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Assessment of residential environmental exposure to pesticides
from agricultural fields in the Netherlands
Maartje Brouwer1, Hans Kromhout1, Roel Vermeulen1,2, Jan Duyzer3, Henk Kramer4, Gerard Hazeu5, Geert de Snoo6 and Anke Huss1

We developed a spatio-temporal model for the Netherlands to estimate environmental exposure to individual agricultural
pesticides at the residential address for application in a national case–control study on Parkinson’s disease (PD). Data on agricultural
land use and pesticide use were combined to estimate environmental exposure to pesticides for the period 1961 onwards. Distance
categories of 0–50 m, 450–100 m, 4100–500 m and 4500–1000 m around residences were considered. For illustration purposes,
exposure was estimated for the control population (n= 607) in the PD case–control study. In a small validation effort, model
estimates were compared with pesticide measurements in air and precipitation collected at 17 stations in 2000–2001. Estimated
exposure prevalence was higher for pesticides used on commonly cultivated (rotating) crops than for pesticides used on fruit and
bulbs only. Prevalence increased with increasing distance considered. Moderate-to-high correlations were observed between
model estimates (4100–500 m and 4500–1000 m) and environmental pesticide concentrations measured in 2000–2001.
Environmental exposure to individual pesticides can be estimated using relevant spatial and temporal data sets on agricultural land
use and pesticide use. Our approach seems to result in accurate estimates of average environmental exposure, although it remains
to be investigated to what extent this reflect personal exposure to agricultural pesticides.
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INTRODUCTION
Pesticides are extensively used in agriculture and a wide range of
active ingredients and product formulations have been marketed
over the past decades. Exposure to pesticides has been associated
with different health effects, including cancer, respiratory health
and neurodegenerative diseases, such as Parkinson’s disease
(PD).1–3 Traditionally, research has focused on pesticide exposure
among agricultural workers. However, as pesticides can move
from their intended application sites during and after agricultural
application, also the general population in surrounding residential
areas may be exposed to these pesticides.
Emission from agricultural pesticide applications can occur as

primary spray drift of droplets during application, as secondary
drift via volatilization of pesticide residues from crops or soil or as
wind erosion of soil particles.4 Depending on factors such as the
application technique, the formulation used and environmental
conditions, more than half of the applied dosage can be lost to air
due to drift and volatilization, during and after application.5,6

Primary drift of pesticides typically occurs over short distances
(o100 m) and the highest concentrations are measured within
the first few meters from treated fields.7,8 The maximum distance
at which pesticides have been detected following ground
applications can be 4100 m however.9,10 Air monitoring results
indicate increased environmental pesticide concentrations follow-
ing agricultural pesticide applications and decreasing concentra-
tions with increasing distance from the treated fields.11 Also,

pesticide concentrations measured in residential house dust
samples have been associated with residential proximity to crops
treated with pesticides.12,13 Ward et al. 14 and Gunier et al.15 found
the crop area present within 750 m and 1250 m buffers around
the home, respectively, to be predictive for pesticide concentra-
tions in house dust.
Individuals living in the vicinity of agricultural fields treated with

pesticides may potentially be exposed to these pesticides, either
via inhalation of pesticides in air, dermal contact with pesticides in
air or precipitation, treated crops, soil or dust or via ingestion of
contaminated food or drinking water.4,16,17 Pesticide exposure
levels originating from the environment are considered to be low,
but the number of people potentially exposed could be high,
including potentially sensitive groups in the population (e.g.,
children and elderly). Exposure assessment for pesticides is
challenging, especially for environmental exposure, where people
are generally unaware of the pesticides applied in the vicinity of
their residences. Individual (personal) measurements are neither
feasible in large epidemiological studies nor available back in
time. Past exposures or cumulative exposures, however, may be
most relevant for diseases with a long latency or induction period
or increased susceptibility during specific time windows in life.
Geographic information systems (GIS) have been increasingly

used to assess environmental exposure to pesticides. The first
studies making use of GIS calculated relatively simple spatial
exposure proxies, such as proximity to agricultural crops18 or the
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crop area cultivated in the vicinity of the residence.14 A Belgian
study developed indicators of environmental pesticide exposure
for use in a bladder cancer study, based on available agricultural
land-use data (only for the year 2002) and data on pesticide use at
the functional group level (e.g., herbicides).19 When trying to
investigate the (causal) association between health effects and
specific chemical agents, such broad exposure groups or exposure
proxies are of limited interest, and more studies now focus on
exposure to individual pesticides or pesticide chemical
groups.20,21 Several studies in the United States have combined
spatial data on the location of residences relative to crop
cultivation, with information from the California Pesticide Use
Reporting (CPUR),22,23 or historical records of large-scale public
pest control applications and meteorology24 to investigate the
association between potential environmental pesticide exposure
and adverse health effects. Few countries have publicly accessible
databases with similar detail to the CPUR. The spatial land-use
data underlying these US exposure assessments have a relatively
low resolution (0.81 ha), however. As drift of pesticides is most
substantial in the direct vicinity of the field, high-resolution data
on agricultural fields is warranted to study the effect of proximity
to fields and exposure intensity over short distances. The
availability of databases on agricultural land-use and pesticide-
use records can differ substantially between countries. In the
Netherlands, high-resolution multi-date land-use data sets have
been created,25 but no accessible central registration of pesticide
applications is available. Therefore, historical information on crop-
specific pesticide use has been collected previously,26 in order to
estimate environmental exposure to agricultural pesticides in the
Netherlands.
The current work is part of a large PD case–control study in the

Netherlands,27 which investigates the association between both
occupational28 and environmental exposure to specific pesticides
and the risk of PD. Here we present a spatio-temporal model to

estimate past and current environmental exposure to individual
agricultural pesticides, based on geocoded residential histories.
This paper describes the model development and provides
examples of the resulting exposure estimates, using data from
the PD case–control study. Furthermore, in a small validation
effort, model estimates of environmental pesticide exposure are
compared with pesticide concentrations measured in air and
precipitation in 2000–2001.

MATERIALS AND METHODS
In summary, multi-date data sets on agricultural land use, data from
national agricultural censuses and expert-derived data on crop-specific
pesticide use were combined to estimate potential environmental
exposure to individual agricultural pesticides at the residential addresses
of the study participants (Figure 1).

Residential History
This work is part of a national hospital-based case–control study on PD.27

Cases and controls were enrolled at five neurological hospital departments
across the Netherlands and matched based on hospital, sex, age and
visiting date (within 3 years). A complete residential history was collected
from participants, including all residential addresses the participant had
ever lived, for at least 1 year. Addresses were geocoded by linking the
postal code, street name and house number to the building coordinate in
the Dutch cadastral key registry of buildings and addresses (BAG),29 which
is a point located within the polygon of the building outline (i.e., within the
outside walls). If there was no match with a building coordinate for a
specific address, the address was geocoded to the midpoint of the
corresponding 6-digit, 5-digit or 4-digit postal code area.

Agricultural Land Use
For this study, we obtained data from spatial land-use data sets of the
Netherlands available for the years 1960, 1970, 1980 and 1990 (HGN)30 and
1986, 1992, 1995, 1999, 2003 and 2007 (LGN).25 These data sets consist of

Figure 1. Overview of the modeling steps in the assessment of environmental pesticide exposure.
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raster cells of 25 × 25 m2 (0.06 ha), with a code linking to the dominant
land-use class in the cell. The LGN data sets (LGN1–LGN6) were based on
satellite imagery from 1986, 1992/1994, 1995/1997, 1999/2000, 2003/2004
and 2007/2008, respectively, and incorporated other relevant spatial data
sets available at the time of the development. The LGN data sets provide
information on the cultivation of a number of specific crops, although the
amount of detail can differ between the different editions (Supplementary
Table S1). Crop classification was based on the Normalised Difference
Vegetation Index and the procedures followed have previously been
described.25,31 For each LGN data set, accuracy of crop classification was
investigated using external data sets (e.g., field measurements, regional
census data) and estimated to be around 70–80% overall (Supplementary
Table S1). The LGN1 (1986) data set was not used in the current study, as
this was considered an experimental data set with limited accuracy.31

The historical land-use data sets (HGN) were based on topographical
maps of the Netherlands30 and do not provide information on specific
crops but distinguish two agricultural classes: ‘arable and bare land’ and
greenhouses. Figure 2 illustrates the difference in thematic detail between
LGN and HGN data sets.
For the purpose of this study, six main agricultural crops were

considered (i.e., potatoes, cereals, beets, maize, fruit orchards and bulbs)
from the five LGN data sets and the class ‘arable and bare land’ from the
four HGN data sets. These six crops have been accounting for roughly 80%
of the cultivated arable land in the Netherlands over the past decades.32

Information on greenhouses and ‘other crops’ was not used, as no data on
historical pesticide use were collected for these two classes.26

For each geocoded residential address, the area (ha) of crops was
extracted from the land-use data set(s) corresponding to the time period
covered by the address (Supplementary Table S1). This crop area was
extracted using four, a priori defined, distance categories around the
address: 0–50 m, 450–100 m, 4100–500 m, and 4500–1000 m, corre-
sponding to an total surface area of 0.8 ha, 2.4 ha, 76.2 ha and 238.0 ha,
respectively. The lowest cutoffs were set at 50 m and 100 m, covering
potential primary drift.6–8 Furthermore, 500 m and 1000 m were included
as cutoffs also to enable comparison with other epidemiological studies
investigating environmental pesticide exposure and PD risk.21 If the total
surface area of a crop in one of the distance categories was o312.5 m2

(0.03 ha), corresponding to half of a raster cell, this was considered
negligible and set to zero.

Crop Cultivation
The Dutch agricultural census is held annually by Statistics Netherlands
(CBS) and provides information on the total surface area of crops for
different administrative divisions, such as provinces (n=12) or agricultural
regions (n= 66), which are more or less homogeneous areas as far as soil
type and agricultural land use are concerned.32 As the LGN data sets
pertain to individual points in time, assumptions were made on the likely
rotation of crops during the period in between data sets. Crops that were
considered to be part of regular annual rotation schemes (i.e., potatoes,

cereals and beets) were grouped into a class ‘rotating crops’. For each
agricultural region, the proportion of potatoes, cereals and beets cultivated
was extracted from census data and averaged over the years assigned to
each land-use data set (Supplementary Table S1). When one of these crops
contributed o10% to the total surface area of ‘rotating crops’ in an
agricultural region, it was considered negligible and set to zero. This
regional crop ‘probability’ was used to estimate the average area of
potatoes, beets and cereals from the area of rotating crops extracted from
the LGN data sets for each distance category around the address per
agricultural region and time period. Orchards are regarded as stable crops
over several decades, and the location of bulbs and maize was also
considered to be stable in between the LGN data sets, owing to highly
localized cultivation (bulbs) and substantial monoculture (maize).
Similarly, the HGN data sets did not distinguish individual crops and

therefore census data were used to estimate the area of crops (i.e.
potatoes, cereals, beets, maize) from the total area of ‘arable and bare land’
extracted from the HGN data sets. For 1960 and 1970, agricultural census
data were available at province level only. Supported by agricultural
census data,32 fruit orchards and bulbs were considered traditionally
stable, and their location in the LGN2 data set (1990) was deemed to be
representative for the period 1961–1989.

Historical Pesticide Use
Data on past use of pesticides on potatoes, beets, cereals, maize, fruit
orchards and bulbs in the Netherlands have previously been collected by
expert assessment.26 In brief, per crop, two agricultural experts individually
rated the average annual probability (in percent) and frequency of use of
authorized pesticides per 5-year time period between 1961 and 2005. The
ratings of the two experts were averaged, and crop–pesticide matrices
were created from this data, providing per crop, pesticide and time-period:
(1) the average probability of use, corresponding to the percentage of
farmers using the pesticide during a year and (2) the average frequency of
use, expressed as the number of treatments during a year. Only those
pesticides estimated to be ever used by410% of farmers on one of the six
selected crops were selected to exclude very low-level or uncertain use. In
addition, we excluded ratings of pesticide use for seed treatment, given
the anticipated low emission to air during this treatment. The resulting
crop–pesticide matrices contained data on a total of 157 pesticides,
covering the period 1961–2005. The last 5-year period in the matrices
(2001–2005) was extended to 2011 taking into account withdrawals of
pesticides from the market during this period, corresponding to the
exposure period considered for the PD case–control study.
For the purpose of this study, we used the estimated probability and

frequency of farmers applying a pesticide to a crop as the probability and
frequency of the crop area being treated. Survey data from Statistics
Netherlands (1995–2008) on self-reported pesticide use among farmers
indicates that there is a high correlation between the percentage of
farmers applying a pesticide to one of the crops selected for this study

Figure 2. Example of the land-use data sets used in this study, left: LGN4 (1999), right: HGN1960.
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and the percentage of crop area treated (Pearson’s correlation coefficient
0.94–0.97).33

Environmental Pesticide Exposure
For each residential address, the estimated crop area present within the
specified distances was multiplied with probability and frequency of
pesticide use for all pesticides listed in the crop–pesticide matrix to
estimate the total surface area (ha) likely treated with a pesticide during a
specific year. This value was summed across the years and addresses in the
participants’ residential history to obtain an estimate of the participants’
cumulative lifetime environmental exposure (ha-years).

Exposure Prevalence
A total of 607 control participants remained in the analytical data set used
for the epidemiological analyses on environmental pesticide exposure and
PD. For these participants, the presence of crops in each of the four
distance categories around the residences was estimated, as well as
environmental exposure to pesticides. Results for three pesticides (i.e.,
endosulfan, captan and paraquat) are shown in the main text to illustrate
the effect of different ‘pesticide-use scenarios’ on the estimated exposure
prevalence. Endosulfan and captan were rated to be only used on the
(stable) crops fruit and bulbs, of which captan was used for a longer time
period than endosulfan, and with a higher probability and frequency of
use. Paraquat had also been used on potatoes (rotating crop), in addition
to bulbs and orchards, for a substantial amount of time. The exposure
period considered was 1961 until the year preceding the matched case
diagnosis. This first year 1961 was chosen as it corresponds to the first
available land-use data set (1960), the collected expert ratings on crop-
specific pesticide use26 and the implementation of pesticide legislation in
the Netherlands in 1962.
Ever/never potential environmental exposure to the crops and

pesticides was estimated for each distance category, as well as the
participants’ cumulative exposure (ha-years). In addition, heat maps were
created for both crops and pesticides, visualizing the Spearman rank
correlation coefficients between the cumulative environmental exposures

estimated for the control participants using 0–100 m distance to limit the
number of plots.

Model Performance
Between September 1999 and January 2002, a previous study has
monitored pesticide concentrations in air and precipitation in the
Netherlands. The sampling strategy and analytical procedures used have
been described in detail elsewhere.34,35 In brief, at 18 monitoring stations
spread over country (Supplementary Figure S1), different pesticides
(n=50) and persistent pollutants were measured in precipitation and air
samples repeatedly over 4-week periods and weekly at a subset of 3
stations. Precipitation was sampled for 4-week periods using wet-only
samplers. Air measurements were conducted by drawing 600 m3 air
through samplers with polyurethane foam plugs and XAD adsorbent. Of
the 50 pesticides investigated, 28 where registered for agricultural use at
the time of the measurements (‘current use’). The original monitoring
study focused on atmospheric deposition in 50 × 50 km2 areas and the
stations were placed away from direct agricultural sources.35 This data set
is therefore not suitable to evaluate our model estimates based on crop
cultivation in close proximity of the monitoring station (o100 m) but can
provide insight into the ability of the model to predict environmental
pesticide exposure from agricultural pesticide applications at intermediate
distances (4100 m).
In the monitoring data set, all samples below the limit of detection (LOD)

were set to zero. The average concentrations measured in air (ng/m3) and
precipitation (ng/l) were calculated for all pesticides per station over the
complete monitoring years 2000 and 2001. Using our spatial model,
cumulative environmental exposure to pesticides during the same period
was estimated for the 17 monitoring stations (excluding 1 station located
on a platform in the North Sea) based on crop cultivation within 4100–
500 m and 4500–1000 m of the station.
Of the 28 ‘current-use’ pesticides, 11 were frequently detected in air or

precipitation, which was defined as being detected at 420% of the
stations, with over 10% of samples at these stations being above LOD
(either in air or precipitation). For these 11 pesticides, the Spearman rank
correlation was used to compare the average pesticide concentrations in

Table 1. Estimated cumulative exposure of control participants in the case–control study (n= 607) to crop cultivation in the vicinity of the residential
address.

Crop Distance from the residential address

0–50 m 450–100 m 4100–500 m 4500–1000 m

Orchards
Ever exposed, N (%) 5 (0.8) 14 (2.3) 119 (19.6) 235 (38.7)
Ha-years, median (IQR) 1.6 (1.3–1.6) 1.4 (0.7–3.1) 12.2 (1.9–49.1) 13.8 (2.5–88.8)

Bulbs
Ever exposed, N (%) 1 (0.2) 2 (0.3) 12 (2.0) 40 (6.6)
Ha-years, median (IQR) 0.45 (n.a.) 0.69 (0.16–1.2) 9.8 (3.6–35.2) 17.5 (2.5–23.3)

Maize
Ever exposed, N (%) 222 (36.6) 348 (57.3) 532 (87.6) 559 (92.1)
Ha-years, median (IQR) 0.3 (0.1–0.9) 0.8 (0.2–2.4) 51.9 (21.2–122.0) 309.2 (123.1–663.7)

Potatoes
Ever exposed, N (%) 361 (59.5) 467 (76.9) 598 (98.5) 602 (99.2)
Ha-years, median (IQR) 0.2 (0.1–0.5) 0.5 (0.2–1.0) 21.0 (8.3–43.2) 92.1 (52.8–150.3)

Beets
Ever exposed, N (%) 251 (41.4) 375 (61.8) 594 (97.9) 605 (99.7)
Ha-years, median (IQR) 0.2 (0.1–0.4) 0.5 (0.2–1.0) 16.7 (5.4–37.1) 84.6 (44.3–153.8)

Cereals
Ever exposed, N (%) 387 (63.8) 501 (82.5) 606 (99.8) 607 (100)
Ha-years, median (IQR) 0.8 (0.3–1.6) 2.0 (0.8–4.4) 91.7 (36.9–153.1) 376.6 (217.0–549.1)

Abbreviations: Ha-years, hectare-years; IQR, interquartile range. Median ha-years and IQR are calculated for the exposed subjects. Surface area of the 0–50 m,
450–100 m, 4100–500 m and 4500–1000 m buffers: 0.8 ha, 2.4 ha, 76.2 ha and 238.0 ha, respectively. The number of exposure-years varies between the
participants, depending on their age and the year of diagnosis of their matched case.
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air and precipitation with the model estimates of environmental pesticide
exposure at the station during 2000–2001 (ha-years).
For the remaining 17 ‘current-use’ pesticides, there were only few

measurements above LOD or the pesticide was not included in our model
(e.g., general use for public weed control), preventing a quantitative
comparison. To provide some insight into the model performance for
these less detected pesticides, environmental exposure (yes/no) to all
28 ‘current-use’ pesticides was estimated for the 17 monitoring stations
using the model and compared with being detected above LOD (yes/no) in
any of the air or precipitation samples per station in 2000–2001. The
percentage of raw agreement was calculated, as well as the sensitivity and
specificity of the modeled presence of exposure.
Furthermore, correlations between the measured pesticide concentra-

tions and chemical properties (i.e., vapor pressure, Henry’s law constant)4

and application volume33 were investigated using the Spearman rank
correlation for the 11 frequently detected pesticides to investigate the
effect of these factors on potential pesticide emission to the environment.

RESULTS
Geocoding of Addresses
A total of 2942 addresses were collected from the control
population (n = 607) in the PD case–control study, from 1961
onward. Of these addresses, 2433 (82.7%) could be matched to
BAG building coordinates, 169 (5.7%) to the 6-digit postal code
coordinate, 207 (7.0%) to the 5-digit postal code coordinate, 39
(1.3%) to the 4-digit postal code coordinate and 94 addresses
(3.2%) could not be geocoded. When expressing these numbers as
the percentage of lifetime geocoded for the control population
(n= 28865 years), 91.8% was geocoded with building coordinates,
4.1% with the 6-digit postal code, 2.6% with the 5-digit postal
code, 0.4% with the 4-digit postal code and 1.2% could not be
geocoded or was missing in the residential history.

Exposure Prevalence
Only few control participants from the case–control study
(n= 607) ever lived within 50 m from orchards (0.8%) or bulb
fields (0.2%), while for maize, potatoes, beets and cereals, this
ranged between 37% and 64% (Table 1). Exposure prevalence
increased with increasing distance, approaching 100% for being
ever exposed to maize, potatoes, beets and cereals, in the two
largest distance categories. There was substantial overlap
between the area of potatoes, beets, cereals and maize cultivated
in the vicinity of the residences. This was also reflected in the
moderate-to-high correlation coefficients between the estimated

cumulative crop area, for example, Rs 0.87 between potatoes and
cereals in 0–100 m (Supplementary Figure S2). Estimated environ-
mental exposure to the three selected pesticides is shown in
Table 2. Only few participants were classified as ever exposed to
endosulfan. Exposure to captan was slightly more prevalent, and
the estimated cumulative environmental exposure was high
compared with endosulfan, due to its higher probability and
frequency of use. Over 90% of the control population was
considered ever exposed to paraquat in 4100–500 m or 4500–
1000 m distance, but the estimated cumulative ha-years were
relatively low. Considering all pesticides present in the crop–
pesticide matrices (n= 157), the median Spearman rank correla-
tion coefficient between estimated cumulative exposures in
0–100 m was 0.14 (interquartile range (IQR) 0.00–0.45). Within
herbicides, the median correlation coefficient was 0.20 (IQR 0.05–
0.42), 0.14 (IQR 0.00–0.53) for fungicides, 0.30 (IQR 0.00–0.61) for
insecticides and 0.42 (IQR − 0.02–0.82) for other pesticides
(e.g., nematicides and acracides) (Supplementary Figure S3).

Model vs Measurements
The monitoring study included only two stations located within
100 m of agricultural crops and therefore only model estimates
based on crop cultivation within 4100–500 m and 4500–1000 m
of the station were generated. The model did not estimate
environmental pesticide exposure at monitoring stations without
any relevant crops cultivated within the specified distance
categories (Supplementary Table S2). The percentage of samples
above LOD varied between the 28 ‘current-use’ pesticides, ranging
from 0% to 96% in air and from 0% to 81% in precipitation.
Overall, pesticides were more likely to be detected in precipitation
than in air samples, and the Spearman rank correlation between
pesticide concentrations in air and precipitation ranged between
− 0.46 and 0.89 (Supplementary Table S2). Relatively poor
agreement was found between the modeled presence of
environmental exposure at the monitoring station (yes/no) and
the pesticide being detected above LOD (Supplementary Table
S3). For the subset of 11 more frequently detected pesticides
(Table 3), the estimated environmental pesticide exposure showed
an overall moderate-to-high positive correlation with the average
concentrations measured in air and precipitation (Table 4). For 9
out of the 11 pesticides (i.e., MCPA, chlorpropham, chlorothalonil,
ethofumesate, metolachlor, kresoxim-methyl, procymidone,
tolclofos-methyl, vinclozolin), significant. significant correlations

Table 2. Estimated cumulative environmental exposure of control participants in the case–control study (n= 607) to three selected pesticides,
potentially applied to crops in the vicinity of the residential address.

Pesticide Distance from the residential address

0–50 m 450–100 m 4100–500 m 4500–1000 m

Endosulfan
Ever exposed, N (%) 3 (0.5) 9 (1.5) 79 (13.0) 148 (24.4)
Ha-years, median (IQR) 1.6 (0.6–1.6) 2.2 (0.8–2.4) 8.6 (2.3–39.1) 26.2 (5.0–119.6)

Captan
Ever exposed, N (%) 6 (1.0) 16 (2.6) 126 (20.8) 255 (42.0)
Ha-years, median (IQR) 16.3 (0.5–18.0) 9.5 (3.6–29.9) 134.2 (17.3–561.9) 126.5 (16.1–824.1)

Paraquat
Ever exposed, N (%) 206 (33.9) 321 (52.9) 563 (92.8) 596 (98.2)
Ha-years, median (IQR) 0.1 (o0.1–0.2) 0.2 (o0.1–0.4) 6.5 (2.2–19.2) 34.0 (15.4–110.4)

Abbreviations: Ha-years, hectare-years; IQR, interquartile range. Median ha-years and IQR are calculated for the exposed subjects. Surface area of the 0–50 m,
450–100 m, 4100–500 m and 4500–1000 m buffers: 0.8 ha, 2.4 ha, 76.2 ha and 238.0 ha, respectively. The number of exposure-years varies between the
participants, depending on their age and the year of diagnosis of their matched case.
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were found between one of the two model estimates and either
the concentration in air or precipitation. The correlations
presented are based on few points, which is also shown in the
scatterplots of the modeled exposure estimates and measured
pesticide concentrations (Supplementary Figures S4 and S5).
There was no clear evidence that either the average applied
dosage of the pesticide or the chemical properties of the pesticide
(i.e., vapor pressure or Henry’s law constant) were related to the
percentage of samples above LOD or the average concentration
measured in air or precipitation (Supplementary Tables S4 and S5).

DISCUSSION
We developed a spatio-temporal model to estimate potential
environmental exposure to individual pesticides in the Nether-
lands within the framework of an ongoing case–control study on
PD. Spatial data on agricultural land use was combined with
census data on crop cultivation and expert-based estimates of
pesticide use for six main crops in the Netherlands. Owing to the
model input and design, cultivation of rotating, arable crops was
assigned to most residences and environmental exposure to
pesticides applied to any of these crops was highly prevalent
among control participants in the case–control study. Relatively
few participants lived in close proximity to bulb fields or fruit
orchards, which are potentially the most interesting due to the
high number and volumes of pesticides applied to these crops.
We were only able to investigate the performance of our model
for a limited number of pesticides (n= 11) and monitoring stations
(n= 17), but moderate-to-high correlations were found between
measured pesticide concentrations and environmental pesticide
exposure estimates based on crop cultivation in 4100–500 m and
4500–1000 m around the stations.
The described model provides the opportunity to assess

environmental exposure to specific pesticides dating back to
1961. For PD, little is known about the etiologically relevant time
period of exposure, and disease risk could potentially be affected
by long-term cumulative exposures or exposures at specific stages
in life.36 Furthermore, the model is not limited to a single distance
around the home but provides exposure estimates based on four
different distance categories, enabling us to investigate the effect
of proximity to pesticide applications (assumed to be related to
the intensity of exposure) in more detail. We developed crop–
pesticide matrices listing 157 pesticides and expert-derived
probability and frequency of use of these pesticides per crop
and time period. This greatly improves over assigning crude
pesticide exposure proxies (e.g., rural living, crop type) or using
information on the registration of pesticides only, as the majority
of registered pesticides will not have been used by all farmers on
an annual basis.26,37 Modeling environmental exposure based on
residential histories and independent spatial and temporal data
sets has the advantages of being independent of self-reported
data, relatively low costs, high efficiency and feasibility of
collecting and comparing large amounts of exposure data that
cannot be actually measured in a large study population. The
majority of addresses held by the control participants in the PD
case–control study could be geocoded with a building coordinate
(83%), which has a high precision, given that this coordinate lies
within the building outline. This percentage corresponds to 92%
of the total lifetime of the control population. Potential error in the
residential location, due to assigning postal code coordinates, can
be higher in rural than in urban areas, as postal codes cover a
larger area in rural neighborhoods. However, the percentage of
addresses geocoded with a postal code coordinate was lower in
rural areas (10%) compared with highly urbanized areas (17%).
Less than 1% of the total lifetime of control population was spent
in rural areas and geocoded to postal code coordinates.
There are a number of assumptions underlying the model we

have developed, for which some appear to be accurate, while forTa
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others their validity could not be assessed in the current study.
Accuracy and resolution of the underlying data determines for a
large extent the quality of the resulting exposure estimates. The
LGN and HGN land-use data sets used in this study have their
limitations, but overall they are assumed to provide an accurate
overview of agricultural land use and crop cultivation in the
Netherlands.25,31 The resolution of these data sets (0.06 ha grid
cells) is higher compared with, for example, the resolution of the
land-use data used in several US studies investigating environ-
mental pesticide exposure (0.81 ha).22,23 In addition, multiple data
sets were available for distinct points in time from 1960 onward,
while many other studies had to rely on (recent) land-use data at
one or two points in time.19 However, as not each individual
calendar year was covered, assumptions still had to be made on
potential crop rotation in between the land-use data sets.
Census data on crop cultivation in agricultural regions was used

to estimate the probability of individual (rotating) crops being
cultivated in these regions during the periods allocated to each
land-use data set. This will have resulted in some degree of
misclassification during individual years, as an address with any
rotating crop in its vicinity could be assigned a fraction of
potatoes, cereals and beets and thereby some level of exposure to
all pesticides associated with these crops. However, given the
rotation of these crops over multiple consecutive years (e.g., one
year potatoes, next year cereals), the estimated cumulative crop
area will be close to the actual crop area cultivated during a period
of several years and is considered to be an appropriate estimate of
average crop cultivation and environmental pesticide exposure
over time. For investigating the association with PD, we are most
interested in long-term cumulative exposure or average exposure
during specific periods in life. Exposure duration will be over-
estimated as these probabilities are assigned to each year, and
exposure duration will therefore not be considered as exposure
metric in this study. The majority of participants ever lived within
vicinity of any rotating crop and was thereby assigned ever-
exposure to paraquat, as this pesticide was reported to be used on
potatoes for a substantial period of time. The estimated area
treated could be low however, as only part of the rotating crop
area was estimated to be potatoes, and again only a part of that

area was likely to been treated with paraquat. This is reflected by
the relatively low cumulative exposure (ha-years). As the historical
data sets (HGN) before 1990 only distinguished ‘arable and bare
land’ and the crop probabilities were derived at province level for
1970 and 1960 instead of the agricultural region, the potential for
misclassification of crop cultivation might be greater further back
in time. Since 2009, more detailed annual crop maps of the
Netherlands are published with detailed information on the type
of crop cultivated (e.g., individual cereal species instead of cereals
as a group),38 tackling the issue of crop rotation in between data
sets. However, these recent crop maps were not used in the
present study, as for the majority of the participants in the PD
case–control study, the exposure period ended before 2009.
The use of specific pesticides on the selected crops has been

estimated using ratings of agricultural experts, which have
previously shown to be reliable and reasonably accurate, with a
moderate-to-high correlation with self-reported pesticide use
collected in farmer surveys.26 We used the average-rated
probability and frequency of use among farmers, as the
percentage and frequency of crop area treated in the current
study were supported by data from the aforementioned farmer
surveys.33 All average probability ratings o10% were removed to
exclude very low-level or uncertain use. However, exposure
prevalence will have been overestimated, as even for a pesticide
with a relatively low probability of use, a participant can be
assigned a (low) environmental exposure. Some underestimation
of exposure may occur as well as the model has been limited to six
main crops, thereby discarding pesticide applications on other
crops (e.g., open field crops or greenhouses) and non-agricultural
applications, such as governmental weed or pest control in public
green space, roads or railways. For example, the application of
2,4-D and dichlobenil for general weed control purposes is not
accounted for in the model, resulting in a discrepancy with the
monitoring data, in which these two pesticides were frequently
detected. However, the crops selected do account for roughly 80%
of the total Dutch agricultural surface area32 and are among the
highest in terms of pesticide-use volumes and diversity of
products (i.e., bulbs and fruit orchards). An overall pesticide-use
estimate was previously collected for each of the six crops, while,
for example, specific types of cereals (e.g., wheat, barley) may be
treated with different pesticides. Nonetheless, the overall
pesticide-use estimates we collected have shown to correspond
well to self-reported use from surveys, averaged over these crop
types.26 In California, US, self-reported information (e.g., date of
application, pounds applied) on the use of several pesticides has
been registered.23 This type of detailed information was not
available in the Netherlands for the current study and will be
lacking in most other countries without validated, accessible
registries. We have used average annual pesticide-use ratings,
which we consider to be adequate for investigating PD and other
long-latency diseases, in which the relevant exposure period may
consist of several years or decades.
This exposure assessment assumes that pesticides applied to

agricultural fields are being emitted into the environment and that
the actual concentrations emitted depend on the distance to the
field, as well as the total surface area treated. Emission of
pesticides into the environment during and after application is
supported by scientific literature.4,5,17 Also, the monitoring data
used for validation purposes in this study shows that a wide range
of ‘current-use’, as well as banned, pesticides can be detected in
air and precipitation.34 Unfortunately, we could not investigate the
effect of close proximity to crops and pesticide applications
(primary drift) in this data set, as all monitoring stations were
placed away from local agricultural sources where concentrations
would be expected to be the highest. We did observe a moderate-
to-high correlation between the surface area likely treated with a
pesticide within 4100–500 m or 4500–1000 m of the monitoring
station and the average concentrations measured in air or

Table 4. Correlation between average pesticide concentrations
measured in air and precipitation and modeled exposure estimates,
based on crop cultivation within a distance of 4100–500 m and
4500–1000 m around the monitoring stations.

Pesticide Air Precipitation

Model
4100–500 m

Model
4500–1000 m

Model
4100–500 m

Model
4500–1000 m

Rs Rs

Herbicides
Chlorpropham 0.72 0.62 0.74 0.76
Ethofumesate 0.21 0.16 0.48 0.55
MCPA 0.58 0.73 0.35 0.40
Metolachlor 0.72 0.60 0.50 0.57
Terbuthylazine 0.26 0.32 0.44 0.28

Fungicides
Chlorothalonil 0.21 0.08 0.57 0.37
Fluazinam 0.25 0.22 0.06 − 0.02
Kresoxim-methyl 0.47 0.20 0.70 0.41
Procymidone 0.69 0.68 0.74 0.80
Tolclofos-methyl 0.75 0.62 0.92 0.82
Vinclozolin 0.28 0.14 0.62 0.51

Modeled cumulative exposure estimates (ha-years) for the period
2000–2001 were compared with the average concentration of pesticides
in air (ng/m3) and precipitation (ng/l) per station; bold type indicates
o0.05 significance; Rs, Spearman rank correlation coefficient.
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precipitation in 2000–2001, which supports the assumption that
pesticide emission (volatilization and dispersion) is related to the
total crop area treated. For this comparison, we restricted to
‘current-use’ pesticides detected in 410% of the measurements
and these were only herbicides and fungicides. No insecticides
were detected at a sufficient level, which could indicate that the
more infrequent use and lower volumes of these pesticides results
in lower emissions. However, the monitoring data is no perfect
gold standard for the current study. This data has been collected
with a different study aim, and differences in the detection limits
of the pesticides in air and precipitation complicate direct
comparisons between pesticides and firm conclusions on their
absence or presence in the environment. Of the pesticides for
which a high correlation between the model and measurements
was observed, the majority was used on bulbs or orchards, which
are relatively localized, spatially stable crops. This suggests that
misclassification error in model estimates might be higher for
pesticides used mainly on rotating crops during short time
windows.
One final assumption is that the transport and presence of

pesticides in the environment results in contamination of the
residential area, which will eventually lead to personal exposure of
the general population. The lack of proper model validation is one
of the main critiques on geographical modeling of environmental
exposure in epidemiological studies.39 Unfortunately, extensive
measurements of the residential environment or biomarkers
reflecting of personal pesticide exposure (back in time) were not
available for our study. Previous research has indicated a relation
between the distance to the nearest field or crop acreage and the
concentrations of pesticides in residences.12–15 Few consistent
findings have emerged, however, when comparing measured
pesticide concentrations or modeled exposure estimates to
biomarkers of pesticide exposure. Urinary DMTP concentrations
were reported to decrease with increasing distance from
agricultural fields,12 but Krieger et al.40 found a poor correlation
between biomarkers for organophosphate pesticides and pesti-
cide concentrations in house dust. Ritz and Costello41 observed a
small correlation between DDE and pesticide exposure estimates
generated by applying a geographic model. Biomarkers have their
limitations too, as for most pesticides no biomarkers for distant
past exposure exist due to short half-lives in the body or low
(metabolite) concentrations or they are not specific for exposure
to individual pesticides. Measurements in and around the
residential address, combined with personal exposure measure-
ments, would be required to determine how well the environ-
mental pesticide exposure estimates generated using our model
reflect personal exposure.
Despite the limitations described, most of the assumptions

underlying our model appear to be appropriate and are supported
by previous research. The high correlations between some
pesticide exposures, resulting from crop assignment based on
regional probabilities and the potential use of several pesticides
on the same crop(s) during the same time period(s), need to be
taken into account when designing and interpreting subsequent
epidemiological analyses. Although co-occurring exposures to
pesticides (and other potential risk factors) are a given in many
agricultural settings,42 this might limit our ability to investigate the
individual association with PD for some highly correlated
pesticides.

CONCLUSION
We developed a spatio-temporal model to estimate lifetime
environmental exposure to individual agricultural pesticides in the
Netherlands based on residential histories. Such a model has great
advantages in terms of efficiency and the ability to estimate
environmental exposures for any etiologic period of interest, as far
as the available input data allows. The assumptions underlying

our country-specific model appear to be appropriate, and
estimates of environmental pesticide exposure showed
moderate-to-high correlations with measured pesticide concen-
trations in 2000–2001. To what extent these environmental
exposure estimates reflect personal exposure levels remains to
be investigated. Our method can be applied to evaluate potential
associations between environmental exposure to pesticides and
different (long-latency) diseases of interest, although not for all
pesticides will it be feasible to make inferences on their individual
effects due to high correlations with other pesticide exposures.
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