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1 Introduction

The study of string theory compactifications on Calabi-Yau manifolds has a long tradition.

This can be traced back to the fact that these geometries provide background solutions

to all orders in α′ that yield supersymmetric effective theories. Due to their apparent

importance for string theory compactifications to four space-time dimensions, much focus

has been put on the study of Calabi-Yau threefolds. This led to an increasingly deep

understanding of the quantum geometry of these backgrounds and a rapid advancement
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of various studies of mirror symmetry. In contrast, the study of Calabi-Yau fourfolds has

attracted much less attention. In particular, Calabi-Yau fourfolds can admit a non-trivial

cohomology group of three-forms, whose dimension is neither related to the number of

complex structure nor the number of Kähler structure deformations of the geometry. The

new non-vanishing Hodge number on manifolds of this type is h2,1 counting the non-trivial

(2, 1)-forms. These non-trivial (2, 1)-forms yield massless scalars or vectors in the effective

theories obtained by compactifications on Calabi-Yau fourfolds. In this work we aim to

study the variations of these three-forms when changing the moduli of the geometry. This

dependence is captured by the periods of the three-forms, which are integrals over fixed

three-dimensional cycles in the fourfold.

Compactifications on Calabi-Yau fourfolds lead to different effective theories depending

on the starting point. Starting with Type IIA supergravity one finds a two-dimensional

effective (2, 2)-dilaton supergravity theory first studied in [1]. A complete inclusion of the

three-form degrees of freedom can be found in [2, 3]. Using instead eleven-dimensional

supergravity, the low energy limit of M-theory, the Calabi-Yau fourfold reduction yields a

three-dimensional effective supergravity theory with N = 2 supersymmetry [4, 5]. If one

further demands that these Calabi-Yau fourfolds are torus-fibered then one can find a lift of

the full M-theory compactification on the fourfold to an F-theory compactification to four

dimensions [6]. In other words, F-theory on an elliptically fibered Calabi-Yau fourfold will

yield a four-dimensional effective supergravity theory with N = 1 supersymmetry. In the

various effective theories the three-form periods determine different couplings. For example,

in the F-theory compactifications the three-form periods stemming from base three-forms

determine the gauge coupling function of four-dimensional N = 1 vector fields. The latter

is known to be holomorphic in the moduli fields of the effective theory. In addition, the

other three-form periods are key in the Kähler potential determining the dynamics of four-

dimensional N = 1 complex scalar fields. These scalar fields are naturally containing

axions, i.e. scalars with classical shift symmetries, as discussed in detail in [7]. Therefore,

the three-form periods will determine the axion decay constants and it is an interesting

question to determine their precise value in such an F-theory setting [8].

It is a general fact about the variations of Hodge-structures that the periods of (2, 1)-

forms can be chosen to vary holomorphically in the complex structure moduli. Further-

more, one expects that they satisfy a differential equation of Picard-Fuchs type. To our

knowledge, this differential equation has not been determined for any Calabi-Yau fourfold

example so far. This will be one of the goals of this work. We first introduce toric hyper-

surfaces and review in detail how non-trivial three-forms arise for such spaces [9–11]. Due

to a no-go theorem for non-trivial three-forms on hypersurfaces in toric Fano varieties, we

have to use non-Fano ambient spaces in which the anti-canonical hypersurface is only semi-

ample. In these geometries the three-forms always stem from toric divisors that arise from

Riemann surfaces over which compact toric surfaces are fibered. These Riemann surfaces

generally will admit (1, 0)-forms that then induce the (2, 1)-forms of the Calabi-Yau four-

fold via the so-called Gysin map [10, 12, 13]. We will introduce this construction in more

detail in the main text. We are able to propose residue expressions for the (1, 0)-forms and

then lift these to expressions for the (2, 1)-forms. This leads us to a geometric approach to

the three-form periods and Picard-Fuchs equations.
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It is important to point out that, similar to the analysis of periods on Calabi-Yau

threefolds, specific boundary conditions at the large complex structure point can be found

using mirror symmetry. This was done in ref. [14], where mirror symmetry for Type

IIA string theory on Calabi-Yau fourfolds was discussed in detail. Recalling that mirror

symmetry exchanges complex structure and Kähler structure moduli of the geometry one

can infer the behaviour of the periods at the large complex structure point by knowing the

mirror behaviour at the large volume point. We have found in [14] that this fixes the periods

to be constant or linear in the complex structure moduli at the large complex structure

point. Furthermore, the coefficients of these functions are given in terms of intersection

numbers of two three-forms and one two-form on the Calabi-Yau fourfold. Combining the

results of the paper [14] with the findings we present below, the Picard-Fuchs equations

can be solved explicitly for a given sufficiently simple example.

In addition to the introduction of a period matrix, we also determine the structure of

the intermediate Jacobian, an abelian variety that provides the moduli space of the three-

form moduli, in terms of the toric data. On this space we calculate the natural positive

definite bilinear form arising in compactifications on Calabi-Yau fourfolds. We clarify its

dependence on the period matrix and certain intersection numbers that where already

introduced in [7, 14] and give a toric interpretation. Since the toric methods generalize

the usual approach to string vacua obtained from Landau-Ginzburg orbifolds, [15–19], we

find again that the period matrix can be determined from a so called chiral ring and since

these period matrices satisfy a local integration condition we propose the existence of a

prepotential. This prepotential captures the complex structure dependence of the three-

form couplings and its leading order behavior at large complex structure is determined by

the above mentioned intersection numbers of its mirror, as found in [14].

In this paper we discuss two interesting explicit examples. The first example will be

a hypersurface in a toric ambient space with one non-trivial (2, 1)-form that arises from

a two-torus in a single exceptional divisor. The periods then obey a simple Picard-Fuchs

equation that can be solved explicitly. Interestingly, the example geometry has an elliptic

fibration and can thus be used as an F-theory background. The (2, 1)-form yields a single

four-dimensional complex scalar parameterizing the zero-modes of the R-R and NS-NS

two-forms on this background. In fact, the two-torus yielding a (2, 1)-form turns out to

be the elliptic fiber over some divisor in the base, similar to the configuration considered

in [8]. The second example is significantly more involved, since it will admit seven (2, 1)-

forms that stem from a Riemann surface of genus seven. This geometry is also elliptically

fibered and can serve as an F-theory background. In this case, however, the (2, 1)-forms

are corresponding to Wilson line moduli of seven-branes. The three-form periods for such

scalars are relevant, for example, in the applications of refs. [7, 20, 21]. We will discuss

various interesting aspects of this example, but will not attempt to derive the Picard-Fuchs

equations and periods explicitly.

The paper is organized as follows. In section 2 we first summarize some generali-

ties about three-forms on Calabi-Yau fourfolds. In section 3 we introduce the geometric

framework in which one can construct explicit fourfold examples exhibiting a non-trivial

three-form cohomology. Here we also recall the complex structure dependence of Riemann
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surfaces and derive Picard-Fuchs type equations and discuss the geometry of the interme-

diate Jacobian of the Calabi-Yau fourfold. In the final section 4 we discuss examples for

which these Picard-Fuchs equations can be evaluated explicitly. We also comment on the

effective theories arising from compactifying F-theory on these example geometries.

2 Three-forms on Calabi-Yau fourfolds

In this section we first introduce some general facts about the moduli-dependence of three-

forms on Calabi-Yau fourfolds. To do that we consider compact complex four-dimensional

manifolds Y4, which we demand to be Calabi-Yau fourfolds having exactly holonomy group

SU(4). For such geometries the Hodge numbers hp,q(Y4) = dim(Hp,q(Y4)) have to satisfy

various constraints. In fact, there are only three independent non-trivial Hodge numbers:

h1,1(Y4), h
3,1(Y4), and h2,1(Y4). The significance of h1,1(Y4) and h3,1(Y4) is very similar to

the case of a Calabi-Yau threefold. The number h1,1(Y4) counts the allowed Kähler struc-

ture deformations, while the number h3,1(Y4) counts the complex structure deformations.

The Kähler structure deformations will be denoted by vΣ and parametrize the expansion

of the Kähler form J into harmonic (1, 1)-forms ωΣ as

J = vΣ ωΣ Σ = 1, . . . , h1,1(Y4) . (2.1)

The complex structure deformations will be denoted by

zK, K = 1, . . . , h3,1(Y4) (2.2)

in the following. It is well-known that both sets of deformations become moduli fields in the

effective theory obtained by dimensional reduction of string theory, M-theory, or F-theory

on Y4. The Hodge number h2,1(Y4) has no threefold analog. In fourfold compactifications of

M-theory or Type IIA string theory this Hodge number counts additional complex scalars

NA , A = 1, . . . , h2,1(Y4) , (2.3)

that arise from the expansion of the higher-dimensional three-form into (2, 1)-forms of Y4.

Deriving the moduli-dependence of these (2, 1)-forms is the main interest of this work.

It is crucial to point out that a Calabi-Yau fourfold Y4 with exact SU(4) holonomy has

h3,0(Y4) = 0. A general fact known from Hodge theory [13] then implies that the (2, 1)-

forms on Y4 vary holomorphically and without obstructions with the complex structure

moduli zK . Therefore, we can describe the variation of a (2, 1)-form as sections of a

bundle over the complex structure moduli space with fibers parameterized by the (2, 1)-

forms. Each fiber defines a complex h2,1-dimensional subspace in the 2h2,1-dimensional

cohomology group H3(Y4,C). Note that we can introduce a real basis (α̃A, β̃
B), A,B =

1, . . . , h2,1(Y3) of H
3(Y4,R) such that the (2, 1)-forms ψA are expanded as

ψA = ΠB
A(z)αB + Π̃AB(z)β

B , ΠB
A =

∫

AB

ψA , Π̃AB =

∫

BB

ψA , (2.4)

where ΠB
A, Π̃AB are the periods of ΨA and vary holomorphically in the complex structure

moduli zK . The three-cycles (AA, B
A) are chosen to integrate to (δAB , δ

B
A) on (α̃B, β̃

B),
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respectively, and zero otherwise. At this point, the split into α̃A and β̃A is purely artificial,

since the total space H3(Y4,C) is independent of the complex structure. However, we can

define an induced complex structure J on H3(Y4,C) that varies with the complex structure

of the Calabi-Yau fourfold. J will be defined to have (2, 1)-forms in its −i eigenspace and

(1, 2)-forms in its +i eigenspace.

At a fixed complex structure z0 the map J is a real endomorphism that squares to the

negative identity. Thus, we can find around z0 a specific real basis (αA, β
A) of H3(Y4,R)

such that

J (z0)

(

αA

βB

)

=

(

βA

−αB

)

. (2.5)

Writing a (2, 1)-form on the Calabi-Yau fourfold at z0 in complex structure moduli space

as ψA(z0) = αA + iβA we indeed have J (ψA) = −iψA. Then there exists (locally) a

holomorphic H3(Y4,C)-endormorphism-valued function f , such that we can write

ψA(z) = αA + ifAB(z)β
B ∈ H2,1((Y4)z) (2.6)

to describe the local variation of a (2, 1)-form around the point z0. Since fAB(z0) = δAB,

its real part is locally invertible. Denoting the inverse by RefAB ≡ (Re(fAB))
−1 we can

normalize

ΨA(z, z̄) =
1

2
RefAB

(

αB − if̄BC(z̄)β
C
)

∈ H1,2((Y4)z) . (2.7)

which justifies the ansatz for (1, 2)-forms used in [6, 7, 14]. The normalized form (2.7) will

not be of big relevance in this work, but turned out to be key in determining the effective

actions obtained by compactification on Y4. As mentioned above, the effective actions will

contain new moduli fields NA arising from the (1, 2)-forms that parameterize the torus

H1,2(Y4)/H
3(Y4,Z) [6, 7, 14]. It will later be convenient to work with the holomorphic

forms (2.6) instead of (2.7). These forms parameterize the torus

J 3(Y4) =
H2,1(Y4)

H3(Y4,Z)
, (2.8)

a space that is also known as the intermediate Jacobian of the Calabi-Yau fourfold Y4.

The goal of this work is to compute the periods (ΠA
B (z), Π̃BA(z)) and the function

fAB(z). In an appropriate basis they are related by

fAB(z) = (ΠA
C )

−1Π̃CB . (2.9)

Note that from variations of Hodge structures under changes of complex structure one

deduces that H2,1(Y4) varies into H1,2(Y4). Since H
0,3(Y4) is trivial, the latter varies again

into H2,1(Y4), such that we expect that (2, 1)-forms satisfy a second order differential

equation. For the considered class of geometries we will describe how this differential

equation is determined.

As pointed out around (2.3) the non-trivial three-forms yield complex scalar fields NA

in the effective actions of M-theory and Type IIA string theory. Their kinetic terms are

– 5 –
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determined by an integral proportional to1

Q(ΨA, Ψ̄B) ≡
∫

Y4

ΨA ∧ ∗Ψ̄B = ivΣ
∫

Y4

ωΣ ∧ΨA ∧ Ψ̄B , (2.10)

where ∗ is the Hodge star on Y4 and we have used that for a (1, 2)-form one has ∗ΨA =

−iJ ∧ ΨA with J expanded as in (2.1). Note that we can expand this expression further

by inserting (2.7). Using the topological couplings

MΣA
B =

∫

Y4

ωΣ ∧ αA ∧ βB , MΣ
AB =

∫

Y4

ωΣ ∧ βA ∧ βB , (2.11)

we find

Q(ΨA, Ψ̄B) = −1

2
RefBC vΣ(MΣC

A + ifCD MΣ
DA) . (2.12)

When working with the holomorphic representatives (2.6), we have to multiply (2.12) with

RefAB appropriately, i.e.

Q(ψA, ψ̄B) = 2RefBC v
Σ(MΣA

C + ifAD MΣ
DC) . (2.13)

In order to derive the metric Q(ΨA, Ψ̄B) for the fields NA we therefore have not only to

determine fAB as a function of the complex structure moduli zK, but also evaluate the

intersection numbers (2.11) for a given geometry. In this work we will show how this can

be done for Calabi-Yau fourfolds realized as hypersurfaces in toric ambient spaces.

3 Three-forms on toric hypersurfaces

In this section we introduce the explicit constructions of Calabi-Yau fourfolds as hypersur-

faces in toric ambient spaces. We explain that these spaces can admit non-trivial three-

forms and that these three-forms are intimately linked to the existences of divisors that

carry non-trivial one-forms in the Calabi-Yau geometry. These divisors are fibration over

Riemann surfaces with fibers being toric surfaces. The main idea is to appropriately push-

forward the periods determined for the embedded Riemann surfaces to periods of three-

forms on the fourfold. The periods of the Riemann surfaces can be derived by solving

the associated Picard-Fuchs equations. This allows us to determine a positive definite

quadratic form on the intermediate Jacobian introduced in the previous section in terms

of the period matrices of the Riemann surfaces and certain intersection numbers of the

ambient space. We end this section with an illustration of these concepts for hypersurfaces

in weighted projective spaces. In section 4 we provide Calabi-Yau hypersurface examples

for which these steps can be performed explicitly.

3.1 Origin of non-trivial three-forms

In this subsection we will review the generic features of the explicit construction given in

appendix A for smooth Calabi-Yau fourfold hypersurfaces in toric ambient spaces. For

these to be equipped with non-trivial three-form cohomology, the ambient space can not

1See [7] for a derivation of this result using the same notation and conventions.
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be Fano, due to the Lefschetz-hyperplane theorem and the cohomological properties of the

ambient toric space.

Let us now take a look at the Lefschetz hyperplane theorem, as stated in [22]. There it

was found that for a quasi-smooth hypersurface Y4 of a five-dimensional complete simplicial

toric variety A5 defined by an ample divisor that the natural map (the restriction of forms)

ι∗ : Hj(A5,C) → Hj(Y4,C) is an isomorphism for j ≤ 3 and an injection for j = 4. This

implies that there are no non-trivial three-forms if the divisor class of the hypersurface

is ample and the hypersurface is smooth, as is the case for the sextic hypersurface in P5,

since a toric variety A5 does not support odd cohomology.2 As a consequence, we have to

deal with more complicated ambient spaces than the standard projective space to obtain

non-trivial three-forms on its anti-canonical hypersurface.

Another way to see that the ambient space A5 can not be Fano to obtain a non-trivial

three-form cohomology can be inferred from [23] where it was shown that all cohomology of

degree less than four has to be induced by toric divisors D′
l of Y4. This is a set of complex

codimension one submanifolds that are invariant under the toric action of the ambient

space A5. In particular are these toric divisors again hypersurfaces in the toric divisors Dl

of A5. The precise relation as we explain in appendix A is given by the so called Gysin

morphism
⊕

ιl∗ :
⊕

ν∗
l

H1(D′
l,C) −→ H3(Y4,C) , (3.1)

where the morphism is the direct sum of Gysin morphisms ιl∗ of the inclusions ιl of the toric

divisors D′
l. This is an isormophism and hence every non-trivial three-form cohomology

class is a push-forward of a one-form cohomology class on a toric divisor D′
l.

As we show in appendix B not all toric divisors host a non-trivial one-form cohomology.

The divisors that actually do are denoted by D′
lα

and show a fibration structure. Also,

the ambient space Dlα of D′
lα

shows a similar fibration structure. The interesting feature

here is that the base space of the D′
lα

is given by a Riemann surface Rα and has fiber a

toric surface Elα . The notation already infers the intersection properties of such divisors:

if two such divisors D′
lα

intersect, they need to share the same base Riemann surface Rα.

Therefore α = 1, . . . , n2 counts the Riemann surfaces Rα and lα counts the fibrations D′
lα

with base Rα and fiber Elα . The Riemann surface Rα is again a hypersurface in a toric

ambient space A2,α which is two-dimensional and the base space of the fibration structure

of Dlα with the same fiber Elα . The one-forms of the fibration D′
lα

are pull-backs of the

projection πlα to the Riemann surface Rα and hence we find

H2,1(Y4) ≃
⊕

α

⊕

lα

H1,0(Rα)⊗H0,0(Elα) . (3.2)

Note that the cohomology of Eα is independent of the complex structure of Y4. The

complex dimension of H1,0(Rα) is given by the genus gα of the Riemann surface. The

spacesH1,0(Rα) capture correspondingly the full complex structure dependence ofH2,1(Y4)

which is the primary interest of this work.

2It can be shown that for a general toric variety M , Hi,j(M) 6= 0 requires i = j.

– 7 –



J
H
E
P
0
5
(
2
0
1
7
)
1
5
1

Let us stress that, on the one hand, equation (3.1) implies that the non-trivial three-

forms are directly inherited from the divisors D′
lα
, i.e. the divisors that are fibrations

of toric surfaces Elα over Riemann surfaces Rα embedded in A2,α. On the other hand,

equation (3.2) indicates that an equivalent statement for three-forms on D′
lα

cannot be

made. In fact, the divisors D′
lα

carry in general way more non-trivial three-forms than the

full Calabi-Yau fourfold Y4, which, however, do not descend to Y4.

The identification (3.2) can also be used to infer the formula of [9, 24–26] counting the

number of non-trivial (2, 1)-forms as

h2,1(Y4) =

n2
∑

α=1

ℓ′(θ∗α)ℓ
′(θα) , (3.3)

where the sum runs over pairs of dual two-dimensional faces (θ∗α, θα). Recall from (B.7)

and (B.9) that ℓ′(θ∗α) counts the divisors Elα over the singular Riemann surface Rα. The

genus of Rα is given by gα = h1,0(Rα) = ℓ′(θα). This data is only dependent on the

polyhedra ∆∗,∆ and independent of the chosen triangulation.

In the following we will analyze the smooth variety Y4 further and describe the complex

structure variation of a (2, 1)-form on this space. We argue that this can be done by first

considering the complex structure variations of (1, 0)-forms

γaα ∈ H1,0(Rα) , aα = 1, . . . , gα , (3.4)

on Rα. To do so, we define holomorphic (1, 0)-forms on Rα as Poincaré residues of their

ambient spaces A2,α. This representation for the holomorphic (1, 0)-forms will be explained

in the next section.

3.2 Periods of embedded Riemann surfaces and their Picard-Fuchs equations

As we have seen from the previous section, all three-forms on a Calabi-Yau fourfold hyper-

surface of a toric variety are induced from one-forms of Riemann surfaces. Therefore, we

start this section with the basics of the theory of Riemann surfaces, as described in [27].

Afterwards, we restrict to the toric setting and view these Riemann surfaces as (semi-)

ample hypersurfaces of a two-dimensional toric variety, as described in [11, 22]. We close

this section with a derivation of a second order differential equation, the Picard-Fuchs

equation, that governs the complex structure dependence of the holomorphic one-forms on

a Riemann surface. This is familiar from Landau-Ginzburg orbifolds as discussed in [28].

Since we are interested in the (co-)homology of the Riemann surface, a compact one-

dimensional Kähler manifold, and the eigenspaces of its complex structure, we introduce

here appropriate bases of the non-trivial cohomology groups, that allow us to perform

calculations.

Consider a Riemann surface R of genus g with a basis ofH1(R,Z) the one-cycles Âa, B̂
a

a = 1, . . . , g with duals α̂a, β̂
a ∈ H1(R,Z). This basis can be chosen to be canoncial, i.e. to

satisfy
∫

R
α̂a ∧ β̂b = δba ,

∫

R
α̂a ∧ α̂b =

∫

R
βa ∧ βb = 0 , a, b = 1, . . . , g . (3.5)

– 8 –
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Due to a Riemann surface being Kähler, we can always choose a basis γa ∈ H0(R,Ω1)

of holomorphic one-forms on R. Integrating these over the base of one-cycles Âa, B̂
a leads

to the two period matrices Π̂a
b, Π̂ab,

(Π̂a)
b =

∫

Âb

γa , (Π̂a)b =

∫

B̂b

γa . (3.6)

The periods Π̂b and Π̂b are defined to be the column vectors of these matrices, i.e. the

vector formed by integrating all one-forms γa over the same one-cycle Ab, B
b respectively,

and these 2g vectors are linearly independent over R and hence generate the lattice

Λ̂ =
⊕

a

(

ZΠ̂a ⊕ ZΠ̂a
)

(3.7)

in Cg. This allows us to define the Jacobian variety J 1(R) = Cg/Λ̂ of the Riemann surface

R to be

J 1(R) =
H1,0(R)

H1(R,Z)
≃ Cg/Λ̂ . (3.8)

It can be shown that Π̂a
b is in general invertible. We can normalize this basis to

γ̃a ∈ H0(R,Ω1) by multiplication with the inverse (Π̂−1)a
b of Π̂a

b such that

γ̃a = (Π̂−1)a
b γb ,

∫

Ab

γ̃a = δba (3.9)

with the remaining normalized period matrix

i f̂ab = (Π̂−1)a
c Π̂cb =

∫

Bb

γ̃a . (3.10)

This normalized period matrix satisfies the properties

f̂ab = f̂ba , Re f̂ab > 0 . (3.11)

We also note that the positive definite quadratic form on H0(R,Ω1) in the normalized basis

is given by

− i

∫

γa ∧ γ̄b = 2 · Re f̂ab , (3.12)

where we dropped the tilde. For our physical applications, we will be interested in complex

structure dependence of the normalized period matrix f̂ab and this can be done via an

explicit representation of the holomorphic one-forms γa, which we will discuss in detail in

appendix C.

In this appendix we give an explicit representation of the holomorphic one-forms γb
on R embedded as a toric hypersurface via the Poincaré residue. For the full fourfold Y4,

in which we have a toric divisor a fibration with base R, we find that all the γb ∈ H1,0(R)

depend only on the complex structure deformations ac, c = 1, . . . , h1,0(R) of R induced by

its ambient space Y4 after blowing down the corresponding toric divisor.
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As we show in appendix C, we can express the second derivatives of γb by operators

acting on γb of the form

∂

∂ac

∂

∂ad
γb(a) =

(

c(1)(a)cdbe
f ∂

∂ae
+ c(0)(a)cdb

f

)

γf (a) , (3.13)

where c(1)(a)cdbe
f , c(0)(a)cdb

f are rational functions of the complex structure moduli ac that

are completely symmetric in their lower four, respectively three, indices. These functions

are structure constants of the chiral ring R = R∆ determining the multiplication rules in

this ring. The above differential relations are called Picard-Fuchs equations and can be

used to determine the complex structure dependence of the holomorphic one-forms on R.

In particular, this implies that the flat complex structure coordinates zK(a) can still be

calculated in the usual way, since these are also determined by the structure constants of

R, as described for example in [29, 30]. In these coordinates, we find that

∂

∂zK
∂

∂zL
γb(a(z)) = 0 , (3.14)

which implies that γa(z) is at most linear in the zK moduli. Integrating these over a basis

of one-cycles we obtain the period matrices Π̂a
b, Π̂ab, which are still at most linear. This

means that we can find as solutions the constant identity matrix and the normalized period

matrix f̂ab that satisfies

f̂ab(a(z)) = zKM̂Kab + Ĉab +O(z−1) , (3.15)

with M̂Kab, Ĉab ∈ C constants determined by boundary conditions, as was done in [14] for

M̂Kab, where it was found that these numbers arise from certain intersection numbers of

the mirror Calabi-Yau fourfold, when expanding around the large complex structure point.

These considerations will be the starting point for the investigation of the intermediate

Jacobian of a Calabi-Yau fourfold realized as a hypersurface in a toric variety, since in this

situation all non-trivial three-form cohomology can be traced back to Riemann surfaces.

3.3 The intermediate Jacobian of a Calabi-Yau fourfold

In the previous subsection we have discussed the complex structure variations of the (1, 0)-

forms γaα on the Riemann surfaces Rα embedded intoD′
lα
and Y4. Since there are in general

several such Riemann surfaces in Y4 we now restore the index α as in subsection 3.1.

In this subsection we describe how these (1, 0)-forms are mapped to (2, 1)-forms on Y4.

These forms parametrize the intermediate Jacobian J 3(Y4) introduced in (2.8) and we will

describe some of its key geometrical properties.

The precise relation between the (1, 0)-forms γaα and (2, 1)-forms ψA is inferred from

the isormophism (3.1) and (3.2). Explicitly it is given by

ψA = ιlα∗
(

π∗
lα γaα

)

, A = (α, lα, aα) = (1, 1, 1), . . . , (n2, ℓ
′(θ∗α), ℓ

′(θα)) , (3.16)

where we have stressed that the index A is a multi-index labelling the Riemann surface

Rα, the toric divisors Dlα that have Rα as a base, and its (1, 0)-forms γaα . The involved
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maps are the pullback π∗
lα
, mapping one-forms on Rα to one-forms on D′

lα
, and the Gysin

map ιlα∗ pushing these one-forms to three-forms on Y4. The Gysin map can be understood

as first taking the Poincaré-dual of π∗
lα
γaα in D′

lα
, which yields a five-cycle representing

a a homology class on D′
lα
. This homology class can be pushed to the homology of Y4

using the embedding map ιlβ : D′
lβ

→֒ Y4. Taking the Poincaré-dual of this five-homology

class on Y4 yields the desired three-form. As pointed out already above, the construction

of (3, 2)-forms χA on Y4 is more straightforward, since it only involves pullbacks of the

restriction morphisms. Translating (A.7), (B.16) they are given by

χB = (ι∗lβ )
−1(ω

(2,2)
lβ

∧ π∗
lβ
γbβ ) (3.17)

where ω
(2,2)
lβ

∈ H4(D′
lβ
,Z) are the volume-forms of of the fibers Elβ of D′

lβ
. Note that

when constructing a basis of five-forms using (3.17), we might choose ω
(2,2)
lβ

topological

or dependent on Kähler moduli. For convenience, we have chosen here the topological

approach.

Let us next turn to the intermediate Jacobian J 3(Y4) spanned by the (2, 1)-forms ψA.

Using (3.1) we find that it splits into a direct product of Jacobians J 1(Rα) of Riemann

surfaces Rα as

J 3(Y4) =
H2,1(Y4)

H3(Y4,Z)
≃

n2
∏

α=1

(

J 1(Rα)
)ℓ′(θ∗α) . (3.18)

In particular, this suggests that the period matrix of J 3(Y4) for a generic hypersurface is a

matrix with the period matrices of the J 1(Rα) on the diagonal. These period matrices are

independent due to the direct sum in (3.1). At special points in complex structure moduli

space, the lattice Λ of the intermediate Jacobian J 3(Y4) will degenerate and require an

extension of this diagonal ansatz. While we will not consider such phenomena in this work,

it would be interesting to explore them in the future. The intermediate Jacobian admits a

positive definite quadratic form Q introduced in (2.10). Evaluated for two (2, 1)-forms ψA

and ψB, we recall that

Q(ψA, ψB) = −ivΣ
∫

Y4

ωΣ ∧ ψA ∧ ψ̄B , (3.19)

where we inserted the expansion of J = vΣωΣ given in (2.1). Note that we can pick a basis

ωΣ that is Poincaré-dual to a set of h1,1(Y4) homologically independent divisors D′
Σ of Y4.

3

We will now evaluate the quadratic form Q for the (2, 1)-forms constructed in (3.16).

In order to do that, we first analyze the appearing intersection structures. Using (3.16)

we have associated the divisors D′
Σ, D

′
lα
, and D′

lβ
to the forms ωΣ, ψA, and ψB, respectively.

We now claim that the integral in (3.19) is only non-zero if the curve

C = D′
Σ ∩D′

lα ∩D′
lβ

(3.20)

3From the description of the Gysin map ιΣ∗ given above, it is clear that the ωΣ can be written as

ωΣ = ιΣ∗1, 1 ∈ H0(D′

Σ,C), for the embedding ιΣ : D′

Σ →֒ Y4.
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Rα

A2,αγaα

Elα Emα

Enα

Figure 1. Intersection structure of the divisors D′

lα
that are fibration over Rα with fiber Elα

and

holomorphic one-forms γaα
.

is in the same homology class as one of the Riemann surfaces Rα or Rβ . In fact, we argue

that all three divisors in (3.20) have to be resolution divisors D′
lα

for the same Riemann

surface Rα, i.e. the only relevant intersections are

D′
lα ∩D′

mα
∩D′

nα
= M̂lαmαnα

·Rα , (3.21)

where M̂lαmαnα
are intersection numbers we discuss next. To see this we note that the

intersection curve C is again a hypersurface in the toric variety DΣ ∩Dlα ∩Dlβ . In order

that it has non-trivial one-forms that lift to Y4, it has to be two-semiample and hence

corresponds to one of the Riemann surfaces Rα. Since all three divisors in (3.21) are

fibrations of Elα over Rα we can read off

Elα ∩ Emα ∩ Enα = M̂lαmαnα
. (3.22)

We depicted the intersection structure in figure 1.

Note that due to the fact that the Elα are realized as toric subspaces of A5 as noted

around (B.8) and our assumption that A5 is smooth, the intersection numbers M̂lαmαnα

can be computed directly in A5. This implies that they are are either one or zero, i.e. are

the normalized volume of the face spanned by ν∗lα , ν
∗
mβ

, ν∗nα
. Returning to the expansion of

Q in (3.19) it is convenient to chose an adopted basis for the J expansion

J = vΣ ωΣ =

n2
∑

α=1

∑

lα

vlα [D′
lα ] + . . . , (3.23)

where we only displayed the vΣ that will contribute to Q. Putting everything together we

then arrive at

Q(ψA, ψB) = −iδαβ vlαM̂lαmαnβ

∫

Rα

γaα ∧ γ̄bβ , (3.24)
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for multi-indices A = (α,mα, aα) and B = (β, nβ, bβ). Another way to interpret this ge-

ometrically is to say that for a fixed Rα the corresponding El-fibers form an analogue

of the Hirzbruch-Jung sphere-tree, familiar from the resolution of codimension two orb-

ifold singularities, and the precise intersection pattern M̂lmn of these fibers determines

the bilinear form Q. Hence, Q depends on the triangulation of the ambient space A5.

The dependence on Kähler moduli is contained in the structure of this higher dimensional

sphere-tree. The complex structure dependence of Q can be fully reduced to the complex

structure dependence of the one-forms on the Riemann surfaces Rα.

Having evaluated the quadratic form Q for the geometries under consideration, it is

now straightforward to read off the holomorphic function fAB and the constants MΣA
B,

MΣ
AB defined in (2.11). Comparing the general expression (2.13) to our result (3.24) we

first realize that

MΣ
AB = 0 . (3.25)

To see this we denote by f̂
(α)
aαbα

the holomorphic function associated to Rα. The equa-

tion (3.12) then reads

− i

∫

Rα

γaα ∧ γ̄bα = 2 · Re f̂ (α)
aαbα

. (3.26)

In contrast to (2.13) only the real part of f̂
(α)
aαbα

appears. In other words, the vanishing

condition (3.25) arises from the fact that one can chose a canonical basis (α̂aα , β̂
aα), as

defined in (3.5), on each Rα. To read off fAB and MΣA
B one has the freedom of multiplying

with a constant matrix, which corresponds to choosing a different basis (αA, β
A) in (2.6).

A convenient way to chose a basis is to use the pullback and Gysin maps as in (3.16),

i.e. we define

αA = ιlα∗(π
∗
lαα̂aα) , βA = ιlα∗(π

∗
lα β̂

aα) , (3.27)

with multi-index A = (α, lα, aα). The claim that all moduli dependence is captured by

the periods of Rα is equivalent to the statement that the so-constructed (αA, β
A) are

independent of the moduli. This moduli-independence is a requirement in the general

construction of section 2. With (3.27) one checks again (3.25) and computes

MΣA
B =

{

M̂lαmαnα
δbαaα for α = β and Σ = lα

0 otherwise ,
(3.28)

with mulit-indices A = (α,mα, aα) and B = (β, nβ, bβ). Inserting this expression into (2.13)

and comparing with (3.24) using (3.26) we finally read off

fAB =

{

f̂
(α)
aαbα

δmαnα for α = β

0 otherwise ,
(3.29)

with mulit-indices A = (α,mα, aα) and B = (β, nβ, bβ).

The identifications (3.25), (3.28), and (3.29) together with the computations of f̂
(α)

aαbβ

in subsection 3.2 constitute our main results for the analysis of Calabi-Yau fourfold hyper-

surfaces in toric varieties. We find that fAB actually factors into non-trivial blocks, each

containing the information about one of the embedded Riemann surfaces. The non-trivial
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couplings MΣA
B capture the intersection information of the generalized sphere-tree over

each Riemann surface. It is worthwhile to stress that this information suffices to compute

the crucial parts of the effective actions relevant, for example, in [8, 21]. However, it is also

clear that certain applications will require to consider a more general class of geometries.

For example, the non-Abelian structures considered in [7, 31, 32] are expected to require

the use of complete intersections and to find less block-diagonal situations. We hope to

return to such more involved geometries in the future.

3.4 Three-form periods on Fermat hypersurfaces in weighted projective spaces

To close our discussion on the construction of three-form periods on Calabi-Yau fourfolds,

we examine a particularly simple class of geometries, Fermat hypersurfaces in weighted

projective spaces. Since weighted projective spaces are the simplest examples of toric

varieties, the concepts introduced in the previous section apply directly and can be more

intuitively understood. The explicit examples investigated in section 4 will also fit into this

class of geometries.

Since we are primarily interested in the calculation of the normalized period matrix

fAB, which was shown in (3.29) to only depend on the chiral ring of a Riemann surface

embedded in the hypersurface, it is not necessary to blow-up orbifold singularities. There-

fore, our analysis of the geometries simplifies drastically. The exact pattern of blow-ups

necessary to produce a smooth ambient space only enters through the intersection numbers

MΣA
B determined in (3.28). This will enable us to discuss the derivation of the Picard-

Fuchs equation explained in subsection 3.2 more explicitly. Afterwards, we will discuss the

case when all three-forms are induced by a single divisor.

In the following we focus on a generally singular ambient space A5, which is a weighted

projective spaces A5 = P5(w1, . . . , w5, w6 = 1) realized by a simplicial polyhedron in NQ =

Q5 with six vertices

ν∗i = ei, , i = 1, . . . , 5 , ν∗6 = (−w1,−w2,−w3,−w4,−w5) . (3.30)

The choice of w6 = 1 enables us to express all toric divisors [Di] as a multiple of [D6] = [H],

[Di] = wi[H] , (3.31)

that can be viewed as a generalization of the hyperplane class one encounters in classical

projective spaces. In the homogeneous coordinate ring

S = C[X1, . . . , X6] , (3.32)

we hence obtain the usual grading of a monomial by a positive number, the multiple of H

it corresponds to.

The anti-canonical hypersurface Y sing
4 in A5 is given by the zero set of a degree d

polynomial, with d such that

wi|d, i = 1, . . . , 6 ,
∑

Di = −KA5 = d ·H . (3.33)
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The first condition allows the hypersurface to be a deformation of a Fermat hypersurface.

In particular, it enables us to choose the non-degenerate hypersurface in the equivalence

class of the anti-canonical divisor to be

p∆ = X
d/w1

1 + . . .+X
d/w6

6 +
∑

ν∈∆, codim(ν)>1

aν pν . (3.34)

where the six vertices spanning the polyhedron ∆ ⊂ Q5 are given by

νi = −
∑

ej +
d

wi
ei ∈ Z5 , i = 1, . . . , 5 , ν6 = −

∑

ej ∈ Z5 . (3.35)

Due to the assumption of a the existence of a Fermat surface in the equivalence class of the

anti-canonical divisor, ∆ is a simplex. This is not true for a general toric ambient space

and is a rather restrictive assumption.

In this situation, a surface A2 of C3/Zn-singularities in the ambient space arises if

exactly three weights have a common divisor n. Without loss of generality we can assume

n |w3, w4, w5 , n 6 | w1, w2, w6 , (3.36)

i.e. A2 is given as the subspace of A5 given by X1 = X2 = X6 = 0. This C3/Zn-singularity

will lead to a curve R of C3/Zn-singularities in the hypersurface Y sing
4 that intersects A2

transversely and clearly requires a number of blow-ups to resolve this singularity. The

corresponding divisors will induce the non-trivial three-forms on the smooth hypersurface

Y4, but its complex structure dependence will be fully captured by the curve R of C3/Zn-

singularities.

Our ansatz implies in particular that n|d. The toric surface A2 of C3/Zn-singularities

is also a weighted projective space

A2 = P2(w3, w4, w5) ≃ P2(w3/n,w4/n,w5/n) . (3.37)

This identification can be seen from the fact that the weights of A2 are all multiples of n and

only the ratio of two weights in a weighted projective space matters. The corresponding

hypersurface is just the restriction of the polynomial to this space, i.e. setting X1 = X2 =

X6 = 0 and hence R is isomorphic to

R = P2(w3/n,w4/n,w5/n)[d/n] , (3.38)

i.e. a degree d/n-dimensional Fermat hypersurface in A2. In terms of lattice-polytopes,

we find that the dual polyhedron of A2 defined by θ is in general not reflexive, it contains

ℓ′(θ) ≥ 0 interior points and the genus of R is exactly the number of these interior points

ℓ′(θ) = g. The Fermat polynomial on A2 is given by the corresponding restriction of p∆
and reads

pθ =
∑

Ei∩θ∗

X
d/wi

i +
∑

νb∈int(θ)

abpb

= X
d/w3

3 +X
d/w4

4 +X
d/w5

5 +X3X4X5

(

∑

deg(p′
b
) =

w1 + w2 + w6

abp
′
b(X3, X4, X5)

)

. (3.39)
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where we introduced the monomials

p′a ∈ Rθ(KA5 |A2 −KA2) = Rθ(w1 + w2 + w6) , (3.40)

which are the non-trivial monomials of Rθ of degree w1 + w2 + w6 corresponding to the

integral interior points of θ, νa ∈ int(θ) ∩N .

Following the construction of holomorphic one-forms on R outlined in subsection 3.2,

we already seen how to construct Rθ and we are left with the construction of the holomor-

phic volume-form of A2. The holomorphic volume-form dωA2 of (C.3) is given by

dωA2 = w3X3dX4 ∧ dX5 − w4X4dX3 ∧ dX5 + w5X5dX3 ∧ dX4 ∈ Ω2
A2

, (3.41)

and has degree w3 + w4 + w5. The construction ensures the meromorphic two-forms

p′a
pθ

dωA2 ∈ H0(A2,Ω
2(R)) , (3.42)

are globally defined on A2. This means that they are invariant under the quasi-projective

equivalence of the weighted projective space, i.e. they have degree zero. In addition they

have a first order pole along the Riemann surface R, which facilitates the residue construc-

tion we introduced.

Therefore, we extracted all quantities needed to define the (1, 0)-forms γa of our ansatz

γa =

∫

Γ

p′a
pθ

dωA2 , νa ∈ int(θ) ∩M . (3.43)

The next step to find the Picard-Fuchs equations, is to imply the relations in Rθ to reduce

the second derivatives of γa with respect to the complex structure moduli ab. In practice,

however, this is connected with a significant amount of work, the number of relations goes

with g2, which should be attempted via an adapted algorithm that suits an implementation

in a computer program. We will outline the calculation for the simplest example, g = 1,

in the upcoming section.

For generic orbifold singularities along a curve R in a toric Calabi-Yau fourfold hy-

persurface Y4, we encounter in general complicated intersection patterns of the necessary

toric blow-ups, which we however need to understand to calculate the intersection numbers

MΣA
B, (3.28).

The simplest case of an orbifold singularity C3/Zn along the Riemann surface R is a

C3/Z3-singularity, i.e. n = 3, that can be resolved by one toric blow-up and as a result

we obtain a divisor D′
7 = {X7 = 0} that is a fibration over the Riemann surface R with

exceptional fiber E. The corresponding additional ray τ7 goes through the integral point ν∗7

ν∗7 =
1

3
(ν∗1 + ν∗2 + ν∗6) (3.44)

and the fiber E is just

E = P2(w1, w2, w6) , (3.45)

which is for general w1, w2 not smooth. Resolving the corresponding point singularity leads

to non-trivial three-cycles on D′
7 that will be trivial in Y4. Since we have only one blow-

up divisor D′
7 resolving the C3/Z3-singularity along the curve R, the intersection matrix
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R

A2

π7

α̂a

E

Figure 2. Fibration structure of D′

7
. The Riemann surface R is a hypersurface of the toric space

A2 over which the toric surface E is fibered.

MΣA
B, (3.28), simplifies drastically, to the single number M = 1. In this situation, all

non-trivial three-forms ψA of the smooth hypersurface Y4 arise from D′
7 and correspond to

a one-form γa on R. The multi-index A runs only over the one-forms on R, γa ∈ H0(R,Ω1),

i.e. A = (α, lα, aα) = (1, 7, 1), . . . , (1, 7, g). Correspondingly, we find using (3.16)

ψA = ι7∗
(

π∗
7 γa

)

∈ H2,1(Y4) , (3.46)

and hence for the positive bilinear form Q, (3.24), that

Q(ψA, ψ̄B) = 2 v7 · Ref̂ab , (3.47)

with f̂ab the normalized period matrix of R, that can be calculated via the Picard-Fuchs

equations, and v7 is the volume modulus associated to the Poincaré dual two-form of

D′
7. We end this discussion with a schematic sketch of the fibration structure of D′

7 we

encountered in this example, figure 2. The reader should keep this picture in mind, when

we discuss explicit geometries in the next section.

4 Calabi-Yau hypersurface examples

In this section we discuss two simple Calabi-Yau fourfold examples with non-trivial three-

form cohomology. In the course of this analysis we will encounter several consequences of

these non-trivial three-forms when using the geometry as F-theory background. In partic-

ular, we will investigate the weak-coupling limit of Sen and trace some of the properties of

the three-form moduli and their couplings through this limit. Our findings provide further

motivation to explore regions in complex structure moduli space that do not yield weakly

coupled Type IIB orientifold backrounds.
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4.1 Generalities

To begin with, we will discuss general aspects of the effects of non-trivial three-form coho-

mology in F-theory. We keep our considerations simple, by focusing on elliptically fibered

Calabi-Yau fourfolds realized as hypersurfaces in weighted projective spaces as discussed in

subsection 3.4. For general hypersurfaces the three-form moduli NA yield complex scalar

fields in the four-dimensional effective theory. These scalars can have two interrelated

origins in a general F-theory setting: (1) they can arise as zero-modes of the R-R and

NS-NS two-forms, or (2) they can correspond to continuous Wilson line moduli arising on

seven-branes. In general this distinction can be meaningless (see e.g. [33]), but it becomes

more stringent in the weak string coupling limit. We will encounter both types of moduli

in two simple example geometries in subsection 4.2 and subsection 4.3.

4.1.1 Weierstrass-form and non-trivial three-form cohomology

Let us consider a Calabi-Yau hypersurface Y sing
4 in a weighted projective space A5 =

P5(w1, . . . , w6 = 1). As we have seen in subsection 3.4, we can find after a resolution

of Y4 in Â5 a smooth Calabi-Yau manifold with non-trivial three-form cohomology. We

have discussed in detail that the complex structure dependence of these three-forms can

already be inferred from the complex structure variations of one-forms on Riemann surfaces

embedded in Y sing
4 .

To obtain an F-theory background we want to consider an elliptically fibered Calabi-

Yau fourfold with a section. Therefore, we specialize to Weierstrass-models with the elliptic

fiber realized as hypersurface in Afiber = P2(1, 2, 3) fibered over a toric basis B3 that will

be a (blow-up of a) weighted projective space

Bsing
3 = P3(w1, w2, w3, w6 = 1) . (4.1)

The blow-up may be necessary for example to obtain generalized Hirzebruch surfaces,

i.e. P1-fibrations over a two-dimensional toric variety. Note here that since we assume the

base B3 to be toric, in can not carry non-trivial three-form cohomology. In general the

polyhedron of the base ∆∗
base is not convex. This implies that the base is non-Fano and a

resolution of singularities might involve choices of an extension of ∆∗ by integral vertices in

its interior or exterior. Clearly this will alter the geometry of the corresponding Calabi-Yau

fourfold and also the resulting physics.

The elliptically fibered Calabi-Yau fourfold Y sing
4 is determined by the data of the base

Bsing
3 and is a hypersurface in

A5 = P5(w1, w2, w3, w4 = 2w,w5 = 3w,w6 = 1) , w = w1 + w2 + w3 + w6 . (4.2)

It is common to denote the projective coordinates as X4 = x and X5 = y. The vanishing

of the first Chern-class of the hypersurface Y sing
4 requires the defining polynomial to have

Tate form with degree d = 6w given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 . (4.3)
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Here aj are global sections of various powers of the anti-canonical bundle K−1
B3

of the

base B3:

aj ∈ H0(B3,K
−j
B3

) . (4.4)

On the singular space this simply requires the aj to be quasi-homogeneous polynomials in

the projective base coordinates of degree deg(aj) = w ·j. After performing the blow-ups the

structure of these global sections aj may be more complicated since toric blow-ups changing

∆∗ will in general also affect ∆ and hence the anti-canonical divisor class providing the

Calabi-Yau hypersurface.

4.1.2 The weak string coupling limit

Let us next recall the weak string coupling limit in complex structure moduli space following

Sen [34, 35] and [36] for a more refined version. By a variable redefinition, we can bring

any Tate form (4.3) into standard Weierstrass form given by

y2 = x3 + fx+ g . (4.5)

In order to do that we note that f ∈ H0(B3,K
−4
B3

) ∈ H0(B3,K
−6
B3

) and can be written as

f = − 1

48
(b22 − 24ǫ b4) , g = − 1

864
(−b32 + 36ǫ b2b4 − 216ǫ2 b6) , (4.6)

with bi global sections of K
−i
B3

. In our conventions the bi are related to the aj of the Tate

form (4.3) via

b2 = a21 + 4a2 , b4 = a1a3 + 2a4 , b6 = a23 + 4a6 . (4.7)

The parameter ǫ introduced in (4.6) can be thought of as the complex structure modulus

that needs to be sent to zero to perform the weak string coupling limit. We discuss this

limit in more detail next.

If one starts from an F-theory compactification on the smooth elliptically fibered Y4
there is a corresponding weak string coupling configuration that only admits D7-branes

and O7-planes. This weak coupling limit is obtained by sending ǫ → 0. To see this one

notes that the complex structure τ of the elliptic fiber is given by

j(τ) =
4(24f)3

∆
, ∆ = 27g2 + 4f3 , (4.8)

where ∆ is the discriminant dictating the locations in the base along which the fiber

degenerates. Inserting (4.6) into (4.8) one expands

∆ =
1

64
ǫ2b22(b2b6 − b24) , j(τ) = − 32b42

(b2b6 − b24)ǫ
2
, (4.9)

where we only displayed the leading terms. This implies that in the limit ǫ → 0 Im τ ∝
− log ǫ everywhere expect at the locus b2 = 0. Recalling that in Type IIB supergravity one

has τ = C0 + ie−φ, with e〈φ〉 = gs, we thus conclude that gs → 0 in the limit ǫ → 0.
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The extended objects in the weak coupling configurations are D7-branes and O7-planes.

Using the split (4.9) of the discriminant one identifies the following locations of the D7-

branes and O7-planes:

O7 : b2 = 0 , D7 : b2b6 − b24 = 0 . (4.10)

The corresponding Calabi-Yau threefold Y3 is a double cover of the toric base B3 with

branching locus the O7-planes. In practice Y3 is obtained as a hypersurface in the anti-

canonical line-bundle K−1
B3

with fiber coordinate ξ and equation

Y3 : Q = ξ2 − b2 = 0 . (4.11)

The orientifold involution acts as σ : ξ → −ξ in this equation, such that ξ = b2 = 0 is

indeed the fixed-point set determining the location of the O7-planes.

For B3 a blow-up of a weighted projective space Bsing
3 = P(w1, w2, w3, w6 = 1) this

implies that Y3 can be embedded in the corresponding blow-up Â4 of

A4 = P(w1, w2, w3, w6 = 1, w) , w = w1 + w2 + w3 + 1 , (4.12)

as an anti-canonical hypersurface of degree 2w. The (resolved) toric ambient space Â4 is

a P1-fibration over B3. Therefore, we can apply toric geometry techniques to analyze this

setting.

Let us also discuss the five-cycles in Y4 that lead by Poincaré duality to non-trivial

three-forms. Due to the fact that the base B3 of our elliptic fibration is toric, all three-

forms need to have one leg in the fiber, i.e. the dual five-cycles are circle fibrations with the

circle a cycle of the elliptic fiber. As discussed in [37] expanding the three-form potential

of M-theory leads in this case to

C3 = B2 ∧ dx+ C2 ∧ dy + . . . (4.13)

where dx and dy are a basis of one-forms on the elliptic fiber dual to its two one-cycles

A,B. Comparing with the discussion in section 3 this implies that for the very special case

that Rα is the elliptic fiber, the divisors D′
α are all direct products D′

α = Rα × Elα where

Elα is a base divisor. The period matrix of Rα is hence iτ the axio-dilaton that is constant

over the divisor Elα . In the weak coupling limit we find that the three-form moduli can be

identified with the so called odd moduli GA = Glα where

G = Glαωlα = B2 + iτ C2 ∈ H1,1
− (Y3) . (4.14)

For details on the odd moduli of a Calabi-Yau threefold Y3 we refer to [38].

There is, however, a second kind of five-cycle. These are circle-fibrations over four-

chains in the base that degenerate at the boundaries of the chain. Think of these cycles

in the way a two-sphere is a circle fibration over an interval that degenerates at the two

endpoints of the interval. In physical language the four-chains have their boundaries on

seven-branes, where the elliptic fibration degenerates, that wrap divisor of the base B3.

On the seven-branes we hence find three-cycles that are dual to one-forms on the divisors.
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Due to this geometrical picture and including the monodromy properties of the resulting

cohomology classes we hence infer that the three-forms we constructed split in the weak

coupling limit into two classes

H2,1(Y4) −→
{

H1,1
− (Y3) ,

H1,0
− (S) .

(4.15)

Here S is a divisor in Y3 wrapped by a D7-brane. The monodromy properties can be

deduced from the fact that both one-cycles of the elliptic fiber are odd under the orientifold

involution. An example for the first case will be discussed in subsection 4.2 while we present

in subsection 4.3 an example for the second case.

4.2 Example 1: an F-theory model with two-form scalars

In this subsection we introduce the first example geometry. It admits only one cohomo-

logically non-trivial (2, 1)-form such that its moduli dependence can be described by a

two-torus. It turns out that this two-torus is actually the elliptic fiber over a specific di-

visor in the base. We will thus be able to discuss the three-form periods and weak string

coupling limit in detail.

4.2.1 Toric data and origin of non-trivial three-forms

The first example of an elliptically fibered Calabi-Yau fourfold with non-trivial three-forms

appeared already in the list of hypersurfaces in weighted projective spaces in [9]. It is

constructed by starting with the weighted projective space A5 = P5[1, 1, 1, 3, 12, 18], which

is singular due to the fact that the last three weights have a common divisor 3 and the

last two have a common divisor 2. The former property yields C3/Z3-singularities along a

surface A2 in A5, while the latter results in C4/Z2-singularities along a curve in A5. The

anti-canonical hypersurface Y sing
4 in A5 is given by a polynomial p∆ of quasi-homogeneous

degree 36. Let us introduce complex projective coordinates on A5 as [u : w : x : y] with the

abbreviation u = (u1, u2, u3). The most general hypersurface equation of this type always

can be brought to the form

psing∆ = y2 + x3 + â1 xy + â2 x
2 + â3 y + â4 x+ â6 = 0 , (4.16)

with

ân =
2n
∑

m=0

w2n−m cn,m(u) , (4.17)

where cn,m(u) are general homogenous polynomials of degree 3m in u = (u1, u2, u3). Note

that setting u1 = u2 = u3 = 0 one finds the curve

y2 + x3 + ĉ1 xy + ĉ2w
4x2 + ĉ3w

6y + ĉ4w
8x+ ĉ6w

12 = 0 , (4.18)

where ĉn = cn,0 are constants. Along this curve we have C3/Z3-singularities in the hyper-

surface Y sing
4 of A5.
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We can resolve the Z2,Z3 singularities of the ambient-space A5 by moving to a toric

space Â5. The fan of Â5 is (uniquely) determined by the cones with rays

Example 1: Toric data of Â5 coords ℓ1 ℓ2 ℓ3

ν∗1 = ( 1 0 0 0 0) z1 = u1 0 1 0

ν∗2 = ( 0 1 0 0 0) z2 = u2 0 1 0

ν∗3 = ( 0 0 1 0 0) z3 = w 0 0 1

ν∗4 = ( 0 0 0 1 0) z4 = x 2 0 0

ν∗5 = ( 0 0 0 0 1) z5 = y 3 0 0

ν∗6 = ( −1 −1 −3 −12 −18) z6 = u3 0 1 0

ν∗7 = ( 0 0 −1 −4 −6) z7 = v 0 −3 1

ν∗8 = ( 0 0 0 −2 −3) z8 = z 1 0 −2

. (4.19)

Here we denoted by ℓi the three projective relations between the coordinates, where we did

not choose a minimal set of generators, like for the Mori-cone, but we have chosen a weight

representation that emphasizes the fibration structure of the blown-up ambient space Â5.

It can be shown, as done in [39], that this new ambient space only contains singular points

and hence a general anti-canonical hypersurface is smooth.

The Calabi-Yau hypersurface Y4 is defined by a generic polynomial p∆ transforming

as a section of the anti-canonical bundle −KÂ5
. Translating the toric data (4.19) into a

hypersurface equation one finds that it takes the Tate form

p∆ = y2 + x3 + a1xyz + a2x
2z2 + a3yz

3 + a4xz
4 + a6z

6 = 0 , (4.20)

where [x : y : z] are the coordinates introduced in (4.19) and the ai depend on the remaining

coordinates. Hence, we infer that Y4 is an elliptic fibration over a toric base B3 with

coordinates [u1 : u2 : u3 : v : w] and elliptic fiber realized in P2(2, 3, 1) with coordinates

[x : y : z]. Explicitly the an are given by

an =
2n
∑

m=0

cn,m(u) w2n−mvm , (4.21)

where cn,m are homogeneous of degree 3m in the variables u = (u1, u2, u3). It is instructive

to point out that this Calabi-Yau fourfold Y4 also admits an elliptically fibered K3 fibration.

In fact setting the cn,m to constants, i.e. fixing a point u0, one finds the equation of a K3

surface. The toric base B3 itself is a P1-fibration with coordinates [v : w] over P2 with

coordinates [u1 : u2 : u3].

The Hodge-numbers of Y4 can be computed by standard techniques to be

h1,1(Y4) = 3, h2,1(Y4) = 1, h3,1(Y4) = 4358 . (4.22)

Therefore, we find that the smooth hypersurface Y4 has exactly one (2, 1)-form.

In our example (4.19) the point ν∗7 is the only inner point of a two-dimensional face

θ∗ and hence induces the (2, 1)-form. To see this in more detail, we consider the toric

divisor D7 of Â5 associated to this inner point. Using the coordinates introduced in (4.19)
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it corresponds to setting v = 0. Restricted to the hypersurface p∆ = 0, i.e. to D′
7 and using

the scaling relation ℓ3 to set w = 1 one thus finds

pθ = y2 + x3 + ĉ1xyz + ĉ2x
2z2 + ĉ3yz

3 + ĉ4xz
4 + ĉ6z

6 = 0 , (4.23)

where ĉn = an(u, v = 0, w = 1) = cn,0 are constant on Y4, but nevertheless depend on the

complex structure moduli. Note that this is simply the equation of a two-torus in Tate

form.4 This implies that the divisor D′
7 is a product of this R ≃ T 2 with an E = P2

parameterized by (u1, u2, u3), since E is fibered over R and R is the elliptic fiber fibered

over E. The latter exists since the coordinates u are unconstrained by (4.23) and the

ℓ2 scaling relation remains a symmetry. It is easy to see from the toric data (4.19) that

the blow-up by ν∗8 separates the cone spanned by ν∗3 , ν
∗
7 and hence resolves the C4/Z2-

singularities. This implies that the divisor D′
7 has two non-trivial five-forms build out of

the one-forms of the T 2 and the volume-form of P2 . In complex coordinates one finds a

single (1, 0)-form on D′
7 arising from R ≃ T 2.

4.2.2 Picard-Fuchs equations for the three-form periods

Let us apply the theory we introduced before in subsection 3.4, to obtain the Picard-Fuchs

equations and gain insight in the behavior of the normalized period matrix fab, that will

appear in the effective F-theory action. We use this section to show how to apply the toric

techniques we developed in section 3 in a simple explicit example.

It is clear from the equation of pθ given in (4.23) that the homogeneous coordinate

ring and the chiral ring of A2, the ambient space of the curve along which we found the

C3/Z3-singularities in the hypersurface Y sing
4 , is given by

S2 = C[x, y, z] , Rθ = S2/pθ , (4.24)

with x, y, z having the grading 2, 3, 1, i.e. A2 = P2(2, 3, 1). Therefore, we find that via the

Poincaré residue construction

H1,0(R) ≃ Rθ(0) , H0,1(R) ≃ Rθ(6) (4.25)

are both one-dimensional and generated by

γ =

∫

Γ

1

pθ
dωA2 ∈ H1,0(R) , (4.26)

and its derivative with respect to the one independent complex structure modulus. The

holomorphic volume-form of A2 is obtained from (3.41) to be

dωA2 = zdx ∧ dy − xdy ∧ dz + ydx ∧ dz . (4.27)

For pθ we take the deformation (there are several equivalent choices which differ only in

reparametrization) in the Weierstrass form (4.6) that allows a comparison to the weak

coupling description of the next section

pθ = y2 + x3 + z6 + axz4 (4.28)

4It can be always brought into Weierstrass form y2 + x3 + fx+ g = 0 as we recall below.

– 23 –



J
H
E
P
0
5
(
2
0
1
7
)
1
5
1

where a = f is the only modulus and we take the parameter g = 1. Their derivatives are

∂aγ = −
∫

Γ

xz4

(pθ)2
dωA2 ∈ H0,1(R) , (4.29)

∂2
aγ = 2

∫

Γ

x2z8

(pθ)3
dωA2 ∈ H1(R,C) , (4.30)

and we use the relation

(27 + 4a3)x2z8 = 9z8∂xpθ +

(

−3

2
az7 + a2z5x

)

∂zpθ , (4.31)

to find the Picard-Fuchs equation of γ around the vacuum with a = 0 to be

(27 + 4a3)γ′′ +
7

4
aγ + 12a2γ′ = 0 . (4.32)

To solve (4.32) we can use the techniques explained in [28] combined with the boundary

conditions derived in [14]. We know, as for example reviewed in [37], that

j(if̂(a)) =
4(24a)3

∆
, ∆ = 27 + 4a3 (4.33)

and close to the three distinct zeroes ai = 3/41/3 ξi with ξ3 = 1 of ∆ = 0 we find

if̂(a) ∼ 1

2πi
log(a− ai) (4.34)

up to SL(2,Z)-transformations. The boundary conditions derived in [14] are here trivially

satisfied, f̂ = iτ , since the genus of the Riemann surface is one, and hence the coefficient

of the linear term is the triple intersection number of the one blow-up divisor in the mirror

geometry. Due to the fact that the mirror is also smooth, this number is one. Another

way to interpret this result stems from Seiberg-Witten theory, like reviewed in [40]. There

the exact coupling of an SU(2) gauge theory was calculated using an elliptic curve and we

find here the same result as a coupling of scalars. The three singularities ai can be used as

points around which we can expand the period-matrix f and these three coordinate patches

couple the full moduli space of the gauge theory. However, two of these ai describe in SW

language points of gauge enhancement. In contrast to this, we expand around the large

complex structure point of the Calabi-Yau fourfold Y4 after transforming to the proper

complex structure coordinates zK. In the SW theory this corresponds to the solution at

infinity in moduli space, i.e. deep in the Coulomb branch of the gauge theory.

We have found that pθ is the equation for the elliptic fiber R over the divisor v = 0

in the base. This implies in particular, that pθ defines the complex structure τ |v=0 of the

elliptic fiber R over this divisor. This is defined such that up to SL(2,Z)-transformations

we have a holomorphic one-form

γ = α̂+ τ β̂ ∈ H1,0(R) , (4.35)

for α̂, β̂ a canonical basis of H1(R,Z) as introduced in subsection 3.2. This τ is the axio-

dilaton of Type IIB string theory varying over the base B3. The important observation
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here is that τ |v=0 is constant along the divisor v = 0 in B3, i.e. does not depend on the

base coordinates, but does vary non-trivially with the complex structure moduli. To see

this, we evaluate

j(τ)
∣

∣

v=0
=

4(24f)3

27g2 + 4f3

∣

∣

∣

v=0
= C(ĉn) . (4.36)

In order to do that we determine f |v=0, g|v=0 using (4.6), (4.7) with the an|v=0 determined

from pθ given in (4.23). The result is a non-trivial function of the coefficients ĉn of pθ,

these are constants on Y4, but do depend on the complex structure moduli zK of Y4. Note

that there are 4358 such complex structure moduli and we will not attempt to find the

precise map to the five coefficients ĉn. Putting everything together, we can thus use τ |v=0

as normalized period matrix of the curve R that induces the non-trivial three-forms in the

fourfold Y4. Therefore, we have just shown that

f̂(z) = iτ |v=0(ĉn) , (4.37)

on the full complex structure moduli space of the Calabi-Yau fourfold.

4.2.3 Weak string coupling limit: a model with two-form moduli

We next examine the weak string coupling limit of the geometry introduced in subsec-

tion 4.2.1. Using Sen’s general procedure described in subsection 4.1.2 we add an additional

coordinate ξ to the homogeneous coordinate ring of the base B3. The scaling weights of

ξ are the degrees of the polynomials associated to the anti-canonical bundle −KB3 , i.e. ξ

has the degree of twice the anti-canonical class in the homogeneous coordinate ring of Â4.

Therefore, we find Y3 as the Calabi-Yau hypersurface obtained as the blow-up of the singu-

lar hypersurface Y sing
3 = P4[1, 1, 1, 3, 6](12). Recalling that B3 is a P1-fibration over P2, the

double-cover Y3 turns out to be the double-cover of P1 fibered over P2. The double-cover

of the P1-fiber is a two-torus, or rather an elliptic curve, P2[1, 1, 2](4).

To make this more explicit we again use a toric description. The fan of the ambient

space for the three-fold is given by the cones generated by the rays through the points

Example 1: Toric data of A4 coords ℓ1 ℓ2

ν∗3 = ( 0 0 1 0) z3 = w 1 0

ν∗4 = ( 0 0 0 1) z4 = ξ 2 0

ν∗6 = ( 0 0 −1 −2) z6 = v 1 −3

ν∗1 = ( 1 0 0 0) z1 = u1 0 1

ν∗2 = ( 0 1 0 0) z2 = u2 0 1

ν∗5 = ( −1 −1 −3 −6) z5 = u3 0 1

(4.38)

The hypersurface equation is then denoted by Q = 0 and from subsection 4.1.2 we can

deduce that it has the form

Q = ξ2 − b2(u, v, w) (4.39)

in the fully blown-up ambient space with

b2 = a21 + 4a2 (4.40)

specified by the Weierstrass-form of the corresponding fourfold in (4.21).
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One computes the Hodge-numbers to be

h1,1(Y3) = 3, h2,1(Y3) = 165 . (4.41)

This example was already discussed in the context of mirror symmetry in [29]. The resulting

threefold is an elliptic fibration over P2 with two sections. It should be stressed that despite

the fact that h1,1(Y3) = 3 the toric ambient space only admits two non-trivial divisor classes.

In fact, we will discuss in the following that this can be traced back to the fact that the

divisor v = 0 yields two disjoint P2 when intersected with the hypersurface constraint.

These are the two sections, i.e. two copies of the base. This is also noted in [41], where a

classification of orientifold involutions suitable for Type IIB orientifold compactifications

is presented.

To make this more precise, let us analyze the singularities of Y sing
3 = P4[1, 1, 1, 3, 6](12)

and their resolutions via blow-ups further. The ambient space A4 = P4[1, 1, 1, 3, 6] has

C3/Z3-singularities along a curve P1 given by [0 : 0 : 0 : w : ξ]. The hypersurface intersects

this curve in two points, which are identified as double cover of the point of the not yet

blown up base Bsing
3 = P3[1, 1, 1, 3], where we find C3/Z3-singularities. Blowing up this

curve of singularities in the ambient space by adding ν∗6 leads to an exceptional divisor

v = 0, which is a P2 fibration over two points of the hypersurface. On the hypersurface Y3
we find that the ambient space divisor v = 0 splits into two parts

D′
6 = {v = 0, Q(1) = 0} ∼ P2 ⊔ P2 (4.42)

with coordinates [u1, u2, u3, v = 0, w,±√
cw2]. Note that c is a constant, but depends on

complex structure moduli. It is given by

c = b2|v=0 = c21,0 + 4c2,0 . (4.43)

It obviously measures the separation between the two P2 in which D6 splits when inter-

secting the threefold hypersurface. For ĉ2,0 = 0 we find that c is a perfect square.

We next investigate the action of the orientifold involution σ : ξ → −ξ. From the

coordinate description of D′
6 we find that the two disjoint P2 are interchanged by the

involution σ. Therefore, we introduce the two non-toric holomorphic divisors D′
6,1 and

D′
6,2 that are the two disjoint P2 such that D′

6 = D′
6,1 + D′

6,2 and σ∗(D′
6,1) = D′

6,2. It is

now straightforward to define an eigenbasis for the involution σ as

K+
1 = D′

4 , K+
2 = D′

6 , K− = D′
6,1 −D′

6,2 . (4.44)

Therefore, we conclude that

h1,1+ (Y3) = 2, h1,1− (Y3) = 1 , (4.45)

which shows that there is one negative two-from which yields zero-modes for the R-R and

NS-NS two-forms of Type IIB supergravity. Furthermore, we can evaluate the intersection

ring to be

IY3 = 18(D′
6)

3 + 144(D′
4)

3 = 18(D′
6)

3 − 6D′
1(D

′
6)

2 + 2(D′
1)

2D′
6 (4.46)
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Note that D′
6,1 ∩ D′

6,2 = ∅. Due to the symmetry between the components of D′
6 and

D′
4 being exactly the fixed point of this symmetry, we find that the intersections of K−

appearing linearly vanish. We learn that (D′
6,1)

3 = (D′
6,2)

3 = 9, (D′
6,1)

2D′
4 = (D′

6,1)
2D′

4 = 0

and D′
6,1(D

′
4)

2 = D′
6,2(D

′
4)

2 = 0.

From this analysis we see that all toric divisors are invariant under the involution σ.

Therefore, we can choose the divisor basis of the base B3 = P̂3[1, 1, 1, 3] obtained from

Â4 = P̂4[1, 1, 1, 3, 6] by setting ξ = 0 . This corresponds on the lattice level to projecting

to Z3, i.e. dropping the fourth coordinate of every vertex.

Toric data of B3 coords ℓ1 ℓ2

ν∗3 = ( 0 0 1) z3 = w 1 0

ν∗6 = ( 0 0 −1) z6 = v 1 −3

ν∗1 = ( 1 0 0) z1 = u1 0 1

ν∗2 = ( 0 1 0) z2 = u2 0 1

ν∗5 = ( −1 −1 −3) z5 = u3 0 1

(4.47)

As a consequence, we can use D6 and D1 as a basis for the divisors on B3. For Y3 we can

choose the corresponding basis via D′
4 = 2D′

6 + 6D′
5 and find

IB3 = 9D3
6 − 3D1D

2
6 +D2

1D6 =
1

2
(18D3

6 − 6D1D
2
6 + 2D2

1D6) ∼
1

2
IY3 . (4.48)

This fits the fact that Y3 double-covers B3 and D′
6,1 and D′

6,2 project down to the same P2

in B3.

Let us now discuss what happens to the normalized period matrix f̂ = iτ |v=0 that we

have derived in subsection 4.2.2, in the weak coupling limit of complex structure space.

In this orientifold limit the field τ0 = C0 + ie−φ is actually constant everywhere on Y3/σ

and becomes an independent modulus. The identification f̂ = iτ0 then precisely yields the

known moduli N = c− τ0b of the orientifold setting, where c, b are the zero-modes of the

R-R and NS-NS two-forms along K− introduced in (4.44).

We close by pointing out that it is important to have c = ĉ21 + 4ĉ2 6= 0 for this weak

coupling analysis to apply. Indeed, if we go to the limit c → 0 we find a spliting of the

O7-plane located at b2 = 0 into v = 0 and b′2 = 0. Not only would we find intersecting

O7-planes, but also the simple identification f̂ = iτ0 would no longer hold.

4.3 Example 2: an F-theory model with Wilson line scalars

In this subsection we construct a second example geometry that we argue to admit Wilson

line moduli when used as an F-theory background. In this example the three-forms of

the Calabi-Yau fourfold stem from a genus seven Riemann surface. It turns out that this

example features also other interesting properties, such as a non-Higgsable gauge group

and terminal singularities corresponding to O3-planes.

4.3.1 Toric data and origin of non-trivial three-forms

Our starting point is the anti-canonical hypersurface in the weighted projective space A5 =

P5(1, 1, 3, 3, 16, 24) of degree d = 48. This space is highly singular, but admits an elliptic
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fibration necessary to serve as an F-theory background. It is easy to see that we have

a curve R along which we find C3/Z3-singularities. In contrast to the first example this

curve R is not the elliptic fiber. It rather arises as a multi-branched cover over a P1 of the

singular base Bsing
3 .

We can resolve part of the singularities of the ambient-space A5 by moving to a toric

space Â5 whose fan is obtained by the maximal subdivision of the polyhedron ∆∗ of A5:

Example 2: Toric data of Â5 coords P1 P2 F E

ν∗1 = ( 1 0 0 0 0) z1 = w 1 0 0 0

ν∗2 = ( 0 1 0 0 0) z2 = u1 0 1 0 0

ν∗3 = ( 0 0 1 0 0) z3 = u2 0 1 0 0

ν∗4 = ( 0 0 0 1 0) z4 = x 0 0 2 1

ν∗5 = ( 0 0 0 0 1) z5 = y 0 0 3 1

ν∗6 = ( −1 −3 −3 −16 −24) z6 = v 1 0 0 0

ν∗7 = ( 0 −1 −1 −5 −8) z7 = u3 −3 1 0 1

ν∗8 = ( 0 −1 −1 −6 −9) z8 = e 0 0 0 −1

ν∗9 = ( 0 0 0 −2 −3) z9 = z 1 −3 1 0

(4.49)

Note already at this point, that the new ambient space Â5 still contains singularities of

the form

C4/Z2 : (v, w, e, y) → (−v,−w,−e,−y) (4.50)

and hence the hypersurface inherits singular points that do not allow for any crepant

resolution as pointed out in [42]. This can be related to the presence of O3-planes.5

A number of intriguing features of this model arises due to the geometry of the base

B3. It arises as a non-crepant blow-up of the weighted projective space Bsing
3 = P3(1, 1, 3, 3)

with toric data given by

Toric data of B3 coords P1 P2

ν∗1 = ( 1 0 0) z1 = ṽ 1 0

ν∗2 = ( 0 1 0) z2 = ũ1 0 1

ν∗3 = ( 0 0 1) z3 = ũ2 0 0

ν∗4 = ( −1 −3 −3) z5 = w̃ 1 1

ν∗5 = ( 0 −1 −1) z6 = ũ3 −3 1

. (4.51)

It can be interpreted as a generalization of a Hirzebruch surface, i.e. a P2-fibration over

P1. We note in particular, that the point ν∗5 does lie in the interior of the convex hull of

the remaining points and correspondingly the new polyhedron is no longer convex. The

consequence is that the anti-canonical bundle −KB3 of the base has only global sections

that vanish over the locus {u3 = 0} ≃ P1 × P1, i.e. −KB3 is not ample. In the F-theory

picture this will lead to a non-Higgsable cluster as described in [45, 46], i.e. to the generic

existence of a non-Abelian gauge group in this setting. The base B3 was recently analyzed

in detail in [47].

5Various aspects of O3-planes have been discussed recently for example in [43, 44].
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The ambient space Â5 has the fibration structure given by the projection π : Â5 → B3,

which reads in homogeneous coordinates

π : [v : w : u1 : u2 : u3 : x : y : z : e] 7→ [ṽ = v : w̃ = w : ũ1 = u1 : ũ2 = u2 : ũ3 = eu3] .

(4.52)

Due to the non-Higgsable gauge group, Y4 can only be written in Tate form after

blowing down the exceptional divisor e = 0, i.e. setting e = 1:

p∆ = y2 + ex3 + â1 xy + â2 x
2 + â3 y + â4 x+ â6 = 0 , (4.53)

with âi global sections of K
−i
B3

. Due to the properties of K−1
B3

these ân have common factors

of u3e = ũ3 independently of the point in complex structure space. This shows that the

non-Higgsable cluster with the enhanced gauge group is located on the divisor ũ3 = 0 in

the base. The singularity type can be easily read of by translating (4.53) into Weierstrass

form using (4.6), (4.7). We then obtain a singularity of orders (2, 2, 4) = (f, g,∆), where

∆ is the discriminant as above. This leads to a type IV singularity and the exact gauge

group, which is either Sp(1) or SU(3), can be derived from monodromy considerations as

we recall below. The generic anti-canonical hypersurface Y4 of the ambient space Â5 has

Hodge numbers

h1,1(Y4) = 4, h2,1(Y4) = 7, h3,1(Y4) = 3443, h2,2(Y4) = 13818 . (4.54)

This implies that Y4 indeed has seven (2, 1)-forms and we claim that these arise from a

single Riemann surface of genus g = 7.

There is only one two-dimensional face θ∗ of the polyhedron spanned by ν∗1 , ν
∗
4 , ν

∗
6 that

contains an interior integral point. This interior point is ν∗7 and we add this point to resolve

the C3/Z3-singularity along the surface A2 = P2(1, 1, 8) given as the subspace of A5 with

w = v = x = 0. The anti-canonical hypersurface Y4 intersects A2 in a Riemann surface R

given by

R = P2(1, 1, 8)[16], g = 7 . (4.55)

This can also be seen from the dual face θ whose inner points correspond to the monomials

p′a = ua1u
6−a
2 ∈ Rθ(6), a = 0, . . . , 6 (4.56)

where we already divided out the common factor u1u2y as described in subsection 3.2. The

exceptional divisor resolving this singularity is a fibration over R with fiber E = P2(1, 1, 16).

Expanding the Weiserstrass form of Y4 around the singular divisor D3 = {u3 = 0},
we find

g = g2u
2
3 +O(u33) , g2 = g2(u1, u2) (4.57)

and this g2 is precisely the degree 16 polynomial in u1, u2 defining the Riemann surface

R by

R : pθ = y2 − g2 = 0 . (4.58)

The resulting gauge group over D3 in B3 is Sp(1) for general g2 and if g2 = γ2, i.e. for g2
a perfect square, we have an enhancement to SU(3).
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4.3.2 Comments on the weak string coupling limit

So what happens to this curve in the weak coupling limit? For a IV singularity, there

should be no straightforward perturbative limit in which τ can be made constant and Im τ

can be made very large over the base. The general hypersurface equation derived from the

naive Sen limit is

Q = ξ2 − b2 = ξ2 − ũ3 · b′2 = 0 , (4.59)

implying that the O7-plane splits in two intersecting branches, ũ3 = 0 and b′2 = 0. At the

intersection of the O7-planes perturbative string theory breaks down and hence there is no

weak coupling description. However, we can still try to learn some of the aspects of the

D7-branes in this setting.

In fact, in the following we want to connect the curve (4.58) and Wilson line moduli

located on D7-branes. As explained in [20] the number of Wilson line moduli arising from

a D7-brane image-D7-brane on a divisor S ∪ σ(S) of the threefold Y3 is given by

Number of Wilson line moduli on S : h1,0− (S ∪ σ(S)) . (4.60)

These are the (1, 0)-forms on the union of S and its image that get projected out when

considering the orientifold quotient. Therefore, we suggest that the Wilson lines arise in

S ∪ σ(S) as arcs in S that connect two components of S ∩ σ(S). These arcs close to one-

cycles in S ∪ σ(S), but get projected out when we take the quotient Y3/σ = B3. Note

here that S ∩ σ(S) is equal to O7 ∩ S. In our situation Y3 is still a fibration over P1 with

coordinates [v : w] and hence this will also hold for S ∩ σ(S), i.e. we suggest that S ∩ σ(S)

is a covering space of the base P1 given by

S ∩ σ(S) = {ξ = 0, ũ3 = 0, g2 = 0} ⊂ Y3 , (4.61)

where ξ = ũ3 = 0 is the location of one branch of the O7-plane in Y3. We also note that

the divisor inducing the three-forms in the fourfold projects down to the ũ3 = 0 divisor of

B3. Recall that the locations of the seven-branes in a general F-theory model are given by

the zeroes of the discriminant ∆. We can expand ∆ around ũ3 = 0 to

∆ ≈ b22(b2b6 − b24) = ũ53(b
′
2)

3g2 +O(ũ63) . (4.62)

This implies that in the weak coupling limit g2 describes the intersection of the D7-brane

in the form of a Whitney-Umbrella explained in [48] with the O7-branch given by ũ3 = 0.

For our considerations, it is just important that a D7-brane is path connected, but the

shape away from the O7-plane is irrelevant for our analysis of Wilson lines. Therefore, we

find that

S ∩ σ(S) =
16
⋃

i=1

(

{pi} × P1
)

, g2(pi) = 0 . (4.63)

The points pi can be interpreted as branching loci of the auxiliary hyperelliptic curve

which is given by (4.58). Hence we find

h1,0− (S ∪ σ(S)) = 7 . (4.64)
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Choosing a normalized basis α̂a, β̂
a for the cocycles arising from this procedure we can give

a basis for H1,0
− (S ∪ σ(S)) as

γa = α̂a + if̂abβ̂
b ∈ H1,0

− (S ∪ σ(S)) , (4.65)

with f̂ab the normalized period matrix of the curve R discussed in subsection 3.2. The

coupling of the corresponding fields, the Wilson moduli NA = Na, is given by the the

normalized period matrix fAB = f̂ab of R.

Let us close by making one final observation for this example geometry. We can also

resolve the Z2-singular points of the fourfold by blowing-up the ambient space A5. This

requires adding the exterior point

ν∗10 = (0,−2,−2,−10,−15) . (4.66)

This has, however, drastic consequences. As already mentioned before, there is no way to

resolve the Z2-singular points in a crepant way, i.e. preserving the anti-canonical bundle

of the ambient-space. Closer inspection of the blow-up tells us that this blow-up is not

crepant, but leads to a Calabi-Yau hypersurface in a new ambient-space that has a different

triangulation not compatible with the old triangulation structure. This leads to a change

in topology, which can be seen from the Hodge-numbers

h1,1new = 5, h2,1new = 0, h3,1new = 3435, χ = χold = 20688 , (4.67)

with the Euler number χ being preserved. This extremal transition between the two

fourfolds follows a similar pattern as the conifold transition along curves described in [49].

The relations to the non-trivial three-form cohomology can also be made precise: the blow-

up obstructs precisely the complex structure deformations described by g2 setting it to zero

and hence also obstructing the three-form cohomology. This obstruction leads to a further

gauge-enhancement to G2 along D3 and also the weak coupling limit is no longer singular,

i.e. the O7-plane does no longer branch.

5 Concluding remarks and outlook

In this work we introduced a framework to explicitly derive the moduli dependence of

non-trivial three-forms on Calabi-Yau fourfolds. Our focus was on geometries realized as

hypersurfaces in toric ambient spaces for which we argued that properties of the three-form

cohomology are essentially inherited from one-forms on embedded Riemann surfaces sup-

plemented by topological information about the corresponding resolution divisors. We also

described concrete example geometries that highlight simple physical applications of these

concepts. In the following we would like to point out several directions for future research.

A first interesting direction is to further extend and interpret the calculations outlined

in section 3 in the context of mirror symmetry for Calabi-Yau fourfolds [30, 50, 51]. In par-

ticular, it would be desirable to derive a general expression for the Picard-Fuchs equations

for three-form periods in terms of the toric data of the ambient space in analogy to the

discussion of [29]. Furthermore, one striking observation to exploit mirror symmetry can
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be made by recalling the construction of the period matrix of the intermediate Jacobian.

We note that mirror symmetry exchanges the two-dimensional faces θα with their duals θ∗α
and hence maps the one-forms on the Riemann surface Rα to the resolution divisors D′

lα .

Indeed the number of (1, 0)-forms, given by ℓ′(θα) in (3.3), and the number of resolution

divisors, given by ℓ′(θ∗α) in (3.3), are exchanged. This implies that the relevant intersection

data for the D′
lα must be captured by the period matrix of three-forms on the mirror ge-

ometry, at least at certain points in complex structure moduli space. Indeed, this behavior

was already found around the large volume and large complex structure point in [14]. This

observation is further supported by basic facts from Landau-Ginzburg orbifolds [15, 18, 52],

since in these constructions both the intersection data and periods are determined by the

structure of the chiral rings of the fourfold and its mirror. One can thus conjecture that

the complex structure dependent three-form periods calculate on the mirror geometry the

Kähler moduli dependent quantum corrections to the intersection numbers between inte-

gral three-forms and two-forms. It is then evident to suggest that these Kähler moduli

corrections already cover world-sheet instanton corrections to the three-form couplings,

when using the Calabi-Yau fourfold as a string theory background. It would be very in-

teresting to access these corrections directly on the Kähler moduli side and establish their

physical interpretation.

A second promising direction for future research is to apply our results in the duality

between F-theory and the heterotic string theories. The relevance of three-forms in this

duality was already pointed out, for example, in [53–55]. Indeed, in heterotic compactifi-

cations on elliptically fibered Calabi-Yau threefolds with stable vector bundles, the moduli

space of certain vector bundle moduli also admits the structure of a Jacobian variety. By

duality this Jacobian turns out to be isomorphic to the intermediate Jacobian of the corre-

sponding K3-fibered Calabi-Yau fourfold. The described powerful techniques available for

analyzing the three-form periods on fourfolds might help to shed new light on the deriva-

tions required in the dual heterotic setting. Our first example describes a simple case of

such an F-theory compactification with non-trivial intermediate Jacobian for which the

comparison to its heterotic dual geometry can be performed explicitly. It is an interesting

task to analyze several such dual settings in detail.

The possibility of a direct calculation of the three-form metric also has immediate

applications in string phenomenology. The scalars arising from the three-form modes can

correspond to scalar fields in an F-theory compactification to four space-time dimensions.

These scalars are naturally axions, since the shift-symmetry is inherited from the forms

of the higher-dimensional theory. The axion decay constants are thus given by the three-

form metric and determines the coupling to the Kähler and complex structure moduli and

thus can be derived explicitly for a given fourfold geometry. Since these geometries might

not be at the weak string coupling limit of F-theory, one might be lead to uncovered new

possibilities for F-theory model building. For example, our second example is admitting,

if at all, a very complicated weak string coupling limit, but can be analyzed nevertheless

using the presented geometric techniques. In this example also non-Higgsable clusters and

O3-planes are present and it is interesting to investigate the physics of these objects in the

presents of a non-trivial three-form cohomology. It is important to stress that consistency
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of Calabi-Yau fourfold compactifications generically require the inclusion of background

fluxes [56]. It is well-known that these are also relevant in most phenomenological ap-

plications. Therefore, it is of immediate interest to generalize our discussion to include

background fluxes. This will be particularly interesting in singular limits of the geometry,

which are relevant in the construction of F-theory vacua. In particular, the intermediate

Jacobian plays an important role in the computation of the spectrum of the effective theory

as, for example, suggested by the constructions of [57]. The generalization to include fluxes

will also be relevant in discussing extremal transitions in Calabi-Yau fourfolds that change

the number of three-forms.

To conclude this list of potential future directions, let us also mention the probably

most obvious generalization of the discussions presented in this work and its immediate rel-

evance for F-theory compactification. In fact, in this paper we have only considered hyper-

surfaces in toric ambient spaces. A generalization to complete intersections, i.e. Calabi-Yau

manifolds described by more then one equation, would be desirable. This is particularly

evident when recalling that in F-theory compactifications on elliptically fibered fourfolds,

the non-trivial three-form cohomology of the base yields U(1)-gauge fields in the four-

dimensional effective theory [6]. The function fAB then corresponds to the gauge coupling

function and it is an interesting task to use geometric techniques for Calabi-Yau fourfolds

to study setups away from weak coupling.
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A Calabi-Yau fourfold hypersurfaces

In this subsection we discuss the explicit construction of Calabi-Yau hypersurfaces with

non-trivial three-form cohomology by using toric techniques. The key feature here is to

generalize the usual discussion of Fano toric varieties as ambient spaces to the non-Fano

case. In other words, we will considers toric varieties for which the anti-canonical bundle is

not ample. This requirement is based on the Lefschetz-hyperplane theorem that forbids the

existence of non-trivial three-forms on a toric Calabi-Yau fourfold hypersurface if the anti-

canonical bundle of the ambient space is ample. The generalization that we will consider

are toric ambient spaces with semiample anti-canonical bundle, which, as we will recall,

can admit a non-trivial three-form cohomology.

The starting point for the construction of the toric ambient space is a polyhedron

∆∗ ⊂ NQ in the rational extension of the lattice N ≃ Z5. The polyhedron ∆∗ describes

the ambient toric variety A5, as explained, for example, in [58]. Integral points of the

polyhedron ∆∗ will be denoted by ν∗i and these define the rays τi whose span will form

cones for the fan Σ(∆∗) describing the structure of the toric ambient space A5. In the

– 33 –



J
H
E
P
0
5
(
2
0
1
7
)
1
5
1

following we will always assume that all cones are simplicial, i.e. every cone is a cone over

a simplex of the polyhedron. This is not a trivial assumption in higher dimensions, but is

for example satisfied by fans for weighted projective spaces. We assume that this can be

achieved by a maximal star-subdivison of ∆∗ such that all rays through N ∩∆∗ are part

of the fan Σ(∆∗). As a result the space A5 will only have Zn-orbifold singularities along

subspaces of codimension greater than one.

The hypersurface Y sing
4 that describes the Calabi-Yau fourfold is given by the convex

Newton-Polyhedron ∆ ⊂ MQ = (N∗)Q whose integral points νi correspond to the mono-

mials of the polynomial whose zero set is Y sing
4 . In a more mathematical language, the

convex polyhedron ∆ describes a class of toric Weil-divisors D∆ that are zero-sections of

line-bundles L∆. Varying the coefficients ai of the monomials corresponds to a varation

of the hypersurface in its divisor class D∆. The details of this construction were nicely

described in [39] and there also the singularity structure of resulting algebraic varieties

is discussed in detail. To obtain a Calabi-Yau variety from this construction, we need to

choose a special divisor of the ambient space A5, its anti-canonical divisor

D∆ = −KA5 =
∑

ν∗i ∈∆
∗

Di , (A.1)

where Di is the divisor associated to the ray through ν∗i . Here the homogeneous coordinate

Xi associated to the ray through ν∗i vanishes, i.e. Di = {Xi = 0}. The corresponding ring

of homogeneous coordinates Xi as defined in [59] is given by

S5 = C[Xi , ν
∗
i ∈ ∆∗] . (A.2)

This ring has a natural grading by divisor classes α ∈ A4(A5), where A4(A5) is the set of

Weil divisors of A5 modulo rational equivalence, called Chow group of A5. A monomial

f =
∏

iX
bi
i has degree deg(f) = α, if α = [

∑

i biDi].

A further necessary condition equivalent to the associated anti-canonical line bundle

L∆ being trivial is to demand reflexivity of ∆, i.e. ∆ should have exactly one interior point,

that we can always shift to the origin of M . This is equivalent to ∆∗ being reflexive, if

both polytopes are convex, and we can also describe ∆ via

∆ = (∆∗)∗ = {u ∈ MQ | 〈u, v〉 ≥ −1 , ∀v ∈ ∆∗} . (A.3)

The corresponding a priori singular hypersurface Y sing
4 or rather the global section of −KA5

whose zero locus is Y sing
4 is given by

p∆ =
∑

νj∈∆∩M

aj
∏

ν∗i ∈∆
∗∩N

X
〈νj ,ν

∗
i 〉+1

i ∈ S(−KA5) (A.4)

where we associated to every ray of the triangulation of the polyhedron ∆∗ a homogeneous

coordinate Xi. Toric blow-ups of the ambient space A5 can be performed by adding a ho-

mogeneous coordinate for every ray through an integral point of N with the corresponding

change of the triangulation of ∆∗ and therefore also changing the fan of A5. If such an

integral point is not contained in the boundary of the reflexive ∆∗, we will also change ∆
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by the blow-up and generically change the number of possible deformations corresponding

to integral points of ∆. This is called a non-crepant resolution. We will assume that we

can resolve singularities by crepant resolutions, i.e. preserving the anti-canonical divisor

class and hence ∆. We will also assume that there is a transverse and quasi-smooth hy-

persurface in the anti-canonical divisor class. We denote the resolved smooth Calabi-Yau

hypersurface by Y4.

Applying to this setting the Lefschetz hyperplane theorem as reviewed in section 3 we

find that ∆ can not define an ample anti-canonical divisor −KA5 and hence A5 can not

be Fano. In particular, we find that KA5 is not ample, if A5 supports non-trivial three-

forms. The reason for this is, that in toric geometry for an ample Cartier toric divisor

over a complete toric variety we have a one-to-one correspondence between vertices of ∆

and maximal-dimensional cones in ∆∗, see [58] section 3.4. This is obviously not true

for a crepant resolution, i.e. a resolution obtained from adding a ray through a point in

the interior of a face of ∆∗ to the fan. In contrast to the standard works for Calabi-Yau

hypersurfaces in Fano toric varieties, e.g. in [39] for threefolds and in [60] for the sextic

fourfold, where the anti-canonical divisor is ample, we have to deal with the case where

the anti-canonical divisor is only semiample and hence compatible with the resolution of

singularities. This was done in the work of Mavlyutov, for example in [11, 61, 62]. Here

the author generalizes the toric formalism to include divisors of the hypersurface that

carry themselves non-trivial cohomology and induce additional non-trivial cocycles of the

full hypersurface. These divisors corresponds to the exceptional divisors of the blow-ups

described above.6

Let us consider in more detail the resolution of Y sing
4 to the smooth hypersurface Y4

in the resolved ambient space Â5. This makes Y4 a regular semiample hypersurface in the

complete simplicial toric variety Â5. We denote the toric divisors in Â5 by Dl and their

restriction to Y4 by D′
l, i.e.

Dl = {Xl = 0, ν∗l ∈ ∆∗ } , D′
l = Dl ∩ Y4 . (A.5)

The inclusion will be denote by ιl : D
′
l →֒ Y4. To find the origin of the three-form coho-

mology classes in Y4 we use the exact sequence in equation (7) of [10] which leads to the

isomorphism

0 −→
⊕

ν∗
l

H1(D′
l,C)

⊕ιl∗−−−→ H3(Y4,C) −→ 0 , (A.6)

where the morphism is the direct sum of Gysin morphisms ιl∗ of the inclusions ιl. This

map is defined using the Hodge star (see e.g. [13]). For the geometries under consideration

we can translate (A.6) to

0 −→ H5(Y4,C)
⊕ι∗

l−−−→
⊕

ν∗
l

H5(D′
l,C) −→ 0 , (A.7)

6It can also be shown by methods derived in [24], that three-form cohomology on a generic anti-canonical

hypersurface in a toric variety always arises from one-forms of toric divisors. For these toric divisors to

have non-trivial one-forms it is necessary that the corresponding Newton-polyhedron of its hypersurface

equation is two-dimensional, and hence the anti-canonical bundle is not ample on these divisors and hence

not ample on the whole ambient space.
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where now the isomorphism is given by the sum of ι∗l restricting a five-form on Y4 to

the various divisors D′
l. This is in particular compatible with the Hodge-structure on Y4.

Therefore, we see that all five-forms arise from five-forms of divisors D′
l on Y4 induced

by the toric divisors Dl of the resolved ambient space Â5. Due to Hodge duality both

approaches are, however, equivalent, i.e. if we can find toric divisors with five-forms these

divisors will also carry the dual one-forms and vice versa.

This poses the problem to find all divisors among the {D′
l, ν

∗
l ∈ ∆∗} of Y4 that support

non-trivial one-forms which we discuss in the next section.

B Toric divisors of Y4 with non-trivial one-form cohomology

The divisors of a simplicial toric variety Â5 correspond to the rays through integral points

ν∗ in the boundary of the polyhedron ∆∗ and can be classified by the codimension codim(θ∗)

of the face θ∗ ⊂ ∆∗ such that ν∗ ∈ int(θ∗) ∩N , as was done in [9]. Here we want to be a

bit more explicit and focus especially on the origin of the non-trivial five-forms of Y4 and

hence also the non-trivial three-forms on Y4 by the Hodge star isomorphism.

To understand the geometric structure of the divisors D′
l = Dl ∩ Y4, which are again

semiample hypersurfaces in the toric variety Dl, we will first review the construction of

the n-dimensional toric subvarieties An of A5. The subvariety An corresponding to an

(4 − n)-dimensional face θ∗ in ∆∗ ⊂ NQ is constructed as follows. The face θ∗ defines an

(5− n)-dimensional cone σ in NQ and the new lattices Mn, Nn are defined as

Nn = N(σ) = N/Nσ , Nσ = N ∩Q · σ ⊂ N (B.1)

Mn = M(σ) = M ∩ σ⊥ ,

which are both n-dimensional lattices. The fan for An is given by the set Star(σ), con-

taining all cones over faces of ∆∗ that share faces with θ∗, projected to N(σ). These faces

form again a star subdivison of a polytope ∆∗
n in N(σ) and σ gets projected to the origin

of N(σ).

Correspondingly, the homogeneous coordinate ring for An,θ∗ , which we call Sn,θ∗ , is

given by

Sn,θ∗ = C[Xi, ν
∗
i ∈ ∆∗

n] ⊂ C[Xi, ν
∗
i ∈ ∆∗]/〈Xi, ν

∗
i ∈ θ∗〉 = S5/〈Xi, ν

∗
i ∈ θ∗〉 . (B.2)

These rings are generated by the monomials
∏

iX
bi
i that are graded by the class [

∑

i biDi] ∈
An−1(An,θ∗). There is only an inclusive relation, since there are homogeneous coordinates

generating S5 corresponding to divisors that do not intersect An,θ∗ . These homogeneous

coordinates can be set to one for our considerations.

By construction, our polynomial p∆ is in S5(−KA5), i.e. it is in the class of the anti-

canonical divisor of A5. This implies that the restriction to An,θ∗ acts as

S5(−KA5) → Sn,θ∗(−KA5

∣

∣

An,θ∗
) ⇒ p∆ 7→ pθ , (B.3)

i.e. we set all homogeneous coordinates Xi corresponding to ν∗i ∈ θ∗ to zero and all ho-

mogeneous coordinates of divisors not intersecting An,θ∗ to one. The monomials of pθ,
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i.e. the global sections of H0(A5,KA5) surviving the projection to An,θ∗ , correspond to the

monomials in the face θ dual to θ∗

θ = {v ∈ ∆ | 〈v, w〉 = −1 , ∀w ∈ θ∗} . (B.4)

This in particular implies that, following [11], the divisorsD′
l are so called dim(θ)-semiample

hypersurfaces of the toric varieties Dl. From this it can be deduced that

Hk,0(D′
l,C) = 0 for 0 < k < dim(θ)− 1 . (B.5)

Therefore, we can only have non-trivial three-forms that arise from (4− n) = 2-semiample

divisors and hence from a pair of two-dimensional faces (θ∗, θ).

From here on we will consider dual pairs of faces that are two-semiample, i.e. n = 2

in (B.1) and (B.2). We denote the relevant faces by

(θ∗α, θα) , dim(θ∗α) = 2 , α = 1, . . . , n2 , (B.6)

where n2 denotes the number of two-dimensional faces in ∆∗. These faces exist due to the

blow-up procedure as described above. Thus, we can associate divisors Dlα to each pair

(θ∗α, θα), i.e.

Dlα : ν∗lα ∈ int(θ∗α) ∩N , lα = 1, . . . , ℓ′(θ∗α) , (B.7)

where ℓ′(θ∗α) counts the number of divisors satisfying this condition for the face θ∗α. The

divisor D′
lα

= Dlα∩Y4 can also be written as D′
lα

= V (τlα), where τlα is the ray through ν∗lα ,

and admits a fibration structure. If ν∗lα is contained in the interior of an two-dimensional

face θ∗α and hence τlα is contained in the interior of the three-dimensional cone σα we find

that the polyhedron ∆∗
4 for V (τlα) is given by the projection of ∆∗ to N(τlα) and hence has

the image of θ∗α as subpolyhedron. Correspondingly we find the fibration-structure for Dlα

Elα Dlα = V (τlα)

V (σα) = Aα

ilα

πlα

(B.8)

where V (σ) = A2,θ∗α = Aα is the two-dimensional base and Elα the two-dimensional fiber.

The polyhedron for the toric variety Elα is nothing but the subpolyhedron of ∆∗
4 given by

θ∗α under the projection of N to N(τlα) with ν∗lα the origin.

The semiample hypersurface D′
lα

= Dlα ∩Y4 inherits this fibration structure, since the

defining polynomial pθα = pα is obtained from p∆ by setting all homogeneous coordinates

corresponding to integral points in θ∗α to zero. This implies in particular that the hyper-

surface equation is independent of the homogeneous coordinates of Elα and therefore, we
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find the fibration structure

Elα D′
lα

= V ′(τlα)

V ′(σα) = Rθα

ilα

πlα

(B.9)

where V ′(σα) = Rθα = Rα is the two-semiample hypersurface in Aα ∩ Y4 defined by the

polynomial pα.

Let us analyze the cohomology of D′
lα
. Using the Leray-Hirsch theorem, [13, 63], we

can calculate the cohomology for the fibration

πlα : D′
lα → Rα (B.10)

with fiber Elα , that does not degenerate and is locally trivial and the inclusion ilα : Elα →
D′

lα
. For cj ∈ H∗(D′

lα
,C) such that i∗lα(cj) generate H∗(Elα ,C) we find the induced

isomorphism of C-modules

H∗(Rα,C)⊗C H∗(Elα ,C) → H∗(Dlα ,C) (B.11)

via

bi ⊗ i∗lα(cj) 7→ π∗
lα(bi) ∧ cj . (B.12)

This is not an isomorphism of rings, but makes H∗(Dlα ,C) an H∗(Rα,C) module. Due

to all morphisms appearing here respecting the Hodge structure, the whole isomorphism

preserves the Hodge structure. We find therefore, that D′
lα

has Hodge numbers that arise

from products of the Hodge numbers of Rα and Elα . Here we note that since Elα is toric

and irreducible, i.e. connected, its Hodge numbers satisfy

hp,q(Elα) = 0 , p 6= q , h0,0(Elα) = h2,2(Elα) = 1 . (B.13)

For the regular semiample hypersurface Rα of dimension one we find for the independent

Hodge-numbers

h0,0(Rα) = 1 , h1,0 = ℓ′(θα) . (B.14)

Recalling (3.1), we hence proved the quality of (3.2)

H2,1(Y4) ≃
n2
⊕

α=1

ℓ′(θ∗α)
⊕

lα=1

H1,0(Rα)⊗H0,0(Elα) , (B.15)

where the first sum runs over all θ∗α with dim(θ∗α) = 2 and the second sum runs over all

ν∗lα ∈ int(θ∗α)∩N , i.e. over the divisors D′
lα

that can be blown-down to singular curves Rα.

This can be written using the Hodge star isomorphism as

H3,2(Y4) ≃
n2
⊕

α=1

ℓ′(θ∗α)
⊕

lα=1

H1,0(Rα)⊗H2,2(Elα) , (B.16)

which also provides a direct match of the form degree.
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C Picard-Fuchs equations for a toric divisor of Y4 with base a Riemann

surface

With the basics of subsection 3.2 introduced, we want to give a detailed description of

the period representation of the holomorphic one-forms of Riemann surfaces embedded

as hypersurfaces in toric varieties. The trick is to relate the holomorphic forms of the

hypersurface to rational holomorphic forms of the ambient space with poles along that

hypersurface. These concepts were introduced in [22] and [64], prop. 2.1., where we find

a general description for the global holomorphic two-forms on A2 with poles of first order

along R that is a restriction of the anti-canonical hypersurface in A5

H0(A2,Ω
2
A2

(R)) =

{

g dωA2

pθ
: g ∈ S2(−KA5 |A2 +KA2)

}

≃ S2(−KA5 |A2 +KA2) . (C.1)

Here −KA5 |A2 ∈ A1(A2) denotes the Cartier divisor class of the restriction of the anti-

canonical divisor of A5 to A2 and R ⊂ A2 defined by the vanishing of pθ ∈ S(−KA5 |A2).

−KA2 is the equivalence class of the anti-canonical divisor of A2 and also the divisor class

of the holomorphic volume form dωA2 which we will discuss below. S2(−KA5 |A2 + KA2)

denotes the elements of the homogeneous coordinate ring of S2 of degree [−KA5 |A2 +KA2 ].

The homogeneous coordinate ring S2 of A2 was discussed after (B.2).

In the above description of H0(A2,Ω
2
A2

(R)) appears the holomorphic volume form

dωA2 on A2 defined as follows. Consider an index set I = {ν∗i1 , ν∗i2} consisting of two

integral points of ∆∗
2 ∩N2. For a fixed integer {m1,m2} basis of M2 we define

det(ν∗I ) = det(〈mi, ν
∗
j 〉1≤i,j≤2) . (C.2)

This enables us to define the holomorphic two-form as

dωA2 =
∑

|I|=2

det(ν∗I )
(

∏

i/∈I

Xi

)

dXi1 ∧ dXi2 , (C.3)

where the sum runs over all index sets I with two elements {i1, i2}. The grading of

this element dωA2 is easy to see if we give the differentials dXi the same degree as their

coordinate counterparts Xi

[
∑

ν∗i ∈∆
∗
2

Di] = −KA2 . (C.4)

This enables us to define the Poincaré residue as a representation for the holomorphic one-

forms of a Riemann surface embedded in a two-dimensional toric ambient space. We can

map H0(A2,Ω
2
A2

(R)) to the holomorphic (1, 0)-forms of R by

H0(A2,Ω
2
A2

(R)) → H0(R,Ω1
R)

g dωA2

pθ
7→

∫

Γ

g dωA2

pθ
(C.5)

for Γ ∈ H3(A2 −R,R) a tubular neighborhood of R. Due to partial integration, i.e.

∫

Γ

gi∂ipθ dωA2

pθ
= 0 , (C.6)

– 39 –



J
H
E
P
0
5
(
2
0
1
7
)
1
5
1

it is useful to define the chiral or Jacobian ring for pθ as

Rθ =
S2

〈∂ipθ〉
, (C.7)

that inherits the grading structure of the homogeneous coordinate ring S2 of A2. Here

〈∂ipθ〉 denotes the ideal of S2 spanned by the partial derivatives of pθ. It was shown in [22]

that this defines an isomorphism

Rθ(−KA5 |A2 +KA2) ≃ H1,0(R) , (C.8)

given by the Poincaré residue.

The chiral ring Rθ can be related to the toric data as follows. For a divisor D∆ of a

toric variety A with polyhedron ∆∗ we have for the degree D∆ submodule S([D∆]) of the

homogeneous coordinate ring S

S([D∆]) =
⊕

ν∈∆

C ·
∏

ν∗i ∈∆
∗

X
〈ν,ν∗i 〉
i . (C.9)

Going to the Jacobian ring R(p∆) for a transverse p∆ reduces the monomials corresponding

to vertices and edges of ∆ to monomials corresponding to points of higher codimension.

This implies

Rθ =
⊕

ν∈int(θ)

C ·
∏

ν∗i ∈∆
∗
2

X
〈ν,ν∗i 〉
i (C.10)

for our example of the Riemann hypersurface R in A2 defined by pθ ∈ H0(A2,O(KA5 |A2)).

Finally, we can move on to the core topic of our work, the Hodge variation, i.e. the

complex structure dependence of the non-trivial three-forms of a quasi-smooth Calabi-Yau

hypersurface Y4 in a toric simplicial complete ambient space A5. As we have seen before,

these arise from divisors D′
lα

0 −→
n2
⊕

α=1

ℓ′(θ∗α)
⊕

lα=1

H1(D′
lα)

⊕ιlα∗−−−−→ H3(Y4,C) −→ 0 , (C.11)

that are two-semiample hypersurfaces of the toric divisors Dlα of A5. As discussed before,

the full complex structure dependence of a single such divisor is encoded in a Riemann sur-

face R that is embedded as a hypersurface with equation pθ = 0 in the complete simplicial

ambient space A2 with chiral ring Rθ and holomorphic volume element dωA2 .

This was already partly analyzed in [11] where it was found that we have the isomor-

phism of C-modules given by the Poincaré residue

Rθ(−(1 + r)KA5 |A2 +KA2) → H1−r,r(R) r = 0, 1

q 7→
∫

Γ

q

pr+1
θ

dωA2 , (C.12)

where −KA5 |A2 is the restriction of the anti-canonical divisor defining the fourfold hyper-

surface and KA2 is the canonical divisor of two-dimensional ambient space A2. The cycle

Γ is a tubular neighborhood of Rθ in A2.
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The complex structure of our Riemann surface is induced by the complex structure

of the ambient Calabi-Yau fourfold whose complex structure we assume to be completely

determined by the defining polynomial p∆. Recall that we consider a family of hypersur-

faces of A5 in the anti-canonical class KA5 given by the family of polynomials, as already

described in (A.4),

p∆(a) =
∑

νj∈∆

aj
∏

ν∗i ∈∆
∗

X
〈νj ,ν

∗
i 〉+1

i ∈ S(−KA5) . (C.13)

The complex structure deformations, and we consider for simplicity only the algebraic

deformations by monomials,7 for this hypersurface are given by

H3,1(Y4)alg ≃ R(p∆)(−KA5) =
C[
∏

ν∗i ∈∆
∗ X

〈ν,ν∗i 〉+1
i ]

〈∂ip∆〉
(C.14)

which can be represented by all monomials pν for ν ∈ ∆ ∩M that is not a vertex or part

of an edge of ∆, i.e. does not lie in the interior of a face of dimension less than two.

Since the complex structure of the Riemann surface at the complex structure point a,

denoted by (R)a, is induced by the complex structure of the fourfold at a, denoted by (Y4)a,

the monomial complex structure deformations of (R)a are represented by the monomials

corresponding to the interior points of θ, i.e. by Rθ(−KA5 |A2). Therefore, we find for

pj∈S(−KA5) a monomial variation corresponding to an integral point νj∈∆−int(θ) that

∂

∂aj
γb(a) = 0 , ∀γb ∈ H1((R)a,C), νj /∈ int(θ) . (C.15)

This justifies to denote the complex structure coordinates on which the complex structure

of R depends, i.e. the polynomial pθ depends, as aνb = ab, since we denoted by νb the

integral points contained in the interior of θ. Note here also that the holomorphic one-

forms γc(a) depend holomorphically on the complex structure moduli ab, which also implies

that the normalized period matrix f̂ab(a) is a holomorphic function of the complex structure

coordinates a.

Using the residue expressions as local trivialization of the Hodge bundles with fibers

in H1((R)a,C) over complex structure moduli space, we can derive the complex structure

dependence of the (1, 0)-forms

γb(a) =

∫

Γ

p′b
pθ(a)

dωA2 ,∈ H1,0((R)a), νb ∈ int(θ) ∩M . (C.16)

with p′b = pνb/
∏

ν∗i ∈θ
∗ Xi. Taking a simple partial derivative leads to

∂

∂ac
γb(a) =

∂

∂ab
γc(a) = −

∫

Γ

p′bpc
p2θ(a)

dωA2 , ∈ H1((R)a,C) , (C.17)

7A toric divisor D′
2 with holomorphic two-forms induces non-algebraic complex structure deformations

of Y4. If D′
1 carrying holomorphic one-forms intersects D′

2, the induced three-forms on Y4 can depend on

these non-algebraic complex structure deformations. This can be investigated using a realization of Y4 as

complete intersection with all complex structure deformations algebraic.
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where
∂

∂ac
γb(a) ∈ H1,0((R)a) for p′bpc ∈ 〈∂ipθ〉 , (C.18)

and
∂

∂ac
γb(a) ∈ H0,1((R)a) for p′bpc /∈ 〈∂ipθ〉 . (C.19)

Since this already exhausts the one-dimenisonal cohomology groups, we find that

∂

∂ac

∂

∂ad
γb(a) = 2

∫

Γ

p′bpcpd
p3θ(a)

dωA2 (C.20)

and hence that for degree reasons

p′bpcpd ∈ 〈∂ipθ〉 . (C.21)

From this we can deduce that the second derivative of a holomorphic one-form γb(a) can

be expressed as a linear combination of the γb(a) and its first derivatives with coefficients

rational functions of the complex structure moduli ac. In practice, we can express the

second derivatives of γb by operators acting on γb of the form

∂

∂ac

∂

∂ad
γb(a) =

(

c(1)(a)cdbe
f ∂

∂ae
+ c(0)(a)cdb

f

)

γf (a) , (C.22)

where c(1)(a)cdbe
f , c(0)(a)cdb

f are rational functions of the complex structure moduli ac that

are completely symmetric in their lower four, respectively three, indices. These functions

are structure constants of the chiral ring Rθ determining the multiplication rules in this

ring. The above differential relations are called Picard-Fuchs equations and can be used

to determine the complex structure dependence of the holomorphic one-forms on R. In

particular, we note that
∂

∂ac
γb(a) =

∂

∂ab
γc(a) (C.23)

is an integrability condition, allowing us to find a one-form valued prepotential γ(a) that

satisfies γb =
∂

∂ab
γ. It is suggestive that the structure constants c(1)(a)cdbe

f , c(0)(a)cdb
f are

the same structure constants that arise from the whole chiral ring R(p∆) = R from which

Rθ is constructed as a quotient.
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