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Management during calving is important for the health and survival of dairy cows and their calves.
Although the expected calving date is known, this information is imprecise and farmers still have to
check a cow regularly to identify when it starts calving. A sensor system that predicts the moment of
calving could help farmers efficiently check cows for calving. Observation of a cow prior to calving is
important because dystocia can occur, which requires timely intervention to mitigate adverse effects
on both cow and calf. In this study, 400 cows on a Dutch dairy farm were equipped with sensors. The sen-
sor was a single device in an ear tag, which synthesised cumulative activity, rumination activity, feeding
activity, and temperature on an hourly basis. Data were collected during a one-year period. During this
period, the starting moment of 417 calvings was recorded using camera images of the calving pen taken
every 5 min. In total, 114 calving moments could be linked with sensor data. The moment at which calv-
ing started was defined as the first camera snapshot with visible evidence that the cow was having con-
tractions or had started labor. Two logit models were developed: a model with the expected calving date
as independent variable and a model with additional independent variables based on sensor data. The
areas under the curves of the Receiver Operating Characteristic were 0.885 and 0.929 for these models,
respectively. The model with expected calving date only had a sensitivity of 9.1%, whereas the model with
additional sensor data has a sensitivity of 36.4%, both with a fixed false positive rate of 1%. Results indi-
cate that the inclusion of sensor data improves the prediction of the start of calving; therefore the sensor
data has value for the prediction of the moment of calving. The model with the expected calving date and
sensor data had a sensitivity of 21.2% at a one-hour time window and 42.4% at a three-hour time window,
both with a false positive rate of 1%. This indicates that prediction of the specific hour in which calving
started was not possible with a high accuracy. The inclusion of sensor data improves the accuracy of a
prediction of the start of calving, compared to a prediction based only on the expected calving date.
Farmers can use the alerts of the predictive model as an indication that cows should be supervised more
closely in the next hours.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Up to one-third of calves born on dairy farms are born after dys-
tocia, and have increased risks of disease and mortality (Barrier
et al., 2013). Severe dystocia causes stillbirth in 49% of cases and
calves born after dystocia are 1.5 times more likely to develop a dis-
ease during the first 120 days of age (Lombard et al., 2007). For
cows, the likelihood of conception decreases as the number of days
open increases (Fourichon et al., 2000), and culling risk is higher
(Rajala-Schultz and Grohn, 1999) within a lactation that starts with
a dystotic calving. Moreover, dystocia increases the risk of damage
to the uterus and infections, which increases the risk of metritis
(Rajala-Schultz and Grohn, 1999; Schuenemann et al., 2013;
Sheldon et al., 2009). Dystocia is therefore, a health and welfare
problem for both cows and calves. High calf mortality can also be
seen as an image problem for the whole dairy sector.

Risk factors for dystocia include biology of the cow (e.g., breed
and parity), calf gender (Norman et al., 2010) calf weight and man-
agement (e.g., housing and pre-calving movement) (Mee et al.,
2014; Piwczynski et al., 2013). Farmers can influence these risk
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factors through management, for instance, by changing their
breeding strategy but also by human supervision during the calv-
ing process. Lombard et al. (2007) observed that 24% of stillbirths
occurred with unassisted calvings. Supervision during the calving
process, which enables appropriate intervention, is therefore likely
to reduce the number of stillbirths and other health and welfare
effects that dystocia has on calves and dairy cows (Barrier et al.,
2013; Mee et al., 2014).

Farmers currently only have the expected calving date on which
to base the decision to supervise cows more intensively. The true
calving date varies between 267 and 295 days after a successful
insemination (Inchaisri et al., 2010), whereas the expected calving
date is on average 280 days post insemination. Hence it is chal-
lenging for farmers to correctly determine which cows should be
supervised more often or more intensively, and when appropriate
interventions are needed. Farmers thus have to visually check
pregnant cows that approach their expected calving date and this
increases the work load for a farmer.

There are several behavioural and physiological parameters
associated with the start of calving, that can be monitored auto-
matically by sensors. Feeding and ruminating behaviour of dairy
cows decreases gradually in the last two weeks before calving
and drops suddenly at calving (Bar and Solomon, 2010). Sensors
seem capable of detecting these changes (Bar and Solomon,
2010; Bucher and Sundrum, 2014; Schirmann et al., 2013). Time
spent on feeding also decreases, dry matter intake tends to
decrease slightly (Schirmann et al., 2013; Bucher and Sundrum,
2014), and activity changes in the 24 h before calving (Clark
et al., 2015; Miedema et al., 2011b; Saint-Dizier and Chastant-
Maillard, 2015). Titler et al. (2015) demonstrated that an activity
index could be used to predict whether a cow would calve in the
6 h following an increase in the activity index. Previous studies
have shown that temperature (measured at the vulva, rectum,
and rumen) decreases during the 24 h prior to calving (Saint-
Dizier and Chastant-Maillard, 2015). Ouellet et al. (2016) have
shown that all these parameters, which can be measured by sen-
sors have value for the prediction of calving.

A more accurate prediction of the start of calving than the
expected calving date would enable farmers to identify when a
cow requires intensive supervision. This will help ensure appropri-
ate intervention when needed and reduce the workload for the
farmer from unnecessarily checking cows. Although studies have
shown that sensor data has value for the prediction of calving, an
independent validation of the accuracy of such a prediction has
not been studied yet. Furthermore, an evaluation of the additional
value of sensor data compared to the expected calving date is also
missing in the literature. In this study, rumination, activity, and
temperature measured automatically by a single sensor are used
to predict the start of calving in dairy cows by (1) evaluating at
which moment, relative to the start of calving, sensor data has pre-
dictive value, (2) exploring the potential value of sensor data in
addition to the expected calving date in estimating the start of
calving, and (3) developing an independently validated model that
predicts the start of calving.
2. Material and methods

2.1. Gold standard definition

The definition of the start of the calving process is essential for
the development of a model that predicts the calving moment. The
moment of actual calving is not informative for a farmer, as poten-
tial dystocia should be detected and resolved shortly after the start
of calving. The start of the calving process is therefore a better
moment to generate an alert for calving. This study defined the
start of the calving process as the first camera snapshot with visi-
ble evidence that the cow was having contractions or had started
labor. When a born calve was seen on camera the start of calving
could be deduced by scrolling back in time. The moment as defined
in the current study refers to the start of the second stage of partu-
rition were the foetus is expelled (Parkinson et al., 2001b). The
most notable signs are visible abdominal muscle contraction and
movement of ears and head that indicate pressure to expel the foe-
tus. Typically the cow is lying down on her side (lateral recum-
bency), but standing upright is possible. Date and time of this
camera snapshot were used as the gold standard for the start of
the calving process, defined at the respective hour.

2.2. Data collection

On a commercial Dutch dairy farm, 400 cows were equipped
with Agis SensOor sensors (Agis Automatisering B.V., Harmelen,
The Netherlands). These sensors are 3D-accelerometers attached
to the ear tag of the cow and report rumination, feeding, activity,
and temperature on an hourly basis (Bikker et al., 2014). Data were
collected from September 1, 2013 until November 1, 2014 from
late gestation dairy cows housed in a straw bedded pen.

The dairy farmer was asked to record the date and time at
which he had noticed a cow had calved. The start of the calving
process as defined for this study was assigned by manual evalua-
tion of snapshot images taken by a video camera every 5 min.
The farmer-recorded estimates of the calving moment were used
to reduce the amount of images that were screened. Animal hus-
bandry students (BSc, van Hall-Larenstein, Leeuwarden, the
Netherlands) were instructed to use the camera images to deter-
mine the exact start of the calving process for each cow. In total,
414 cows calved; exact calving moments were determined for
240 of these cows by screening images. Of these 240 calving
moments, 90 belonged to heifers. The farmer only equipped these
heifers with sensors post-partum as part of normal management
procedure. Consequently, these 90 calving moments had no sensor
data available. The remaining 150 calving moments had sensor
data available and were used for further analysis.

2.3. Expected calving date

Insemination records were used to calculate the expected calv-
ing date at 280 days post insemination for each cow. Expected
calving dates were required to fall within a period from three
weeks before to three weeks after the actual calving date. This
method was based on the generally accepted average gestation
length of 280 days (Parkinson et al., 2001c) in combination with
the three week interval for ovulation (Parkinson et al., 2001a). If
an expected calving date did not fall within this six-week period,
it was assumed that the insemination did not lead to a calving
and the expected calving date was therefore assumed missing. If
an expected calving date fell within this six-week period, the
expected calving date was used to estimate the number of days
to expected calving date (DTC). This variable is negative in the days
prior to the expected calving date and zero at the expected calving
date.

2.4. Sensor data

For each hour of the day, the SensOor system assigns the min-
utes within that hour to one of the five following sensor parame-
ters (Vari): ruminating (i = 1), eating (i = 2), active (i = 3), highly
active (i = 4), or not active (i = 5). These five sensor parameters
are measured by a single sensor. The sum of the five sensor param-
eters adds up to a total of 1 h. This means, for instance, that 1 min
spent on rumination cannot be spent on being active. Therefore,



110 C.J. Rutten et al. / Computers and Electronics in Agriculture 132 (2017) 108–118
these five sensor parameters are not fully independent. In addition
to these five sensor parameters, ear temperature (i = 6) was mea-
sured and recorded for each hour of the day.

2.4.1. Missing sensor data
The dataset contained hourly blocks with missing values for

some of the five sensor parameters or ear temperature, and some
hourly blocks were missing entirely. The analysis required a con-
tinues series of hourly blocks over time. Therefore, missing hourly
blocks were added and missing values within hourly blocks were
imputed. For practical application of a sensor system, a straightfor-
ward imputation algorithm that only uses data from preceding
hourly blocks was considered most appropriate. The behaviour of
cows (i.e., ruminating, walking around, and lying down) was
assumed to show a diurnal pattern as described previously
(Roelofs et al., 2005). Therefore, it was assumed that a reasonable
imputation could be achieved by substituting the missing data
with the average of data for the same hourly block from the previ-
ous three days. A weighted average was calculated; data closer to
the hourly block with missing data received more weight than
older data. If data were unavailable for any of the three days, only
the available days were used. In total 470 hourly blocks for 45 calv-
ings were imputed by the described methodology, the number of
imputations ranged from 1 to 73 hourly blocks per calving. If no
data were available for all of the three days, the calving was
excluded entirely from further analysis (n = 36). The final dataset
for further analysis contained 114 calvings.

2.4.2. Independent variables from sensor data
The behaviour of the cow was assumed to change before the

start of calving. Therefore, the change over time (t, where t = 0 rep-
resents the start of calving) in sensor parameters was estimated
and used as an independent variable for the development of a
model. The first step to develop independent variables from sensor
data was the calculation of a rolling mean. For all sensor parame-
ters, a rolling mean was calculated over the 72 h preceding the
start of calving (rollVarti ) (Eq. (1)).

rollVarti ¼
P�72

t¼1 Var
t
i

72
ð1Þ

The second step was the estimation of the change over time in the
sensor data (D in sensor data). The i independent variables at
moment t (Xt

i ) were calculated by estimating the deviation of the
observation at moment t from the rolling mean of the preceding
72 h (t � 72) (Eq. (2)).

Xt
i ¼ Varti � rollVart�72

i ð2Þ
For example, if a cow is ruminating 23 min on the current hourly
block and the 72 h rolling mean of 3 days earlier was 30 min the
D in sensor data is �7 min/h and the independent variable was
assigned the value �7.

2.5. Data selection

The starting moments of calving were combined with sensor
data so that the start of calving was connected to the hourly block
of sensor data in which the calving started. For each calving
moment, data from the 24-h period ending with the hour in which
calving started were selected as a case dataset. Each case dataset
was matched randomly to three control datasets. Control datasets
were selected from the same cow and ended at the same hour of
the day as the case dataset. The control datasets were sampled
from the period between three weeks and one week before the
start of calving. The case and control datasets resulted in the
case-control dataset, which contained four records (one case and
three controls) for each calving moment. Each record contained
24 variables for each sensor parameter, which correspond to the
D in sensor data (Xt

i ) for each hour of the 24-h period prior to
the start of calving. These case and control datasets contained
34 hourly blocks for 9 calvings which were imputed as described
in Section 2.4.1, the number of imputations ranged from 2 to 10
hourly blocks per calving.

The mean values per hour across all cows in the dataset and
their 95% confidence intervals were calculated for all five sensor
parameters in both the case and control datasets. These values
were plotted and used to visually examine whether the case data-
set differed on average from the control dataset. Sensor parameters
for which the confidence intervals around the average value over
all cows of the case and control datasets did not overlap were
included for further analysis.

The available calvings were then split in a training dataset (two
thirds of the available calvings, i.e., 79 calvings) and a testing data-
set (35 calvings). The training dataset contained 316 records (i.e.,
four records for each of the 79 calvings). The training dataset
was selected by randomly sampling cows from the case-control
dataset; for each randomly selected case dataset, the correspond-
ing control datasets were also included in the training dataset. It
was not possible for a cow to be present in both the testing and
training dataset because each cow calved only once during the per-
iod of data collection.

2.6. Model development

Two models were developed, a model with ‘‘DTC” as the only
independent variable (model DTC) and a model with ‘‘DTC” and
sensor variables (D in sensor data) as independent variables
(model DTC + sensor). For the model ‘‘DTC + sensor”, sensor vari-
ables with predictive value for the start of calving were selected
using a stepwise selection procedure.

2.6.1. Logistic regression models
Logistic regression was chosen as the method to estimate a

model that predicts the start of calving. The dependent variable
was the binary variable ‘‘start of calving” (1 = calving started and
0 = calving did not start). The prediction of the resulting logit
model ranges between 0 and 1 and can be interpreted as the prob-
ability that calving will start. The general logit model is described
by Eq. (3). In Eq. (3) bintercept represents the estimate of the model
intercept, bi the ith parameter estimate for Xt

i , the ith model
parameter and moment t.

pt ¼
1

1þ e� binterceptþb1�Xt
1þb2�Xt

2þ���þbi�Xt
ið Þ ð3Þ
2.6.2. Independent variable selection using individual sensor
parameters

First each of the five sensor parameters and ear temperature
were used individually in the variable selection using individual
sensor parameters (ISP). The D in sensor data (Xt

i ) for each of the
24 hourly blocks in the training dataset was used as an indepen-
dent variable for the logit model in the ISP. For each sensor param-
eter, the model contained the independent variable ‘‘DTC” and an
additional 24 independent variables for each D in sensor data,
ranging from 23 h before the hour in which calving started up to
and including the hour in which calving started. A logit model
was fitted for each sensor parameter and the combination of inde-
pendent variables (each independent variable corresponded to an
hourly block ranging from �23 to 0 h antepartum) with the lowest
Akaike’s Information Criterion, corrected for small sample sizes
(AICc), was selected in a stepwise selection procedure. Stepwise
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selection uses a combination of forward addition and backward
elimination to select independent variables (Calcagno, 2013). In
each step the respective AICc was determined and the model with
the lowest AICc was selected, the AICc of the selected model was
reported.

2.6.3. Independent variable selection using combined sensor
parameters (CSP)

The independent variables selected in the ISP selection for all D
in sensor data, were combined in a single model for further selec-
tion using combined sensor parameters (CSP), applying the same
stepwise selection procedure as used in the ISP selection. The
CSP selection resulted in the model ‘‘DTC + sensor”. The perfor-
mance of this model was evaluated further. The model ‘‘DTC + sen-
sor” was used to predict the probability that calving will start for
the test dataset. The AICc’s for both the models selected in ISP
and CSP were reported.

2.7. Model evaluation

The test dataset used for model evaluation contained all hourly
blocks from the last three weeks before calving. For the evaluation
of the predictive performance of the two models (model ‘‘DTC” and
model ‘‘DTC + sensor”), the binary variable ‘‘start of calving” and
the model predictions from the test dataset were used to generate
curves of the Receiver Operator Characteristic (ROC curves) and to
estimate the area under the ROC curve (AUC). Based on the ROC
curves, a threshold for the probability that calving started was cho-
sen that resembled a false positive rate of 1%. Thresholds were sub-
sequently used to generate an alert for an hourly block if the
probability for that hourly block exceeded the chosen threshold.
These alerts were then classified as true positive, false positive,
true negative, or false negative relative to the gold standard. Five
different evaluation schemes were used. A graphical description
of these evaluation schemes is presented in Fig. 1.

The first evaluation scheme (Scheme 1, Fig. 1) was based on a
day. This scheme was used to compare the models ‘‘DTC” and
‘‘DTC + sensor” and to explore the additional value of sensor data.
Calving alerts were generated for each hourly block. Hourly blocks
were then aggregated into 24-h blocks, defined so that the hour in
which calving started was always the last hour of a 24-h block. For
each day and for each individual calving moment in the dataset, it
was determined whether the model generated an alert for a cow.
Each day was then classified as either true positive, false positive,
true negative, or false negative, assuming the day of calving as gold
standard. Hence, for each cow only one alert per 24 h period was
evaluated. Based on this classification the sensitivity and speci-
ficity at daily level were estimated.

The other evaluation schemes (Schemes 2–5, Fig. 1) used an
hourly basis. Alerts were generated for each hourly block. Hence
for each cow 24 alerts were evaluated per 24 h period. The second
evaluation scheme used a strict time window of one hour, which
means that generated alerts were classified as true positives only
for the hour in which calving started. All other alerts were classi-
fied as false positives. This scheme was used to evaluate how accu-
rately the start of calving could be predicted. For the third
evaluation scheme a broader, three-hour time window was used
for evaluation; generated alerts were classified as true positives
for the hour in which calving started and for the preceding two
hours. If more than one alert was given in this three-hour block,
the alerts were considered to be a single true positive alert. False
alerts were not merged, so each hourly alert outside this three-
hour time window was considered to be a single false positive
alert. In addition to the third scheme also time windows of six
(Scheme 4) and twelve hours (Scheme 5) were used based on a
similar approach to the third scheme. When a broader time win-
dow was used the number of alerts changed. For instance, two
alerts within the broader time window are considered as one true
positive alert. Alerts classified as true positive in a broader time
window, were classified as false positive in a smaller time window.
The schemes 3, 4 and 5 were used to evaluate by how much detec-
tion performance would increase when a less precise prediction
was accepted and to discuss what precision would be achievable
and desirable in practice.
2.8. Statistical package

All data editing and analyses were done in R 3.0.2 (Team, 2008)
with the add-on packages dplyr 0.2 (Wickham and Francois, 2014),
Zoo 1.7-10 (Zeileis and Grothendieck, 2005), Glmulti 1.0.7
(Calcagno, 2013), and ROCR 1.0-5 (Sing et al., 2005).

The recommendations on transparent reporting of predictive
models in human medicine were considered in this study and
the so called TRIPOD statement (Moons et al., 2015) is provided
in an Appendix A.
3. Results

Fig. 2 shows the mean sensor values for the 24 h before the hour
in which calving started for the case (n = 114, solid line) and con-
trol datasets (n = 342; dashed line), with their respective 95% con-
fidence intervals. The confidence intervals for the case and control
datasets did not overlap for the sensor parameters ‘‘activity” and
‘‘highly active”; whereas the confidence intervals partially over-
lapped for ‘‘ruminating” and ‘‘temperature”. Confidence intervals
overlapped during the entire 24-h period for ‘‘not active” and
‘‘feeding”. Overlapping confidence intervals indicate that mean val-
ues between the case and control datasets were not different given
the sample size. Therefore, only ‘‘activity”, ‘‘highly active”, ‘‘rumi-
nating”, and ‘‘temperature” were reparametrized in D and used
in the ISP and CSP selection procedures.

For the models in the ISP selection, the AICc’s were: 127.44 for
‘‘activity”, 136.88 for ‘‘temperature”, 137.32 for ‘‘ruminating”,
163.31 for ‘‘highly active”, and 165.70 for ‘‘DTC”. The independent
variable ‘‘DTC” was selected in all models in the ISP analyses. In
addition, independent variables with the D in sensor data were
selected for ‘‘activity” (�18, �7, �6, and �2 h relative to the start
of calving), ‘‘temperature” (�23, �17, and 0 h relative to the start
of calving), ‘‘ruminating” (�13, �12, �7, �4, �3, �2, and �1 h rel-
ative to the start of calving), and ‘‘highly active” (�18, �14, �13,
�10, �6, and �2 h relative to the start of calving).

The final ‘DTC + sensor’ model resulting from the CSP selection
procedure had an AICc of 70.40, lower than those found in the
ISP selections. Table 1 summarizes the parameter estimates for this
model. The remaining independent variables after CSP were ‘‘activ-
ity” (�6 and �2 h relative to the start of calving), ‘‘temperature”
(�17 and 0 relative to the start of calving), ‘‘ruminating” (�12,
�7, �3, �2, and �1 h relative to the start of calving), and ‘‘highly
active” (�18, �14, �13, �10, �6, and �2 h relative to the start of
calving).

Fig. 3 plots the ROC curves for the ‘‘DTC” (AUC = 0.885, dashed
line) and the ‘‘DTC + sensor” (AUC = 0.929, solid line) models. The
AUC increased by 0.044 when D in sensor data was included in
addition to the expected calving date (‘‘DTC”), which is the current
information available to dairy farmers.

Table 2 summarizes performance indicators for the ‘‘DTC” and
‘‘DTC + sensor” models. Adding sensor data to the model increased
sensitivity from 9.1% (model ‘‘DTC”) to 36.4% (model ‘‘DTC + sen-
sor”) when evaluated on a daily basis. Evaluating the ‘‘DTC + sen-
sor” model on an hourly basis, resulted in a sensitivity of 21.2%
(Scheme 2; Fig. 1). Note that in the daily basis for each cow one



Fig. 1. Schematic description of the evaluation schemes used. The schemes are on a daily, hourly, and three-hour basis. Dashed lines represent a period of 24 h, arrows below
the line represent a calving and arrows above the line represent alerts. Alerts classified as true positive are indicated with ‘‘TP”, all other alerts were classified as false positive
‘‘FP” alerts. In this example 5 alerts were generated and classified using different schemes, that results in different numbers of TP and FP.
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alert in 24 h and in the hourly basis 24 alerts in 24 h were evalu-
ated. Extending the time window for the hourly basis to three
hours increased sensitivity to 42.4% (Scheme 3; Fig. 1). Broader
time windows of six and twelve hours increased the sensitivity
even more. The number of false positive alerts ranged from 110
to 148 alerts within the last 3 weeks antepartum depending on
the used time window.

The highest number of alerts were generated in the last 12 h
before calving started; 28% of all 134 alerts generated during the
last week before calving were generated in the last 12 h. Alerts
were generated throughout the entire week, but less than during
the last 12 h before calving.

4. Discussion

In this study, sensor parameters ‘‘activity”, ‘‘temperature”, ‘‘ru-
mination”, and ‘‘highly active” changed in the 24 h prior to the
start of calving. From a model selection process using the AICc,
the independent variable ‘‘DTC” was selected together with inde-
pendent variables with the D in sensor data primarily from the last
10 h prior to the start of calving. ‘‘Activity” contributed the most to
the model and ‘‘highly active” contributed the least to the model, in
terms of AICc. Combining sensor parameters in the CSP analysis
resulted in the lowest AICc, indicating that the ‘‘DTC + sensor”
model has more predictive value than models in the ISP analysis,
which used single sensor parameters. Model ‘‘DTC + sensor” has a
lower AICc, a higher AUC, and a higher sensitivity (at a comparable
specificity) than the ‘‘DTC” model, when evaluated on a daily basis
(Scheme 1; Fig. 1). The sensitivity of the ‘‘DTC + sensor” model
increased around 20 percentage points at a specificity of approxi-
mately 99%, when evaluated on an hourly basis using a three-
hour time window. The model performance in this study, as
measured in AUC values on a separate test dataset (Table 2), was
higher than previous findings of Ouellet et al. (2016). This was
unexpected because the latter study lacked an independent valida-
tion and had a smaller dataset (32 cows) (Ouellet et al., 2016).



Fig. 2. Graphical description of mean values over all cows and corresponding 95% confidence intervals (dashed line) for the sensor data of the six parameters in the sensor
dataset over a period of 24 h. The case datasets, n = 114 (solid line), end with the start of calving at hour 0. The corresponding control datasets, n = 342 (dots connected by a
solid line) contain data from a random day of the dry-off period of the same cow, ending at the same hour of the day in which calving started in the case dataset.

Table 1
The multivariable logistic regression model for the prediction of the start of calving, including sensor data and days to expected calving date (DCT), model ‘‘DTC + sensor”:
parameter estimates with their respective standard errors (S.E.), test statistics (Z-value), and p-values. The variable ‘‘days to expected calving date” is the number of days until the
expected calving date. The other variables are derived from sensor data as the D (min/h or �C) relative to a 72 h rolling mean from 3 days ago.

Parameter Hours before
calving started

Estimate S.E. Z-value P-value

Intercept �2.400 1.054 �2.276 0.024
DCT (days) 0.554 0.062 8.922 0.000
Rumination (min/h) �13 �0.522 0.127 �4.104 0.000

�12 0.449 0.108 4.172 0.000
�7 0.288 0.098 2.934 0.004
�3 �0.276 0.106 �2.607 0.010
�2 �0.096 0.110 �0.877 0.381
�1 �0.676 0.154 �4.395 0.000

Temperature (�C) �17 0.508 0.211 2.415 0.016
0 �1.341 0.247 �5.422 0.000

Activity (min/h) �6 1.466 0.280 5.228 0.000
�2 1.247 0.271 4.595 0.000

Highly active (min/h) �18 �0.764 0.358 �2.136 0.033
�14 �0.151 0.294 �0.515 0.607
�10 1.512 0.304 4.972 0.000
�6 �2.031 0.545 �3.728 0.000
�2 0.575 0.347 1.659 0.098
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An increase in ‘‘activity” and ‘‘highly active” (Fig. 1) was
observed in this study. Two studies that cross validated the detec-
tion performance for calving detection report sensitivities around
80% and specificities around 90% (Borchers et al., 2015; Rutten
et al., 2015). These findings seem to indicate a better performance
than the current findings. It should be noted that these studies gen-
erated alerts every two hours instead of every hour and that
reduces the total number of alerts including the false positive
alerts. Other studies have also reported activity to increase during
the 24 h before calving (Clark et al., 2015; Miedema et al., 2011b;
Saint-Dizier and Chastant-Maillard, 2015; Titler et al., 2015). For
‘‘temperature”, a decrease of about 3 �C was observed during the
hour in which calving started, whereas other studies have reported
decreases in the range of 0.2–0.5 �C (Burfeind et al., 2011; Ouellet
et al., 2016). The sensor in the current study measured ear temper-
ature, which is more sensitive to environmental influences than
core body temperature (Gonzalezjimenez and Blaxter, 1962). This
might explain the differences between this study and values found
in the literature. However, ‘‘temperature” had the second highest
impact (based on AICc) in the current study, indicating that



Fig. 3. Curves of the receiver operating characteristic for model ‘‘DTC”, which has
expected calving date as independent variable (dashed line), and model ‘‘DTC
+ sensor”, which has sensor data and the expected calving date as independent
variables (solid line). Both models were used to predict the day on which calving
started. The respective areas under the curve (AUC) were 0.885 for ‘‘DTC” and 0.929
for ‘‘DTC + sensor”.
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‘‘temperature” had predictive value relative to the other sensor
parameters, regardless of possible environmental influences on
the temperature measurements.

A decrease in ‘‘rumination” prior to calving was observed in this
study, consistent with other studies (Bar and Solomon, 2010;
Bucher and Sundrum, 2014; Clark et al., 2015; Ouellet et al.,
2016; Pahl et al., 2014; Saint-Dizier and Chastant-Maillard, 2015;
Schirmann et al., 2013). In the current study, this decrease was
about 15 min/h (the difference between the case and control data-
set during the hour in which calving started). Clark et al. (2015)
reported a reduction in rumination of 5 min/h, whereas
Schirmann et al. (2013) reported a reduction of 30 min/2 h during
the last 24 h before calving. These studies reported their findings
on a daily or two-hour basis, which makes comparison difficult.
Pahl et al. (2014) observed that the decrease in rumination was
most notable in the last two hours before calving and that rumina-
tion time varied considerably amongst cows, these results seem
consistent with the observations of the current study.

Previous studies have observed changes in feeding and resting
behaviour determined by sensors in the last 24 h before calving
(Bucher and Sundrum, 2014; Clark et al., 2015; Schirmann et al.,
2013; Titler et al., 2015). No such effects were observed in the data
Table 2
Predictive performance of the models with days to the expected calving date only (DTC) an
under the curve (AUC) of the receiver operating characteristic. The corresponding numbers
were evaluated on a daily basis. Model ‘‘DTC + sensor” was further evaluated on an ho
independent test dataset with the start of calving and data of 3 weeks prior to the start o

AUC Sensitivity (%)

Evaluation on daily basis
DTC 0.885 9.1
DTC + Sensor 0.929 36.4

Evaluation of model DTC + sensor on hourly basis
1-h time window 0.901 21.2
3-h time window 0.901 42.4
6-h time window 0.901 48.5
12 h time window 0.901 51.5
of the sensor parameters ‘‘feeding” and ‘‘not active” in the current
study. A possible explanation for the difference with previous stud-
ies is that the SensOor sensor used ear movements to determine
feeding and resting behaviour. Resting behaviour and activity were
described as minutes per hour spent on this behaviour. However,
in late gestation cows restlessness and alteration between standing
and lying are an important indication that calving is to start, i.e.,
she is searching for a place to lie down (Miedema et al., 2011b).
The current algorithm of SenOoor does not pick up the change
between lying and standing. Furthermore, when a cow is lying
down this time could be assigned to ‘‘ruminating” or ‘‘not active”.
On the other hand cows can also be ruminating or not active while
standing upright. If lying time or the change between lying and
standing could be determined from the raw data of SensOor it
could be possible to improve the prediction of calving.

The current study focussed on the specific hour at which calv-
ing started. The choice to develop a predictive model for this
moment was based on the idea that it is important that a farmer
is present shortly after calving has started. A farmer‘s presence is
important because farmers need to be aware of dystocia as soon
as possible to mitigate adverse effects (Barrier et al., 2013; Mee
et al., 2014). It is also important that a calf is fed colostrum
shortly after birth, preferably within one to two hours
(Conneely et al., 2014; Klein-Jobstl et al., 2014). As only 21% of
the calvings could be detected exactly, a less precise alert that
requires the farmer to check pregnant cows more frequently
might be of more practical use. With a broader time window, it
was possible to predict 43.5% of the calvings within a three-
hour time window at a specificity of 99%. This suggests that for
practical applications, missing the start of calvings should be bal-
anced against accepting more (false) alerts.

Alerts were mainly generated during the 12 h before calving. In
this period, changes in the sensor data were visible when the case
datasets were compared to the control datasets (Fig. 2). The predic-
tive models appear capable of detecting behavioural changes asso-
ciated with calving in the hours before calving starts. Therefore, it
seems that sensors pick up behavioural changes that gradually
develop in the hours before calving. Due to this gradual process,
however, there is no sudden change in behaviour in the hour in
which calving starts. This means that a specific alert for the start
of calving is not yet feasible.

A more relaxed time window in which alerts are considered
true positive improved predictive performance (evaluation based
on Scheme 3 versus Scheme 2; Fig. 1), because most false positive
hourly alerts were generated in the 12 h before the start of calving.
Classifying alerts one to three hours before the start of calving as
true positive could be reasonable, because these alerts can be seen
as an indicator that calving is about to start. Alerts given three or
more hours before the start of calving may be too early. Whether
alerts are regarded as false or true positive alerts will depend on
the preferences and attitude of the farmer.
d with sensor data in addition to ‘‘DTC” (DTC + sensor): sensitivity, specificity and area
of true positive (TP) and false positive (FP) alerts are presented as well. Both models
urly basis with different time windows. Model evaluation were conducted on an
f calving.

TP Specificity (%) FP

3 99.3 5
12 98.9 8

7 99.1 148
14 99.2 135
16 99.3 124
17 99.4 110
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Another way to increase sensitivity is to use a lower threshold
for the probability that calving starts. As more alerts will then be
generated, sensitivity will increase. This increase however, will
be accompanied by more false positive alerts. Fig. 3 shows a steep
line in the ROC curve for a false positive rate of up to 10% for model
‘‘DTC + sensor”. This indicates that a small increase in the false pos-
itive rate is associated with a large increase in sensitivity. Previous
studies indicated that farmers prefer alerts close to an event and
that false positive alerts reduced farmers’ faith in automated mas-
titis detection systems of automated milking systems (Hogeveen
et al., 2010; Mollenhorst et al., 2012). Although exact preferences
will differ for the automated prediction of the start of calving,
farmers may also prefer the fewest false positive alerts possible,
similar to automated mastitis detection systems.

Although sensors detect behavioural and physiological changes
that are related to calving and can be used to generate alerts that
could have practical relevance, a predictive model that specifically
predicts the exact moment at which calving starts was not feasible
in the current study. Mainly because sensitivity was only 21.2% for
exact hourly prediction. An alert that indicates which cows a
farmer should supervise more closely in the next few hours seems
feasible. The sensitivity was higher than 50% for a time window of
6 or 12 h. For practical application, such an alert could be useful to
detect cows that should be checked visually in the coming hours.
This application is valuable for farmers, as it provides a reminder
of cows that are close to parturition and also indicates cows that
might otherwise calve unexpectedly, i.e., based only on the
expected calving date. The most optimal time window is debatable.
It is important to consider how a farmer could use the alerts to
organize his labor around calving management. Twelve hours
could be too long, as calving may start at the end of this twelve
hour period and the other hours could be used for other tasks on
the farm. Six hours may be a reasonable compromise between sen-
sitivity and practical use for organizing labor. Furthermore, six
hours would cover most of the night period in which a farmer
would be absent from the barn. So, a model that predicts whether
a cow will start calving in the coming six hours seems feasible
although some refinement would be needed. Therefore, future
research could focus on how the number of alerts and the time per-
iod in which these are generated can be used to identify cows that
will calve in the next few hours. Other sensors have been shown to
measure comparable changes associated with calving, so using dif-
ferent sensors to measure activity, rumination, or temperature is
unlikely to greatly improve the specific prediction of the start of
calving. Sensors that measure behavioural or physiological changes
more directly related to calving might have additional value for the
specific prediction of the start of calving. Such non-invasive sen-
sors include: heart rate monitors (currently used in respiration
studies (Machado et al., 2016)), sensors that measure muscle con-
tractions, sensors that monitor the standing and lying pattern
(Nielsen et al., 2010), and biosensors that measure hormone (resi-
due) levels (currently used for measurements in milk (Brandt et al.,
2010) or detection of pathogens (Casalinuovo et al., 2006)). Future
research should focus on a combination of more sensor variables
than the current study did, as adding other variables from different
sensors may improve the prediction of calving. It might be interest-
ing to study whether a prediction model for calving could also dis-
tinguish cows who will have dystocia from cows who will not.
However possibilities for such an application based on behavioural
parameters may be limited, as no behavioural differences have
been observed between cows who experience dystocia and cows
who do not (Miedema et al., 2011a). On the other hand heifers
are known to have a higher risk of dystocia (Mee, 2008), therefore
future research should include heifers.
5. Conclusion

This study shows that sensor data can be of added value for a
more accurate prediction of the start of calving than the expected
calving date alone. However, the number of false positive alerts
was relatively high and at best, the moment at which calving
started was correctly predicted for fewer than half of the calvings.
False positive alerts were mainly observed in the last 12 h before
calving started. In this period, sensor data differed between the
case and control datasets, but these data were not specific enough
to be used for prediction of the exact hour in which calving starts.
In practice, sensor data may still have merit for the prediction of
calving as most alerts are generated within 12 h before calving
started. A cow receiving multiple alerts within a few hours pro-
vides an indication to the farmer that the cow should be supervised
more closely. Therefore, a model that predicts whether a cow will
calve within the next six hours seems feasible and reasonable for
application in practice.
Acknowledgements

We gratefully acknowledge Stephanie Agricola, Jaap Noord-
mans, and Jelle Reijenga, students from van Hall-Larenstein
(Leeuwarden, the Netherlands), for their assistance in the interpre-
tation of the camera images. We also thank J.C.M. Vernooij and F.J.
C.M. van Eerdenburg (Utrecht University, Utrecht, the Netherlands)
for the inspiring discussion on the study and conducted analyses.
This research was supported by the Dutch research program Smart
Dairy Farming, which is financed by Royal Friesland Campina
(Amersfoort, the Netherlands), CRV (Arnhem, the Netherlands),
Royal Agrifirm (Apeldoorn, the Netherlands), Dairy Valley
(Leeuwarden, the Netherlands), Investment and Development
Agency for the Northern Netherlands (Groningen, the Nether-
lands), the Dutch Dairy Board (Zoetermeer, the Netherlands), and
the Ministry of Economic Affairs, Agriculture and Innovation, Pie-
ken in de Delta (Den Haag, the Netherlands).



116 C.J. Rutten et al. / Computers and Electronics in Agriculture 132 (2017) 108–118
Appendix A



C.J. Rutten et al. / Computers and Electronics in Agriculture 132 (2017) 108–118 117



ronics in Agriculture 132 (2017) 108–118
References
Bar, D., Solomon, R., 2010. Rumination collars: what can they tell us. In: The First
North American Conference on Precision Dairy Management, Toronto, Canada,
pp. 214–215.

Barrier, A.C., Haskell, M.J., Birch, S., Bagnall, A., Bell, D.J., Dickinson, J., Macrae, A.I.,
Dwyer, C.M., 2013. The impact of dystocia on dairy calf health, welfare,
performance and survival. Vet. J. 195, 86–90.

Bikker, J.R., van Lear, H., Rump, R., Doorenbos, J., van Meurs, K., Griffioen, G.M.,
Dijkstra, J., 2014. Technical note: evaluation of an ear-attached movement
sensor to record cow feeding behavior and activity. J. Dairy Sci. 97, 2974–2979.

Borchers, M.R., Chang, Y.-M., Stone, A.E., Wadsworth, B.A., Bewley, J.M., 2015.
Predicting impending calving using automatic activity and rumination
measures in dairy cattle. In: Guarino, M., Berckmans, D. (Eds.), 7th European
Conference on Precision Livestock Farming, Milan, Italy, pp. 406–414.

Brandt, M., Haeussermann, A., Hartung, E., 2010. Invited review: technical solutions
for analysis of milk constituents and abnormal milk. J. Dairy Sci. 93, 427–436.

Bucher, S., Sundrum, A., 2014. Short communication: decrease in rumination time
as an indicator of the onset of calving. J. Dairy Sci. 97, 3120–3127.

Burfeind, O., Suthar, V.S., Voigtsberger, R., Bonk, S., Heuwieser, W., 2011. Validity of
prepartum changes in vaginal and rectal temperature to predict calving in dairy
cows. J. Dairy Sci. 94, 5053–5061.

Calcagno, V., 2013. Glmulti: model selection and multimodel inference made easy,
1.0.7 ed. Automated Model Selection and Model-Averaging. Provides a Wrapper
for glm and Other Functions, Automatically Generating.

Casalinuovo, I.A., Di Pierro, D., Coletta, M., Di Francesco, P., 2006. Application of
electronic noses for disease diagnosis and food spoilage detection. Sensors 6,
1428–1439.

Clark, C.E.F., Lyons, N.A., Millapan, L., Talukder, S., Cronin, G.M., Kerrisk, K.L., Garcia,
S.C., 2015. Rumination and activity levels as predictors of calving for dairy cows.
Animal 9, 691–695.

Conneely, M., Berry, D.R., Murphy, J.P., Lorenz, I., Doherty, M.L., Kennedy, E., 2014.
Effect of feeding colostrum at different volumes and subsequent number of
transition milk feeds on the serum immunoglobulin G concentration and health
status of dairy calves. J. Dairy Sci. 97, 6991–7000.

Fourichon, C., Seegers, H., Malher, X., 2000. Effect of disease on reproduction in the
dairy cow: a meta-analysis. Theriogenology 53, 1729–1759.

Gonzalezjimenez, E., Blaxter, K.L., 1962. Metabolism and thermal regulation of
calves in first month of life. Br. J. Nutr. 16, 199.

Hogeveen, H., Kamphuis, C., Steeneveld, W., Mollenhorst, H., 2010. Sensors and
clinical mastitis-the quest for the perfect alert. Sensors 10, 7991–8009.

Inchaisri, C., Hogeveen, H., Vos, P., van der Weijden, G.C., Jorritsma, R., 2010. Effect
of milk yield characteristics, breed, and parity on success of the first
insemination in Dutch dairy cows. J. Dairy Sci. 93, 5179–5187.

Klein-Jobstl, D., Iwersen, M., Drillich, M., 2014. Farm characteristics and calf
management practices on dairy farms with and without diarrhea: a case-
control study to investigate risk factors for calf diarrhea. J. Dairy Sci. 97, 5110–
5119.

Lombard, J.E., Garry, F.B., Tomlinson, S.M., Garber, L.P., 2007. Impacts of dystocia on
health and survival of dairy calves. J. Dairy Sci. 90, 1751–1760.

Machado, F.S., Tomich, T.R., Ferreira, A.L., Cavalcanti, L.F.L., Campos, M.M., Paiva, C.A.
V., Ribas, M.N., Pereira, L.G.R., 2016. Technical note: a facility for respiration
measurements in cattle. J. Dairy Sci. 99, 4899–4906.

Mee, J.F., 2008. Prevalence and risk factors for dystocia in dairy cattle: a review. Vet.
J. (London, England: 1997) 176, 93–101.

Mee, J.F., Sanchez-Miguel, C., Doherty, M., 2014. Influence of modifiable risk factors
on the incidence of stillbirth/perinatal mortality in dairy cattle. Vet. J. 199, 19–
23.

Miedema, H.M., Cockram, M.S., Dwyer, C.M., Macrae, A.I., 2011a. Behavioural
predictors of the start of normal and dystocic calving in dairy cows and heifers.
Appl. Anim. Behav. Sci. 132, 14–19.

Miedema, H.M., Cockram, M.S., Dwyer, C.M., Macrae, A.I., 2011b. Changes in the
behaviour of dairy cows during the 24 h before normal calving compared with
behaviour during late pregnancy. Appl. Anim. Behav. Sci. 131, 8–14.

118 C.J. Rutten et al. / Computers and Elect
Mollenhorst, H., Rijkaart, L.J., Hogeveen, H., 2012. Mastitis alert preferences of
farmers milking with automatic milking systems. J. Dairy Sci. 95, 2523–2530.

Moons, K.G.M., Altman, D.G., Reitsma, J.B., Ioannidis, J.P.A., Macaskill, P., Steyerberg,
E.W., Vickers, A.J., Ransohoff, D.F., Collins, G.S., 2015. Transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis (TRIPOD):
explanation and elaboration. Ann. Intern. Med. 162, W1–W73.

Nielsen, L.R., Pedersen, A.R., Herskin, M.S., Munksgaard, L., 2010. Quantifying
walking and standing behaviour of dairy cows using a moving average based on
output from an accelerometer. Appl. Anim. Behav. Sci. 127, 12–19.

Norman, H.D., Hutchison, J.L., Miller, R.H., 2010. Use of sexed semen and its effect on
conception rate, calf sex, dystocia, and stillbirth of Holsteins in the United
States. J. Dairy Sci. 93, 3880–3890.

Ouellet, V., Vasseur, E., Heuwieser, W., Burfeind, O., Maldague, X., Charbonneau, E.,
2016. Evaluation of calving indicators measured by automated monitoring
devices to predict the onset of calving in Holstein dairy cows. J. Dairy Sci. 99,
1539–1548.

Pahl, C., Hartung, E., Grothmann, A., Mahlkow-Nerge, K., Haeussermann, A., 2014.
Rumination activity of dairy cows in the 24 hours before and after calving. J.
Dairy Sci. 97, 6935–6941.

Parkinson, T.J., England, G.C.W., Arthur, G.H., 2001a. Chapter 1 - endogenous and
exogenous control of ovarian cyclicity A2 - Noakes. In: David, E. (Ed.), Arthur’s
Veterinary Reproduction and Obstetrics, eighth ed.. W.B. Saunders, Oxford, pp.
3–53.

Parkinson, T.J., England, G.C.W., Arthur, G.H., 2001b. Chapter 6 - Parturition and the
care of parturient animals A2 - Noakes. In: David, E. (Ed.), Arthur’s Veterinary
Reproduction and Obstetrics, eighth ed.. W.B. Saunders, Oxford, pp. 155–187.

Parkinson, T.J., England, G.C.W., Arthur, G.H., 2001c. Chapter 11 - Fetal dystocia:
aetiology and incidence A2 - Noakes. In: David, E. (Ed.), Arthur’s Veterinary
Reproduction and Obstetrics, eighth ed.. W.B. Saunders, Oxford, pp. 245–263.

Piwczynski, D., Nogalski, Z., Sitkowska, B., 2013. Statistical modeling of calving ease
and stillbirths in dairy cattle using the classification tree technique. Livest. Sci.
154, 19–27.

Rajala-Schultz, P.J., Grohn, Y.T., 1999. Culling of dairy cows. Part I. Effects of diseases
on culling in Finnish Ayrshire cows. Prev. Vet. Med. 41, 195–208.

Roelofs, J.B., van Eerdenburg, F., Soede, N.M., Kemp, B., 2005. Pedometer readings for
estrous detection and as predictor for time of ovulation in dairy cattle.
Theriogenology 64, 1690–1703.

Rutten, C.J., Steeneveld, W., Kamphuis, C., Huijps, K., Hogeveen, H., 2015.
Development of a predictive model for the onset of calving. In: Guarino, M.,
Berckmans, D. (Eds.), 7th European Conference on Precision Livestock Farming,
Milan, Italy, pp. 397–405.

Saint-Dizier, M., Chastant-Maillard, S., 2015. Methods and on-farm devices to
predict calving time in cattle. Vet. J. 205, 349–356.

Schirmann, K., Chapinal, N., Weary, D.M., Vickers, L., von Keyserlingk, M.A.G., 2013.
Short communication: rumination and feeding behavior before and after
calving in dairy cows. J. Dairy Sci. 96, 7088–7092.

Schuenemann, G.M., Bas, S., Gordon, E., Workman, J.D., 2013. Dairy calving
management: description and assessment of a training program for dairy
personnel. J. Dairy Sci. 96, 2671–2680.

Sheldon, I.M., Cronin, J., Goetze, L., Donofrio, G., Schuberth, H.J., 2009. Defining
postpartum uterine disease and the mechanisms of infection and immunity in
the female reproductive tract in cattle. Biol. Reprod. 81, 1025–1032.

Sing, T., Sander, O., Beerenwinkel, N., Lengauer, T., 2005. ROCR: visualizing classifier
performance in R. Bioinformatics 21, 3940–3941.

Team, R.D.C., 2008. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Titler, M., Maquivar, M.G., Bas, S., Rajala-Schultz, P.J., Gordon, E., McCullough, K.,
Federico, P., Schuenemann, G.M., 2015. Prediction of parturition in Holstein
dairy cattle using electronic data loggers. J. Dairy Sci. 98, 5304–5312.

Wickham, H., Francois, R., 2014. dplyr: a grammar of data manipulation, 0.1 ed, A
Fast, Consistent Tool for Working with Data Frame like Objects, both in Memory
and Out of Memory.

Zeileis, A., Grothendieck, G., 2005. Zoo: S3 infrastructure for regular and irregular
time series. J. Stat. Softw. 14.

http://refhub.elsevier.com/S0168-1699(16)31026-2/h0005
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0005
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0005
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0010
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0010
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0010
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0015
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0015
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0015
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0020
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0020
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0020
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0020
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0025
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0025
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0030
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0030
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0035
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0035
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0035
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0045
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0045
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0045
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0050
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0050
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0050
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0055
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0055
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0055
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0055
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0060
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0060
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0065
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0065
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0070
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0070
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0075
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0075
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0075
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0080
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0080
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0080
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0080
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0085
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0085
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0090
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0090
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0090
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0095
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0095
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0100
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0100
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0100
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0105
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0105
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0105
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0110
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0110
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0110
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0110
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0115
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0115
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0120
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0120
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0120
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0120
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0125
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0125
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0125
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0130
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0130
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0130
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0135
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0135
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0135
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0135
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0140
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0140
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0140
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0140
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0145
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0145
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0145
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0145
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0150
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0150
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0150
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0155
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0155
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0155
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0160
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0160
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0160
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0165
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0165
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0170
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0170
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0170
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0175
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0175
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0175
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0175
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0180
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0180
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0185
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0185
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0185
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0190
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0190
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0190
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0195
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0195
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0195
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0200
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0200
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0205
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0205
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0210
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0210
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0210
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0220
http://refhub.elsevier.com/S0168-1699(16)31026-2/h0220

	Sensor data on cow activity, rumination, and ear temperature improve prediction of the start of calving in dairy cows
	1 Introduction
	2 Material and methods
	2.1 Gold standard definition
	2.2 Data collection
	2.3 Expected calving date
	2.4 Sensor data
	2.4.1 Missing sensor data
	2.4.2 Independent variables from sensor data

	2.5 Data selection
	2.6 Model development
	2.6.1 Logistic regression models
	2.6.2 Independent variable selection using individual sensor parameters
	2.6.3 Independent variable selection using combined sensor parameters (CSP)

	2.7 Model evaluation
	2.8 Statistical package

	3 Results
	4 Discussion
	5 Conclusion
	Acknowledgements
	Appendix A
	References


