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Abstract Local bifurcations of stationary points and limit cycles have successfully been
characterized in terms of the critical exponents of these solutions. Lyapunov exponents and
their associated covariant Lyapunov vectors have been proposed as tools for supporting the
understanding of critical transitions in chaotic dynamical systems. However, it is in general
not clear how the statistical properties of dynamical systems change across a boundary crisis
during which a chaotic attractor collides with a saddle. This behavior is investigated here
for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the
covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the
time evolution of probability densities to the invariant measure, governed by the semigroup of
transfer operators, is expected to slow down at the approach of the crisis. Such convergence is
described by the eigenvalues of the generator of this semigroup,which can be divided into two
families, referred to as the stable and unstable Ruelle–Pollicott resonances, respectively. The
former describes the convergence of densities to the attractor (or escape from a repeller) and
is estimated frommany short time series sampling the state space. The latter is responsible for
the decay of correlations, or mixing, and can be estimated from a long times series, invoking
ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach
the imaginary axis during the crisis, as is indicative of the loss of global stability of the
attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations,
do not flag the proximity of the crisis, thus questioning the usual design of early warning
indicators of boundary crises of chaotic attractors and the applicability of response theory
close to such crises.
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1 Introduction

It is a problem of fundamental relevance in mathematical, natural, and applied sciences to
understand under which conditions a system may undergo abrupt changes under perturba-
tion and, if so, predict when these changes will occur. Much of our understanding of such
transitions comes from the bifurcation theory of autonomous dynamical systems [1–3], with
extensions to nonautonomous [4] and random [5] dynamical systems. In particular, local
bifurcations, taking place for example when a stationary point or a limit cycle loses stability,
are characterized by the critical exponents of these invariant sets. They yield a local measure
of the relaxation rate of trajectories to these sets. As the latter become less stable, these
exponents approach zero, resulting in the slowing down of the convergence of trajectories
to the attractor. This critical slowing down has allowed to design early-warning signals of
critical transitions by monitoring the rate of decay of correlations [6], peaks in power spectra
[7], or of recovery from perturbations [8]. See Scheffer et al. [9], for a review, and Lenton
[10] for applications to climate science.

Most physical systems of interest are, however, chaotic, in the sense that they support an
invariant measure with positive Lyapunov exponents [11,12]. Such sets can be involved in
global bifurcations during which theymay lose their attracting character or undergo topologi-
cal transformations [2, Chap. 17]. A particularly important type of bifurcation is the boundary
crisis [13], during which a chaotic invariant set ceases to be attracting due to, loosely speak-
ing, its collision with a saddle,1 the so-called edge state. Most trajectories then undergo a
transient before they converge to another attractor, if any. Such crises have been identified in
the Hénon map and the Lorenz system [13], and are also found in high-dimensional turbulent
flows [15–17] and climate models [18,19].

Much less is known regarding changes in the statistical properties of these systems, and,
in particular, if critical slowing down may be observed. While for chaotic attractors the
notion of critical exponents can be generalized to that of Lyapunov exponents characterizing
the stability of chaotic trajectories [11,20], the latter do not in general allow to infer to
what extent a chaotic set is attracting. The Lyapunov spectrum is indeed calculated from a
linearization about orbits on the invariant set and thus only provides local information. On
the other hand, the size of the basin of attraction leads to the notion of global stability of an
attractor (see e.g. [21]). For example, during the boundary crisis of an attractor, the size of
the basin of attraction shrinks as the criticality is neared and vanishes when the set becomes
unstable. It has been proposed in [22] to approach the problem studying large fluctuations of
the systems using extreme value theory and relating the change in the qualitative properties
of the extremes to the approach to the critical transition (see also [23]).

From a statistical physics point of view, the divergence of nearby trajectories characterized
by the positive Lyapunov exponents is a manifestation of chaos at a microscopic level.
Macroscopically, the decay with time of correlations associated with the loss of memory to
initial conditions of ensembles (as they mix) is a clear manifestation of chaos. The evolution

1 A saddle is defined here as a possibly chaotic invariant set, which is attracting neither in forward nor in
backward time (see [14] for a more rigorous definition).

123



586 A. Tantet et al.

in time of the correlation function between any appropriate observables is fully determined
by the semigroup of transfer operators Pμ

t , t ≥ 0 [24], governing the evolution of densities
with respect to an invariant measure μ (e.g. supported by an attractor, a precise definition is
given in Sect. 3.1).

It is a classical result from ergodic theory [25,26] that correlations between observables
vanish for time lags going to infinity only if there are no eigenvalues of the transfer operators
in the unit disk other than the eigenvalue 1, or in other words if there are no eigenvalues of the
infinitesimal generator of the semigroup of transfer operators on the imaginary axis. A more
difficult problem, which is still a matter of investigation [27,28], is to characterize the rate of
mixing. This rate depends on the position in the complex plane of the poles of the correlation
spectrum of a pair of observables, which correspond to the unstable Ruelle–Pollicott reso-
nances [29,30]. The latter are given by the eigenvalues with nonzero real part of the generator
of the semigroup of transfer operators acting on anisotropic Banach spaces adapted to the
dynamics of contraction and expansion of chaotic systems [31–36]. Note that, while both
the presence of positive Lyapunov exponents and mixing are a manifestation of chaos, their
relationship is nontrivial [37–40]. In the case of uniformly hyperbolic systems, correlations
are expected to undergo an initial fast decay associated with large Lyapunov exponents, but
have an asymptotic decay bounded above by the smallest positive Lyapunov exponent [37].
On the other hand, nonuniformly hyperbolic systems may have arbitrarily slow mixing rates.

While transfer operators acting on densities with respect to the invariant measure allow to
study the ergodic andmixing properties, global information about the invariant set supporting
this measure (e.g. an attractor) should be studied from transfer operators Pm

t , t ≥ 0, acting
on densities with respect to the Lebesgue measure (i.e. in state space). This has recently led
to new developments in the theory and applications of the stability of dynamical systems
[41,42]. In this case, the spectrum of the generator of the transfer semigroup, does not only
capture the rate of mixing, but also the rate of convergence (escape) of densities to (from) an
invariant measure supported by an attractor (repeller). It follows that, as an attractor becomes
less attracting at the approach of a crisis, densities are expected to take more time to converge
to the invariant measure, resulting in the slowing down of the decay of correlations, i.e. in the
mixing. This slowing down should thus be associatedwith a decrease of the spectral gap in the
spectrum of the transfer semigroup. This characterization of the stability of chaotic attractors
has been used in [43] to give numerical evidences that, in a high-dimensional climate model
undergoing a boundary crisis, the spectral gap in some eigenvalues of the transfer operators
in heavily projected spaces indeed shrinks. In the following,

we refer to the resonances belonging to the spectrum of the generator of Pm
t , t ≥ 0 but

not of Pμ
t , t ≥ 0 as the stable resonances, which are associated to the nearing of the

orbits towards the attractor, while the unstable resonances refer to the eigenvalues of
the generator of Pμ

t , t ≥ 0.

It is, however, still unclear whether the change in the spectral properties of the transfer
semigroup is a generic property of dynamical systems undergoing an attractor crisis. More-
over, the question emerges on whether such changes can be detected from time series on the
attractor alone—which can be investigated looking at the properties of Pμ

t —or if perturba-
tions of the system away from the attractor are needed, so that the eigenvalues of Pm

t are the
key objects of interest.

This issue is directly related to the generalization of the Fluctuation–Dissipation Theorem
(FDT) to nonequilibrium systems by [44] (see also [45]). In this regard, the problem is that in
the case of deterministic systems the natural fluctuations explore only the unstable manifold
of the attractor, whereas generally an external perturbation will impact both the unstable and
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stable directions. A specific example in the context of a geophysical system is considered in
[46]. On the other hand, for systemswith an invariant measure which is absolutely continuous
with respect to the Lebesgue measure, such as stochastically perturbed dynamical systems
leading to hypoelliptic diffusions [47], both transfer semigroups can be identified and the
FDT is expected to hold. Note that a theory of the linear response to noise of the statistics
of the system has been developed by [48], while the changes in the spectrum of the transfer
semigroup due to noise have been studied by [49] and by [50], for the particular case of the
Hopf bifurcation.

In this study, a chaotic boundary crisis in the Lorenz flow is analyzed in terms of stable and
unstable resonances. Although this appears as a case study, we think that it can be of more
general interest by revealing possible statistical properties of more general chaotic dynamical
systems. The Lorenz flow is system of three ordinary differential equations (ODEs) derived
in the seminal paper [51] via a spectral truncation of the fluid equations for Rayleigh–Bénard
convection. As one of the first examples of low-dimensional flows with robust chaos and
because it exhibits a wide range of dynamical phenomena, it has been extensively studied
(see [52] for a review). Most of the dynamical properties of Lorenz-like attractors have been
obtained for the geometric Lorenz system introduced in [53]. However, these properties
were later found to persist for general singular-hyperbolic attractors, yielding a paradigm
for robust low-dimensional chaotic systems [54]. In particular, the standard Lorenz attractor
was proved to be a singular-hyperbolic chaotic attractor in [55]. As a consequence, the
Lorenz attractor supports a unique physical measure with non-zero Lyapunov exponents
[54, Chap. 7]. Numerical evidences suggest that the standard Lorenz flow obeys linear [56]
and nonlinear response theory [57]. However, whether the Lorenz flow is mixing and has
exponential decay of correlations is still an open problem [54, Chap. 10.2]. In addition, the
Lorenz flow is known [13] to undergo a boundary crisis for some parameter values, while its
low-dimensionality renders numerical applications tractable. For these reasons, the Lorenz
flow constitutes an interesting test bed to better understand the relationship between the
eigenvalues of the transfer semigroup and the dynamics of the boundary crisis.

The analysis presented here is numerical and descriptive in nature, but should allow to
build intuition for further studies. The key findings are the following.

1. The stable resonances do approach the imaginary axis during the crisis, as is indicative
of the loss of global stability of the attractor.

2. The unstable resonances, and a fortiori the decay of correlations, do not flag the proximity
of the crisis.

The Lorenz flow and the bifurcations of interest for this study are briefly introduced in
Sect. 2. The results presented in this section aremainly a reproduction of the ones presented in
[52]. However, we also discuss the fact that the Lyapunov exponents cannot give an indication
of the approach of the crisis. This provides evidence that, contrary to what was found for
other types of crises [58–61], these important dynamical quantities are in general not useful
to flag vicinity to a boundary crises. In Sect. 3, the transfer semigroups are defined and two
different numerical methods are presented to approximate the resonances from the spectrum
of transition matrices. The main results are presented in Sect. 4, for different parameter
values about the crisis, allowing to monitor the changes in the resonances during the crisis
and to analyze whether these changes can be observed from the dynamics on the attractor
alone. A summary and discussion is given on the implications of these results regarding the
possibility of designing early-warning indicators of chaotic attractor crises, the effect of the
addition of noisy perturbations as well as the viability of response theory close to the crisis.
In Appendix A, we recapitulate some concepts of ergodic theory of dynamical systems that
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we deem relevant for the interpretation of our results ; The expert reader might want to skip
this material. Appendix B gives evidence that the numerical results of Sect. 4 are robust to
the resolution, sampling and transition time.

2 Attractor Crisis in the Lorenz system

Here, we summarize some general properties of the Lorenz flow, as well as the bifurcations
that will be important for the rest of this study.

2.1 Dissipativity and Boundedness

The Lorenz flow Φt , on the state space X = R
3 and with time t in R, is generated by the

following set of ODEs,
⎛
⎝

ẋ
ẏ
ż

⎞
⎠ =

⎛
⎝

σ(y − x)

x(ρ − z) − y
xy − βz

⎞
⎠ := F(x, y, z) (x, y, z) ∈ R

3, (2.1)

where ρ, σ and β are positive parameters and the dot indicates differentiation with respect
to time. In this study, the parameters σ and β are set to classical values of 10 and 8/3,
respectively. On the other hand, the Rayleigh number ρ will be varied from 0, for which all
trajectories converge to the stationary point at the origin, to the classical value of 28, at which
Lorenz obtained the celebrated “butterfly” attractor.

TheODE (2.1) is invariant with respect to the change of variable (x, y, z) → (−x,−y, z),
so that to each solution corresponds another symmetrically related one. The Jacobian of the
vector field F of the right-hand side of (2.1) is given by,

DF(x, y, z) =
⎛
⎝

−σ σ 0
ρ − z −1 −x

y x −β

⎞
⎠ , (x, y, z) ∈ R

3. (2.2)

The contraction rate of volumes under F is given by its divergence,

div F = trace DF = −1 − σ − β, (2.3)

It is constant and, for the values of σ and β considered here, negative so that volumes contract
uniformly in state space. The vector field F is therefore said to be dissipative.

From the quadratic nature of the equations (2.1), it was shown in [51] (see also [62]) that
solutions initiated in a specific ellipsoid remain there forever. In particular, for σ = 10 and
β = 8/3, trajectories remain in the ball Ro bounded by the sphere So of radius ρ + σ and
center (0, 0, σ +ρ). This property, together with that of positive volume contraction, ensures
that trajectories initialized inside Ro remain in Ro and must converge to a non-wandering set
of Lebesgue measure 0. The sphere So is used in Sects. 3.3 and 4 to bound the domain on
which the transfer operators are approximated.

2.2 Route to Chaos in the Lorenz Flow

In this section, we briefly describe the series of local and global bifurcations leading the
chaotic attractor crisis of interest (e.g. [1,3] for references on bifurcation theory). These
results are summarized in the bifurcation diagram in Fig. 1. They are not new and should
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ρP ρHomo ρHopfρA ρ

ΛГUΛГ+

p+

O

Fig. 1 Schematic bifurcation diagram of the Lorenz flow, for 0 ≤ ρ ≤ 28 and with fixed σ = 10 and
β = 8/3. The branch of the stationary points O and p+, the periodic orbit Γ + and the chaotic set Λ are
marked in black, red, green and cyan, respectively. Stable (unstable) branches are marked by a plain (dashed)
line. The various dots at ρP = 1, ρHomo ≈ 13.93, ρA ≈ 24.06 and ρHopf ≈ 24.74 indicate the position of
the pitchfork bifurcation, the homoclinic bifiurcation, the boundary attractor crisis and the Hopf bifurcation,
respectively (Color figure online)

rather be considered as a reproduction of those discussed in [52]. However, theywill be useful
to interpret later results discussed in Sect. 4.

We start by increasing the control parameter ρ from zero. For ρ = 0, the stationary point
O at the origin is stable. Solving the system of polynomial equations F(x) = 0 analytically
reveals that two symmetric stationary points p+ and p− other than O exist for ρ > ρP = 1.
The eigenvalues of the Jacobian DF evaluated at each point reveals that O loses stability at
ρP while the points p± are stable. A pitchfork bifurcation thus occurs at ρP , as is illustrated in
the left of the diagram in Fig. 1, on which the branch of the stationary point O is represented
in black, while that for p+ is represented in red.

It is then numerically found that the Jacobian evaluated at p± quickly acquires a complex
conjugate pair of eigenvalues. The latter eventually cross the imaginary axis atρHopf ≈ 24.74.
This loss of stability of the two stationary points is associated with two symmetric subcritical
Hopf bifurcations. That is, two symmetric unstable periodic orbits, denoted Γ + and Γ −,
merge with the stationary points p+ and p−, respectively. The branch of the orbit Γ + is
represented in green in the diagram in Fig. 1.

Starting from ρ = ρHopf , we now decrease ρ to continue the unstable periodic orbits Γ ±
as they emerge from the stationary points p±. The two orbits Γ ± are continued numerically
via pseudo-arclength continuation (see e.g. [3, Chap. 10]), yielding a numerical integration
of the orbit, its period T , as well as the fundamental matrix DΦT at time T . The latter
allows to calculate the Floquet exponents characterizing the stability of the limit cycle [1]
as the complex logarithm of the eigenvalues of DΦT divided by T [63]. The results of this
continuation are represented in Fig. 2. On the upper left panel, one can see that the period of
the limit cycles is increasing rapidly as ρ is decreased below the Hopf bifurcation. The real
parts of the Floquet exponents are represented in the lower left panel. The Floquet exponent
zero is associated with the direction of the flow, while one of the exponents is positive and
the last is negative, indicating that the periodic orbits Γ ± are unstable and of saddle type.
As expected from normal form theory [1,3], the instability of the periodic orbits grows away
from the Hopf bifurcation, i.e. as ρ is decreased from ρHopf and their radius increases. This
can be seen on the right panel of the same Fig. 2, where the periodic orbits for different values
of ρ are represented in the (x + y, z) plane.
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Fig. 2 Continuation of the unstable periodic orbit Γ +. The upper and lower left panels respectively represent
the period and the real parts of the Floquet exponents of Γ + versus ρ. The right panel represents, in the
(x + y, z) plane , the orbit Γ + in thick dashed colored lines and for different values of ρ. The thick black
line represents the two asymmetric stationary points p+ and p− versus ρ. Finally, the thin black dashed line
represents a numerical integration of the homoclinic orbit at ρHomo ≈ 13.9265 (Color figure online)

The increase in the period of the periodic orbits Γ ± and the decrease of their distance to
the stationary point O at the origin give numerical evidence that the periodic orbits eventually
collide with O . It is thus expected that, at a particular value ρ = ρHomo, the union of each
periodic orbit with O yields a homoclinic orbit on which O is an asymptotic point for both
forward and backward trajectories. The numerical method used here does not permit the
continuation of the periodic orbits all the way to the homoclinic bifurcation. However, direct
numerical integration of a trajectory starting in the neighborhoodof the stationary point allows
to get an approximation of the homoclinic orbit. The latter is obtained at ρ = 13.93 ≈ ρHomo,
in agreement with [52]. It is plotted by a thin dashed black line on the right panel of Fig. 2 and
is also represented by the green ellipse in the diagram in Fig. 1. This homoclinic bifurcation
has been studied in the geometric Lorenz system [1,53] where a nontrivial invariant set Λ,
with the structure of a singular horseshoe [54,Chap. 3], is known to emerge from its unfolding,
i.e. for ρ > ρHomo. An infinity of unstable periodic orbits are embedded in this horseshoe,
including the two simple periodic orbits Γ ±. This set is thus responsible for transient chaos
[64], but is not yet attracting for ρ close to ρHomo.

2.3 Attractor Crisis

The bifurcation of interest in this study occurs as ρ is increased from ρHomo, when the
chaotic invariant set Λ becomes an attractor.2 The study of the one-dimensional Lorenz
map [1,51,52], gives evidence that this crisis occurs for ρ = ρA ≈ 24.06. That is, for
ρHomo < ρ < ρA, the chaotic set Λ is of saddle type, while for ρ > ρA and ρ not too large,
Λ is an attractor. The branch of the chaotic set Λ is represented in cyan in the diagram in
Fig. 1, with Λ represented by a lemniscate. Importantly, for ρHomo < ρ < ρHopf , the strange
attractor Λ coexists with the two unstable periodic orbits Γ ± as well as with two other
attractors, the stable stationary points p±. Following [52], an informal phenomenological
description of this crisis is supported here by numerical integration.

2 This attractor must be only partially hyperbolic, since it contains the singularity at the origin, which prevents
the stable and unstable manifolds to be continuous.

123



Resonances in a Chaotic Attractor Crisis of the Lorenz Flow 591

Fig. 3 a Minimal distance between a long aperiodic orbit on Λ and the periodic orbits Γ ± versus ρ. b Long
aperiodic orbit on Λ (blue line) and periodic orbits Γ ± (thick red line) for (a) ρ = 24.1. The orbits have
been integrated with a Runge–Kutta scheme of order 4 with a time step of 10−3 time units, for 105 time units
(Color figure online)

Figure 3a represents the minimal Euclidean distance between an aperiodic orbit of the
chaotic set Λ and the periodic orbits Γ ±, versus ρ. One can see that, close to the crisis, this
numerical calculation of the distance is close to zero. This is more obvious from Fig. 3b, in
which a long integration of an aperiodic orbit is represented in blue together with the periodic
orbits Γ ±, in red, for ρ ≈ ρA. In fact, below the crisis, for ρ < ρA, the periodic orbits Γ ±
are embedded in the chaotic saddle Λ [52]. On the other hand, this distance increases as ρ

is increased from ρA due to the shrinkage of Γ ± as the Hopf bifurcation is approached. The
chaotic set Λ thus appears to become on attractor only once the periodic orbits Γ ± have
left it. Since all the orbits in Λ for ρ < ρA cannot be mapped to those of Λ for ρ > ρA,
the flow on this set is not structurally stable at the boundary crisis; there is a genuine global
bifurcation at ρ = ρA.

This bifurcation is better understood from the geometry of the stable manifold of the
stationary point O . Numerical integrations of one branch of the unstable manifold of O are
represented in blue in Fig. 4, for different values of ρ about the crisis. The periodic orbit Γ −
is also represented by a thick black line, together with orbits belonging to the stable manifold
of Γ −, represented by thin black dashed lines. These numerical results are in agreement
with the analytical ones reviewed by Sparrow in [52] for the geometric Lorenz system, and
suggest that for the Lorenz flow:

1. Between the homoclinic bifurcation and the attractor crisis (for ρHomo < ρ < ρA,
Fig. 4a), the unstable manifold of O is connected to the stable manifold of the stable
stationary point p− emanating from the pitchfork bifurcation, i.e. orbits repelled by O
converge to p−,

2. At the crisis (ρ = ρA, Fig. 4b), as a consequence of the shrinkage of the periodic orbit
Γ − with increasing ρ, , the trajectories along the unstable manifold of O no longer
convergences to p−, but instead connect to the stable manifold of the periodic orbit Γ −,

3. After the crisis, (ρ > ρA Fig. 4c), the small size of Γ − prevents the unstable manifold
of O to dive into the stable manifold of Γ −. These trajectories having to converge to an
attractor (see Sect. 2.1), must wander along the chaotic set Λ, which is then attracting.

2.4 Lyapunov Exponents and Covariant Lyapunov Vectors

Local bifurcations of stationary points or limit cycles are fully characterized by the crossing of
the imaginary axis by the characteristic exponents of these invariant sets, i.e. the eigenvalues
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(a) (b)

(c)

Fig. 4 Periodic orbit (thick black line), backward trajectories initialized in the neighbourhood of the periodic
orbit along its stable manifold (dashed black lines) and unstable manifold of the stationary point at the origin
(blue line) for a ρ = 20., b ρ = 24.06 and c ρ =24.6 (Color figure online)

of the Jacobian for the stationary points, the Floquet exponents for the limit cycles [1,3]. In
these cases a bifurcation point corresponds to a loss of hyperbolicity due to the crossing of
the imaginary axis by one or several critical exponents.

The notion of hyperbolicity can be generalized to nontrivial sets. A very strong form of
hyperbolicity is that of uniform hyperbolicity for which the tangent space can be split into a
one-dimensional space in the direction of the flow and contracting and expanding spaces, the
stable and unstable spaces, respectively, with uniform decay and growth bounds, respectively
[65, Part 4].

A weaker form of hyperbolicity can be introduced making reference to the Lyapunov
exponents. Lyapunov exponents describing the growth rate of perturbations applied to a
trajectory provide a generalization of the characteristic exponents to chaotic invariant sets [11,
20].Nonuniformhyperbolic systems do not obey uniformhyperbolicity but admit an invariant
measure with nonzero Lyapunov exponents almost everywhere, except for the exponent
associated with the direction of the flow [66]. In this case, the covariant vectors in the
direction of which the growth of perturbations is given by the respective Lyapunov exponents,
namely the Covariant LyapunovVectors (CLVs, e.g. [67]). The CLVs associatedwith positive
(neutral, negative) Lyapunov exponents are tangent to the unstable (center, stable) manifold
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Fig. 5 Lyapunov exponents of Λ

versus ρ. The negative Lyapunov
exponent λ− (in green) is divided
by a factor 10 (Color figure
online)

along an orbit and span the unstable (center, stable) tangent space. In general, the angles
between the manifolds can be arbitrarily small, as opposed to the uniform hyperbolic case.

The set Λ in the Lorenz flow is chaotic, so that it has one positive Lyapunov exponent λ+,
one zero exponent λ0 corresponding to the direction of the flow and one negative exponent
λ−, which is larger in absolute value than λ+, in order for volumes to contract. Moreover, the
stationary point at the origin belongs to Λ. These results were first proved for the geometric
Lorenz attractor [53] and later for the Lorenz flow for the classical parameter values ρ =
28, σ = 10 and β = 8/3 [55]. The Lorenz attractor is thus at most partially hyperbolic [68].
In fact, this type of partially hyperbolic flow with a singularity in the attractor happens to be
the prototype of robust chaotic flow in three dimensions [54] and has been called singular
hyperbolic. In the case of the Lorenz flow, the tangent space splits into a stable space, with
contraction, and a center-unstable spacewhere, loosely speaking, weak contraction is allowed
in addition to expansion. This implies that the angle between the center-unstable space and
the stable space is uniformly bounded away from zero [68], and so are the angles between
the stable CLV and each of the unstable and central CLVs. However, due to the stationary
point at the origin, where the center manifold does not exist, the angle between the unstable
and the central CLVs may be arbitrarily small as this singularity is approached.

Decreasing ρ towards the attractor crisis at ρA, one may wonder whether one of the
Lyapunov exponents crosses the imaginary axis. However, since for ρ < ρA the chaotic
invariant set persists, the positive Lyapunov exponent must remain positive and the negative
value of the average volume contraction rate ensures that the negative Lyapunov exponents
remains negative. This heuristic argument is supported by numerical estimations3 of the
Lyapunov exponents of Λ for varying values of ρ, represented in Fig. 5. One can see on this
figure that the Lyapunov exponents vary only slightly close to the crisis and that none of
them cross the imaginary axis.

Finally, let us mention that since a break of hyperbolicity may be due to a homoclinic
tangency where the stable and unstable manifolds are tangent, the angle between the CLVs
has been suggested in [69,70] as an indicator of the degree of hyperbolicity of the dynamics.
Moreover, it has been conjectured in [61] that the alignment of the CLVs could provide a
criterion to predict crises, although the latter are understood there as chaotic bursts (in other
words, an extreme fluctuation in an otherwise weakly chaotic trajectory) rather than as an
attractor crisis. However, due to the singularity in the Lorenz attractor, the angle between the

3 Following the algorithm described in [67], also yielding the CLVs.
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unstable and the central CLVs can be arbitrarily small even away from the crisis, so that the
loss of hyperbolicity should not provide a precursor of the crisis.

3 Resonances and Their Approximation

The aim of this study is to analyse the global stability properties of a chaotic system under-
going a boundary crisis from the perspective of the Ruelle–Pollicott (stable and unstable
resonances). The latter are given by the eigenvalues of the infinitesimal generator [24,71,72]
of semigroups of transfer operators governing the evolution of densities. In this section, these
notions are introduced together with the numerical methods to approximate the resonances.

3.1 Semigroup of Transfer Operators and Ensemble

The chaotic behavior of the solutions of the dynamical system (2.1) motivates the study of
the evolution of probability densities and observables. For that purpose, we endow the state
space X with its Borel σ -algebra B and some probability measure η (to be specified) on
(X,B). The flow Φt , t ≥ 04 induces a family of linear operators, the Koopman operators,

Uη
t : g → g ◦ Φt , t ≥ 0, (3.1)

acting on observables g in the space bounded measurable functions Lq
η(X), 1 ≤ q < ∞.

On the other hand, there exists a family of linear operators Pη
t , t ≥ 0, the transfer operators

or Perron–Frobenius operators on L p
η (X), with 1/p + 1/q = 1, and such that the duality

relation ∫
X

g(x) Pη
t f (x) η(dx) =

∫
X
Uη

t g(x) f (x) η(dx) (3.2)

holds for any observable f in L p
η (X) and g in Lq

η(X). It follows that Uη
t is the adjoint of Pη

t .
Moreover, taking g in (3.2) as the indicator 1A of some set A ∈ B, one has that5

∫
A
Pη

t f (x) η(dx) =
∫

Φ−1
t A

f (x) η(dx), t ≥ 0. (3.3)

The families of linear operators Pη
t and Uη

t , t ≥ 0 inherit from the semigroup property of the
flow, thus imposing a strong constrain on the operators for different times.

The relationship between the nonlinear flow Φt and these semigroups provides the con-
nection between the ergodic properties of dynamical systems and the functional analysis of
linear operators [71–73], as was first recognized in [74,75]. Standard material on ergodic
theory is given in “Ergodicity, Mixing and Correlations” section of Appendix A, where the
notions of ergodic invariant measure and correlation functions are recalled.

3.2 Spectral Theory of Mixing and Global Stability

In this study, we consider two families of transfer operators defined for η in (3.2) given by
two different measures.

4 The flow will be assumed to be nonsingular for the Lebesgue measure, so that it maps sets of null measure
into sets of null measure.
5 For a probability density f , i.e. f ≥ 0 and

∫
X f (x)η(dx) = 1, (3.3) expresses the fact that the probability

to find a member x sampled from an initial ensemble f in a set A after some time t is none-other than the
probability of this member to be initially in the preimage of this set by the flow.
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A first family Pμ
t , t ≥ 0 is defined for η given by the invariant measure μ associated

with the chaotic invariant set Λ defined in 2.2. This family thus describes the evolution of
densities with respect to μ on Λ and contains no information on the evolution of densities
away from this set. The eigenvalues of the generator of this semigroup yield the unstable
resonances. They capture the expanding dynamics along the unstable manifold of Λ [44].
As explained in greater details in “Spectral Theory of Ergodicity and Mixing” section of
Appendix A, the presence of eigenvalues on the imaginary axis characterize the ergodic and
mixing properties of the dynamical system, while the gap between the imaginary axis and
the leading resonances to the left of the imaginary axis characterises the mixing rate of the
system.6

A second semigroup of transfer operators Pm
t , t ≥ 0 is defined for η in (3.2) given by

the Lebesgue measure m restricted to the domain Ro of R3. These operators thus govern the
evolution of densities not only on Λ, but everywhere in Ro. As such, they not only capture
the dynamics of mixing along the chaotic set Λ, but also the dynamics of contraction/escape
to/from Λ and to/from the other invariant sets populating Ro (i.e. the stationary points p±
and the unstable periodic orbits Γ ±). As explained in greater details in “Spectral Theory of
Global Stability” section of Appendix A, the eigenvalues of the generator of this semigroup
thus yield not only the unstable resonances but also the stable resonances associated with
the contracting dynamics along the stable manifold of Λ [44]. The gap between the stable
resonances and the imaginary axis then give a measure of the global stability of the chaotic
invariant set Λ (see “Spectral Theory of Global Stability” section of Appendix A for more
details).

In “Spectral Theory of Global Stability” section of Appendix A, we give evidence that the
eigenvalues of the generator of Pμ

t , t ≥ 0 are a subset of those of Pm
t , t ≥ 0, motivating the

definition of the stable resonances as the eigenvalues of the generator of Pm
t , t ≥ 0 which

are not in the spectrum of Pμ
t , t ≥ 0. The unstable and the stable resonances thus form two

complementary subsets of the eigenvalues of the generator of Pm
t , t ≥ 0. This property will

allow us to use the two numerical methods presented in the next Sect. 3.3 to distinguish
approximations of the unstable resonances from the stable resonances.

3.3 Approximation of the Resonances

Analytical results on the properties of this semigroup for chaotic systems are difficult to
obtain. Here, we explain how these operators can be approximated from transition matrices
estimated from time series. While the method is well known, we make clear the difference
between two variants allowing either for the approximation of both the stable and the unstable
resonances from the transfer operators Pm

t with respect to the Lebesgue measure, or only for
the approximation of the unstable resonances from the transfer operators Pμ

t with respect to
the invariant measure supported by a chaotic attractor.

Calculating the resonances is a difficult task. Explicit formulas have only been obtained for
low-dimensional systems from a trace formula or from the decomposition of the eigenvectors
on basis functions [76–79]. For high-dimensional systems, to our knowledge, only qualitative
results limited to uniformly hyperbolic systems have been obtained regarding the distribution
of the resonances in the complex plane [33–35].

Numerical methods are thus required to approximate the Ruelle–Pollicott resonances and
the associated eigenvectors. For still relatively low-dimensional systems, but with chaotic

6 As explained in “Spectral Theory of Ergodicity and Mixing” section of Appendix A, resonances to the
left of the imaginary axis are associated to eigenfunctions on spaces of distributions rather than on spaces of
integrable functions.
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dynamics, one approach is to calculate the spectrum of transition matrices resulting from
the projection of the transfer operators on a finite family of basis functions. The transition
probabilities can then be estimated from time series. This Galerkin truncation with estimation
is referred to as Ulam’s method [80,81] in the literature. The method is not limited to the use
of characteristic functions and has also been referred to as the Extended Dynamical Mode
Decomposition [82,83]. In particular, Ulam’s method has been applied to the Lorenz flow
in [84] to calculate its linear response to forcing from transition matrices approximating the
transfer operators. See also [85–87] for generalizations to high-dimensional systems and [88]
for an application to atmospheric regimes detection.

Remark 1 Whether performed analytically or numerically, one may wonder whether the
approximations of the eigenvectors on a finite number of basis functions carry relevant
information on resonances associated with eigenvectors in spaces of distributions rather
than functions. Indeed, these basis functions usually being regular, their linear combina-
tions should not decay under the action of transfer operators associated with invertible flows.
However, the projection of the image of densities by the transfer operator back to the finite
dimensional space spanned by the basis functions introduces some irreversibility. As a con-
sequence the eigenvalues and eigenvectors obtained from these truncations may actually
converge to the unstable resonances and their associated eigendistributions. This is explained
in detail in [76,89] with simple yet highly illustrative examples.

Following this approach, the transfer operators Pη
t , defined by (3.2) with respect to some

probability measure η, are projected on a truncated family G = {χ1, . . . , χn} of orthogonal
basis functions. That is, 〈χi , χ j 〉η = 0 when i �= j , where the scalar product is defined as
〈 f, g〉η = ∫

X f (x)g(x)η(dx). Any vector of components f = ( f1, . . . , fn) inRn , defines an
observable

f =
n∑

i=1

fi
χi

〈χi , χi 〉η such that fi = 〈 f, χi 〉η. (3.4)

For any such f , the component of Pη
t f on the basis function χ j is then given by

(Pη
t f ) j = 〈Pη

t f, χ j 〉η =
n∑

i=1

fi
〈Pη

t χi , χ j 〉η
〈χi , χi 〉η = (

fPη
t
)

j t ≥ 0, (3.5)

where we have defined the transition matrix Pη
t with elements the normalized correlations

[Pη
t ]i j := 〈Pη

t χi , χ j 〉η
〈χi , χi 〉η . (3.6)

In this study,wewill only consider families of characteristic functionsG = {1B1 , . . . , 1Bn }
on a grid of disjoint boxes {B1, . . . , Bn} such that∪n

i=1Bi ⊆ B(Ro), whereB(Ro) is the Borel
σ−algebra of the ball Ro defined in Sect. 2.7 In this case, the correlations are simply given
by the transition probabilities

[Pη
t ]i j = 〈Pη

t 1Bi , 1B j 〉η
〈1Bi , 1Bi 〉η

=
η

(
Bi ∩ Φ−1

t B j

)

η(Bi )
. (3.7)

7 In the uniform discretization of the ball Bo in spherical coordinates, in Sect. 3.4, different grid boxes will
have different Lebesgue volumes. The component fi of an observable f being the integral of f over the box
Bi , this component will tend to be larger for boxes of larger volume. This does not affect the eigenvalues,
but clearly affects the eigenvectors, where large values of the components might be associated to large boxes,
ceteris paribus.
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Discrete approximations of the eigenvalues, eigenvectors and adjoint eigenvectors of Pτ

can then be obtained from those of a transition matrix Pη
τ at some time t = τ . Assuming that

the family of transitionmatricesPη
t , t ≥ 0,preserves the semigroupproperty ofPη

t , t ≥ 0, the
spectral mapping theorem [71, Chap. I.3, IV] ensures that the eigenfunctions of the generator
of the semigroup are given by those of Pη

τ and that the generator eigenvalues λk, k ≥ 0, can
be calculated from the eigenvalues ζk(τ ) of Pη

τ according to

λk = 1

τ
log ζk(τ ). (3.8)

The eigenvalues of the generator, as poles of the resolvent of the semigroup, correspond to the
Ruelle–Pollicott resonances. If the semigroup property is preserved, they should not depend
on the transition time τ and are thus more amenable to analysis.8 Before that, however, it is
necessary to estimate the transition probabilities in Pη

τ .

3.3.1 Estimation of Pm
t from Short Time Series Sampling the State Space

In the original version of Ulam’s method (see e.g. [81]), the transition probabilities are
estimated from an ensemble of Ns short time series x (i)

t , 0 ≤ t ≤ τ , 1 ≤ i ≤ Ns , integrated
numerically, with initial states sampling a given volume in state space (Ro, for the Lorenz
flow). The transition probabilities are then estimated by

[Pm
τ ]i j = #

{
x (i)
0 ∈ Bi , x (i)

τ ∈ B j }
#{x (i)

0 ∈ Bi
} , (3.9)

Because the initial states uniformly sample the Lebesgue measure m (restricted to Ro), the
transition matrix Pm

τ gives an approximation of the transfer operator Pm
τ , defined in (3.2) as

the dual of the Koopman operator Um
τ with respect to the scalar product induced by m.

3.3.2 Estimation of Pμ
t from a Long Time Series on the Attractor

While the semigroup of transfer operator Pm
t , t ≥ 0 encapsulates all the information neces-

sary to propagate densities in state space, we now take the point of view of an observer of a
system in a statistical steady-state. The latter has then only access to time series of trajectories
on the attractor and sampling the physical measure μ (the statistical steady-state) associated
to it (see Remarks 2 and 3). In particular, according to the formula (A.6), this is all one needs
to calculate the correlation function (A.4).

It turns out that this information is encapsulated in the semigroup Pμ
t , t ≥ 0, defined in

(3.2) as the dual of the Koopman semigroup Uμ
t with respect to the scalar product induced

by μ. It follows that the transition matrix Pμ
τ approximating the transfer operator Pμ

τ can be
estimated from a single long time series xts , 0 ≤ ts ≤ Tsamp, of length Tsamp and converged
to the attractor Λ, according to

[Pμ
τ ]i j =

1
Tsamp

∑Tsamp
s=0 χi (xts )χ j (xts+τ )

1
Tsamp

∑Tsamp
0 χi (xts )

= #{xts ∈ Bi , xts+τ ∈ B j }
#{xts ∈ Bi } . (3.10)

The second equality in (3.10) is valid only for the case of characteristic basis functions so
that the transition probabilities are given by the number of times the time series transits from

8 The dependence of the λk ’s on τ thus constitute an important test for the quality of the approximations. This
is discussed in Appendix B.
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one box to another in a time τ normalized by the number of trajectories in the initial box.
In practice, the time series is sampled at a finite rate for a finite time, so that the time means
yield the Maximum Likelihood Estimator (MLE, see e.g [90]) of the transition probabilities.

In this study, the invariant measure μ of interest is that supported by the chaotic set Λ, so
that it may only be physical when Λ is attracting, i.e. after the crisis, for ρ > ρA.

3.4 Experiment Design

In order to discuss the changes in the evolution of statistics during the crisis, in the next
Sect. 4, the spectrum of both semigroups Pm

t and Pμ
t are approximated via the methods

presented in the previous Sects. 3.3.1 and 3.3.2. Before that, let us summarize the choice
of the numerical parameters used to obtain these results. This choice is based on careful
robustness tests given in Appendix B and can be divided into five items:

1. Numerical integration we use a Runge-Kutta scheme of order four with a time step of
10−4 time units.

2. Grid the ball Ro (see Sect. 2) is discretized into 3.2×107 boxes by dividing each spherical
coordinate (r, θ, φ) in 400, 200 and 400 intervals of the same length, respectively.

3. Transition time the generator eigenvalues were calculated from transition matrices esti-
mated for a transition time τ = 0.05 time units.

4. Number and length of trajectories 6.4×109 trajectories of length the transition time τ and
uniformly sampling Ro were integrated in order to estimate Pm

τ , following Sect. 3.3.1.
To estimate Pμ

τ , following Sect. 3.3.2, 24 trajectories of length Tsamp = 1 × 105 where
integrated, with a spinup of 104 time units removed. The initial states of these trajectories
were randomly sampled in Ro, making sure that all of them converge to the chaotic
attractor (so that they randomly sample its basin of attraction).

5. Eigenproblem solver to solve the eigenproblem for the transition matrices, the block
Krylov Schur algorithm implemented in the Anasazi package [91] of the Trilinos library
[92] was used. The generator eigenvalues are then calculated according to (3.8) from
those of the transition matrix.

4 Results

In this main section, the generator eigenvalues of the transition matrices calculated according
to (3.8) and following both methodologies presented in Sect. 3.3, are analyzed for varying
control parameter values ρ around the attractor crisis. The difference between the behavior
of the eigenvalues approximating the stable and the unstable resonances will be emphasized
and the consequences regarding critical slowing down discussed.

4.1 Stable and Unstable Resonances from Pm
τ

The approximations of both the stable and unstable resonances from the eigenvalues of
the transition matrix Pm

τ (Sect. 3.3.1), are represented in Fig. 6, for values of ρ ranging
from 22 (between the homoclinic bifurcation and the boundary crisis) and 25 (after the
boundary crisis). Overall, a nontrivial arrangement of eigenvalues is found, as expected from
the presence of the chaotic set Λ.

In order to focus on the generator eigenvalues closest to the imaginary axis, expected to be
affected by the crisis, the real parts of the leading eigenvalues are represented in Fig. 7 versus
ρ. One can see that for ρ smaller than a value close to ρA ≈ 24.06, there are two eigenvalues
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Fig. 6 Leading generator eigenvalues calculated from the transition matrices Pm
τ for different values of ρ

zero (blue line and dashed orange line, Fig. 7). As ρ is increased to ρA, a third eigenvalue
approaches the imaginary axis (green line, Fig. 7). As ρ is increased further than about 23.5
(< ρA), there is an exchange of eigenvalues, so that only one eigenvalue remains zero (blue
line, Fig. 7) and two eigenvalues get further from the imaginary axis (green line and orange
dashed line, Fig. 7). There are also other eigenvalues approaching and then escaping from the
imaginary axis, althoughwith a gap remaining finite. Note that, from the contraction property
of the semigroup of transfer operators, both the stable and unstable resonances remain to the
left of the imaginary axis.

Zero eigenvalues are associated with physical measures corresponding to attractors. For
ρ < ρA there are two attractors, namely the two stationary points, so that it does not come
as a surprise that two zero eigenvalues are found. For ρA < ρ < ρHopf , however, there are
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Fig. 7 Real parts of the leading
eigenvalues calculated from the
transition matrices Pm

τ versus ρ

three coexisting attractors, namely the two stationary points and the strange attractor Λ, so
that one would expect three zero eigenvalues instead of only one. Moreover, the exchange
of eigenvalues is occurring for ρ ≈ 23.5 rather than for the expected value of ρA. It thus
appears that the discretization does not allow to resolve the boundary of the different basins
of attraction as well as the exact value of ρ for which the chaotic invariant set becomes an
attractor. One can interpret the errors induced by the discretization as numerical diffusion
[93] hindering the distinction of the three different basins of attraction associated with the
two stationary points and the chaotic invariant set for ρA < ρ < ρHopf . The three attractors
are, at our level of description, merged as a result of diffusion. Moreover, that the behavior
of the eigenvalues in Fig. 7 seems to indicate that the crisis occurs for ρ ≈ 23.5 < ρA may
be interpreted by the fact that the discretization is not fine enough, or the transition time not
long enough, for the stability of the chaotic invariant set to be captured precisely.

A more detailed understanding is obtained from the eigenvectors, represented in Fig. 8,
associated with the three leading generator eigenvalues (from top to bottom), calculated from
the transition matrices Pm

τ for ρ = 22 (left) and ρ = 24.5 (right). The first eigenvectors (top)
give an approximation of the physical measure of the system by a Lebesgue-density which
is stationary, as far as the numerical approximations are concerned. One can see that, for
ρ < ρA (left), this stationary density has two modes over the two stable stationary points p±.
There is, however, some spread around these points, due to the numerical approximation.
The second eigenvector is also nonzero only about p±, but with opposite values over each
stationary point.9 It thus accounts for the fact that transitions between these points are very
rare (and only possible due to the discretization). The third eigenvector, however, is positive
about the stationary points but negative about the chaotic set Λ. For ρ close, but smaller than
ρA, the set Λ is invariant but weakly unstable, so that the measure μ supported by Λ is not
yet physical. Transitions to p± from points around Λ, but not exactly on it, are thus possible
although very slow, since the crisis is near. This explains the dichotomy between p± and Λ

visible in the third eigenvector.
For ρA < ρ < ρHopf (right panels) the second and third eigenvectors are similar to

those for ρ < ρA. However, the stationary density (top right panel) now spreads about Λ, in
agreement with the fact thatΛ is now an attractor. For ρ < ρA, one can thus interpret the real
part of the third eigenvalue as the escape rate from the chaotic set Λ to each stationary point,
while for ρ > ρHopf , the second and third eigenvalues can be interpreted as the escape rate

9 Note that the secondary eigenvectors being orthogonal to the leading adjoint eigenvectors, which is constant
(see “Multiple Attractors” section of Appendix A), they integrate to zero with respect to the Lebesguemeasure.
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Fig. 8 Eigenvectors associated with the first (top), second (middle) and third (bottom) generator eigenvalues
calculated from the transition matrices Pm

τ for ρ = 22 (left) and ρ = 24.5 (right). For practical purposes,
the eigenvectors have been calculated from transition matrices on a grid of 200-by-100-by-200, instead of
400-by-200-by-400. Care has been taken for the values of ρ of 22 and 24 to be chosen before and after the
minimum in the spectral gap, respectively

from the stationary points toΛ. However, while this interpretation is valid for ρ > ρHopf , for
the value ofρ betweenρA andρHopf represented in the left panels, the stationary points p± are
still attracting. One would thus expect three eigenvalues to be zero (see “Multiple Attractors”
section of Appendix A) instead of one (Fig. 7). It thus appears that the discretization is
still too coarse to get around numerical diffusion [93] preventing the resolution of the three
distinct basins of attraction. This difficulty is likely to arise from the small size of the basins
of attraction of p± close to the Hopf bifurcation and from the possibly convoluted geometry
of their boundaries.

As a conclusion, the first key result of this study is the clear indication of the crisis in
the shrinkage of the spectral gap between the approximation of the generator eigenvalues for
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Pm
t , t ≥ 0 and the imaginary axis. However, as discussed in Sect. 3.3.2 (see also “Spectral

Theory of Ergodicity and Mixing” section of Appendix A), for this change in the spectrum
to be detectable from observations on the attractor alone, the eigenvalues of the generator of
Pμ

t , t ≥ 0 with respect to the physical measure μ, for ρ > ρA, should also be affected. This
is tested in the next Sect. 4.2.

4.2 Unstable Resonances from Pμ
τ and Decay of Correlations

To better understand which of the changes in the evolution of statistics are available from
observations on the attractor, the unstable resonances alone are calculated from the generator
eigenvalues of Pμ

τ (Sect. 3.3.2). The resulting generator eigenvalues are represented in the
left panels of Fig. 9, for values of ρ ranging from about ρA to ρ = 28. As recalled in Sect. 3.2,
the spectrum of the transfer semigroupPμ

t , t ≥ 0, governs the decay of correlations between
any pair of observables in appropriate functional spaces. As an example, the right panels
of Fig. 9 represent sample estimates10 of the correlation function Cz,z(t) for the observable
z : (x, y, z) → z. This is but one example of correlation function, which will be sufficient for
the present discussion. To facilitate the comparison with the results of the previous Sect. 4.1,
the corresponding generator eigenvalues fromPm

τ have also been represented by black crosses
in the top left panel in Fig. 9, for ρ = 24.1.

As discussed in “Spectral Theory of Global Stability” section of Appendix A, we expect
the eigenvalues of Pμ

τ to constitute a subset of the eigenvalues of Pm
τ , within numerical errors.

This seems to be indeed the case as the generator eigenvalues calculated from Pμ
τ (blue dots

in the top left panel) roughly correspond to some of the generator eigenvalues calculated
from Pm

τ (black crosses). However, the complex plane is less densely populated by generator
eigenvalues ofPμ

τ than ofPm
τ . This is not surprising, since the transfer operatorsPμ

t only gives
access to the unstable resonances and not to the stable resonances describing the relaxation
of densities transversally to Λ.

The second key result of this study is that the generator eigenvalues of Pm
τ , which where

found in Sect. 4.1 to approach/escape from the imaginary axis during the crisis, do not
belong to the set of generator eigenvalues of Pμ

τ . In fact, the spectral gap between the leading
generator eigenvalues of Pμ

τ , in Fig. 9, is not significantly affected by the attractor crisis. As a
result, neither is the rate of decay of the correlation function Cz,z(t), whose sample estimates
are represented in the right panels of the same Fig. 9. This applies to the correlation function
between any pair of observables (not shown here). In conclusion, for this attractor crisis in
the Lorenz flow, critical slowing down is not observable from time series converged to Λ.
This can be interpreted by the fact that the evolution of densities is affected by the weaker
stability of the attractor close to the crisis, but that this change in stability is not felt along the
attractor. The stability of the attractor should here be understood as the rate of convergence of
densities to it, as measured by the spectral gap between the zero and the secondary generator
eigenvalues of Pm

t , as opposed to the rate of divergence of nearby trajectories measured by
the Lyapunov exponents. In conclusion, only the stable resonances are affected by the crisis.

5 Summary and Discussion

The global stability of the chaotic attractor in the Lorenz flow as it undergoes a boundary
crisis is investigated numerically in terms of Ruelle–Pollicott resonances. The results are

10 The sample correlation function is estimated from a long time series initialized in the basin of attraction
of Λ as a discrete approximation of the time average (A.6) (see e.g. [94]).
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Fig. 9 Leading generator eigenvalues calculated from the transition matrices Pμ
τ (left) and sample correlation

functionsCzz(t) (right), for different values of ρ. Here, according to the formula (A.6), the correlation function
is not normalized by the covariance at t = 0. Thus, Czz(0) yields the variance of z
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now summarized and their implications regarding early-warning of chaotic attractor crises
and response theory discussed.

For the boundary crisis of the Lorenz flow, the Lyapunov exponents do not provide a
precursor. For that purpose, global information appears to be necessary. While the Lyapunov
spectrum describes the divergence of nearby trajectories, the semigroup of transfer operators
governs the convergence/escape of densities to/from an invariant measure. The rate at which
this occurs is characterized by the eigenvalues of the generator of the semigroupwith negative
real part, the Ruelle–Pollicott resonances. These resonances are divided into a stable and an
unstable family describing the evolution of densities about and on the support of the invariant
measure, respectively. The gaps between the stable (unstable) resonances and the imaginary
axis thus provides an indicator of the global stability (mixing rate) of a possibly chaotic
invariant set (see Sect. 3.2).

To monitor the changes in the spectrum during the crisis, a discretization of the transfer
operators is estimated either from many short time series sampling the state space or from a
few long trajectories converged to the attractor. The difference between the two approaches
is essential, as the first one yields an approximation of transfer operators acting on functions
of the full state space, thus yielding information on global stability, while the second one
gives a restriction of the transfer operators to the attractor supporting a physical measure.
The second approach thus only allows to approximate the unstable resonances associated
with mixing dynamics on the attractor, while the first also gives an approximation of the
stable resonances corresponding to contraction towards the attractor, thus providing global
information on the properties of the system outside the attractor.

The main result of this study is twofold. First, as the crisis is approached, some stable
resonances approach the imaginary axis, as indicative of the weaker stability of the attractor.
After the crisis, these stable resonances get further from the imaginary axis, their distance
to the imaginary axis giving a measure of the escape rate from the chaotic saddle. Note that,
from the contraction property of the semigroup of transfer operators, both the stable and
unstable resonances remain to the left of the imaginary axis.

Second, only the stable resonances are affected by the crisis. This implies that, in the
boundary crisis considered here, the approach of the crisis cannot be inferred from time
series evolving along the attractor, i.e. from long observations of the unperturbed system.
This explains why the correlation functions between different observables are not showing
any sign of slowing down of their decay before the crisis.

As a consequence, early-warning indicators [9] based on correlation functions [6] or
power spectra [7] are in general unable to give a precursor of attractor crises showing the
same behavior as the one studied here. On the other hand, indicators based on the recovery
from perturbations [8] may be useful. The perturbation should then be transverse to the
attractor, in the sense that it should project on the stable manifold of the attractor. In fact, in
the case of a stationary point, it is known that the recovery rates as given by the eigenvalues of
the Jacobian of this point [8] coincide with the leading Ruelle–Pollicott resonances [78,95].
A conclusion of this study is that, in the chaotic case, the recovery rates are not given by the
Lyapunov exponents, but rather by the stable resonances.

In fact, that some resonances (the unstable ones) correspond to motions on the attractor,
which can be observed from long time series, while other (the stable ones) correspond to
motions transverse to the attractor, is the central difference between the response theory
for systems in thermodynamic equilibrium [96] and Ruelle’s response theory for dissipative
systems [44]. Indeed, invariant measures of equilibrium systems have a density with respect
to the Lebesgue measure, allowing for the expression of the linear term in the response to
forcing in terms of correlation functions. This is the statement of the celebrated fluctuation-
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dissipation theorem. On the other hand, for dissipative systems such as the Lorenz flow [57],
the invariant measure supported by the attractor is singular and an additional term accounting
for perturbations along the stable manifold of the attractor must be taken into account. In
any case, the susceptibility of the system to forcing depends on the presence of resonances
close to the imaginary axis [44,45]. Eventually, when resonances touch the imaginary axis,
response theory breaks down, which is what is observed in this study during the attractor
crisis, where response theory cannot be expected to work.

The story can, however, be very different in the presence of noise (see [97] for an analysis of
the Fokker-Planck equation of theLorenz flowwith additivewhite noise).Noisy perturbations
may indeed push the system away from the attractor, in the direction of its stable manifold,
allowing for the system to explore the state space. This argument can be made rigorous by
verifying the Lie bracket Hörmander condition [98,99] to ensure, from the hypoellipticity
of the generator, that, thanks to the noise, the transfer semigroup has a smoothing effect.
If this condition is verified, the invariant measure may admit a density, allowing for the
fluctuation-dissipation theorem to hold [47]. This result can be understood from the fact that,
in this case, the transfer semigroup in state space and the one restricted to the support of the
invariant measure μ can be identified with the same semigroup on L2

μ. As a consequence,
recovery rates and decorrelation rates can both be identified with the real part of the leading
resonances [87].Moreover,when the unperturbed deterministic system is hyperbolic, singular
perturbation theory may be applied to relate the resonances of the perturbed system to those
of the unperturbed system [49,50].

A final issue remains regarding the genericity of the results obtained here for the Lorenz
flow. The crisis scenario described here might be of general relevance for the study of three-
dimensional flows, since the robust chaotic sets in three dimensions are singular hyperbolic.
It is not a priori clear whether the basic difference between the behavior of stable vs. unstable
resonances near the crisis persists in higher dimension. In particular, indications were given
in [43] of the shrinkage of the spectral gap of transfer operators and of the slowing down
of the decay of correlations during a boundary crisis in a deterministic and autonomous
general circulation climate model, featuring exclusively internally generated fluctuations.
Nonetheless, those results are not conclusive enough, because we looked at the transfer
operator in a severely projected space and we could not follow the statistical properties
mentioned above up to the exact value of the parameter determining the crisis.

A next step in our analysis is to try to understand what determines whether critical transi-
tions due to boundary crises in a deterministic chaotic system are flagged by the properties
of the unstable resonances or whether looking at the stable resonances is instead required.
These two scenarios pertain to cases where the attractor contains all the needed information,
or, instead, a neighborhood of the attractor needs to be considered. In the latter case, a natural
way to probe the system is by adding a small stochastic perturbation.

A possible way ahead is to look at whether a role in this sense is played by different
scenarios pertaining to the geometrical properties of the basin boundary, and in particular at
looking at the details of how the edge state, i.e. the unstable periodic orbits in the case studied
here, and the attractor collide at the bifurcation. It is important to note that the edge state
separating two co-existing attractors is the gate for the noise-induced transitions between the
attractors. Therefore, near the crisis, adding noise does not only allow for probing a small
region near the attractor, but also leads to sampling the properties of edge state.
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Appendix A: Transfer Operators, Resonances and Decay of Correlations

Let us shortly review the spectral theory of transfer operators relevant for this study. A more
detailed exposition can be found in [43] and references therein.

Ergodicity, Mixing and Correlations

A key concept in ergodic theory is that of an invariant measure for the flow Φt , that is, a
probability measure μ such that

μ(Φ−1
t A) = μ(A), for any A ∈ B. (A.1)

In other words, a measure is invariant if, according to this measure, the probability of a state
to be in some set does not change as this state is propagated by the flow. It follows then that
the average with respect to the invariant measure μ of any integrable observable g is also
invariant with time, i.e.

∫
X

g(Φt x)μ(dx) =
∫

X
g(x)μ(dx) := 〈g〉μ, (A.2)

so that the invariant measure gives a statistical steady-state.
A flow Φt with an invariant measure μ has interesting statistical properties when μ is

ergodic, that is, when the sets A which are invariant, i.e. Φ−1
t A = A, are either of measure

0 or 1.11 Then, by the celebrated individual ergodic theorem of Birkhoff [24, Chap. 7.3], the
average of any μ-integrable observable g is such that

〈g〉μ = lim
T →∞

1

T

∫ T

0
g(Φt x)dt := ḡ, for μ−almost every x . (A.3)

Thus, when μ is ergodic, the time mean is independent of the initial state x except for a set
of null measure.

Remark 2 There may exist many ergodic measures. This is actually the case for the Lorenz
flow for ρHomo < ρ < ρA, where, as seen in Sect. 2, three attractors coexist. Each attractor
then supports at least one invariant measure [65, Chap. 4]. In this case, the equality (A.3)
between ensemble averages and time averages may hold only for initial states belonging
to the attractor supporting the measure, while time averages for two initial conditions in
different basins of attraction will not coincide in general. More useful for experiments is
then the eventual physical property of the measure. The latter ensures that the equality (A.3)
between ensemble averages and time averages holds not only for initial states in a set of
positive measure μ, but also for states in any set of positive Lebesgue measure m in the basin
of attraction of a given attractor [12].

11 In particular, the ergodicity of the invariant measure implies that each set of positive measure is visited
infinitely often by orbits starting from μ-almost every point [100, Lemma 6.15].
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A particularly important quantity in ergodic theory is the correlation function,

C f,g(t) :=
∫

X
f (x)g(Φt x)μ(dx) − 〈 f 〉μ〈g〉μ, t ≥ 0, (A.4)

between any observables f, g ∈ L2
μ(X). It gives a measure of the relationship between the

two observables as one evolves with time. The decay of correlation functions with time is a
macroscopic manifestation of chaos. Indeed, this decay is equivalent to the mixing property
(see e.g. [24, Chap. 4] and [65, Chap. 4]),

lim
t→∞ μ(A ∩ Φ−1

t B) = μ(A)μ(B), for any A, B ∈ B, (A.5)

of the invariant measure μ, which is stronger than ergodicity. In other words, the probability
for some state to be in any set B after some time t is independent of the probability of this
state to be in any set A initially. Any information about the initial state of an ensemble is thus
gradually forgotten.

Remark 3 For a physical measure μ supported by an attractor Λ, the correlation function
can be estimated by the time mean

C f,g(t) = lim
T →∞

1

T

∫ T

0
( f (x) − f̄ )(g(Φt x) − ḡ) dt, (A.6)

from a single time initialized in the basin of attraction of Λ. For this reason, we will see in
Sect. 3.3.2 that complete information on Pμ

t , t ≥ 0 can be obtained from from observations
on the corresponding attractor alone. Unfortunately, for the forced and dissipative systems
considered here, volumes contract on average [101, Chap. 2.8] so that the invariant measure
μ is supported by an attractor with zero Lebesgue measure m. It follows that, as opposed to
the semigroup Pm

t , t ≥ 0, no information on the dynamics away from the attractor is carried
by Pμ

t .

Spectral Theory of Ergodicity and Mixing

One can see from the definition (A.4) that the correlation function is fully determined by
the family of transfer (Koopman) operators Pμ

t (Uμ
t ) on L2

μ(X), i.e. with respect to μ. In
fact, classical results relate the ergodic properties of measure-preserving dynamical systems
to the behaviour of the semigroups [24–26]. Note first, that the invariance of the measure
μ together with the invertibility of the flow ensure that the semigroups are isometries and
constitute a unitary group on L2

μ(X). As a consequence, the spectrum of the operators is
contained in the unit circle |z| = 1, z ∈ C and Pμ

t and Uμ
t have the same eigenvalues and

eigenfunctions, for any real t . Moreover, the following results hold.

Theorem 1 If the measure-preserving dynamical system (X,B, (Φt )t∈R, μ) is

(i) ergodic, then 1 is a simple eigenvalue of Pμ
t , t ∈ R, and conversely.

(ii) mixing, then the only one eigenvalue is one.

The first item of this theorem can be understood from the fact that ergodic systems have only
one stationary density with respect to the invariant measure. The second is due to the fact that
eigenfunctions associated with eigenvalues on the unit circle do not decay and thus prevent
mixing for general observables.

The rate of decay of correlations, or mixing, characterizes the (weak) convergence of
ensembles to a statistical steady-state and has been the subject of intense research these past
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decades. Once again, the latter can be studied from the spectral properties of the semigroups
[31]. However, the eigenvalues responsible for such decay, the Ruelle–Pollicott resonances
[29,30], lie inside the unit disk and are thus not accessible from operators on regular func-
tional spaces (here, the resonances refer to the eigenvalues of the finite time operators rather
than there infinitesimal generator). Anisotropic Banach spaces of distributions capturing
the dynamics of contraction and expansion of the system and on which the semigroups are
contracting should instead be considered [31–36].12

A certain degree of hyperbolicity is necessary to adapt these spaces to the dynamics, and
the robustness to perturbations of the spectrum or the convergence of numerical algorithms
is not guarantied in general (see [33,105] and [106,107], respectively, for results in this
direction). In the present study, it is found, however, that the discretization scheme used in
Sect. 3.3 yields reasonably good approximations of the resonances.

The spectral properties of the semigroups with respect to an invariant measure μ thus
allows for the study of the ergodic properties of this measure. On the other hand, for the study
of the global stability of this set, operators acting on a neighborhood of positive Lebesgue
measure of a chaotic set should be considered.

Spectral Theory of Global Stability

In Sect. 1, we have advocated on heuristic grounds that the global stability of invariant sets
could be studied from the evolution of densities and observables. In this case, however, the
transfer (Koopman) operators Pm

t (Um
t ) with respect to the Lebesgue measure m should

be considered. Indeed, this should allow one not only to study the mixing dynamics of an
invariant measure, but also the contraction to/escape from such a measure. This has allows
for new developments in the theory of the global stability of stationary points and periodic
orbits from the behavior of Pm

t [41] and Um
t [42]. This approach should also be amenable to

chaotic invariant sets. However, the same difficulties as mentioned in the previous “Spectral
Theory of Ergodicity and Mixing” section of Appendix A, regarding the functional analytic
framework appropriate to capture the resonances inside the unit disk, are encountered. In
order to better interpret the numerical results obtained in Sect. 4, let us however give a few
comments regarding the eigenfunctions of the Koopman operators U X

t and UΛ
t on the space

C(X) of continuous functions on the compact metric space (X, d) (e.g. X = R
n with d

the distance induced by the Euclidean norm) and its restriction to the support Λ of some
invariant measure μ, respectively. Since (X, d) is a normal space and Λ is a closed subset
of X , the Tietze–Urysohn Extension Theorem (e.g. [108]) ensures that for any continuous
function gΛ on Λ, there exists a continuous function gX on X whose restriction to Λ is gΛ.
The restriction UΛ

t of U X
t on C(Λ) is thus defined such that UΛ

t gΛ = U X
t gX .

Multiple Attractors

We first discuss the coexistence of multiple attractors with disjoint basins of attraction, (such
as in the Lorenz flow for ρHomo < ρ < ρA), in terms of multiplicity of the eigenvalue 1.
When the state space X is forward invariant, i.e. such that X ⊂ Φ−1

t X then one has that

U X
t 1X = 1

φ−1
t X∩X = 1X , t ≥ 0. (A.7)

12 Contraction by semigroups can be interpreted in physical systems as determining entropy production.
Recognizing this has been essential to understand how reversiblemicroscopic evolutions can lead to irreversible
macroscopic properties of systems out of thermal equilibrium (see the pioneeringwork [102–104] for reviews).
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Thus, the forward invariance of X implies that the function 1X , constant on X , is an eigen-
function of the Koopman semigroup associated with the eigenvalue 1. This is for example
the case when the flow has a single globally asymptotically stable attractor on X . If instead,
there is a single repeller and Φ−1

t X ⊂ X , then U X
t 1X = 1

φ−1
t X∩X = 1

φ−1
t X so that 1X is no

longer an eigenfunction associated with 1.
When several attractors Λ1, . . . , Λl coexist, each basin of attraction B(Λi ) is forward

invariant and U X
t 1B(Λi ) = 1B(Λi ), t ≥ 0. Thus, to each attractor Λi corresponds a Koopman

eigenfunction 1B(Λi ) associated with a generator eigenvalue zero. However, only l of the l +1
functions 1X , 1B(Λ1), . . . , 1B(Λl ) are independent, so that there are only l eigenvalues 1. For
example, when two attractors coexist, a possibility is to have as independent eigenfunctions
1X and 1B(Λ1) − 1B(Λ2). Adding suitably defined (e.g. Gaussian) noise leads to a unique
invariant measure; reducing the intensity of the noise to zero leads in the limit to selecting
a special invariant measure constructed as linear combination of all the invariant measure
of the deterministic case. Note, however, that the numerical approximations of the basins of
attraction may be difficult when the geometry of the boundary is convoluted. The fact that
the numerical discretization of the state space leads effectively to introducing some noise in
the system might explain why also in the deterministic case one can miss the presence of
various coexisting and independent invariant measures.

Correspondence Between the Eigenvalues of UΛ
t and U X

t

Let us discuss the correspondence between the eigenvalues of U X
t and UΛ

t for a hyperbolic
attractor Λ. Following [45], we refer to the eigenvalues of U X

t as the unstable resonances
and those of the UΛ

t which do not correspond to the latter as the stable resonances.
What we show below is strictly applicable only for eigenvalues on the unit circle, as

discussed in Remark 4. Nonetheless, we believe that it may be practically relevant in the
region near the unit circle, and, using more advanced mathematical tools, could be extended
for the unit disk, away form the essential spectrum.

We consider the particular case where the invariant measureμ is supported by a uniformly
hyperbolic attractor Λ ⊂ X for the continuously differentiable flow Φt , t ∈ R on (X, d).
For convenience, we will assume that X is the basin of attraction of Λ. The global stable
manifold Ws through the point x ∈ X can then be characterized topologically by

Ws(x) = {y ∈ X : d(Φt (x),Φt (y)) → 0, t → ∞}. (A.8)

It follows directly that Ws is invariant, i.e. Φt Ws(x) ⊂ Ws(x) and ∪x∈ΛWs(x) = X , since
X is the basin of attraction of Λ. Moreover, as a consequence of the stable manifold theorem
[65, Chap. 6], x �→ Ws(x) is continuous.

Proposition 2 Let Φt , t ∈ R be a continuously differentiable flow on the compact space X.
Let Λ be a uniformly hyperbolic attractor and denote by UΛ

t : C(Λ) → C(Λ), t ≥ 0, the
restriction to C(Λ) of the Koopman operator U X

t : C(X) → C(X), g �→ g ◦ Φt . Assume
that ψΛ in C(Λ) is an eigenfunction of UΛ

t associated with the eigenvalue ζ ∈ C for some
t > 0, i.e. UΛ

t ψΛ = ζψΛ. Then the function ψ X such that

ψ X (y) = ψΛ(x), whenever y ∈ Ws(x) (A.9)

is in C(X) and is an eigenfunction for U X
t associated with the eigenvalue ζ .

In other words, ψ X takes on a leaf of the global stable manifold a constant value given by
that of ψΛ on this leaf.
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Proof Let us first verify that ψ X is indeed in C(X). Note first that ψ X is defined on X , since
Ws = X . The continuity ofψ X follows from that ofψΛ and x �→ Ws(x). To see this, let {yn}
be a sequence in X converging to y. For each yn there is an xn in Λ such that yn ∈ Ws(xn).
Thus

ψ X (yn) = ψΛ(xn) (A.10)

From the continuity of x �→ Ws(x), the limit x of xn exists and is such that y ∈ Ws(x)

and ψ X (y) = ψΛ(x). From the continuity of ψΛ, it follows that

lim
n→∞ ψ X (yn) = lim

n→∞ ψΛ(xn) = ψΛ(x) = ψΛ(y), (A.11)

so that ψ X is continuous on the metric space (X, d).
That ψ X is an eigenfunction follows directly from the invariance of the global stable

manifold:

U X
t ψ X (y) = ψ X (Φt y) = ψΛ(x) whenever Φt y ∈ Ws(x) (A.12)

= ψΛ(x) whenever y ∈ Ws(Φ
−1
t x) (A.13)

= ψΛ(Φt z) whenever y ∈ Ws(z) (A.14)

= ζψΛ(z) whenever y ∈ Ws(z) (A.15)

= ζψ X (y). (A.16)

��
Thus, to each eigenfunction UΛ

t on C(Λ) corresponds an eigenfunction of U X
t on C(X)

associated with the same eigenvalue, i.e. the spectrum of UΛ
t is a subset of the spectrum of

U X
t .

Remark 4 There is, however, a major caveat to the applicability of this results. Indeed, it
cannot be applied to eigenfunctions associated with eigenvalues inside the unit disk, since
UΛ

t has a roughening effect due to the contraction on the unstable manifold manifold of Λ,
backward in time. For that purpose, spaces a distributions should be considered for ψΛ.

Remark 5 Asimilar result holds for the nonuniformly hyperbolic case [66]. However, the sta-
ble foliation is then only measurable so that eigenfunctions in spaces of measurable functions
should be considered.

Appendix B: Robustness of the Resonances

In this appendix, we explain and give support to the choice of parameters used to obtain the
results of Sect. 4 and given in Sect. 3.4.

Numerical Integration

In this study, the time step of integration is particularly important for the position of the
attractor crisis. It appears that for larger time steps, the attractor crisis occurs for values of ρ

smaller than ρA. A time step of 10−4 allows for the crisis to occur within 1% of ρA, while
keeping the numerical integration tractable.
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Fig. 10 Convergence test of the
real parts of the five leading
generator eigenvalues calculated
from Pm

τ with respect to the grid
resolution nd -by-nd/2-by-nd , for
ρ = 24, τ = 0.05 and from
3.2 × 1010 trajectories

Discretization

The choice of the grid used to approximate the transfer operators by transition matrices is the
most critical step of the numerical application in this study. First, in order for probabilities
to be conserved, the grid should cover a bounded set within which any trajectory remains.
This condition if fulfilled by a grid covering the ball Ro (see Sect. 2). A discretization of Ro

is then easily implemented when working in spherical coordinates (r, θ, φ).
Second, due to the fine-grained geometry of the eigenvectors associated with chaotic

sets, the generator eigenvalues are slow to converge with the grid resolution.13 In this study,
the focus is, however, on the generator eigenvalues close to the imaginary axis, which are
expected to be more robust to perturbations than eigenvalues further from the imaginary axis.
The results of a test of convergence with respect to the grid resolution nd -by-nd/2-by-nd is
given in Fig. 10. One can see that for nd ≥ 400, the real part of the first nonzero eigenvalue
is close to convergence. To get an idea of the value to which this real part would converge
for higher resolutions, the dashed orange line represents a least square fit of an exponential
aebnd , with a, b ∈ R, to it. The quality of this fit and the fact that the fitted curve is an
exponential converging to zero suggests that this eigenvalue, for ρ ≈ 24, would converge to
the imaginary axis if the resolution were to be further increased. Eventually, a grid resolution
of 400-by-200-by-400 is chosen, allowing for the real part of the first nonzero generator
eigenvalue to remain within 2% of the corresponding value obtained for nd = 500. The same
grid is used to estimate Pμ

τ , for which similar numerical convergence is also observed (not
shown here).

Transition Time

The transition time τ for which the transition matrices Pm
τ and Pμ

τ are estimated is a key
parameter. In theory, the spectral mapping formula (3.8) allows to calculate the generator
eigenvalues λk from the eigenvalues ζk(τ ), k ≥ 0 for the transfer operator Pη

τ , for any
transition time τ . A first issue is, however, that, in taking the complex logarithm divided by
τ to get the λk from the ζk(τ ), the imaginary part of the λk is only known modulo 2π/τ .
An arbitrary choice of the principal part would then be valid only for true λk such that
|�(λk)| ≤ π/τ , so that this window shortens as τ is increased (see [109, Sect. 2.4]).

13 There is no general result regarding the convergence with the grid resolution of eigenvalues of transition
matrices to the Ruelle–Pollicott resonances. This is, however, the case for uniformly hyperbolic systems
[33,34] for which Ulam’s method may converge (see [107], for the case of hyperbolic maps).
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Fig. 11 Convergence test of the real parts of the leading generator eigenvalues of Pm
τ (left) and Pμ

τ (right)
with respect to the number of samples Ns , for ρ = 24 and ρ = 28, respectively, and a grid of 400 − by −
200 − by − 400

Second, a compromise should be found in order to estimate correctly as many eigenvalues
as possible, while only approximating those for which the eigenvectors can be resolved for a
given grid. Indeed, the longer the transition time τ , the smaller |ζk(τ )| = e�(λk )τ for λk with
a small real part. Thus, in order to be able to estimate the eigenvalue ζk(τ ) numerically, τ

should be sufficiently small for e�(λk )τ to be larger than a threshold under which numerical
errors become important. This threshold depends on several factors such as the sampling, the
nonnormality of the transfer operators and roundoff errors [109].

On the other hand, it is not always a good strategy to take τ short to approximate as many
λk far from the imaginary axis as possible. Indeed, eigenvalues further from the imaginary
tend to be associated with eigenvectors with more and more changes of sign. For the latter
to be resolved, the grid resolution should be higher and higher. However, if for a fixed grid,
eigenvalues ζk(τ ) associated with eigenvectors which cannot be appropriately resolved have
not decayed, their imprecise approximation will also have an impact on eigenvalues closer
to the imaginary axis. As a rule of thumb, the lower the grid resolution, the larger should
τ be, so as to approximate only the eigenvalues for which the eigenvectors can be properly
resolved at this resolution. For a grid of 400-by-200-by-400, a transition time τ of 0.05 time
units is found to give of a good compromise.

Number and Length of Trajectories

Ulam’s method relies on the estimation of transition probabilities from time series. The
quality of these estimations depend on the sampling. To test the sampling, one strategy is to
estimate confidence intervals (see e.g. [86, SI] and [88]). Another approach, followed here,
is to directly test the convergence of the generator eigenvalues with respect to the number
of samples Ns . This convergence of the transition probabilities and the eigenvalues with Ns

is known to occur at a rate of O(N 1/2
s ) [90,109]. When estimating Pm

τ from many short
time series, the number of samples is given by the number of trajectories. In this case, the
robustness of the eigenvalues to Ns is shown in the left panel in Fig. 11. One can see that a
number 6.4× 109 of trajectories is more than enough for an estimation on the chosen grid of
400-by-200-400. When estimating Pμ

τ from a few long time series, the number of samples
is given by the number of trajectories by their lengths Tsamp divided by their sampling rate.
Here, a sampling rate of 100 samples per time unit is used and 24 long trajectories are used
(in order to distribute each on a computer thread). The robustness of the eigenvalues to Tsamp
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is shown in the right panel in Fig. 11. One can see that a length Tsamp of 1 × 105 time units
is more than enough for an estimation on the chosen grid of 400-by-200-400.

Numerical Eigenvalue Problem

We have seen that the fine-grained geometry of the eigenvectors of the Lorenz flow require
a large grid resolution in order to achieve numerical convergence, if only for the leading
eigenvalues. While, the estimation of the transition matrices from time series is, an embar-
rassingly parallel problem, which can be easily distributed on several nodes of a calculator,
solving the eigenproblem for such large transition matrices is more challenging, both in
terms of computations and memory. On the other hand, the sparse structure of the transition
matrices allows to use iterative eigensolvers. Here, we have chosen the block Krylov Schur
algorithm implemented in the Anasazi package [91] of the Trilinos library. This algorithm
is a common and robust choice for such problems and the Anasazi implementation makes it
straightforward to distribute it on several nodes of a calculator.
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