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Abstract. Species richness estimation is one of the most widely used analyses carried out
by ecologists, and nonparametric estimators are probably the most used techniques to carry
out such estimations. We tested the assumptions and results of nonparametric estimators and
those of a logseries approach to species richness estimation for simulated tropical forests and
five data sets from the field. We conclude that nonparametric estimators are not suitable to
estimate species richness in tropical forests, where sampling intensity is usually low and rich-
ness is high, because the assumptions of the methods do not meet the sampling strategy used
in most studies. The logseries, while also requiring substantial sampling, is much more effective
in estimating species richness than commonly used nonparametric estimators, and its assump-
tions better match the way field data is being collected.
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INTRODUCTION

Species-richness estimation is one of the most widely
used analyses carried out by ecologists, either to com-
pare samples obtained with different efforts, or by
extrapolation, to predict the number of species present
in an area larger than the one sampled. Extrapolation
methods are frequently used for geographically large
areas, where coverage of the complete range is out of
reach, too labor intensive, or too expensive.
Parametric species-richness estimation is based on

parameter inference for either one of the two main rela-
tionships describing assemblages: the number of individ-
uals (N) in a community or the area (A) this community
occupies. In these cases, the number of species (S) only
depends on the relative or rank abundance distribution
of the species (RAD; Izs�ak and Pavoine 2012) or the
species–area relationship (SAR; Rosenzweig 1995). As a
general rule of thumb, in any number of random sam-
ples of an area, the number of species that remain unde-
tected will increase with increased S and A (Gotelli and
Colwell 2001), precluding any attempt to directly quan-
tify the RAD or the SAR from samples. This clearly
poses a problem in tropical forests that are generally
both large and rich.
There has been a long argument as to whether the log-

series (Fisher et al. 1943), the log-normal (Preston 1948),
or alternative distributions (McGill et al. 2007) give the

best fit for rank abundance distributions (RADs), how
much the fit is dependent on scale or sampling complete-
ness, and to which extent the best fitting model reflects
the biological processes underlying the distribution. The
use of nonparametric estimators of species richness, such
as Chao, ICE (incidence-based coverage estimator of spe-
cies richness), and jackknifing, has been proposed as a
way of dealing with this uncertainty, because they do not
assume any underlying distribution. It would be wrong,
however, to suppose that they are less sensitive to other
assumptions than parametric methods or that they do
not suffer from other drawbacks. Brose et al. (2003)
noted that sampling-theoretical methods of estimation
require high sampling intensity to avoid what Wang and
Lindsay (2005) call the “severe under-estimation observed
from popular nonparametric estimators due to the inter-
play of inadequate sampling effort, large heterogeneity
and skewness.” Xu et al. (2012) also reported that non-
parametric methods severely underestimate richness and
emphasized that these methods should not be used across
heterogeneous landscapes. This is largely because non-
parametric estimators based on a sampling estimate of
the rare tail of the SAR are very sensitive to the shape of
the abundance distribution. As underlined by Harte and
Kitzes (2015), “The rare tail is emphasized because the
shape of the species–area relationship is especially influ-
enced by the numbers of rare species.” Although the per-
formance of estimators has been frequently compared
(Brose et al. 2003, Chiarucci et al. 2003, Walther and
Moore 2005, Hortal et al. 2006, Xu et al. 2012), much
less of the ecological literature critically evaluates their
assumptions and caveats.
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Perhaps the most commonly used estimator for spe-
cies richness is the Chao1 nonparametric estimator
(Chao 1989, Chao et al. 2009), which estimates the num-
ber of species as:

Sestimated ¼ Sobserved þ f 21
2f2

where f1 is the number of species with 1 individual in the
sample (singletons) and f2 is the number of species with
2 individuals in the sample (doubletons). The Chao1
estimator and other nonparametric estimators make no
assumptions about the underlying species-abundance
distribution, but do assume that sampling is random
with replacement across the whole area. When f1 = 0,
it is assumed that all species have been collected and
Sestimated = Sobserved (Chao et al. 2009).
Chao Bunge (Chao and Bunge 2002), Chao Lee ACE,

and Chao Lee ACEI (Chao and Lee 1992), and jack-
knife (Burnham and Overton 1979), which are variations
on the original Chao1 estimator, are also dependent on
the fractions of the rare or infrequent species, and
require “a sufficiently high overlap fraction [..] to pro-
duce a reliable estimate of the species” (Chao and Bunge
2002), and all are based on the capture–recapture princi-
ple that requires sampling with replacement.
In contrast, the logseries is not based on a capture–

recapture principle and was among the first attempts to
mathematically describe the relationship between the
number of species and number of individuals in a biolog-
ical context (Fisher et al. 1943). It is given by

Un ¼ axn

n

where: Φn is the number of species with n individuals; a
is Fisher’s a; and x = N/(N + a) (N being the number of
individuals in the total sample; x being asymptotically
equal to 1 with large sample sizes). Hence, we expect a
from samples to quickly approach a of the total land-
scape, after which it will be practically independent of
sample size. Fisher’s alpha can be calculated from the
number of individuals (N) and species (S) in a sample by
iteratively solving

a ¼ S
lnð1þN=aÞ .

The logseries is essentially a geometric summation,
which builds up from the first term (Φ1), the singletons.
The number of singletons is thus predictable in a log-
series (Φ1 = ax) and is always the largest class. As x is
very close to 1 for reasonably large samples, Φ1 � a in
such samples. Similarly, the number of doubletons is:
Φ2 = a x2/2 � a/2. When we assume that RADs of com-
munities follow the logseries, this has implications for
the nonparametric Chao1 estimator. For large samples,
the Chao1 estimator (note that f 21 =½2f2� ¼ U2

1=½2U2�Þ will

simply become Sestimated = Sobserved + a2/[2(a/2)] =
Sobserved + a. Consequently, we predict that, for reason-
ably large samples, for which a is constant, Chao1
always estimates the number of unseen species as a,
regardless of the size of the samples.
Hubbell’s neutral theory was the first ecological the-

ory deriving the logseries from the basic biological pro-
cesses of birth rate (b) and death rate (d ) (Hubbell 2001,
2015). It can be shown that, in this model, x = b/d. Neu-
tral theory (NT) derives a distribution, the zero sum
multinomial (ZSM), which, for large communities with
little drift, approaches a logseries. For small local com-
munities (limited immigration and drift), the ZSM
approaches a lognormal (Hubbell 2001).
Here we compare commonly used nonparametric esti-

mators of species richness to one parametric estimator
based on the logseries for the purpose of estimating spe-
cies richness in large areas of tropical forest. We specifi-
cally chose the logseries as we are trying to estimate
richness in very large areas where the ZSM approaches
this distribution. We show by simulations and compar-
isons with empirical data that the assumptions of the
parametric estimator are less sensitive to deviations than
those of the nonparametric estimators.

METHODS

Simulations

We modeled forest communities of 10,000 1-ha plots
(a 100-km2 area), each plot with 500 individuals. We ini-
tially filled each of the 10,000 ha with a random sample
of 500 individuals from a metacommunity (MC). The
MC was constructed using a logseries of 15 million indi-
viduals and a Fisher’s a of 300, which is roughly equiva-
lent to a rich central Amazonian rainforest (see Field
data). We used a logseries as this conforms to the struc-
ture expected (Hubbell 2001) and found in tropical for-
ests (Hubbell et al. 2008, ter Steege et al. 2013, Hubbell
2015). After filling the plots randomly from the MC, the
mean Fisher’s a of all plots and that of the virtual forest
initially is, as expected, equivalent to that of the MC.
During the simulations, trees were randomly selected

to be removed (1 per plot per time step) and new recruit-
ment could come from dispersal (m) from four sources:

1. Recruitment from dispersal inside the plot (mplot),
equivalent to local recruitment. Local recruitment is
random within the plot, i.e., we assume no spatial
structure inside the plots.

2. Recruitment from dispersal from the surrounding
eight plots. Dispersal probability based on dispersal
distance was based on the model of Chisholm and
Lichstein (2009), modified by Pos et al. (in press).
The dispersal probability from the adjacent plots
(madjacent) is computed from dispersal distance as
(Pos et al., in press):
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madjacent ¼ 0:3� A� ðl � 2� dÞ2
A

where: A is the area of the plot (10,000 m2),
l = length of the plot (100 m), and d = the average
dispersal distance. Assuming an average dispersal
range of 10–40 m madjacent is in the range of 0.108–
0.288.

3. Recruitment from dispersal from the surrounding
forest (10,000 ha), comparable to long-distance
dispersal. Individuals for replacement were drawn
randomly from the 10,000 ha. This assumes that
long-distance dispersal is not spatially driven. We
used a probability of mforest = 0.1 9 madjacent.

4. Recruitment from dispersal from the MC, this is
comparable to infrequent very long-distance disper-
sal, also termed vagrancy. The individuals were
drawn randomly from the MC, assuming that very
long-distance dispersal too is not spatially driven. We
used a probability of mMC = 0.01 9 madjacent.

5. Speciation (v) as defined in the Unified Neutral The-
ory of Biodiversity and Biogeography (Hubbell 2001):

v ¼ h
2� J

¼ 250
2� 10;000� 500

¼ 2:5e�5

where h is the biodiversity number, asymptotically
equivalent to Fisher’s alpha, and J is the size of the
community.

Parameters 2–4 were calculated first. Local recruit-
ment (1) was then calculated as mplot = 1 �
madjacent � mforest � mMC � v.
We ran 30,000 time steps for each model with mean

dispersal distances of 10, 15, 20, 25, 30, and 40 m. At
each time step, one individual per plot was randomly
selected to be replaced by another individual based on
the five probabilities above. Thus, 10,000 individuals
were replaced at each time step.
After each simulation, we plotted the RAD with a fit

of the logseries and lognormal, the Species Area Curve
with Chao1 estimator, the Fisher’s a to area curve, the
exact richness of the simulated community, and the pre-
dicted richness based on Fisher’s a and the Chao1 esti-
mator. All curves were based on the average of 50 draws

from 1 to all 10,000 plots. We also plotted the results for
the average of 50 random draws of 100 plots from our
virtual forest.
We also ran the simulation model for a sample of

49 ha of forest (7 9 7 ha), using the field data of BCI
(Table 1). We simulated a forest area of 49 plots, using a
MC of 15 km2 (the size of BCI), an alpha of 50, a den-
sity of 429 individuals/ha, and a dispersal distance of
40 m (Chisholm and Lichstein 2009) for madj = 0.288,
and v = 0.00119.
Simulations and calculations were carried out with cus-

tom-made scripts in R (R Development Core Team 2011).

Field data

We used field data from the following four sites: (1)
Barro Colorado Island (BCI), a 50-ha plot in old growth
forest (Condit et al. 2002; this well-known data set was
also used in Chao et al. (2009); (2) Reserva Ducke (RD;
Appendix S1: Fig. S1), a forest reserve of 100 km2 in
central Amazonia, just north of Manaus (Castilho
2004); (3) Piste de St Elie (PSE; Appendix S1: Fig. S2),
mixed forest in northern French Guiana (Sabatier et al.
1997); (4) the Monte Branco Plateau (MBP; App-
endix S1: Fig. S3), a large bauxite plateau of 3750 ha in
Para, Brazil (Salom~ao 2015).
BCI tree data was extracted from vegan (Oksanen

et al. 2008), tree data for RD and PSE are integrated in
the ATDN database (ter Steege et al. 2013) and ext-
racted from that source, MBP tree data (R. P. Salom~ao,
unpublished data) was taxonomically harmonized with
the ATDN database.
We extrapolated the species richness for an area in

which the plots were located; for RD for 7.2 million indi-
viduals (the area of the full 100-km2 reserve); for PSE an
imaginary 1500-ha forest area encompassing the plots;
for MBP the 3750 ha that comprises the complete pla-
teau (Table 1). The plots are well spread across these
areas. For BCI we estimated richness for the 50-ha plot.
For each of the plot data sets, we carried out the fol-

lowing analyses:

1. Plotted the RAD of the data set with the exact log-
series and lognormal for the number of individuals
(N) and species (S) in the field sample;

TABLE 1. Botanical inventories used for the analysis.

Locality No. plots Plot area (ha) N S Target area Target individuals Source

BCI 50 1.00 21,457 225 50 ha 21,457 1
RD 72 0.50 25,066 1,233 100 km2 7,200,000 2
PSE 20 1.00 1,450 574 1,500 ha 933,750 3
MBP 301 0.25 36,546 703 3,750 ha 1,821,229 4

Note: Localities are Barro Colorado Island (BCI), Reserva Ducke (RD), Piste de St Elie (PSE), and Monte Branco Plateau
(MBP). Variables are number of plots sampled, plot area, number of individuals sampled (N), number of species recorded (S), the
target area for which estimates were made, and number of individuals in the target area based on average density. Data sources are
1, Condit et al. (2002); 2, Castilho (2004); 3, Sabatier et al. (1997); 4, Salom~ao (2015).
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2. Constructed a curve of the mean species richness by
area, based on 50 randomizations of the field data;

3. Constructed a curve of the mean of Fisher’s a by
area, based on the same 50 randomizations of the
field data;

4. Estimated species richness in the target area for all
subsamples of the 50 randomizations based on Fish-
er’s a of the sub-samples as follows: S = a 9 ln
(1 + N/a) (Fisher et al. 1943); where a = Fisher’s a,
and N is the number of trees in the subsample and
the variance of S as given by Fisher et al. (1943):
varS = a ln([2N + a]/[N + a]) � a2N/(N + a)2;

5. Estimated species richness in the target area for all
sub-samples of the 50 randomizations, based on
Chao1: Sest ¼ Sobs þ f 21 =ð2f2Þ;

6. Estimated the species richness for the field data set
for a number of nonparametric estimators (Chao
1984, Chao Bunge, Chao Lee ACE, Chao Lee ACEI,
jackknife), as provided in the R package SPECIES
(Wang 2011).

The 50 randomizations of the plot data were produced
without replacement from one plot to the number of
plots in the field data set.

RESULTS

Simulations

The simulations of our virtual forest with mean dis-
persal distance of 20 m produced a RAD that is close to
a logseries, but not fully identical (Fig. 1A). Species rich-
ness calculated with the Chao1 estimator, as predicted,
becomes Sobserved plus ~Fisher’s a for larger samples
(Fig. 1B). While Fisher’s a and species richness calcu-
lated with Fisher’s a tend to asymptotically approach
the community value, species richness calculated with
the Chao1 estimator follows the shape of the species–
area curve and finally overestimates the richness of the
total sample by approximately Fisher’s a.
All simulations (d = 10–40 m) show similar results

(Appendix S1: Figs. S4, S6, S8, S10, S12, S14, S16; Data
S1: SPAR samples.csv). With increasing mean dispersal
distance and, hence, stronger input from the adjacent
plots, Fisher’s a tends to be overestimated slightly before
it reaches the value of the total virtual forest, and the
number of species estimated to be in the full virtual for-
est increases from 2071 to 2098. The calculations for 50
samples of 100 plots suggest that, although Fisher’s a

FIG. 1. Simulation of a 10,000-ha virtual forest with mean dispersal distance of 20 m. Parameters used are mplot = 0.78688;
madjacent = 0.192; mforest = 0.0192; mMC = 0.00192; v = 10�4. (A) Rank abundance distribution (RAD) of the total virtual (black)
with logseries fit (red) and lognormal fit (blue). (B) Species area (SPAR) curve for the total virtual forest and estimated richness
(Sestimated) based on Chao1 (blue). (C) Fisher’s a area curve for the virtual forest. (D) Species richness estimated with Fisher’s a
(black), Chao1 (blue), each with 95% CI (red), and actual species richness of the simulated community (horizontal line).
mplot = local recruitment; madjacent = recruitment from adjacent plots; mforest = recruitment from total forest; mMC = recruitment
from metacommunity; v = speciation.
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predicts a richness closer to the known richness for the
virtual forest, it is still an underestimate of 3–17%
(Appendix S1: Figs. S5, S7, S9, S11, S13, S15; Data S1:
sample by nr of plots.csv). For a similar sample size, the
Chao1 estimator provides an underestimate of 43–51%,
depending on the dispersal distance chosen (Data S1).

Simulations of 49 ha of BCI

Simulations of a 49-ha virtual plot based on the BCI
data produced a RAD (Appendix S1: Fig. S18) very simi-
lar to that of the forest in the real 50-ha BCI plot (Fig. 2).
Fisher’s a was very close to the final value for the simu-
lated forest after 10 plots. Consequently, species richness
was also close to its simulated richness after sampling 10
plots. Species richness calculated with Chao1 is, as pre-
dicted, the species area curve plus Fisher’s a of the sam-
ple. Thus, even when all individuals have been sampled,
Chao1 still predicts unobserved species with a magnitude
of Fisher’s a. This is because, as in real forests, the virtual
forest of 49 ha still contains singletons.

Field data

In all cases: BCI (Fig. 2), RD (Fig. 3), PSE (Fig. 4),
and MBP (Fig. 5), the RAD showed a hollow curve with
few common and many rare species and, except for BCI,

the logseries provided a reasonable fit. In all cases, Fish-
er’s a was very close to that of the full sample with less
than 20 plots sampled. For small samples, Chao1 pro-
vided a severe underestimate for the richness in the sam-
ple, and even for the final sample, Sestimated was almost
equivalent to Sobserved + Fisher’s a.
Species estimates for the target area made with

Fisher’s a were much larger than those made with
the asymptotic Chao1 estimator, which were close to
Sobserved + Fisher’s a of the measured data (Figs. 2–5).
All other nonparametric estimators also predict much
lower values for richness, comparable to the Chao1 esti-
mator (Table 2). Only for BCI, where the area for which
richness was to be estimated was similar to the actual
sample, did the nonparametric estimators approach the
estimate based on Fisher’s a.
For the BCI and MBP data, and simulations with

higher mean dispersal distances, Fisher’s a peaked
before it leveled off to its final value similar to the simu-
lations; i.e., it showed a hump (see Figs. 2, 5). Fisher’s a,
however, rose regularly for PSE, RD, and for simulations
with lower mean dispersal distances (Figs. 1, 2, 4, 5).

DISCUSSION

Based on our simulations with a spatially semi-explicit
model, Fisher’s a provides a more accurate prediction of

FIG. 2. Barro Colorado Island field data (BCI). (A) Rank abundance distribution (RAD) of BCI with logseries fit (red) and log-
normal fit (blue). (B) Species area curve for BCI and estimated richness (Sestimated) based on Chao1 (blue). (C) Fisher’s a area curve
for BCI. (D) Species richness estimated for a 100-ha area on BCI with Fisher’s a (black) and Chao1 (blue), each with 95% CI (red).
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species richness in the virtual-forest communities than
does the nonparametric Chao1 and other nonparametric
methods, especially if sample intensity is low. We believe
that the failure of nonparametric methods to estimate
diversity is mainly due to the resampling approach with
its need of high sampling effort and its expected loss of
singletons, and the lack of definition of the target area.
We elaborate on this below.
Based on resampling the BCI plot data, Chao et al.

(2009) found that, to detect 90% of the species, a median
sample size of 80% of the area is necessary. Also Chiar-
ucci et al. (2003), using modeled vegetation, found that
nonparametric estimators need at least 15–30% of the
area to be sampled for reasonable estimates of the spe-
cies richness of the whole area. Using these methods
with low sampling effort leads to serious underestima-
tion, as Brose et al. (2003) and our models clearly show.
In real life, even though trees are not removed by our
sampling (and resampling is thus statistically possible),
the chances of resampling the same plot are negligible.
In the Amazon with a sample of 1170 1-ha plots in an
area of over 5 million km2 (ter Steege et al. 2013), that
chance would be just 2 9 10�9. At the intensities at
which tropical forests are sampled (0.0002% for the
Amazon) nonparametric methods simply cannot accu-
rately estimate the number of species in the whole area.

Also, when locations of previous studies are known,
researchers are unlikely to resample a plot.
With capture and recapture techniques and the non-

parametric estimators tested, sampling is considered
complete when there are no singletons in the data (Chao
et al. 2009). In tree plots, the disappearance of single-
tons would be the result of sampling the data many times
over with replacement (Chao et al. 2009). This resam-
pling results in the estimated richness asymptotically
approaching true richness when the number of singletons
is zero, as the total number of species cannot be larger
than those observed in the total data set (Chao et al.
2009). We argued above that, in the case of research in
tropical forests, plots are probably never sampled with
replacement. Thus, the number of species is expected to
increase with sample size as predicted by the “First Law
of Biodiversity” (Rosenzweig 1995; “larger samples yield
more species”) and many other theories of biodiversity
(MacArthur and Wilson 1967, Kimura 1985, Hubbell
2001, Harte et al. 2008, Harte 2011). In addition, single-
tons will remain (often close in number to Fisher’s
alpha). In the above theories, singletons are the represen-
tatives of the biological processes of immigration, extinc-
tion, or speciation. Singletons might be species on their
way to extinction or new species coming in by speciation
or migration. The latter are hence necessary to maintain

FIG. 3. Reserva Ducke field data (RD). (A) Rank abundance distribution (RAD) of RD with logseries fit (red) and lognormal
fit (blue). (B) Species area curve for RD and estimated richness (Sestimated) based on Chao1 (blue). (C) Fisher’s a area curve for RD.
(D) Species richness estimated for the total 100-km2 RD area with Fisher’s a (black) and Chao1 (blue), each with 95% CI (red).
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richness. Without these processes, fixation will occur due
to ecological drift, analogous to genetic drift from popu-
lation genetics. Thus, when sampling without replace-
ment, the lack of singletons in these systems would
suggest incomplete rather than complete sampling.
Finally, as most tropical tree field data conforms to

the logseries (see references in Introduction), the Chao1
index becomes scale invariant, always estimating the
same number of missing species to exactly the amount of
Fisher’s a. This was shown mathematically in the intro-
duction for Chao1 and empirically in our simulations.
While we did not show this mathematically for the other
nonparametric estimators, they are derived from the
same theoretical framework of capture-recapture and
estimate similar richness (Appendix S1: Fig. S19;
Table 2) and thus also provide severe underestimates
with low sampling intensities.
For the full Amazon area (~5.5 million km2), ter

Steege et al. (2013) estimated ~16,000 tree species based
on a sample of 1170 plots of 1 ha. They applied at least
18 different extrapolation methods from software pack-
ages SPECIES (Wang 2011), and CatchAll (Bunge et al.
2012) to their plot data (ter Steege et al. 2013). Almost
all were rejected, as they predicted the total number of
Amazonian tree species to fall in the range 4015–6412, a
demonstrably severe underestimation of the true species

richness (Fine 2001). A new estimator, implemented in
CatchAll (WLRM_UnTransf; Rocchetti et al. 2011,
Bunge et al. 2012) gave an estimated total richness above
11,000, closer to that calculated by ter Steege et al.
(2013) with their logseries extrapolation, but was not
selected by the program as the best estimator. The
ACE1_Max tau estimator gave a result greatly exceeding
the estimate with the log-series but its tau was much
higher (9048) than the recommended value (tau < 10).
The failure of these models to fit the Amazonian data is
not surprising. These estimators performed poorly
because at least one of their assumptions, high sampling
intensity, was not met: a condition unlikely to be met in
any large forested area. Recently, an extensive search in
several data providers and herbaria showed that nearly
12,000 tree species have actually been collected in Ama-
zonia, with a collecting density as low as 10 collections
per 100 km2 (ter Steege et al. 2016). The authors con-
cluded that the estimate of 16,000 is entirely plausible.
Importantly, even if this was an overestimate of the total
number of species, the number of species already
recorded is almost twice that estimated with most non-
parametric methods.
Using different methods to estimate or extrapolate the

SAR, such as maximum entropy inference (Harte 2011,
Harte and Kitzes 2015) or a power-law based fitting

FIG. 4. Piste de Saint Elie field data (PSE). (A) Rank abundance distribution (RAD) of RD with logseries fit (red) and lognor-
mal fit (blue). (B) Species area curve for RD and estimated richness (Sestimated) based on Chao1 (blue). (C) Fisher’s a area curve for
RD. (D) Species richness estimated for the total 15 km2 area surrounding the plots with Fisher’s a (black) and Chao1 (blue), each
with 95% CI (red).
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from multi-scale sampling (Plotkin et al. 2000; Krishna-
mani et al. (2004), also showed that regional scale diver-
sity of trees was estimated acceptably from small plots
samples. Interestingly, the abundance distribution model
arising from the MaxEnt approach is most often a log-
series (Harte and Kitzes (2015).
Using the logseries is not without assumptions, how-

ever. Our virtual forest is neutral with regard to the envi-
ronment; i.e., demographic probabilities for each

individual, regardless of species identity, are equal.
Hence, the only cause of aggregation is limited dispersal
of individuals, but, given enough time, even ranges of
very dispersal-limited species can become large. In real
life, species will segregate the environment based on eco-
logical preferences as well. Hence, beta-diversity in real
forests is higher than in our virtual-forest stand and a
peak of Fisher’s a is expected when a large heterogeneous
area is sampled over a range of sampling intensities.

FIG. 5. Monte Branco Plateau field data (MBP). (A) Rank abundance distribution (RAD) of MBP with logseries fit (red) and
lognormal fit (blue). (B) Species area curve for MBP and estimated richness (Sestimated) based on Chao1 (blue). (C) Fisher’s a area
curve for MBP. (D) Species richness estimated for the total 37.5 km2 MBP area with Fisher’s a (black) and Chao1 (blue), each with
95% CI (red).

TABLE 2. Species estimates based on plot samples in BCI, RD, PSE, and MBP.

Variable BCI SE RD SE PSE SE MBP SE

Number of plots 50 72 20 301
Number of individuals 21,457 25,066 12,450 36,546
Number of species 225 1,233 574 703
Target area 50 ha 100 km2 1,500 ha 3,750 ha
Target individuals 21,457 6,960,000 933,750 1,821,229
Sestimated with
Fisher’s a 225 2,759 1,110 1,185
Chao 1984 239 8.3 1,408 32 724 36 821 31
Chao Bunge 243 9.6 1,423 32 715 34 823 31
Chao Lee ACE 238 6.1 1,375 20 669 18 738 16
Chao Lee ACEI 241 8 1,405 26 694 25 805 23
Jackknife 244 6.1 1,591 59 1,066 124 920 40
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BCI is known to have clear segregation of species
based on soil moisture (Hubbell and Foster 1983) and
the relationship between Fisher’s a and area peaks at a
relatively low number of plots. We also expect the spe-
cies on MBP to be similarly clumped because of the
clear peak in Fisher’s a at low sample sizes. At MBP,
plot size may also influence the peaking of Fisher’s a.
As the plots are smaller (0.25 ha), the recruitment to
the plots will be more affected by the adjacent plots as
madjacent is very much dependent on the ratio between
the plot boundary and mean dispersal distance
(Chisholm and Lichstein 2009). The modeled and
observed peaks can be explained by a relationship
between beta diversity and alpha diversity. At low
migration rates, recruits mostly come from within plots;
hence beta diversity is maximized but alpha diversity is
not because each plot is practically isolated and losing
species due to ecological drift. This means that, for just
sampling one plot, Fisher’s a will be much lower than
the average of the whole forest. Continuous sampling,
however, will gradually result in the average Fisher’s a.
There will be no peak because the probability for each
plot bringing new species to the whole is the same and
thus the increase will be gradual until Fisher’s a is equal
to that of the virtual forest. When migration increases,
however, plots close by exchange more species and beta
and local alpha diversities increase simultaneously. In
this case, sampling a few plots randomly will likely ini-
tially overestimate Fisher’s a, because each sample
includes new species in the total sample due to the com-
bined higher beta and alpha diversity, creating a fast rise
in Fisher’s a. Continued sampling adds more individu-
als to the total sample and, at some point, species will
be resampled, lowering Fisher’s a again. When dispersal
is so high as to be similar across the complete virtual
forest, composition would essentially be very similar
for all plots with very high local alpha- and low beta-
diversities and Fisher’s a would not peak but
increase quickly to its virtual-forest value, as in the vir-
tual 49-ha BCI.

Is estimating species richness still a long way off?

Chiarucci (2012) suggested that “estimating species
richness is still a long way off!” Nonparametric estima-
tors underestimate richness ([Figs. 3, 4, 5; Table 2] and
Xu et al. 2012), while area-based estimators tended to
overestimate richness (Xu et al. 2012). Xu et al. (2012)
concluded that Maxent greatly overestimated richness.
However, their perceived overestimate was based on the
richness they expected, which was based on a list of spe-
cies found in their area. We believe that many of us do
not fully comprehend the consequences of the logseries
model. One of us was also surprised when we estimated
the expected species for RD, which was much more than
was expected based on extensive fieldwork for the flora
of the area (Riberiro et al. 1999) and ecological field-
work. However, with an Fisher’s a of 271 for the plots

of RD, assuming that this is close to the correct Fisher’s
a for the area, we expect 271 species with only 1 individ-
ual, 135 with 2 individuals, 90 with 3 individuals, 68 with
4 individuals and nearly 800 species would have 10 indi-
viduals or less. RD covers 100 km2, with an average tree
density of 696 trees/ha (ter Steege et al. 2013). That indi-
cates a total of 6.96 million individuals. The chance of
such rare species there with feasible sampling intensity is
thus very, very small. This is the consequence of using
this theoretical framework (see also Hubbell (2015).
Because many researchers using nonparametric esti-

mators assume that sampling is complete when the sam-
ples contain no singletons, an assumption that does not
agree with ecological theory or with most ecological
sampling, they are likely to severely underestimate rich-
ness when sampling level is low. Therefore, we suggest
that the use of nonparametric estimators should be dis-
couraged in studies with low sampling intensity in large
remote areas. If the data can reasonably be assumed to
follow a logseries, species estimation by means of Fish-
er’s a is likely a better option. Other methods that pro-
duce abundance distributions with many singletons,
matching most observational data, such as various para-
metric methods (Bunge and Barger 2008) or phe-
nomenological theories, such as Maximum Entropy
(Harte 2011), are probably also good alternatives.

Fisher’s paradox

The term Fisher’s paradox was coined by Hubbell
(2015): “The logseries is an infinite series that mathemat-
ically goes on forever. But the world’s forests are finite in
size. So what happens to estimates of species abundance
when the entire world is your sample? [. . .] The paradox
would seem to run even deeper, because Fisher’s log-
series predicts that many more of the world’s tropical
tree species are hyper-rare. [. . .] The truth is, we still have
inadequate data to definitively answer the “how many
tropical tree species?” question. Ecologists at present are
forced to make huge extrapolations from existing inven-
tory plot data to the entire world.”
Hubbell (2015) believes hyper-rare species do exist, as

do we and in the case of areas smaller than the world, so
do singletons. What then are those singletons? For an
area like the Amazon, a huge and open system, single-
tons are most likely the result of species (locally) going
extinct or new immigrants. ter Steege et al. (2016; App-
endix S1: Fig. S7) showed that several singleton species
are in fact species found only once in the Amazon but
common in the Cerrado, Andes, and even Atlantic for-
est; “vagrants” in the terminology of Magurran and
Henderson (2003). However, this may suggest that sin-
gletons or other hyper rare species are found mainly on
the edges of an area. In the Amazon, they were not, and
include such iconic species as Asteranthos brasiliensis
Desf. (endemic to the middle and upper Rio Negro) and
Duckeodendron cestroides Kuhlm. (endemic to an area
around Manaus, central Amazon).
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We believe that even if all individuals of the Amazon
forest could be measured and identified, the biological
processes of extinction and immigration would lead to
the presence of at least ~750 singleton species, based on
the Fisher’s a found for the area (ter Steege et al. 2013)
and a huge number of hyper-rare species, some of which
may have small contracted ranges, but some of which
may be spread over large areas (Zizka et al., in press).
One of the most important merits of NT is to emphasize
the role of migration in building and maintaining assem-
blage structures. However, the underlying mathematical
model is based on a discretization down to the individ-
ual level, where a random process is supposed to play
and can be expressed as per capita probabilities. In a
complex system, such as tropical forests, clearly not only
chance acts upon birth, death, dispersal, and migration.
This could result from acquiring a new competitive
advantage, losing a competitor because of a pest or los-
ing a pest because a super-pest develops. Myriad combi-
nations are possible. The processes involved at local
scale are not exclusively random, but from local to glo-
bal their combined effects on species abundances may
sometimes appear to be.

CONCLUSION

To evaluate diversity of a rich, complex, large, open
system, a parametric approach based on a probabilistic
model, such as Fisher’s logseries, seems to be more
applicable than a non-parametric one, because such a
system is driven by the random walk resulting from an
infinity of processes that vary among scales, and where
chance affects many biological processes, and not just
the random sampling context considered by nonpara-
metric methods.
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