy

onstraint of the form 

 

j (x , δ) = (1 − δ) g(x ) + δF (x , k 

j ) = 0 , (3)

here δ ∈ [0, 1] is a continuous homotopy parameter and we re-

uire g(x ) = 0 to be ‘easy’ to solve. By construction, a continuation

n δ from δ = 0 to δ = 1 computes an estimate of a state satisfying

 (x , k 

j ) = 0 , reaching the desired steady state at δ = 1 . 

An overview of a single step in the continuation process is

iven in Fig. 1 . To proceed from the state-mask pair (x j−1 , k 

j−1 )

o ( x j , k 

j ) we first apply a predictor, discussed in Section 2.1 .

he subsequent computation of deformations induced by the

omotopy constraint is explained in Section 2.2 . 

.1. Predictor 

To make a basic prediction of the new state, we use a map

: R 

n → R 

n , based on differences between two successive land

asks k 

j−1 and k 

j . The aim of the predictor is to perform ad-

ustments that, without much effort, improve the compatibility

f the state x j−1 with the new bathymetry k 

j . That is, reduce the

esidual norm 

∥∥F (x j−1 , k 

j ) 
∥∥

2 
, which is defined, provided that the

tate values at land points exist: 

 

j−1 
i 

= β, when k j−1 
i 

= 1 . 

or our purposes it is convenient to let β = 0 . 

The i th bathymetry difference d 
j 
i 

= k 
j−1 
i 

− k 
j 
i 

can either be 1,0,

r −1 . These values determine the action for our choice of μ as
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ollows 

i (x ) = 

⎧ ⎨ 

⎩ 

x i if d j 
i 

= 0 (no change), 

0 if d j 
i 

= −1 (new land), 

x̄ i if d j 
i 

= 1 and i ∈ I T ∪ I S (new ocean), 

(4) 

here I T and I S denote the temperature and salinity indices re-

pectively and x̄ i is the zonal average. In other words, if an ocean

oint is created we estimate the (absent) tracer values with the

onal average and leave the velocity and pressure values unaltered.

The map μ should, in general, give a significant drop in the j th

esidual norm: 

F (μ(x 

j−1 ) , k 

j ) 
∥∥

2 
�

∥∥F (x 

j−1 , k 

j ) 
∥∥

2 
. (5) 

n this way, other adjustments that improve the compatibility of

he state-bathymetry pair can be explored as well. 

.2. Homotopy continuation 

Following the predicting phase we begin to compute deforma-

ions. Using pseudo-arclength continuation ( Keller, 1977 ) with a

omotopy parameter, we traverse a branch of continuous deforma-

ions from the predicted state μ(x j−1 ) to the state x j that satisfies

 (x j , k j ) = 0 . 

The residual F ( x, k 

j ) is embedded ( Seydel, 2010 ) in a

omotopy constraint based on (3) , where we substitute

(x ) = M 

(
x − μ(x j−1 ) 

)
and replace the coefficients involving

with trigonometric functions: 

G 

j ( x , δ) = cos 2 θ M 

(
x − μ

(
x 

j−1 
))

+ sin 

2 θ F 
(
x , k 

j 
)

= 0 , 

with θ = 

πδ

2 

. 
(6 ) 

he trigonometric functions are used to smooth the transitions

etween the startup, the interior and the final steps of the contin-

ation. In addition, if the continuation parameter overshoots, that

s δ > 1, then the constraints remain well defined. 

In Eq. (6) , M ∈ R 

n ×n is a diagonal Boolean matrix, independent

f k , with a sparsity pattern similar to that of the mass matrix B

n (1) : if the i th row in the system (1) is a differential equation,

 ii = 1 , otherwise M ii = 0 . By introducing the singular matrix

 we maintain the DAE structure of (1) . As a result, during

he continuation, the state is partly enslaved to its deforming

omponents through the algebraic constraints. The homotopy

onstraints (6) are, in this way, constructed to mimic an implicit

uler discretization of the original equations. 

The nonlinear map G 

j : R 

n +1 → R 

n depends on a single homo-

opy parameter δ. To determine states satisfying (6) , a solution

ranch is parameterized with an arclength parameter s : ( x ( s ), δ( s )).

n approximate normalization condition is imposed to close the

ystem: 

˙ 
 

T (x − x 0 ) + 

˙ δ(δ − δ0 ) − �s = 0 , 

here ( x 0 , δ0 ) is a known point on the branch and ( ̇ x , ˙ δ) is the

angent at that point with respect to the arclength parameter.

sing these tangents the next point on the branch is predicted: 

 1 = x 0 + �s ˙ x , (7) 

1 = δ0 + �s ˙ δ. (8) 

he predicted point is used as initial guess in a Newton–Raphson

teration to solve the nonlinear system 

 

j (x , δ) = 0 , (9) 

r ( x , δ) = 

˙ x 

T ( x − x 0 ) + 

˙ δ( δ − δ0 ) − �s = 0 . (10) 
tarting at k = 1 , each step requires the solution of the following

ordered system: 
 

∂G 

j 

∂x 

∂G 

j 

∂δ
˙ x 

T ˙ δ

] [
�x 

�δ

]
= 

[−G 

j ( x k , δ) 

−r ( x k , δ) 

]
, (11) 

here the derivatives of G 

j are given by 

∂G 

j 

∂x 

= cos 2 θ M + sin 

2 θ J 
(
x k , k 

j 
)
, (12) 

∂G 

j 

∂δ
= π cos θ sin θ

[
F 
(
x k , k 

j 
)

− M 

(
x − μ

(
x 

j−1 
))]

. (13) 

he state and parameter are updated, x k +1 = x k + �x , δk +1 =
k + �δ and the process is repeated until 

∥∥G 

j (x k +1 , δk +1 ) 
∥∥

2 
< ε,

or some small tolerance ε. To improve convergence we augment

he root finding procedure with a line search scheme ( Dennis, Jr

nd Schnabel, 1996 ). 

Starting at δ = 0 , the initial trivial solution is given by

(x , δ) = (μ(x j−1 ) , 0) . As we progress, the contribution on the

iagonal decreases and the Jacobian matrix J begins to dominate

12) . The matrix is ill-conditioned and linear solves with J require

reconditioning, hence we need preconditioning for (12) as well.

y incorporating M in the homotopy constraint (6) , the sparsity

attern of ∂ G j 

∂x 
will equal that of J . A tailored preconditioner for J ,

escribed in de Niet et al. (2007) , will then be applicable to the

atrix (12) as well. The preconditioner in de Niet et al. (2007) is

ased on a block-ILU factorization that exploits the mathematical

tructure of the primitive equations. Hence, we find that it is

ssential to achieve a similar structure in (6) , in order to apply the

ailored preconditioner to (12) . 

A continuation in bathymetry is achieved with the repeated

pplication of the predictor and the homotopy deformation, where

he actual pseudo-arclength continuation occurs at a nested level.

he pseudocode in Algorithm 1 summarizes the full scheme. 

lgorithm 1 Bathymetry continuation process. 

1: Find x 0 satisfying 
∥∥F (x 0 , k 0 ) 

∥∥
2 

< ε. 

2: for j = 1 , 2 , . . . , p − 1 do 

3: Compute predictor μ(x j−1 ) based on difference k 

j − k 

j−1 . 

4: 
Let G 

j (x , δ) = cos 2 θ ˜M 

(
x − μ(x j−1 ) 

)
+ sin 

2 θ ˜F (x , k 

j ) . 

Perform a pseudo-arclength continuation: δ = 0 → δ = 1 . 

5: Store x j satisfying 
∥∥G 

j (x j , 1) 
∥∥

2 
= 

∥∥F (x j , k 

j ) 
∥∥

2 
< ε

6: end for 

. Results 

We will apply the tools discussed in the previous section to

he fully implicit ocean model THCM, described in de Niet et al.

2007) . THCM is based on the primitive equations with Boussinesq

nd hydrostatic approximations. The model equations are spatially

iscretized on a B-grid in the horizontal and a C-grid in the vertical

irection, using a second order accurate control volume method.

he discretized model is cast in the form we require; it provides

 residual F ( x, k ), a mass matrix B and a Jacobian J containing

xplicitly coded differentials of the discrete equations J i j = 

∂ F i 
∂ x j 

. 

The domain chosen is bounded by longitudes φE = 0 ◦,
= 360 ◦ and latitudes θ = 81 ◦S, θ = 81 ◦N, with periodic
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Fig. 2. Dimensionless profiles of the surface zonal wind stress τφ (in blue), surface 

restoring temperature ( T S − T r ) and salinity ( S S − S r ) (in red). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web ver- 

sion of this article.) 

Table 1 

Values of the forcing parameters in 

THCM. The other parameters are stan- 

dard values as in de Niet et al. (2007) . 

T r = 15 ( °C) T 0 = 10 ( °C) 

S r = 35 (psu) S 0 = 1.0 (psu) 

τ 0 = 0.1 (Pa) 
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boundaries in the zonal direction. The maximum ocean depth is

50 0 0 m. In the horizontal plane we use 120 × 54 grid points,

resulting in a 3 ° × 3 ° resolution. In the vertical direction we use

12 levels with grid stretching, giving a thickness of 95 m in the

upper and 786 m in the bottom layer (see next section for details).

To study the sensitivity to topographical changes we prescribe

the forcing (wind, buoyancy flux) as a highly idealized zonally-

averaged pattern. Such a forcing is a fairly rough approximation

of the real forcing (which is poorly constrained and difficult to

obtain, even from existing paleoclimate model simulations ( Lunt

et al., 2017 )) but ‘correct’ to zeroth order. While this forcing will

certainly limit the relevance of the results, it serves our primary

goal to illustrate the capabilities and performance of the new

continuation methodology. 

The wind stress consists of only a zonal component varying

with latitude, i.e., τ (φ, θ ) = λ(τ0 τ
φ, 0) , where τ 0 is the ampli-

tude, λ ∈ [0, 1] a continuation parameter and τφ is given by the

analytical profile in Bryan (1987) . The surface temperature and

salinity fields are restored to 

T S = T r + λT 0 cos 

(
π

θ

θN 

)
, (14)

S S = S r + λS 0 cos 

(
π

θ

θN 

)
, (15)

with amplitudes T 0 , S 0 and reference values T r , S r , see Fig. 2 and

Table 1 . 

3.1. Paleobathymetries 

A set of bathymetry reconstructions is created for every 5 Ma

time frame from 65 Ma to present, using a technique similar to

that of Baatsen et al. (2016) . The position of land masses and

continental shelves is based on a plate-tectonic model that uses

a paleomagnetic reference framework ( Torsvik et al., 2012; van

Hinsbergen et al., 2015 ). Present day topography and coastlines

are shifted to their positions at the considered time frame, after

which any land topography is removed. The bathymetry of the

deep ocean is based on reconstructions by Müller et al. (2008) and

is adjusted to fit the reference frame used here. The ocean is

subsequently updated with shallow plateaus and ridges that are

incorporated in the plate-tectonic model. 
The above procedure produces a global bathymetry grid at a

.1 ° resolution. Each grid cell of THCM thus consists of 30 × 30

riginal cells in the horizontal direction, of which the fraction of

cean cells determines the type of the coarse 3 ° × 3 ° cell. Verti-

ally, the model contains 12 layers reaching between 0 and H =
0 0 0 m depth using a nondimensionalized stretching relation: 

 (z) = −1 + 

tanh (q z (z + 1)) 

tanh (q z ) 
, (16)

uch that ˜ h = hH is the model depth, ˜ z = zH is the depth of the

quidistant grid and q z = 1 . 8 the stretching factor. A grid cell is

hen determined to be ocean when at least 75% of the original

ells have a bathymetry value deeper than the depth 

˜ h . This

esults in a land-ocean mask at the THCM resolution for each of

he model levels. 

Due to the coarse grid, narrow passages are not resolved and

e therefore decided to keep the Tethys seaway ‘artificially open’

ntil 25 Ma. To improve the condition number of the Jacobian ma-

rix J , certain grid configurations are discarded as well. Detecting

hese configurations involves an analysis of the Jacobian matrix,

nding unwanted zero diagonals, correcting the corresponding

and mask entries and recomputing the matrix. Similar corrections

f the land mask can be achieved by inspecting the residual.

inally, to reduce computing time we discard inland seas and parts

f the Arctic Ocean that are only connected to the global ocean

hrough shallow overflows. 

.2. Initial tangent 

First, a continuation spin-up (note that no time stepping is

sed) is performed for a bathymetry ( k 

0 in Section 2 ) at 65

a, using a parameter continuation in forcing from λ = 0 (zero

olution) to λ = 1 (full equilibrium). The computed steady state

s referred to as x 0 . Subsequent states for bathymetries at 60 Ma,

5 Ma, 50 Ma, ..., 20 Ma are computed using the bathymetry

ontinuation approach (as in Algorithm 1 ). 

In a pseudo-arclength continuation, the predictor Eqs. (7) and

8) require tangents with respect to the arclength parameter

( ̇ x , ˙ δ) . At initialization, these tangents cannot be found using

nite differences. Instead, assuming ˙ δ = 1 at s = 0 and using
d 
ds 

G 

j (x (s ) , δ(s )) = 0 the tangent ˙ x can be found by solving 

∂ G 

j 

∂x 

˙ x = −∂ G 

j 

∂δ
. (17)

ubstituting the starting point x 0 = μ(x j−1 ) , δ0 = 0 in (12) and

13) , we find 

∂ G j 

∂x 
= M and 

∂ G j 

∂δ
= 0 . In practice, however, the

erivative ∂ G j 

∂δ
is calculated using a finite difference, which, at the

tarting point gives 

G 

j (x , δ + η) − G 

j (x , δ) 

η
≈ 1 

η
[ (θ + η) 

2 − θ2 ] F (μ(x 

j−1 ) , k 

j ) 

= ηF (μ(x 

j−1 ) , k 

j ) . 

he initial state tangent is obtained from 

 ̇

 x = −ηF (μ(x 

j−1 ) , k 

j ) . (18)

estricting M to its non-singular part, we find that the state

angent vector corresponding to the deforming components is

iven by the initial residual. 

For one particular case (50Ma → 40 Ma), the horizontal surface

elocities of the initial state tangent ˙ x are shown in Fig. 3 , where

ignificant positive and negative contributions are labelled red

nd blue, respectively. For these surface points we see that major

hanges take place at the continental margins as these are the

egions where many land points are removed and introduced.

ntering the incompatible state μ(x j−1 ) in the constraints F ( ·, k 

j )
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Fig. 3. Surface (a) zonal and (b) meridional velocity deficiencies given by the initial tangent in the homotopy continuation process from 50 Ma to 45 Ma. The signs of 

significant contributions are labeled red (positive) and blue (negative). (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

r  

d  

o  

G

3

 

M  

a  

1  

a  

a  

D  

w  

t  

w  

t  

h  

i  

i  

a

 

a  

(  

t  

c  

g  

M  

t  

t  

t  

(  

t  

t  

o  

O

 

t  

e  

a  

b  

M  

t  

a  

p  

t  

c  

f  

i  

s  

p

3

 

T  

a  

c  

f

 

i  

t  

i  

t  

a  

s  

i  

T  

o  

a  

s  

c

 

t  

a  

j  

A  

e  

e

 

t  

p  

p  

p  

t  

c  

t  

c  

c  

a  

t  

F  
eturns deficiencies for every unknown. By negating the list of

eficiencies a tangent is created that allows the first prediction

f the state in the direction of gradual deformations induced by

 

j (x , δ) = 0 . 

.3. Major ocean flow changes 

The patterns of the global barotropic stream function at 60

a, 50 Ma, ..., 20 Ma obtained by the bathymetry continuation

re plotted in Fig. 4 , together with volume transports (in Sv,

 Sv = 10 6 m 

3 s −1 ) through the major gateways (see caption for

cronyms). Overall, there is much similarity with these patterns

nd those computed with a shallow-water model ( Omta and

ijkstra, 2003 ), where an atmosphere model-based Cretaceous

ind-stress pattern was used as prescribed forcing. Although

he wind-stress forcing is highly idealized here, the gyres and

estern boundary currents in each of the basins are captured by

he model. The width of the Atlantic basin is relatively small and

ence current velocities are much weaker than in the Pacific. As

n Omta and Dijkstra (2003) , a circum-India current is found here

n the 60 Ma paleobathymetry which disappears between 50 Ma

nd 40 Ma because of the India-Eurasia collision. 

All gateway transports are relatively small between 65 Ma

nd 35 Ma; note that they are smaller as in Omta and Dijkstra

2003) because here many of the gateways are much shallower

han the layer depth used in Omta and Dijkstra (2003) for the

omputation of the transports. Notable increases and changes in

ateway transports occur during the period between 40 Ma and 30

a. Due to the separation of Australia from Antarctica, transport

hrough the Tasman gateway (TA) increases, most of which is re-

urned through the Indonesian Throughflow (IN). The widening of

he Drake passage results in a weak Antarctic Circumpolar Current

ACC) at 30 Ma. Until the Tethys gateway (TE) is closed at 25 Ma

he transport through the Panama Straits (PA) is closely linked to

he transport through the Tethys. At 25 Ma a flow reversal has

ccurred between the Atlantic and Pacific, similar to the results in

mta and Dijkstra (2003) and von der Heydt and Dijkstra (2006) . 

The patterns of the global meridional overturning stream func-

ion at 60 Ma, 50 Ma, ..., 20 Ma are plotted in Fig. 5 , together with

xtrema below 10 0 0 m of the overturning in the major basins (see

cronyms in the caption of the figure). Because of the restoring

oundary conditions for temperature and salinity, the resulting

OC is affected only by the prescribed surface density field. Here,

he north-south asymmetry in the continental distribution favors

 southern sinking state (with highest amplitude in the southern

art of the basin). Over the period 65 Ma to 20 Ma the patterns of

he MOC do not change much (because of the restoring boundary
onditions). In the North Atlantic (NoAt in Fig. 5 f) deep water

ormation emerges as the basin widens and the MOC transport

ncreases. In the South Pacific (SoPa in Fig. 5 f), the southern

inking cell strengthens over the geological evolution towards the

resent-day. 

.4. Performance 

To illustrate the performance of the methodology (within

HCM) we show results for several 5 Ma period continuations. In

ddition, we compare the computational effort of the bathymetry

ontinuation with that of a continuation spin-up (by using the

orcing parameter λ), as described in Bernsen et al. (2010) . 

First we investigate the performance of the predictor step. We

nspect the j th residual norm ‖ F ( ·, k 

j ) ‖ 2 before and after applying

he predictor, see Table 2 . Here we use the approach discussed

n Section 2.1 , where we substitute unknown tracer values with

heir zonal average. The effect of this simple adjustment is clear;

 substantial reduction occurs, especially when the number of

ubstitutions is high. Hence replacing the tracers gives a signif-

cantly improved starting point for the homotopy continuation.

he improvements appear to diminish when the number of new

cean points decreases. Note, however, that this does not imply

 reduction in difficulty of the corresponding 5 Ma continuation

tep. Small changes in bathymetry might still give large shifts in

irculation patterns. 

As the chosen scheme is quite straightforward, it would appear

hat the predictor can be improved using more sophisticated

djustments. One could, for instance, attempt to solve a small pro-

ected problem involving new ocean points and their neighbors.

nother option might be to perform several time steps; letting

mpty ocean points become more physical through a natural time

volution. 

Next, we investigate the performance of the homotopy con-

inuation. In Fig. 6 a the evolution of the j th residual norm is

lotted against the number of continuation steps. Substantial

rogress is made during the startup phase, where the continuation

rocess moves onto the branch of deformations using the initial

angent discussed in Section 3.2 . In the interior of the homotopy

ontinuation a steady decline of the residue is visible. Then, as

he continuation passes δ = 0 . 8 , the Newton iterations become

omputationally expensive (see Fig. 6 b). In the final phase of the

ontinuation some overshoots ( δ > 1) occur, which are visible as

 plateau or an increase in the convergence plot. This is due to

he fact that we solve G 

j (x , δ) = 0 , which is only equivalent to

 (x , k 

j ) = 0 at exactly δ = 1 . When the continuation moves beyond
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Fig. 4. Steady state barotropic stream function patterns for the global ocean model (THCM) configuration with bathymetries at (a) 60 Ma, (b) 50 Ma, (c) 40 Ma, (d) 30 

Ma and (e) 20 Ma. The first steady state is calculated with a continuation in forcing using a bathymetry for 65 Ma. The states at 60 Ma and onwards are found using the 

bathymetry continuation procedure in Algorithm 1 . (f) Volume transports are calculated at the Drake passage (DR), Indonesian throughflow (IN), Panama Straits (PA), Agulhas 

(AG), Tasman (TA) and Tethys (TE) gateways. A grayscale is used to illustrate the bathymetry, with lighter shades at increasing depth. 

Table 2 

Performance of the predictor discussed in Section 2.1 : norms of the j th residual and the 

improvement factor. The number of new land and ocean points are included as well. 

Step 
∥∥F (x j−1 , k j ) 

∥∥
2 

∥∥F (μ(x j−1 ) , k j ) 
∥∥

2 
Factor New ocean New land 

50–45 Ma 9.685 × 10 5 5.032 × 10 4 19.25 2347 2577 

45–40 Ma 9.672 × 10 5 5.027 × 10 4 19.24 2190 2457 

40–35 Ma 7.183 × 10 5 7.659 × 10 4 9.38 1684 1547 

35–30 Ma 8.951 × 10 5 1.901 × 10 5 4.71 1786 1747 
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δ = 1 a secant procedure ensures convergence at δ = 1 . Hence, the

total convergence of the bathymetry continuation is robust. 

In Fig. 6 b the total number of linear FGMRES ( Saad, 1993 )

iterations inside the Newton solver are grouped into 10 equidis-

tant parameter ranges. This allows an overview of the required

work at different stages of the continuation, without neglecting

adjustments in the continuation step size. In the start-up phase

of the homotopy continuation there is some effort associated with

the small step size that is needed to get onto the branch of defor-

mations. The next parameter range shows significantly less linear

solves. As the continuation progresses the total effort increases,

reaching its peak in the final converging phase. Note that in the

interior of the continuation, between δ = 0 . 2 and δ = 0 . 8 , the
ffort remains relatively modest, which is advantageous as we will

ee next. 

In order to indicate the computational cost of the bathymetry

ontinuation we compare individual 5 Ma steps to independent

ontinuation spin-ups (in the parameter λ) at the destination

athymetries. All common parameters, such as the preconditioned

olver settings and tolerance values in different components of the

ontinuation algorithm, are kept equal. Experiments are performed

sing 24 cores within a single node of the Dutch supercomputing

acility Cartesius at SURFsara in Amsterdam ( www.surfsara.nl ). 

From the runtimes in Table 3 we see that the bathymetry con-

inuation is reasonably competitive in the studied cases, although

 major overshoot in the step from 35 Ma to 30 Ma is clearly

http://www.surfsara.nl
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Fig. 5. Steady state patterns of the global MOC stream function for a global ocean configuration with bathymetries at (a) 60 Ma, (b) 50 Ma, (c) 40 Ma, (d) 30 Ma and (e) 

20 Ma. The first steady state is found with a continuation in forcing at 65 Ma. The states at 60 Ma and onwards are found using the bathymetry continuation procedure 

in Algorithm 1 . (f) Meridional overturning stream function extrema below 10 0 0 m and at fixed latitudes (38N, 38S) are plotted for the North Pacific (NoPa), South Pacific 

(SoPa), Indian Ocean (InOC), North Atlantic (NoAt) and South Atlantic (SoAt). 

Fig. 6. (a) Convergence behavior for different steps in the bathymetry continuation. Triangles denote the first point beyond δ = 0 . 8 . (b) Total number of FGMRES iterations 

spread over 10 equidistant bins in the homotopy parameter δ. Each bin resembles a varying amount of linear solves due to the adaptive continuation steps. 

v  
Table 3 

Computing times (hh:mm:ss) to reach the steady 

state. 

Step Homotopy continuation Spin-up 

50–45 Ma 02:05:36 05:57:29 

45–40 Ma 02:08:36 05:41:51 

40–35 Ma 01:51:48 04:52:27 

35–30 Ma 02:48:33 04:40:52 

s  

F  

λ
 

d  

p  

t  

t  

t  

t  
isible in the timing results. To reveal why the continuation

pin-ups perform worse, we again inspect the total number of

GMRES iterations for 10 bins in the combined forcing parameter

, see Fig. 7 . 

Comparing Fig. 7 with Fig. 6 b, we find that the increase in effort

uring a continuation spin-up is immediate, whereas it is post-

oned in the bathymetry continuation. This can be partly related to

he contribution of M in the Jacobian matrix ∂ G j 

∂x 
, which enhances

he Jacobian’s posedness for most of the continuation, but also to

he fact that a pre-existing solution is adapted; that is, the solu-

ion is not build from scratch as in the continuation spin-up. Note,
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Fig. 7. Total number of FGMRES iterations in 10 equidistant bins in the combined 

forcing parameter λ for continuation spin-ups at different bathymetries. 
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also, that the continuation parameter δ is embedded in trigono-

metric functions, which spread the amount of work towards the in-

terior of the continuation. Without this adjustment the difference

between Figs. 7 and 6 b would be even more expressed. 

4. Summary and discussion 

We have presented a novel continuation approach to compute

branches of steady three-dimensional ocean circulation patterns

versus a change in continental geometry and bathymetry. The

method relies on the predictor-homotopy approach as described

in Section 2 and it is the first of its kind where changes in flow

domain can be incorporated efficiently. So far, only the two-step

residue continuation approach was available to tackle these prob-

lems but this procedure often did not work for changes in flow

domain ( Dijkstra, 2005; Gruais et al., 2005 ). 

The bathymetry continuation allows an efficient computation

of ocean circulation patterns in the geological past since it circum-

vents the long spin-up procedure (of a few thousand years of time

stepping) which is needed in traditional approaches. The results

shown here in Section 3 are still for a relatively low resolution

(3 ° × 3 ° in the horizontal and 12 vertical levels) global ocean

model (THCM as described in de Niet et al., 2007 ) and for highly

idealized (zonally averaged restoring) boundary conditions that

remain fixed throughout the changing land configurations. 

The vertically averaged circulation (barotropic stream function)

shows the major transitions in currents and gateway transports,

which were already found in Omta and Dijkstra (2003) in a

shallow-water model. In particular, the Atlantic-Pacific flow rever-

sal at about 25 Ma ( von der Heydt and Dijkstra, 2005 ) is already

captured under these idealized boundary conditions and hence

appears to be a very robust feature. The Meridional Overturning

Circulation does not show much variation over the period 65

Ma–20 Ma, but this is due to the imposed restoring boundary

conditions for temperature and salinity. Once mixed boundary

conditions are used, one expects many more changes over the

geological period and maybe the occurrence of multiple equilibria

( Stommel, 1961; Huisman et al., 2012 ). 

There is no principal problem to extend the THCM ( de Niet

et al., 2007 ) towards a paleoclimate model, including (land and

sea) ice, an atmosphere energy balance model and a land-surface

model and effort s are currently underway to develop such a

model. The resulting coupled model will allow the continuation

methodology described in this paper, without having the limita-

tions imposed by the idealized atmospheric forcing. The parallel
reconditioning techniques needed to solve the linear systems

ithin the Newton–Raphson methods ( Thies et al., 2009 ) are also

n a stage that horizontal resolutions of 1 ° can be handled. 

Such models will be useful to investigate the role of the mul-

iple equilibrium flows in the ocean in past climate transitions,

uch as possibly the EOT ( Tigchelaar et al., 2011 ). They can also be

elpful to investigate the sensitivity of equilibrium climate states

ue to changes in bathymetry, the latter still being quite uncertain

or large periods over the last 65 Ma ( Baatsen et al., 2016 ). In

articular, the ocean circulation changes due to uncertainties in

he reconstructions can be efficiently addressed. 

We expect that the bathymetry continuation is sufficiently

eneral to be applied to the continuation of periodic orbits, for

xample annual cycles, using constraints that incorporate the flow

f the model ( Sánchez et al., 2004 ). Such a continuation would

equire a similar homotopy-based deformation with a suitable

mbedding of the constraints that determine periodic orbits.

he construction of such an embedding will form an interesting

ubject for further study. 
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