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Perceptual experiments with infants show that they adapt their perception of speech sounds toward

the categories of the native language. How do infants learn these categories? For the most part,

acoustic analyses of natural infant-directed speech have suggested that phonetic categories are not

presented to learners as separable clusters of sounds in acoustic space. As a step toward explaining

how infants begin to solve this problem, the current study proposes that the exaggerated prosody

characteristic of infant-directed speech may highlight for infants certain speech-sound tokens that

collectively form more readily identifiable categories. A database is presented, containing vowel

measurements in a large sample of natural American English infant-directed speech. Analyses of

the vowel space show that prosodic exaggeration in infant-directed speech has the potential to sup-

port distributional vowel learning by providing the learner with a subset of “high-quality” tokens

that infants might attend to preferentially. Categorization models trained on prosodically exagger-

ated tokens outperformed models that were trained on tokens that were not exaggerated. Though

focusing on more prominent, exaggerated tokens does not provide a solution to the categorization

problem, it would make it easier to solve. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4982246]

[JFL] Pages: 3070–3078

I. INTRODUCTION

During the first year of life infants begin to discover the

phonetic categories that define the consonants and vowels of

their native language. Learning categories is a challenging

task, as it requires grouping together complex acoustic

tokens that show considerable variability along multiple

acoustic dimensions. Nevertheless, infants evince knowledge

of language-specific vowel categories around 6 months

(Kuhl et al., 1992; Polka and Werker, 1994), and language-

specific consonant perception has been found around 10

months of age (Werker and Tees, 1984). This adaptation to

the native language’s speech sounds is viewed as a critical

developmental step in language acquisition because of the

role of phonetic categories in defining lexical and morpho-

logical distinctions.

It is widely accepted that infants’ early category learn-

ing involves a distributional learning mechanism that detects

clusters of tokens that are similar along relevant acoustic

dimensions. Indeed, 6 - and 8-month-old infants have been

found to reveal enhanced discrimination of two categories

(e.g., /d/ and /t/) after being exposed to tokens exemplifying

a bimodal distribution along a distinguishing acoustic

dimension, but not when exposed to a unimodal distribution

(Maye et al., 2002, 2008; see also Cristi�a et al., 2011).

Further evidence for the plausibility of distributional

learning of phonetic category structure comes from analyses

of infant-directed speech (IDS). Some analyses have shown

that mothers appear to provide their infants with acoustic

cues that could support distributional learning of phonetic

categories (Werker et al., 2007). In particular, IDS is charac-

terized by expansion of the F1–F2 vowel formant space

(Kuhl et al., 1997), which could enhance the separability of

vowel categories if this expansion is not compensated by

increases in within-category variance.

The in-principle usefulness of distributional cues has been

demonstrated in computer models of phonetic category learn-

ing. When categories are sufficiently separated in acoustic

space, distributional learning models (often implemented as

Gaussian Mixture Models) are able to learn category structure.

Figure 1(a) shows an example of a set of categories that can

be learned this way. The vowel formants of /i/, /A/, and /u/ are

clearly separated in acoustic space, and as expected, distribu-

tional models learn these categories with high accuracy (de

Boer and Kuhl, 2003, see also Boersma et al., 2003;

McMurray et al., 2009; Vallabha et al., 2007). However, when

considering distributional learning in a more realistic setting

(e.g., when considering the full set of vowels that occur in a

language), it becomes clear that phonetic categories are highly

variable, and have overlapping distributions that pose a sub-

stantial problem for learning (Swingley, 2009). Figure 1(b)

shows the problem of overlapping distributions, and illustrates

that the detection of categories is far from trivial.

What is even more problematic for the distributional

learning hypothesis is that several recent studies have argueda)Electronic mail: f.w.adriaans@uu.nl
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that acoustic distributions in IDS are in fact more variable

than distributions in adult-directed speech (ADS). In a com-

parison of IDS and ADS, Cristi�a and Seidl (2014) found that

point vowels in IDS were indeed hyperarticulated, resulting

in a stretching of the vowel space similar to the findings of

Kuhl et al. (1997). However, the distance between specific

contrasts (e.g., i-I) was not enhanced. Moreover, the study

found increased variability (larger within-category variance)

in IDS as compared to ADS. Similarly, Martin et al. (2015)

found that Japanese phonetic contrasts were less clear in IDS

than in ADS. These findings question the relevance of IDS

for language acquisition, and particularly question the

hypothesis that speakers implicitly enhance contrasts to sup-

port phonological acquisition. Other studies have also ques-

tioned the benefit of acoustic distributions in IDS for

language development (Benders, 2013; McMurray et al.,
2013).

Given the highly variable nature of IDS, how do infants

manage to discover category structure? Perhaps infants’

learning of categories is guided by additional sources of

information. In particular, it has been proposed that the

emerging lexicon might provide the infant with crucial guid-

ance for the discovery of category structure (Swingley,

2009; Feldman et al., 2013). Also the presence of neighbor-

ing segments might assist the infant in dealing with acousti-

cally variable input (Dillon et al., 2013).

The current study investigates another potentially useful

source of information that might help infants in learning pho-

netic categories from IDS, namely the prosodic exaggeration

parents use in IDS, speaking with a higher pitch register, wider

pitch excursions, a limited set of intonation patterns, and

greater duration of some sounds (Fernald and Simon, 1984;

Fernald, 1985; Fernald et al., 1989). It has been argued that the

prosody that is typical of IDS serves to get the infant’s atten-

tion and to express affection and other emotions to the child, a

view supported by evidence that infants prefer prototypical

IDS over ADS (Cooper and Aslin, 1990; Cooper et al., 1997;

Fernald, 1985; Pegg et al., 1992). It has also been argued that

IDS supports early language development (e.g., Werker et al.,
2007), possibly by enhancing infants’ speech discrimination

skills (Fernald and Kuhl, 1987; Karzon, 1985; Liu et al., 2003;

Trainor and Desjardins, 2002), or by facilitating word learning

(Ma et al., 2011; Thiessen et al., 2005). For the acquisition of

vowel categories there is evidence that exaggerated pitch con-

tours might facilitate infants’ vowel discrimination abilities

(Trainor and Desjardins, 2002). However, given the large

amount of variability found in vowel formant spaces in IDS,

the role of IDS in language development is still debated

(Cristi�a, 2013; Eaves et al., 2016; Soderstrom, 2007), and it

remains unclear whether the prosodic exaggeration that is typi-

cal of IDS is helpful or harmful for vowel category learning.

We hypothesize that prosodic exaggeration of the sort

typical of IDS might be helpful for category learning, by

guiding the infant’s attention to a subset of relatively clear

vowel tokens that improve distributional category learning.

That is, while vowels of IDS are overall highly variable in

their formants, the tokens that have exaggerated prosody

might be relatively clear instances of their categories. If so,

and if prosodic exaggeration leads infants to attend to these

tokens, then distributional learning of phonetic categories

should be enhanced. Previous computational models that

aimed to explain category learning were typically fit to

equally weighted vowel tokens (de Boer and Kuhl, 2003;

Vallabha et al., 2007). By overlooking prosodic properties

that might make certain vowel tokens more influential than

others, such models might therefore underestimate the learn-

ability of vowel categories. We address this hypothesis by

analyzing and comparing vowel distributions of tokens with

different prosodic status (see also Mo et al., 2009), and by

simulating the distributional learning of phonetic categories.

This allows us to examine whether prosodic focus could help

infants discover category structure when the overall mass of

instances exhibits extensive overlap.

For our analyses we created a large database of vowels

taken from recordings of natural mother-infant interactions

(Brent and Siskind, 2001). Most earlier studies have been

based on vowel tokens that were elicited in a laboratory set-

ting, and that occurred in a relatively small number of words

or nonwords. For example, the classic study by Hillenbrand

et al. (1995) covers the entire set of American English vow-

els and is based on a large number of speakers. However,

vowels are produced in one particular phonological context

(/hVd/) and only one token per vowel was analyzed for each

speaker, thereby obscuring within-speaker variability. A

FIG. 1. Vowel distributions in IDS

(based on data from Swingley, 2009).
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more recent study on learning vowel categories from IDS

(Vallabha et al., 2007) focused on four vowel categories (/i/,

/I/, /e/, /E/) placed in minimal-pair nonce words and read to

children from books; it is possible, indeed likely, that parents

would hyperarticulate under such conditions. In what fol-

lows, we used a new vowel database that we developed

based on audio recordings of IDS taken from the Brent cor-

pus (Brent and Siskind, 2001). We present acoustic measure-

ments based on �4400 vowel tokens encompassing the

entire set of non-schwa monophthongs of American English.

Because the vowel tokens were taken from recordings of nat-

ural (unscripted) mother-infant interactions, the analyses and

simulations are thus based on realistic data, acknowledging

the variability and complexities that are found in everyday

speech. The database presents ecologically valid training

materials for the current study as well as for future studies.1

II. VOWEL DATABASE

Vowel productions were examined for three different

speakers in the Brent corpus (Brent and Siskind, 2001), avail-

able through CHILDES (MacWhinney, 2000). A total of four

recording sessions of around 75 min each were selected for

use in the current study (speaker “f1”: sessions “f10jan97”

and “m20jan97”; speaker “d1”: session “m6jan97”; speaker

“w1”: session “f21jun96”). These sessions were selected

based on recording quality. The ages of the infants at the

time of recording range from 10 months and 3 days to 10

months and 26 days. The recordings consist of natural,

unscripted IDS and therefore have no restrictions on the

words or vowel types that may occur. The resulting data set

contains a total of 4435 tokens covering the monophthongs

of American English (/i/, /I/, /E/, /æ/, /A/, /ˆ/, /O/, /U/, /u/, see

Table I).

Several acoustic measurements were obtained through a

combination of automatic and manual procedures. Vowel

formants (F1, F2) were measured at midpoint. A first-pass

measurement was done automatically using Praat (Boersma

and Weenink, 2012), with optimized settings for each

speaker. Tokens that were more than 1.5 standard deviations

away from their vowel category’s mean (on either the F1 or

F2 dimension, around 25% of the total dataset) were manu-

ally checked by a phonetically trained research assistant who

corrected the formants if necessary based on spectrographic

analysis. Each vowel token’s duration was measured in

milliseconds. In order to assess the amount of prosodic exag-

geration in each vowel, several pitch measures were

obtained:

• Mean F0, measured between 20% and 80% of the vowel’s

duration;

• Minimum F0, measured between 20% and 80% of the

vowel’s duration;
• Maximum F0, measured between 20% and 80% of the

vowel’s duration;
• F0 movement, which was calculated as the difference

between the minimum and maximum F0.

To minimize the potential effects of measurement or

labeling errors that may have remained after hand-checking

the data, tokens that were more than 2.5 standard deviations

away from a vowel category’s F1 or F2 mean for a particular

speaker were labeled as outliers, and were removed from the

data set. This criterion removed 3.4% of all data points

(leaving a total of 4435 tokens in the final database).

In addition, a phonetically trained research assistant lis-

tened to each utterance in the database and identified prosod-

ically exaggerated parts of the utterance. Specifically, for

each vowel in the utterance a label was added indicating

whether the vowel occurred in a syllable that the mother was

judged to be emphasizing. This resulted in 1041 tokens

(23.5%) being labeled as having “focus” (i.e., the token was

prosodically exaggerated) and 3394 tokens (76.5%) with the

label “no focus” (i.e., the token was not prosodically exag-

gerated). This allowed us to select vowel tokens based on

their prosodic status, and then characterize the formant dis-

tributions of prosodically exaggerated and non-exaggerated

instances. We then trained and tested distributional learning

models on the prosodically exaggerated and non-

exaggerated subsets, addressing the issue of whether or not it

is easier to cluster tokens that show exaggerated prosody.

Finally, we quantified and tested the degree of prosodic

exaggeration in the focus tokens along several acoustic pro-

sodic dimensions.

III. ANALYSES OF THE VOWEL SPACE

As noted above, measurements of IDS have found it to

be hyperarticulated relative to ADS, in the sense that the

point vowels are more distant from one another in IDS than

ADS. Here, following Kuhl et al. (1997), we analyzed the

area described by the triangle whose vertices are the mean

F1 and F2 values of the vowels /i/, /A/, and /u/. Figure 2

shows mean formant values for vowels with prosodic focus

and without prosodic focus for each individual speaker in

our database. For all three speakers, the triangle formed by

the prosodically exaggerated vowels is larger than the trian-

gle formed by unexaggerated vowels.

There were some individual differences in the phonetic

direction of hyperarticulation. For example, while speaker

d1 showed systematic expansion in both F1 and F2 in all

three corners of the vowel triangle, speaker w1’s high vowels

showed expansion only in F2. To get a better picture of the

overall degree of expansion, each speaker’s tokens were con-

verted to z-scores and then averaged. Figure 3 shows the

averaged vowel space across different speakers. The area of

the triangle formed by point vowels with prosodic focus is

57% larger than the area of the triangle formed by vowels

without prosodic focus, confirming that point vowels in

focused position are systematically hyperarticulated as com-

pared to vowels in unfocused position.

TABLE I. Frequency of occurrence of vowel categories per speaker.

Speaker /i/ /I/ /E/ /æ/ /A/ /ˆ/ /O/ /U/ /u/ Total

f1 386 560 279 229 222 211 49 68 170 2174

d1 171 211 75 90 109 123 46 68 149 1042

w1 244 228 141 119 75 142 80 57 133 1219

Total 801 999 495 438 406 476 175 193 452 4435
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What about non-point vowels? As can be seen in Table I,

point vowel tokens make up a relatively small percentage of

the total set of vowels found in everyday infant-directed

English (around 37% in our set of nine monophthongs). When

considering consequences for vowel learnability, it is therefore

important to consider the entire vowel space more broadly.

Figure 4 illustrates that hyperarticulation was not restricted to

point vowels. To assess the degree of hyperarticulation across

the set of monophthongs, the Euclidean distance between each

vowel’s mean and the center of the vowel space was calculated

(e.g., Bradlow et al., 1996). Table II shows that for most vow-

els, the prosodically focused vowels’ means were further away

from the center, indicating a general tendency toward hyperar-

ticulation in focused vowels across the vowel space.

Another way to assess the degree of hyperarticulation is

by measuring distances between vowel categories that are

adjacent in acoustic space, such as /i/ and /I/. Table III shows

the Euclidean distances between adjacent categories in

focused and unfocused position. The distance between adja-

cent categories is consistently larger in focused position,

across the entire vowel space. The only exception is the dis-

tance between vowels /O/ and /U/, which is 9.3% smaller in

focused position. However, these categories are relatively

distant to begin with, and their occurrence in our database is

relatively rare (see Table I).

Interestingly, while /I/ is closer to the center of the

vowel space in focused position, and thus appears not to be

hyperarticulated, it is in fact at a larger distance from its

immediate neighbors /i/ and /E/. This is an important finding

because Cristi�a and Seidl (2014) found that the distance

between neighboring categories (such as /i/ and /I/) was

decreased in IDS as compared to ADS, a potentially puzzling

finding if one entertains the hypothesis that IDS aids lan-

guage learning by making the signal clearer. Though we do

not measure ADS here, it is possible that IDS is not consis-

tently clearer over all tokens, but does present an advanta-

geous learning signal if one considers the most prominent

vowel tokens.

Of course, from the perspective of distributional cate-

gory learning, increased separation of the category means

could be of no use if this separation were accompanied by a

concomitant increase in variability. We therefore evaluate

the issue of category learnability (which depends on both

between-category distance and within-category variability)

more directly by simulating the distributional learning of the

vowel categories in our dataset. In particular, we examined

whether prosodic focus could help in discovering category

structure in cases of large overlap between categories. If dis-

tributional models of vowel learning show improved perfor-

mance when trained on prosodically defined subsets of

vowel data, then this would constitute evidence that the

FIG. 2. Point vowels for each speaker (f1, d1, w1) in focused (focus) and unfocused (no focus) position.

FIG. 3. Point vowels pooled across speakers. Formants were normalized to

z-scores before averaging.

FIG. 4. The entire set of monophthongs. The center of the vowel space is

indicated as “þ.” Formants were normalized to z-scores before averaging

across speakers.
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prosodic exaggeration in IDS can support phonetic category

learning. It is important to note that the point of these simu-

lations is not to provide the most realistic learning model.

Such a model would need additional cues (Swingley, 2009;

Feldman et al., 2013). Rather, we use computational model-

ing to test different input representations, by quantifying the

benefits of prosodic highlighting for learning vowel catego-

ries based on formant distributions.

IV. COMPUTER SIMULATIONS

The learnability of vowel categories was examined in

two different simulations, each involving three vowel cate-

gories. One simulation assessed the learnability of the point

vowels /i/, /A/, /u/, which are relatively distant from one

another in the F1–F2 formant space. The other simulation

had three vowels that are close in formant space: /i/, /I/, /E/.

These front vowels were selected because they were more

numerous in the dataset than other comparable adjacent

groups such as the back vowels. In line with earlier work on

computational modeling of phonetic category learning (e.g.,

de Boer and Kuhl, 2003; McMurray et al., 2009; Vallabha

et al., 2007), we treated categories as multivariate Gaussian

distributions. The learning problem was characterized as

estimating the parameters (means, covariances, and mixing

proportions) for these distributions. Categories were defined

as two-dimensional distributions (the z-scores of the first and

second formants). Data points were assigned to the category

that had the maximum likelihood for that point. Parameters

of the Gaussian distributions were estimated using the EM

algorithm (Dempster et al., 1977) as implemented in the

MCLUST for R software package (Fraley and Raftery,

2006). All models reported below were trained to discover

three ellipse categories. Since vowel ellipses are known to

vary in volume, shape, and orientation (e.g., Hillenbrand

et al., 1995), the models were given no information or con-

straints with respect to volume, shape, or orientation.

For each simulation, three different models were

trained, which were each based on a different input represen-

tation. A baseline model was trained on the entire set of

tokens for the three categories under inspection (the “ALL

TOKENS” set). A second model was trained on a subset of

tokens, namely those tokens that were labeled as having pro-

sodic focus (the “FOCUS” set). Finally, a third model was

trained on the complementary subset of tokens without pro-

sodic focus, as a control (the “NO FOCUS” set). In order to

balance the number of tokens taken from each vowel cate-

gory (i.e., we want to focus on qualitative differences, not on

quantitative differences), 2000 training points were sampled

from each vowel category’s multivariate normal distribution

in the appropriate subset (e.g., Vallabha et al., 2007). After

clustering, each model’s classification performance was

tested using 2000 newly sampled data points. One hundred

repeated runs were done for each model. We predicted that

Gaussian mixture models trained on prosodically prominent

vowel tokens (the FOCUS set) would provide a better classi-

fication of the data than Gaussian mixture models that were

trained on the complete set of vowel tokens (ALL

TOKENS), or models that were trained on tokens without

prosodic focus (NO FOCUS).

Table IV shows the mean classification accuracies [and

95% confidence intervals (CIs), which were calculated using

arcsine-square-root transformations] in the /i/-/A/-/u/ and

/i/-/I/-/E/ simulations. The classification accuracies confirm

the difference in between-category distances in the two sim-

ulations, with overall classification scores being much lower

for /i/-/I/-/E/ (as expected). Importantly, the model trained on

the FOCUS set outperformed the ALL TOKENS and NO

FOCUS sets in both simulations. The FOCUS training set

thus presents the learner with category distributions that

show less overlap in the F1, F2 space (see Fig. 5). Note that

the superior performance on the FOCUS set was not due to

the smaller number of tokens that generated the distribution.

This explanation is ruled out by the NO FOCUS set, which

performs worse than the ALL TOKENS baseline, even

though its distribution is based on fewer tokens.

TABLE III. Euclidean distance d between adjacent category means for vow-

els without prosodic focus (vnofoc) and vowels with prosodic focus (vfoc).

Calculations were based on z-transformed F1 and F2 measurements.

Vowel pair d(v1nofoc, v2nofoc) d(v1foc, v2foc) % change

/i/ - /I/ 0.93 1.19 þ27.7%

/I/ - /E/ 0.74 0.79 þ6.9%

/E/ - /æ/ 0.68 0.80 þ16.9%

/æ/ - /A/ 1.09 1.19 þ9.4%

/A/ - /O/ 0.77 0.90 þ16.2%

/O/ - /U/ 1.52 1.37 �9.3%

/U/ - /u/ 0.47 0.68 þ44.0%

TABLE IV. Classification accuracies for point vowels i-A-u and front vow-

els i-I-E. The displayed scores are the means obtained through 100 repeated

runs, along with the 95% CI.

Model

i-A-u i-I-E

95% CI 95% CI

Mean Lower Upper Mean Lower Upper

ALL TOKENS 0.9148 0.9143 0.9153 0.6556 0.6490 0.6630

NO FOCUS 0.8993 0.8988 0.8999 0.6483 0.6418 0.6555

FOCUS 0.9673 0.9670 0.9676 0.7139 0.7060 0.7236

TABLE II. Euclidean distance d from the center of the vowel space c to the

category means of vowels without prosodic focus (vnofoc) and vowels with

prosodic focus (vfoc). Calculations were based on z-transformed F1 and F2

measurements.

Vowel d(c, vnofoc) d(c, vfoc) % change

/i/ 1.87 2.04 þ9.1%

/I/ 0.95 0.85 �10.7%

/E/ 0.41 0.59 þ43.1%

/æ/ 0.86 1.12 þ30.7%

/A/ 1.17 1.62 þ38.5%

/ˆ/ 0.57 1.03 þ79.7%

/O/ 1.41 1.59 þ13.2%

/U/ 0.72 0.67 �7.0%

/u/ 1.09 1.22 þ12.3%
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Earlier studies have pointed out the importance of exam-

ining whether or not specific contrasts (such as /i/-/I/) are

enhanced (Cristi�a and Seidl, 2014). We therefore also exam-

ine the effects of prosodic exaggeration on a series of four

specific vowel contrasts that lie between point vowels /i/ and

/A/: /i/-/I/, /I/-/E/, /E/-/æ/, and /æ/-/A/. If there is a positive

effect on the distributional learning of these category pairs,

then this would provide additional support for our hypothesis

that prosody in IDS supports distributional category learning.

Table V shows that all four contrasts were indeed easier

to cluster in the FOCUS set, with the biggest increase in

classification accuracy for the vowel pairs /i/-/I/ and /æ/-/A/.

While the increase in classification accuracy was relatively

small for /I/-/E/ and /E/-/æ/, the learnability advantage was

consistent across the four vowel pairs, providing additional

evidence for a beneficial role for prosody in distributional

category learning.

V. ACOUSTIC CORRELATES OF PROSODIC FOCUS

Tokens that were labeled as having prosodic focus

were tokens that occurred in syllables that sounded (to our

annotators) like they were being emphasized by the speaker.

To what extent did these emphasized tokens stand out

acoustically? In order to evaluate how consistently these

vowels were marked with specific acoustic features, we

compared focused and not-focused vowels along the

acoustic dimensions of pitch (F0), pitch movement (DF0),

and duration.

Figure 6 shows the average mean F0, F0 movement,

and duration for each speaker in our vowel database for vow-

els in focused (“foc”) and unfocused (“nofoc”) position.

Across all nine vowel categories, all three speakers produced

focused vowels with a higher F0, greater F0 movement, and

longer duration. On average, vowels with focus were about

40 Hz higher than vowels without focus. Also, focused vow-

els showed 30 Hz more change in F0 throughout the vowel’s

duration. Finally, vowels with focus were on average 70 ms

longer than vowels without focus. Linear regression analyses

using “Speaker” (3 levels),2 “Vowel” (9 levels), and “Focus”

(2 levels) as predictors confirmed that the prosodic exaggera-

tion was significant along each of the three dimensions. (See

the appendix for the full analyses.) These results confirm

that the focused tokens were, on the whole, exaggerated

along dimensions that infants might attend to preferentially

(e.g., Fernald and Kuhl, 1987).

FIG. 5. Distributions of ALL TOKENS (left), NO FOCUS tokens (middle), and FOCUS tokens (right) for the /i/-/A/-/u/ data set (top) and the /i/-/I/-/E/ data set

(bottom).

TABLE V. Classification accuracies for adjacent vowel pairs. The displayed scores are the means obtained through 100 repeated runs, along with the 95% CI.

Model

i-I I-E E-æ æ-A

95% CI 95% CI 95% CI 95% CI

Mean Lower Upper Mean Lower Upper Mean Lower Upper Mean Lower Upper

ALL TOKENS 0.7885 0.7831 0.7953 0.7018 0.6933 0.7123 0.6801 0.6742 0.6867 0.7955 0.7901 0.8025

NO FOCUS 0.7766 0.7708 0.7838 0.6971 0.6894 0.7063 0.6780 0.6708 0.6863 0.7878 0.7829 0.7939

FOCUS 0.8669 0.8651 0.8690 0.7214 0.7144 0.7300 0.6955 0.6914 0.6999 0.8636 0.8618 0.8656
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VI. GENERAL DISCUSSION

Recently there has been debate about whether or not

IDS has properties that would support language acquisition

(e.g., Eaves et al., 2016). On one hand, IDS appears to be

hyperarticulated and to have certain attention-grabbing pro-

sodic properties. On the other hand, IDS appears to be highly

variable, and in fact hyperarticulation of point vowels might

obscure contrasts with non-point vowels (Cristi�a and Seidl,

2014). In the current study we aimed to investigate whether

one beneficial property of IDS (prosodic exaggeration) might

help overcome a problematic property (overlap between cat-

egories). In analyses of the vowel space, as well as in a series

of distributional learning simulations, we found that prosodic

exaggeration in IDS has the potential to support distribu-

tional vowel learning by presenting the learner with a subset

of “high-quality” tokens that the infant is likely to pay atten-

tion to. Models trained on tokens that showed prosodic exag-

geration outperformed models that were trained on tokens

that did not show prosodic exaggeration.

The models we used to simulate phonetic category learn-

ing in the current study assessed the separability of categories

based on formant distributions. While this gives insight into

properties of the input that could support learning, these mod-

els are fairly simplistic mixture models, and are not meant to

represent a realistic model of phonetic category learning. The

models were trained on particular subsets of categories in the

vowel space, and were given the number of categories that

needed to be found. The models did not attempt to learn the

full set of categories, which would introduce the problem of

estimating not just the shapes, orientations, and sizes of each

category, but also estimating the number of vowel categories

in the language. A more realistic model of phonetic category

learning would also need to take into account other factors

beyond formant distributions and prosody. Specifically, cate-

gory learning might need crucial guidance from the infant’s

emerging lexicon (Swingley, 2009; Feldman et al., 2013).

Prosody could help such a model by providing the learner

with a better bottom-up cue to category structure.

Several studies have argued against the view that hyperar-

ticulation in IDS would be the product of didactic intent from

the parent (Benders, 2013; McMurray et al., 2013; but see

Eaves et al., 2016). The current study does not address underly-

ing motivations or intentions from the part of the speaker.

Rather, what we find is that prosodic exaggeration within IDS

appears to be accompanied by relatively careful,

FIG. 6. Acoustic correlates of prosodic focus (from top to bottom: pitch, pitch movement, duration).
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hyperarticulated speech. This suggests that mothers might

simultaneously get the infant’s attention (using prosody) and

provide the infant with a clearer signal (supporting category

learning). Whether this behavior is intentional, or is even true

for languages other than American English, remains to be seen.

While the total number of vowels (both types and tokens)

used in the current study is larger than is typically used in ear-

lier studies, our database was based on speech from a rela-

tively small number of mothers. The vowel space analyses

were therefore completed separately for each individual

speaker (Figs. 2 and 6). These three speakers showed similar

patterns, suggesting that mothers emphasize vowels in similar

ways. While it remains an open question whether this is true

for most mothers (or in other languages), our study provides a

detailed picture of within-speaker variability across the vowel

space, in everyday mother-infant interactions, and thereby

provides ecologically valid training materials for computa-

tional models of phonetic category learning.

Infants’ successful perception of native phonetic catego-

ries is positively correlated with vocabulary size (Cristia

et al., 2014; Kuhl et al., 2005; Tsao et al., 2004; Yeung

et al., 2014), as is skill in spoken-word recognition (Kemp

et al., 2017; Marchman et al., 2016), indicating the likely

relevance of early perceptual learning for language develop-

ment in early childhood. The substantial experimental litera-

ture on children’s early linguistic trajectories has not been

matched by a thorough characterization of children’s lan-

guage environments, and as a result tracing children’s typical

developmental pathways quantitatively has been difficult.

The present dataset is part of a broader effort at quantitative

modeling of early phonological and lexical development

(e.g., Cristi�a, 2013). Our analyses support the possibility that

attention to prosodically salient instances of vowels helps

infants solve what might appear to be an insurmountable

computational problem.

ACKNOWLEDGMENTS

This work was funded by the Netherlands Organisation

for Scientific Research (NWO) Grant No. 446.010.027 to F.A.

and NIH Grant No. R01-HD049681 to D.S. Part of the

research reported here was presented at the International

Child Phonology Conference and the 34th Annual Conference

of the Cognitive Science Society in 2012. We would like to

thank former members of the Penn Infant Language Center

for their assistance, especially Ashley Baldwin, Allison Britt,

Joe Fruehwald, and Becky Mead. We also thank Zachary

Jaggers and James Whang for their assistance with annotating

the data, and we would like to thank two anonymous

reviewers for helpful comments and suggestions.

APPENDIX: REGRESSION ANALYSES

The following three linear regression analyses test

whether there were acoustic differences (along the dimen-

sions of pitch, pitch movement, and duration, respectively)

between our sets of focused and unfocused vowels, taking

into account other factors that may affect these dimensions.

The analyses take into account the effects of Speaker,

Vowel, and Focus, the latter being our variable of interest.

1. Acoustic correlates of focus: pitch (F0 in Hz). Intercept:

Speaker¼ d1, Vowel¼ /i/, Focus¼ NO FOCUS.

Coefficient Estimate Std. Error Pr > jzjð Þ

Intercept

Speaker

259.95 3.34 <0.001***

f1 �4.72 2.83 0.0953

w1 �50.76 3.13 <0.001***

Vowel

/I/ �2.86 3.51 0.4141

/E/ �18.07 4.24 <0.001***

/æ/ �18.44 4.42 <0.001***

/A/ �17.84 4.51 <0.001***

/ˆ/ �12.78 4.28 0.0028**

/O/ �23.17 6.20 <0.001***

/U/ �0.18 5.93 0.9763

/u/ 3.30 4.36 0.4496

Focus 39.18 2.67 <0.001***

2. Acoustic correlates of focus: pitch movement (DF0 in

Hz). Intercept: Speaker ¼ d1, Vowel ¼ /i/, Focus ¼ NO

FOCUS.

Coefficient Estimate Std. Error Pr > jzjð Þ

Intercept

Speaker

27.86 1.67 <0.001***

f1 �4.84 1.41 <0.001***

w1 �3.08 1.56 0.0485*

Vowel

/I/ �10.72 1.75 <0.001***

/E/ �11.36 2.11 <0.001***

/æ/ �1.81 2.20 0.4101

/A/ �9.06 2.25 <0.001***

/ˆ/ �10.21 2.13 <0.001***

/O/ �9.46 3.09 0.0022**

/U/ �11.17 2.96 <0.001***

/u/ 4.75 2.17 0.0288*

Focus 29.53 1.33 <0.001***

3. Acoustic correlates of focus: duration (ms). Intercept:

Speaker ¼ d1, Vowel ¼ /i/, Focus ¼ NO FOCUS.

Coefficient Estimate Std. Error Pr > jzjð Þ

Intercept

Speaker

117.75 4.10 <0.001***

f1 �9.02 3.47 0.0093**

w1 5.85 3.84 0.1277

Vowel

/I/ �44.92 4.30 <0.001***

/E/ �18.43 5.20 <0.001***

/æ/ 22.81 5.42 <0.001***

/A/ �1.22 5.54 0.8249

/ˆ/ �30.49 5.25 <0.001***

/O/ 13.82 7.60 0.0691

/U/ �42.75 7.28 <0.001***

/u/ 11.98 5.35 0.0251*

Focus 66.62 3.27 <0.001***
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1The database will be made publicly available on the authors’ websites.
2“Speaker” is included as a fixed factor, because in our dataset it has only

three levels, which is insufficient to treat it as a random factor.
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