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Abstract

Three-dimensional (3D) bioprinting techniques can be used for the fabrication of personalized, regenerative constructs
for tissue repair. The current article provides insight into the potential and opportunities of 3D bioprinting for the
fabrication of cartilage regenerative constructs. Although 3D printing is already used in the orthopedic clinic, the shift
toward 3D bioprinting has not yet occurred. We believe that this shift will provide an important step forward in the
field of cartilage regeneration. Three-dimensional bioprinting techniques allow incorporation of cells and biological cues
during the manufacturing process, to generate biologically active implants. The outer shape of the construct can be
personalized based on clinical images of the patient’s defect. Additionally, by printing with multiple bio-inks, osteochondral
or zonally organized constructs can be generated. Relevant mechanical properties can be obtained by hybrid printing
with thermoplastic polymers and hydrogels, as well as by the incorporation of electrospun meshes in hydrogels. Finally,
bioprinting techniques contribute to the automation of the implant production process, reducing the infection risk. To
prompt the shift from nonliving implants toward living 3D bioprinted cartilage constructs in the clinic, some challenges
need to be addressed. The bio-inks and required cartilage construct architecture need to be further optimized. The bio-
ink and printing process need to meet the sterility requirements for implantation. Finally, standards are essential to ensure
a reproducible quality of the 3D printed constructs. Once these challenges are addressed, 3D bioprinted living articular
cartilage implants may find their way into daily clinical practice.
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have been achieved over the past few decades (Fig. 1).
However, full cartilage restoration remains a significant

Introduction

Three-dimensional (3D) bioprinting, one of the main
approaches within the field of biofabrication,' is an emerging
technology that a'llows for 'the fabrication of constmcts with Utrecht, The Netherlands
control over spatial resolution, shape, and mechanical prop- 2Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY,
erties. Bioprinting facilitates the accurate positioning of bio- USA
materials, cells, and biological cues in a layer-by-layer 3Shiley Center for Orthopaedic Research, Scripps Health, La Jolla, CA,
fashion and can, thus, be applied for the generation of person-
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alized regenerative implants. Articular cartilage is a thin,

'Department of Orthopaedics, University Medical Center Utrecht,
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avascular, structural organ, and it is therefore an easier poten-
tial target for treatment with bioprinted regenerative con-
structs compared to vascularized organs, such as the liver
and kidney. Cartilage contains predominantly proteogly-
cans, water, collagen type II, and low numbers of chondro-
cytes. Due to this low cell number and the absence of
vascularization, the tissue has a limited regenerative capac-
ity. Consequently, most articular cartilage injuries will prog-
ress toward osteoarthritis if no interventions are taken.’
Significant improvements in reparative cartilage treatments
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Figure 1. Evolution of cartilage repair and bioprinting of cartilage. Additive manufacturing techniques and in particular bioprinting are
enabling to produce patient-specific, complex architectures that mimic the composition of articular cartilage. With the development
of novel bioactive bio-inks and the combination of different 3D bioprinting techniques, functional cartilage constructs will be obtained.

Optimized and mature bioprinted grafts will have to meet high quality
and joint healing. TKA = total knee arthroplasty; ACl = autologous ch

standards in order to be used as clinical devices for cartilage
ondrocyte implantation; MACI = matrix-induced autologous

chondrocyte implantation; iPSC = induced pluripotent stem cell; MEW = melt electrospinning writing.

challenge. It is generally accepted that for stable long-term
reconstruction, function repair, or even regeneration, the
therapy should not only address the cartilage but also focus
on reconstructing the underlying bone and reestablishing
joint homeostasis. Therefore, bioprinted, personalized,
regenerative constructs may provide a solution for cartilage
injuries.

Although bioprinting technology is rapidly gaining
interest in the field of regenerative medicine, it is still in its
infancy (Fig. 1). Consequently, significant steps will have
to be taken before this technology can be translated to wide-
spread clinical applications. The International Cartilage
Repair Society has adopted a leading role in analyzing the
current state of scientific developments for cartilage regen-
eration in order to, for example, provide recommendations
for the execution of preclinical and clinical studies.* The
present position article can be regarded as an extension to
this previous initiative and summarizes the current status of
3D bioprinting in the field of cartilage regeneration. More
specifically, this article aims to address the potential and
opportunities of 3D bioprinting for the fabrication of

personalized regenerative articular cartilage constructs with
tailored biological properties, architecture, and mechanical
properties.

Current Status of 3D Printing in the
Orthopedic Clinic

Three-dimensional printing technologies use 3D computer
models to determine the final shape of the printed construct.
Imaging techniques currently used in the clinic, for example,
X-rays, magnetic resonance imaging (MRI), and computed
tomography (CT), provide macroscopically detailed
sequences of 2D images of patients. These sequences can
relatively easily be translated into 3D images, which can
serve as blueprints for 3D printing, for example, on conver-
sion into stereolithography and additive manufacturing files.’
Currently, 3D printing technologies are already part of a
number of clinical routines. Three-dimensional models of
complex abnormalities are, for example, printed for educa-
tional purposes and to help surgeons in preoperative planning
for challenging surgeries.”® Moreover, patient-specific
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drilling and sawing guides are printed to assist orthopedic
surgeons with the placement of pedicle screws and total joint
replacements respectively.”'® Additionally, customized 3D
printed implants are already commercially available, for
example, for calvarial reconstruction.'" These examples indi-
cate that the current 3D printing technologies have the capa-
bility to provide personalized implants for orthopedic defects.
However, the transition from 3D printing of polymers,
ceramics, and metals toward 3D bioprinting of living and
biologically active constructs has not taken place in the clini-
cal practice yet. In this research field, however, several steps
have already been performed to demonstrate the possibilities
and the feasibility of the clinical transition (Table 1).

The Potential of 3D Bioprinting for
Regenerative Cartilage Constructs

Cell Laden and Bioactive Inks

Bioprinting techniques provide many possibilities for the
fabrication of personalized cartilage constructs. A key fac-
tor for the success of these regenerative constructs is to
make them biologically active. One strategy to accomplish
this is by incorporating cells. It has been widely demon-
strated that the bioprinting process when using extrusion,
inkjet, or laser-based printing technologies does not hamper
the viability or long-term performance of the deposited
cells.'*"” Extrusion-based printing allows the deposition of
cell-laden filaments and is regarded as the most suitable
technique for the 3D bioprinting of viable constructs of sev-
eral centimeters in size and with high cell densities.”
Consequently, for the printing of cartilage constructs, extru-
sion-based printing techniques are most often considered
(85% of the publications; Table 1-3). However, the resolu-
tion of the fiber thickness is limited by the extrusion process
to ~100 pm. In contrast, inkjet and laser-based printing
allow the deposition of smaller volumes and are, thus, more
suitable for the accurate deposition of micropatterns, down
to the level of single cells. Currently, the most promising
carrier materials, or “bio-inks,” for cell-based 3D bioprint-
ing are based on hydrogels, as they facilitate homogeneous
cell encapsulation in a highly hydrated and mechanically
supportive 3D environment.

Multiple cell types have been explored for their applica-
tion in bioactive cartilage implants. Autologous chondro-
cytes or chondrons, chondrocytes with their pericellular
matrix, can be harvested form a non—load-bearing cartilage
surface or the perimeter of a cartilage defect in the
patient.”' So far, in cartilage bioprinting research, the
focus has predominantly been on the use of chondrocytes
(Table 1-3). Nevertheless, when using autologous chondro-
cytes, obtaining sufficient cell numbers remains a chal-
lenge, especially since expansion in monolayer culture
causes dedifferentiation of the cells toward a more

fibroblastic phenotype.”* Additionally, complications such
as donor site morbidity are likely to occur. An alternative
cell type is the multipotent mesenchymal stromal cell
(MSC) population, which can be derived from multiple tis-
sues, for example, bone marrow, adipose tissues, and mus-
cles.” These cells can be differentiated into chondrocyte-like
cells in the presence of specific growth factors, such as the
transforming growth factor beta family. However, adequate
cues to control MSC fate have to be provided, as these cells
have the tendency to progress into hypertrophic chondro-
genesis and to give rise to bone formation via the endochon-
dral pathway once implanted in vivo.”* Combining MSCs
with chondrocytes or chondrons has shown promising
results both in vitro and in vivo, in which it seems that the
MSCs stimulate and direct the chondrocytes/chondrons to
synthesize new cartilage-like tissue.”’*’ Furthermore, alter-
native cell populations with regenerative potential are being
investigated, including subpopulations of chondroprogeni-
tor cells, which can be harvested from mature cartilage and
can be expanded in mono-layer culture without losing their
chondrogenic phenotype.*® Also, the induced pluripotent
stem cells that show unlimited self-renewal and can be gen-
erated from numerous, easily accessible cell types (i.e.,
keratinocytes), constitute an interesting cell source for car-
tilage regeneration, provided that the safety concerns about
their usage are cleared.’'*? Multiple research groups are
focusing on these different cell populations for cartilage
regeneration purposes and on enhancing the cell perfor-
mance by, for example, culturing with specific growth fac-
tors, biological cues, and mechanical loading regimes;
however, these detailed strategies are not within the scope
of the present opinion article and have been reviewed
elsewere.**™

An alternative strategy to generate bioactive constructs
based on 3D printing technologies involves the embedding
of biological cues that stimulate encapsulated cells or attracts
and/or stimulates cells from the host. Hydrogel-based bio-
inks allow for the incorporation of growth factors, bioactive
proteins, peptides, chemicals, and matrix components,*® and
printing procedures have so far not shown any negative
effects on the activity of these biological cues'”*">’ (Table
1-3). Large molecules that are constituents of the native car-
tilage matrix, such as hyaluronic acid,***' can be used as
promising biological cues for cartilage regeneration.
Addition of these components also have an impact on the
overall rheological properties, often increasing the printabil-
ity of a hydrogel bio-ink for extrusion printing.'”** When
printing with thermoplastic polymers, on the other hand,
biological molecules are exposed to relatively high tempera-
tures during the extrusion process. Therefore, while thermo-
stable compounds can be loaded during printing, labile
compounds need to be incorporated afterwards. For exam-
ple, dexamethasone still exhibits osteoinductive properties
in vitro after being printed in a polycaprolactone (PCL)/
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poloxamine polymer blend at 110°C.* Contrarily, trans-
forming growth factor beta cannot be heated to this tempera-
ture but can be coated on printed PCL scaffolds and was
demonstrated to attract and stimulate cells from surrounding
tissues in vivo when incorporated with this approach.*
Furthermore, other recently developed regenerative strate-
gies, that include, for example, the incorporation of cell-
secreted exosomes™* or microRNAs, can easily be combined
with bioprinting technologies, since all these moieties can be
preserved in the highly hydrated environment provided by
hydrogel bio-inks.

Shape, Architecture, and Multiphasic
Organization

For the generation of personalized regenerative implants,
precise control over shape and internal architecture is essen-
tial. As discussed above, the outer shape of a construct can
be personalized by using medical imaging as the foundation
of the print template. Additionally, multiple “inks” consist-
ing of different biomaterials, bioactive factors, and/or cells
can be loaded in a bioprinter to fabricate complex anatomi-
cal architectures with multiple tissue types. Irregular shapes
and overhangs can also be obtained via the printing of sup-
port structures with a sacrificial material, such as alginate,
agarose, PCL, polyvinyl alcohol (PVA), polyethylene gly-
col (PEG), and pluronics.'> 44647

Printing with multiple bio-inks also allows for the inclu-
sion of multiple tissues and tissue interfaces in a single con-
struct. This is of particular importance in the orthopedic field,
where tissue interfaces play a significant role in the underly-
ing (patho)biology. Osteochondral constructs have, for
example, been successfully generated with either osteoblasts
in the bone part and chondrocytes in the cartilage part,*”® or
stem cells in both layers with additional biological cues to
induce bone differentiation in the one part and cartilage for-
mation in the other.”** However, in the latter study further
evaluation of biological cues is necessary, as the MSCs gen-
erated bone via the endochondral pathway in the cartilage
layer after in vivo implantation.”® Furthermore, to mimic the
bone compartment, bio-inks that can both carry cells and
harden over time have been developed, to achieve a stiffness
within the same range of those of cancellous bone.*® Such
bio-inks could be combined with hydrogels described above
to obtain fully printed, cellular composites with mechanical
properties that appropriately match bone and cartilage
regions. Additionally, vessel-like structures can be printed in
the bone compartment to support vascularization by using
sacrificial materials.'>!'**

Printing with multiple bio-inks also provides a platform
to mimic the zonal organization of articular cartilage.
Articular cartilage exhibits distinct depth dependence in
composition and mechanical performance,*! which have
been notably difficult to reproduce with conventional

approaches to cartilage repair.>® It is believed that restora-
tion of this zonal organization will improve integration and
performance of the construct at the defect site.”** Three-
dimensional bioprinting may be a unique tool to achieve the
appropriate zone-specific compositional and mechanical
heterogeneity present in articular cartilage. Increasing reso-
lution of 3D bioprinters might even allow for imitation of
the specific fiber arrangement of the split line patterns
found at the articular surface, as well as the more complex
Benninghoff arcade orientation of collagen fibers emanat-
ing from the subchondral bone.” Additionally, depth-
dependent differences in cell densities can be replicated via
gradient bioprinting, in which a cell-free and a cell-laden
bio-ink are mixed at the nozzle of the bioprinter to accu-
rately change the final cell density during printing.>® The
zonal cellular phenotypes of embedded/seeded cells can be
stimulated by the incorporation of biological cues and
matrix components.’”® For example, it was demonstrated
that the incorporation of chondroitin sulfate and matrix
metalloproteinase—sensitive peptides in a PEG-based
hydrogel stimulates MSCs to produce superficial zone-spe-
cific matrix components, while incorporating chondroitin
sulfate alone or hyaluronic acid stimulates intermediate and
deep zone matrix production, respectively.’® Another option
for the fabrication of zonally organized constructs is to
incorporate zonally harvested chondrocytes, which have
been shown to maintain their zone-specific biosynthetic
activities during culture in PEG-based hydrogels.*

Mechanical Properties

Finally, 3D bioprinting can generate constructs composed
of both hydrogels and thermoplastic polymers with mechan-
ical properties that suit the challenging mechanical environ-
ment of the joint. It has been demonstrated that these hybrid
constructs exhibit mechanical characteristics similar to the
thermoplastic polymer frame without the hydrogel.*”'
Therefore, by changing the architecture of the thermoplastic
polymer frame, the mechanical properties of the construct
can be tailored.®*** To prevent disruption of the interface
between the two materials during mechanical loading,
covalent binding of the thermoplastic polymer and the
hydrogel was shown feasible and effective.** Additionally,
the hybrid printing and covalent binding of both materials
did not affect the viability of cells incorporated in the
hydrogel.*”*!

An alternative approach to reinforce hydrogel constructs
is using melt electrospun meshes. Melt electrospinning writ-
ing allows for the controlled deposition of thermoplastic
polymer filaments with a thickness in the order of 1 to 20
um, while bioprinting generates filaments with a thickness
in the order of 100 pm.** By incorporating electrospun
meshes in a cast hydrogel construct, the mechanical behav-
ior of the hybrid construct can approach the bulk mechanical
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properties of native articular cartilage.®® Therefore, if accu-
rate melt electrospinning writing could be combined with
3D bioprinting technologies, organized constructs with het-
erogeneous mechanical characteristics similar to native
articular cartilage could be fabricated. The first setups to
combine melt electrospinning with bioprinting are already
being developed. For example, the feasibility of generating
constructs with alternating layers of inkjet-printed hydrogels
and random electrospun thermoplastic polymer meshes has
already been demonstrated, emphasizing the prospect of the
fabrication of organized, custom-made constructs with
native mechanical characteristics.®’

Automation of Implant Production Process

Bioprinting can also contribute to the automation of the
implant production process. Besides printing into a wells-
plate, constructs could also be printed directly into a biore-
actor, minimizing handling and, thus, infection risks. Also,
successful co-printing of a bioreactor simultaneously with a
construct has been demonstrated.®® Constructs fabricated
with these approaches require a 2-step surgical procedure
for clinical implantation. During a first surgery autologous
cells are harvested, which then need to be bioprinted and
precultured in a laboratory. Later, during a second surgery,
the bioprinted construct can be implanted into the patient’s
cartilage defect. As bioprinting is a relatively fast process
(minutes), a 1-step surgical approach might also be feasible,
in which the cell-laden construct is fabricated in the opera-
tion theater and directly implanted. Potentially, cartilage
defects could also be filled in situ, by printing the implant
directly into the lesion. This approach has been exemplified
by the direct ex vivo printing into osteochondral plugs or
femurs.®*”" In line with this, steps exploring the feasibility
of in situ bioprinting for other tissues have been taken, for
example, for calvarial defects in living mice.'® Additionally,
a bio-pen is being developed to simplify the in situ print
procedure.”’ Although 1-step surgical procedures and print-
ing directly into a defect are exciting concepts and foster the
idea of further automation in surgery, it would add the chal-
lenge to initiate the neocartilage formation within the harsh
environment of a diseased joint.

Current Challenges in Bringing 3D
Bioprinting to Clinical Applications

Bioprinting requires the combination of multiple elements
in a bio-ink, for example, printability, shape stability after
printing, cell therapies, biological cues, and mechanical
strength. Taking all these aspects into account often results
in a tradeoff, in which the separate elements are suboptimal
in the bio-ink or final construct.?’ Future research should,
for example, focus on new methods to improve the print-
ability of hydrogel-based bio-inks without negatively

influencing the cell behavior.'”’* Additional research should
focus on new methods for the formulation and processing of
bio-inks prior to printing,” in order to generate a larger
range of biomaterials that can successfully be employed in
bioprinting technologies. Besides optimizing the printing
procedures and bio-inks, there is still a need for deeper
understanding of cartilage regeneration in general, in order
to determine, for example, what cell types, biological cues,
and organization are required in the final construct for suc-
cessful cartilage regeneration.

For the clinical translation of bioprinted living cartilage
implants, the bio-ink has to meet the same regulations and
safety requirements, concerning, for example, sterility,
(endo)toxin content, reproducibility, and, if cell-laden,
Advanced Therapy Medicinal Product regulations as bio-
materials used for other implantable devices.”* To ensure
sterility after 3D printing, the printing process needs to be
incorporated in a Good Manufacturing Practice facility, and
the printer itself and all its components should be sterile and
able to operate in a sterile environment. Furthermore, the
whole fabrication process should preferably involve mini-
mal manual handling and postprocessing steps in closed
systems. Bioprinters that can fulfill these requirements are
already commercially available. However, most commer-
cial printers nowadays work on open-loop and have no
feedback on the quality of the print, thus requiring monitor-
ing from skilled operators. Implementation of automated,
reliable quality control during the printing process will
facilitate adaptation of printers into clinics. Ideally, these
systems also would have an integrated bioreactor system to
allow for in vitro culture prior to implantation without extra
handling of the construct. During this culture the constructs
can relatively easily be stimulated with, for example,
growth factors or mechanical loading, to stimulate the
encapsulated cells to differentiate into the desired lineage.
Additionally, cartilage-like tissue formation is stimulated in
this period to provide an initial matrix, which will increase
the construct stiffness and might improve integration in the
defect. A bioprinter-bioreactor setup, or closed biofabrica-
tion line, is not commercially available yet; however, the
first steps toward these kind of setups are currently being
taken.”

To ensure safety of 3D bioprinted living medical implants
for clinical use and to help organizations qualify and vali-
date the printing process and bio-inks, standards are
required. Standards are already available for additive manu-
facturing in general, under American Society for Testing
and Materials (ASTM) F2792. Additionally, standards for
tissue-engineered constructs have been published by the
ASTM international committee F04, the International
Organization for Standardization technical committee 150/
SCZ, and the British Standards Institute. However, cur-
rently no such standard is available for bioprinting technol-
ogies.”*”” There are a number of attempts to develop
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validation protocols for relatively simple bioprint-related
analyses, such as the quantification of the shape fidelity of
a 3D printed construct. Such analysis are based on the
length, width, and height of a printed filament compared to
the nozzle diameter,”™” the shape of the pores in a 3D con-
struct compared to the theoretical shape,™ or on the devia-
tion between the printed construct and the 3D computer
model.**#!" Notably, multiple studies have demonstrated
that optical scanning for validation can be incorporated in
3D bioprinters.®*** This offers the prospect of real-time
assessment of print fidelity and immediate quality control/
quality analysis that may be useful for regulatory compli-
ance. Ultimate clinical translation will also have to include
strategies and regulations for cell sourcing, whether autolo-
gous or allogeneic, cell incorporation in the bio-ink or seed-
ing on the printed construct, and implantation techniques to
implant and fix the printed construct into the defect side.
One universal standard to assess the quality of a 3D printed
living construct in terms of sterility, shape-fidelity, biologi-
cal properties, cell incorporation, surgical implantation
techniques, and safety, is still lacking and needs to be set up
in order to smoothen the transition from bench to bedside.

Conclusion

The 3D printing techniques that are currently used in the
orthopedic clinic are just a glimpse of how this technology
might contribute to future patient treatments, especially for
articular cartilage regenerative therapies. Bioprinting tech-
niques allow for the fabrication of personalized constructs
with accurately positioned cells and biological cues to
mimic the osteochondral interface and/or the zonal organi-
zation of articular cartilage. Mechanical properties can be
tailored by hybrid printing or reinforcement strategies to
match those of the cartilage area that needs replacement.
Finally, bioprinting fosters the prospect of automation of
the implant production process.

Although bioprinting provides many opportunities to
generate cartilage regenerative constructs, which closely
resemble the native tissue, there are still multiple challenges
that need to be overcome. The main challenge is to make
the transition in the clinic from nonliving personalized 3D
printed implants toward biologically active and living
implants. In order to accomplish this, some additional chal-
lenges need to be overcome first. Bio-inks have to be fur-
ther optimized and the required construct architecture and
mechanical properties need to be established. Additionally,
the printing process, as well as the bio-inks, need to meet
the specific sterility requirements to allow for implantation.
Finally, universal quality standards are necessary to
smoothen the clinical translation of new bio-inks and print-
ing technologies. Tackling these challenges will foster the
shift of biologically active and living bioprinted implants
from the laboratory toward the daily clinical practice.
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