
On the Maximum Weight Minimal Separator

Tesshu Hanaka1(B), Hans L. Bodlaender2,3, Tom C. van der Zanden2,
and Hirotaka Ono1

1 Department of Economic Engineering, Kyushu University, 6-19-1, Hakozaki,
Higashi-ku, Fukuoka 812-8581, Japan

3EC15004S@s.kyushu-u.ac.jp, hirotaka@econ.kyushu-u.ac.jp
2 Department of Computer Science, Utrecht University, PO Box 80.089,

3508 TB Utrecht, The Netherlands
{h.l.bodlaender,t.c.vanderzanden}@uu.nl

3 Department of Mathematics and Computer Science,
Eindhoven University of Technology, PO Box 513,

5600 MB Eindhoven, The Netherlands

Abstract. Given an undirected and connected graph G = (V,E) and
two vertices s, t ∈ V , a vertex subset S that separates s and t is called an
s-t separator, and an s-t separator is called minimal if no proper subset
of S separates s and t. In this paper, we consider finding a minimal s-t
separator with maximum weight on a vertex-weighted graph. We first
prove that this problem is NP-hard. Then, we propose an twO(tw)n-
time deterministic algorithm based on tree decompositions. Moreover, we
also propose an O∗(9tw · W 2)-time randomized algorithm to determine
whether there exists a minimal s-t separator where W is its weight and
tw is the treewidth of G.

Keywords: Parameterized algorithm · Minimal separator · Treewidth

1 Introduction

Given a connected graph G = (V,E) and two vertices s, t ∈ V , a set S ⊆ V
of vertices is called an s-t separator if s and t belong to different connected
components in G \ S, where G \ S = (V \ S,E). If a set S is an s-t separator
for some s and t, it is simply called a separator. If an s-t separator S is minimal
in terms of set inclusion, that is, no proper subset of S separates s and t, it is
called a minimal s-t separator. Similarly, if a separator is minimal in terms of
set inclusion, it is called a minimal separator.

Separators and minimal separators have been considered important in sev-
eral contexts and have been intensively studied indeed. For example, they are
obviously related to the connectivity of graphs, which is an important notion

This study is partially supported by NWO Gravity grant “Networks” (024.002.003),
JSPS KAKENHI Grant Numbers JP26540005, 26241031, and Asahi Glass
Foundation.

c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 304–318, 2017.
DOI: 10.1007/978-3-319-55911-7 22

On the Maximum Weight Minimal Separator 305

in many practical applications, such as network design, supply chain analysis
and so on. From a theoretical point of view, minimal separators are related to
treewidth or potential maximal cliques, which play key roles in designing fast
algorithms [4,6].

In this paper, we consider the problem of finding a maximum weight minimal
separator of a given weighted graph. More precisely, the problem is defined as
follows: Given a connected graph G = (V,E), vertices s, t ∈ V and a weight
function w : V → N

+, find a minimal s-t separator whose weight
∑

v∈S w(v)
is maximum. The decision version of the problem is to decide the existence
of minimal s-t separator with weight W . We name the problems Maximum

Weight Minimal s-t Separator.
This problem is motivated in the context of supply chain network analysis.

When a weighted network represents a supply chain where a vertex represents
an industry, s and t are virtual vertices respectively representing source and
sink, and the weight of a vertex represents its financial importance, the maxi-
mum weight minimal s-t separator is interpreted as the most important set of
industries that is influential or vulnerable in the supply chain network.

Unfortunately, the problem is shown to be NP-hard, and we then design
an FPT algorithm with respect to treewidth. It should be noted that since the
condition of s-t connectivity can be written in Monadic Second Order Logic,
it can be solved in f(tw) · n time by Courcelle’s meta-theorem, where f is a
computable function and tw is treewidth of the graph. However, the function
f forms a tower of exponentials; the existence of an FPT algorithm with better
running time is not obvious.

In this paper, we propose two parameterized algorithms with respect to
treewidth. One is a 2O(tw log tw)n-time deterministic algorithm and the other
is an O∗(ctw · W 2)-time randomized algorithm for the decision version, where
c is a constant and O∗ is the order notation omitting the polynomial factor.
The former algorithm is based on a standard dynamic programming approach,
whereas the latter utilizes two techniques recently developed. The first technique
is called Cut & Count, and by using this, the running time is bounded by a single
exponential of treewidth. Furthermore, by applying the second technique called
fast convolution, we improve the running time by reducing the base of the expo-
nent from c = 21 to c = 9; the total running time of the resulting algorithm is
O∗(9tw · W 2), which can be further improved when the graph is unweighted.

1.1 Related Work

The Number of Minimal Separators. Minimal separators have been inves-
tigated for a long time in many aspects. As mentioned above, they are related
to treewidth or potential maximal cliques, for example [4,6]. In general, a graph
has exponentially many minimal separators, and in fact there exists a graph
with Ω(3n/3) minimal separators [9]. Recently, this bound was improved to
Ω(1.4521n) [10]. On the other hand, some graph classes have only polynomi-
ally (even linearly) many minimal separators. For example, Bouchitté showed
that weakly triangulated (weakly chordal) graphs have a polynomial number of

306 T. Hanaka et al.

separators [5]. As examples of other graph classes with polynomial minimal sep-
arators, there are circular arc graphs [12], and polygon circle graphs, which is a
superclass of circle graphs [16,17].

On the other hand, Berry et al. presented an O(n3 ·Rsep)-time algorithm that
enumerates all the minimal separators where Rsep is the number of these [2].
By combining these results, we know that Maximum Weight Minimal s-t
Separator can be solved in polynomial time for the graph classes mentioned
above. That is, we just enumerate all the minimal separators and evaluate the
weights of these for such graphs.

Proposition 1. Maximum Weight Minimal s-t Separator can be solved in
polynomial time for a graph that has a polynomial number of minimal separators.

The Relationship Between Minimal Separators and Treewidth. Mini-
mal separators and treewidth are strongly related. As for the number of minimal
separators, if a graph has a polynomial minimal separators, we can compute
its treewidth in polynomial time [5,6]. Such graph classes include circular-arc
(O(n2) [11,12]), polygon circle (O(n2) [16]), weakly triangulated (O(n2) [5]) and
so on. On the other hand, computing treewidth is fixed parameter tractable
with respect to the maximum size of minimal separators [15]. This parameter
corresponds to the solution size of Maximum Weight Minimal s-t Separa-

tor on unweighted graphs. In this sense, this paper focuses on the converse
relation of two parameters: maximum size of minimal separators and treewidth.
For treewidth as the parameter, we consider the fixed parameter tractability of
Maximum Weight Minimal s-t Separator.

The remainder of this paper is organized as follows. In Sect. 2, we first give
basic terminology, basic notions of algorithm design and NP-hardness for the
problem. In Sect. 3, we design a standard dynamic programming algorithm based
on tree decompositions. In Sect. 4, we propose randomized algorithms based on
the Cut & Count technique.

2 Preliminaries

In this section, we give notations, definitions, and some basic concepts. Let
G = (V,E) be an undirected and vertex-weighted graph. We assume that G
does not have an edge (s, t), that is, (s, t) /∈ E because if not then there is no
s-t separator. For V ′ ⊆ V , let G[V ′] denote the subgraph of G induced by V ′.
Furthermore, we denote the set of neighbors of a vertex v by N(v). We define
the function [p] as follows: if p is true, then [p] = 1, otherwise [p] = 0.

2.1 Tree Decomposition

Our algorithms proposed in Sects. 3 and 4 are based on dynamic programming
on tree decompositions. In this subsection, we give the definition of tree decom-
position.

On the Maximum Weight Minimal Separator 307

Definition 1. A tree decomposition of a graph G = (V,E) is defined as a pair
〈X , T 〉, where X = {X1,X2, . . . , XN ⊆ V }, and T is a tree whose nodes are
labeled by I ∈ {1, 2, . . . , N}, such that

1.
⋃

i∈I Xi = V .
2. For all {u, v} ∈ E, there exists an Xi such that {u, v} ⊆ Xi.
3. For all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩ Xk ⊆ Xj.

In the following, we call T a decomposition tree, and we use term “nodes”
(not “vertices”) for the elements of T to avoid confusion. Moreover, we call a
subset of V corresponding to a node i ∈ I a bag and denote it by Xi. The width
of a tree decomposition 〈X , T 〉 is defined by maxi∈I |Xi| − 1, and the treewidth
of G, denoted by tw(G), is the minimum width over all tree decompositions of
G. We sometimes use the notation tw instead of tw(G) for simplicity.

In general, computing tw(G) of a given graph G is NP-hard [1], but fixed-
parameter tractable with respect to itself and there exists a linear time algorithm
if treewidth is fixed [3]. In the following, we assume that a decomposition tree
with the minimum treewidth is given.

Kloks introduced a very useful type of tree decomposition for some algo-
rithms, called nice tree decomposition [11]. More precisely, it is a special binary
tree decomposition which has four types of nodes, named leaf, introduce ver-
tex, forget and join. A variant of the notion, using a new type of node named
introduce edge, was introduced by Cygan et al. [7].

Definition 2. A tree decomposition 〈X , T 〉 is called nice tree decomposition if
it satisfies the following:

1. T is rooted at a designated node Xr ∈ X satisfying |Xr| = 0, called the root
node.

2. Every node of the tree T has at most two children.
3. Each node in T has one of the following five types:

– A leaf node i which has no children and its bag Xi satisfies |Xi| = 0.
– An introduce vertex node i has one child j with Xi = Xj ∪{v} for a vertex

v ∈ V .
– An introduce edge node i has one child j and labeled with an edge (u, v) ∈ E

where u, v ∈ Xi = Xj.
– A forget node i has one child j and satisfies Xi = Xj \ {v} for a vertex

v ∈ V .
– A join node i has two children nodes j1, j2 and satisfies Xi = Xj1 = Xj2 .

We can transform any tree decomposition to a nice tree decomposition with
O(n) bags in linear time [8]. Given a tree decomposition 〈X , T 〉, we define a
subgraph Gi = (Vi, Ei) for each node i where Vi is the union of all bags Xj with
j = i or j a descendant of i in T , and Ei ⊆ E is the set of edges with both
endpoints in Vi.

308 T. Hanaka et al.

2.2 NP-hardness

In this subsection, we mention NP-hardness for Maximum Weight Minimal

s-t Separator. The proof is omitted from this extended abstract.

Theorem 1. Maximum Weight Minimal s-t Separator is NP-hard even if
all the vertex weights are identical.

3 Dynamic Programming on Tree Decompositions

In this section, we give an FPT algorithm with respect to treewidth. It is a
standard dynamic programming algorithm based on tree decompositions, and
the running time is twO(tw). The running time twO(tw) appears in some con-
nectivity problems, for example Steiner Tree, Feedback Vertex Set and
Connected Vertex Cover [7,8].

We first discuss how Maximum Weight Minimal s-t Separator can be
viewed as a connectivity problem. To show this, we define connected partitions.

Definition 3. A connected partition of weight W is a partition (S,A,B,Q) of
V such that: (1) s ∈ A, t ∈ B, (2) G[A] is connected, (3) G[B] is connected, (4)∑

v∈S w(v) = W , (5) for ∀v ∈ S, there exist vertices a ∈ A, b ∈ B such that
(a, v) ∈ E, (v, b) ∈ E and (6) for sets A,B,Q, there does not exist an edge (u, v)
such that u and v are in different sets.

Note that a connected partition represents a structure of separators. In fact,
it corresponds to a minimal separator and we can show the following theorem,
which plays a key role of designing dynamic programming algorithms. The proof
is omitted from this extended abstract.

Theorem 2. There exists a minimal s-t separator of weight W if and only if
there exists a connected partition (S,A,B,Q) of weight W .

Using connected partitions, we design an twO(tw)-time algorithm for Maximum

Weight Minimal s-t Separator. First, we partition S into S∅, SA, SB and
SAB . (See Fig. 1). They are needed for the updating process in the dynamic
programming. Set S∅ consists of the vertices in S that have no neighbor in A
and B, but may have neighbors in SA, SB , SAB , Q. Set SA (resp., SB) consists of
the vertices in S that has at least one neighbor in A (resp., B), but no neighbor
of B (resp., A). They may have neighbors in SA, SB , SAB , Q. Set SAB consists
of the vertices in S that have neighbors in A and in B and may have neighbors
in SA, SB , SAB , Q. With these sets, we define a partial solution as follows.

Definition 4. Given a node i of the tree decomposition of G, a partial solution
for node i is a partition (S∅, SA, SB , SAB , A,B,Q), such that:

– S∅ ∪ SA ∪ SA ∪ SAB ∪ A ∪ B ∪ Q = Vi,
– ∀v ∈ S∅, N(v) ∩ (A ∪ B) = ∅,

On the Maximum Weight Minimal Separator 309

Fig. 1. Connection between vertex sets

– ∀v ∈ SA, N(v) ∩ B = ∅ and N(v) ∩ A �= ∅,
– ∀v ∈ SB, N(v) ∩ B �= ∅ and N(v) ∩ A = ∅,
– ∀v ∈ SAB, N(v) ∩ B �= ∅ and N(v) ∩ A �= ∅,
– s ∈ Vi ⇒ s ∈ A and
– t ∈ Vi ⇒ t ∈ B.

We prepare DP tables for each node. For a representation of the state of v,
we define the coloring function c : V → {s∅, sA, sB , sAB , a, b, q}. Each element of
{s∅, sA, sB , sAB , a, b, q} is called a state. For a coloring c, we denote the state of
the coloring of v by c(v). The states of a coloring c represent which set a vertex
is in, for example, v is in S∅ if c(v) = s∅.

To consider the connectivity of sets A and B, we use all partitions of these in
a bag. That is, we define two partitions PA = {PA

1 , PA
2 , . . . , PA

α } of Xi ∩ A and
PB = {PB

1 , PB
2 , . . . , PB

β } of Xi∩B, where α and β are the number of partitioned
sets of Xi ∩ A and Xi ∩ B, respectively, that is, α and β are at most |Xi ∩ A|
and |Xi ∩ B|. We call each element of a partition P� a block. They correspond
to connected components of G[A](resp., G[B]). Note that there are |Xi|O(|Xi|)

partitions for each node Xi. Intuitively, just one block {{v}} is added to P in
each introduce vertex v node; then blocks are merged in the updating process of
introduce edge nodes and join nodes. For forget nodes, we have to consider the
relationship between connectivity and partitions.

Suppose that introduce vertex nodes, introduce edge nodes and forget nodes
have one child node j respectively, and join nodes have two child nodes j1, j2.
We sometimes denote a coloring in parent node i by ci and in child node j by
cj to emphasize that we deal with two different nodes. Moreover, we denote the
coloring of vertex v by ci(v), cj(v), respectively.

Now, we transform a nice tree decomposition by adding {s, t} to all bags;
thus we can suppose that the root bag Xr contains only two vertices s, t. The
width of this tree decomposition is at most tw + 2. We can transform any tree
decomposition into such a tree decomposition in polynomial time.

We then define function fi(c,PA,PB) as the possible maximum weight of
vertices in S ∩ Vi under the following conditions: (1) c defines a partial solution
(S∅, SA, SB , SAB , A,B,Q) and (2) each block of PA and PB forms a connected

310 T. Hanaka et al.

component in Xi ∩ A and Xi ∩ B, respectively. If c,PA,PB do not satisfy the
conditions, let fi be −∞.

We now define recursive formulas for each node. In a root node, fr({a} ×
{b}, {{a}}, {{b}}) is an optimal value because Xr = {s, t}.

Leaf node: In a leaf node, we define fi({a} × {b}, {{a}}, {{b}}) := 0, otherwise
fi(c,PA,PB) := −∞ since there are only two vertices s, t in Xi.

Introduce vertex v node: In an introduce vertex node, we consider three cases for
colorings. If c(v) = s∅, we add w(v) to fj(c,PA,PB) because v is added in S. If
c(v) ∈ {a, b, q}, the value of fi does not change since v /∈ S. Moreover, we add
a block {{v}} to PA or PB depending on if c(v) = a or c(v) = b, respectively.
Finally, if c(v) ∈ {sA, sB , sAB}, a partial solution is invalid by the definition
because v has no incident edge and hence no neighbor in A and B. Therefore,
we define fi as follows:

fi(c,PA,PB) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fj(c \ {c(v)},PA,PB) + w(v) if c(v) = s∅
fj(c \ {c(v)},PA \ {{v}},PB) if c(v) = a

fj(c \ {c(v)},PA,PB \ {{v}}) if c(v) = b

fj(c \ {c(v)},PA,PB) if c(v) = q

−∞ otherwise.

Introduce edge (u, v) node: In an introduce edge node, we define fi for the fol-
lowing cases of c(u), c(v).

– If c(u) = a and c(v) = a, the vertices u, v are in A. Because edge (u, v) is
added, u and v are in the same block of partition PA. Hence, if not, we set
fi(c,PA,PB) := −∞. Then, there are two cases: the partitions in A ∩ Xi

(parent) and A ∩ Xj (child) are same or not. In the former case, u and v is in
the same block in the partition of A ∩ Xj , and we then set fi(c,PA,PB) :=
fj(c,PA,PB). In the latter case, let P ′A be a partition of A ∩ Xj such that
PA �= P ′A but P ′A changes to PA by merging two blocks of P ′A including u
and v respectively with edge (u, v). Therefore, we take a P ′A that maximizes
fi(c,P ′A,PB). Then, we set fi as follows:

fi(c,PA,PB) := max{fj(c,PA,PB),max
P′A

fj(c,P ′A,PB)}.

– The case that c(u) = b and c(v) = b is almost the same as the case that
c(u) = a and c(v) = a. If u and v are not in the same block of partition PB ,
we then set fi(c,PA,PB) := −∞. Let P ′B be a partition of B ∩ Xj such that
PB �= P ′B but P ′B changes to PB by merging two blocks of P ′B including u
and v respectively with edge (u, v). Then, we define fi as follows:

fi(c,PA,PB) := max{fj(c,PA,PB),max
P′B

fj(c,PA,P ′B)}.

On the Maximum Weight Minimal Separator 311

– If c(u), c(v) ∈ {s∅, sA, sB , sAB , q}, we define fi as follows:

fi(c,PA,PB) = fj(c,PA,PB).

In this case, (u, v) is indifferent to the partitions and the value is not changed
because only one edge (u, v) is added.

– If (c(u), c(v)) = (sA, a), (a, sA), we consider two cases. One case is that u ∈ SA

and v ∈ A in a child node and the other case is that u ∈ S∅ and v ∈ A in a
child node. In the other case, u is moved from S∅ into SA by adding (u, v),
because u has a neighbor v in A. Thus, we define fi as follows:

fi(c × {sA} × {a},PA,PB) := max { fj(c × {sA} × {a},PA,PB),
fj(c × {s∅} × {a},PA,PB)}.

– If (c(u), c(v)) = (sB , b), (b, sB), we consider almost the same cases as above;
that is, u ∈ SB , v ∈ B and u ∈ S∅ and v ∈ B in a child node.

fi(c × {sB} × {b},PA,PB) := max { fj(c × {sB} × {b},PA,PB),
fj(c × {s∅} × {b},PA,PB)}.

– If (c(u), c(v)) = (sAB , a), (a, sAB), there are two cases: (1) u ∈ SAB and v ∈ A
in a child node and (2) u ∈ SB and v ∈ A in a child node. In the latter case,
u is moved from SB to SAB by adding (u, v), because u has a neighbor v in
B. Therefore, we define fi as follows:

fi(c × {sAB} × {a},PA,PB) := max { fj(c × {sAB} × {a},PA,PB),
fj(c × {sB} × {a},PA,PB)}.

– If (c(u), c(v)) = (sAB , b), (b, sAB), we consider almost the same cases as above;
that is, u ∈ SAB , v ∈ B and u ∈ SA and v ∈ B in a child node.

fi(c × {sAB} × {b},PA,PB) := max { fj(c × {sAB} × {b},PA,PB),
fj(c × {sA} × {b},PA,PB)}.

– Otherwise, we define fi(c,PA,PB)) := −∞ because the rest of cases is invalid.
Recall the definition of connected partition and the meaning of states.

Forget v node: In a forget v node, if cj(v) ∈ {s∅, sA, sB}, vertex v never has
neighbors both in A and in B and hence such case is invalid because of the
definition of connected partition. If cj(v) ∈ {sAB , q}, we need not consider the
connectivity of these. In the case that cj(v) = a, we only consider partitions
such that there exists at least one vertex u in A included the same block as v.
If not, the block including v is never merged. Consequently, G[A] would not be
connected in the root node. The case that cj(v) = b is almost the same. Let
P ′A,P ′B be a partition satisfying such conditions, then we define fi as follows:

fi(c,PA,PB)) := max { fj(c × {sAB},PA,PB)), fj(c × {q},PA,PB),
max
P′A

fj(c × {a},P ′A,PB)),max
P′B

fj(c × {b},PA,P ′B))}.

312 T. Hanaka et al.

Table 1. This table represents combinations of states of two children nodes j1, j2 for
each vertex in Xi = Xj1 = Xj2 . The row and column correspond to states of j1, j2
respectively and inner elements correspond to states of x. For example, if ci(v) = sA,
there are three combinations such that (cj1(v), cj2(v)) = (sA, s∅), (cj1(v), cj2(v)) =
(s∅, sA) and (cj1(v), cj2(v)) = (sA, sA).

s∅ sA sB sAB a b q

s∅ s∅ sA sB sAB

sA sA sA sAB sAB

sB sB sAB sB sAB

sAB sAB sAB sAB sAB

a a

b b

q q

Join node: For a parent node i and two children nodes j1, j2, we denote each
coloring by ci, cj1 , cj2 and each partition by PA

j1
,PB

j1
,PA

j2
,PB

j2
. We then define the

subset D of tuples of ((cj1 ,PA
j1

,PB
j1

), (cj2 ,PA
j2

,PB
j2

)) such that the combinations
of colorings for cj1 , cj2 satisfy the following conditions. (See Table 1):

– ∀v ∈ c−1
i ({s∅, a, b, q}), (cj1(v), cj2(v)) = (ci(v), ci(v)),

– ∀v ∈ c−1
i ({sA}, (cj1(v), cj2(v)) = (sA, s∅), (s∅, sA), (sA, sA),

– ∀v ∈ c−1
i ({sB}), cj1(v), cj2(v)) = (sB , s∅), (s∅, sB), (sB , sB), and

– ∀v ∈ c−1
i ({sAB}), (cj1(v), cj2(v)) = (sAB , s∅), (sAB , sA), (sAB , sB),

(sAB , sAB), (s∅, sAB), (sA, sAB), (sB , sAB), (sA, sB), (sB , sA),

and the partition caused by merging PA
j1

and PA
j2

equals to PA and the parti-
tion caused by merging PB

j1
,PB

j2
equals to PB . If D = ∅ for ci,PA,PB , we set

fi(ci,PA,PB) := −∞. Otherwise, we set S∗ := c−1
i ({s∅, sA, sB , sAB}). Then we

define fi as follows:

fi(ci,PA,PB) := max
((cj1 ,PA

j1
,PB

j1
),(cj2 ,PA

j2
,PB

j2
))∈D

{ fj1(cj1 ,PA
j1 ,PB

j1)

+ fj2(cj2 ,PA
j2 ,PB

j2) − w(S∗)}.

The subtraction in the right hand side of the equation above is because the
weight w(S∗) is counted twice; once in each child node.

We recursively calculate fi on the decomposition tree. Note that all bags
have |Xi| vertices and the number of combinations of colorings and partitions
(c,PA,PB) in each node is |Xi|O(|Xi|) = twO(tw). The running time to compute
all fi’s in Xi is dominated by join nodes and it is roughly (twO(tw))3 = twO(tw)

since we scan every coloring and partition in two children nodes Xj1 and Xj2

for each coloring ci and each partition PA,PB and then check all combinations.
Therefore, the total running time is twO(tw)n and we conclude with the following
theorem.

On the Maximum Weight Minimal Separator 313

Theorem 3. For graphs of treewidth at most tw, there exists an algorithm that
solves Maximum Weight Minimal s-t Separator in time twO(tw)n.

4 Algorithms Using Cut & Count

In this section, we give an algorithm that solves the decision version of Maxi-

mum Weight Minimal s-t Separator to decide the existence of minimal s-t
separator with weight W in time O∗(9tw · W 2) for graphs of treewidth at most
tw. This algorithm is based on the Cut & Count technique.

4.1 Isolation Lemma

In this subsection, we explain the Isolation Lemma introduced by Mulmuley et
al. [13]. The main idea of the Cut & Count technique is to obtain a single solution
with high probability; we count modulo 2, and the Isolation Lemma guarantees
the existence of such a single solution.

Definition 5 ([13]). A function w′ : U → Z isolates a set family F ⊆ 2U if there
is a unique S′ ∈ F with w′(S′) = minS∈F w′(S) where w′(X) =

∑
u∈X w′(u).

Lemma 1 (Isolation Lemma [13]). Let F ⊆ 2U be a set family over a universe
U with |F | > 0. For each u ∈ U , choose a weight w′(u) ∈ {1, 2, . . . N} uniformly
and independently at random. Then Pr[w′ isolate F] ≥ 1 − |U |/N.

4.2 Cut & Count

The Cut & Count technique was introduced by Cygan et al. for solving con-
nectivity problems [7]. The concept of Cut & Count is counting the number of
relaxed solutions such that we do not consider whether they are connected or
disconnected. Then we compute the number of relaxed solutions modulo 2 and
we determine whether there exists a connected solution by cancellation tricks.
Now, we define a consistent cut to explain the detail of Cut & Count.

Definition 6 ([7]). A cut (V1, V2) of V ′ ⊆ V such that V1 ∪ V2 = V ′ and
V1 ∩ V2 = ∅ is consistent if v1 ∈ V1 and v2 ∈ V2 implies (v1, v2) /∈ E.

This means that a consistent cut (V1, V2) of V ′ has no edge between V1 and V2.
We fix an arbitrary vertex v in V1. Then, if G[V] is connected, then there only
exists one consistent cut, that is, (V1, V2) = (V, ∅). Therefore, the number of
consistent cuts is odd. By this fact, we only compute the number of consistent
cuts modulo 2 on decomposition tree and return yes if the number of consistent
cuts is odd, otherwise no in a root node. The Isolation Lemma is useful for us as
it implies that when the number of solutions is odd, there is a unique solution
with high probability; and hence we can use the modulo 2 trick.

314 T. Hanaka et al.

Let S ⊆ 2U be a set of solutions. According to [7,8], the Cut & Count
technique is divided into two parts as follows.

– The Cut part: Relax the connectivity requirement by considering the set
R ⊇ S of possibly connected or disconnected candidate solutions. Moreover,
consider the set C of pairs (X;C) where X ∈ R and C is a consistent cut of X.

– The Count part: Isolate a single solution by sampling weights of all elements
in U with high probability by the Isolation Lemma. Then, compute |C| modulo
2 using a sub-procedure. Disconnected candidate solutions X ∈ R \ S cancel
since they are consistent with an even number of cuts. If the only connected
candidate x ∈ S exists, we obtain the odd number of cuts.

Given a set U and a tree decomposition 〈X , T 〉, the general scheme of Cut &
Count is as follows:

Step 1. Set the integer weight for every vertex uniformly and independently at
random by w′ : U → {1, . . . , 2|U |}.

Step 2. For each integer weight 0 ≤ W ′ ≤ 2|U |2, compute the number of relaxed
solutions of weight W ′ with consistent cuts modulo 2 on a decomposition tree.
Then return yes if it is odd, otherwise no in the root node.

We use the Cut & Count technique to determine whether there exists a
connected partition (S,A,B,Q) of weight W so that A and B are connected.
To apply the above scheme, we newly give the following definition of a partial
solution. Note that we have to consider two consistent cuts of A and B.

Definition 7. Given a node i of the tree decomposition of G, a partial solution
for that node is a tuple (S∅, SA, SB , SAB , Al, Ar, Bl, Br, Q,w), such that:

– Vi = S∅ ∪ SA ∪ SA ∪ SAB ∪ Al ∪ Ar ∪ Bl ∪ Br ∪ Q,
– (Al, Ar) is a consistent cut: there exists no edge (u, v) ∈ E such that u ∈ Al

and v ∈ Ar,
– (Bl, Br) is a consistent cut: there exists no edge (u, v) ∈ E such that u ∈ Bl

and v ∈ Br,
– w = Σv∈Sw(v),
– ∀v ∈ S∅, N(v) ∩ (Al ∪ Ar ∪ Bl ∪ Br) = ∅,
– ∀v ∈ SA, N(v) ∩ (Bl ∪ Br) = ∅ and N(v) ∩ (Al ∪ Ar) �= ∅,
– ∀v ∈ SB, N(v) ∩ (Bl ∪ Br) �= ∅ and N(v) ∩ (Al ∪ Ar) = ∅ and
– ∀v ∈ SAB, N(v) ∩ (Bl ∪ Br) �= ∅ and N(v) ∩ (Al ∪ Ar) �= ∅.
– s ∈ Vi ⇒ s ∈ Al

– t ∈ Vi ⇒ t ∈ Bl

For each vertex v, we set another weight w′(v) by choosing from {1, . . . , 2|V |}
and independently at random. We also set the coloring c : V → {s∅, sA, sB , sAB ,
al, ar, bl, br, q}. Now, we give a dynamic programming algorithm that com-
putes the number of partial solutions. To count the number of relaxed solu-
tions with consistent cuts, for each c, w and w′ we define the counting function
hi : {s∅, sA, sB , sAB , al, ar, bl, br, q}|Xi| × N × N → N in each node i on a nice
tree decomposition as follows.

On the Maximum Weight Minimal Separator 315

Leaf node: In a leaf node, we define hi(∅, 0, 0) = 1, if S∅ = SA = SB = SAB =
Al = Ar = Bl = Br = ∅ and w,w′ = 0. Otherwise, hi(c, w,w′) = 0.

Introduce vertex v node: The function hi has five cases in an introduce ver-
tex node. Note that we only add one vertex v without edges. Thus, if c(v) ∈
{sA, sB , sAB}, a partial solution is invalid by the definition because v has no
neighbor. If c(v) = s∅, vertex v is chosen as a vertex of S, and we hence add
each weight w(v), w′(v) to w, w′, respectively. Moreover, v must not be s, t
because s (resp., t) should be in Al (resp., Bl). If not, it is not a connected
partition. Similarly, if c(v) = al (resp., bl), we check whether v is not t (resp., s).
As for c(v) ∈ {ar, br, q}, we also check whether v is neither s nor t. Therefore,
we define hi in introduce vertex nodes as follows:

hi(c × {c(v)}, w, w′) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[v �= s, t]hj(c, w − w(v), w′ − w′(v)) if c(v) = s∅
[v �= t]hj(c, w,w′) if c(v) = al

[v �= s]hj(c, w,w′) if c(v) = bl

[v �= s, t]hj(c, w,w′) if c(v) ∈ {ar, br, q}
0 otherwise.

Introduce edge (u, v) node: In an introduce edge node, we check each state of
endpoints of the edge (u, v) and define fi for some cases.

– If c(u) = s∅, vertex u has no vertices in A,B. Hence, we define the function
hi in this case as follows:

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) /∈ {al, ar, bl, br}]
·hj(c × {s∅} × {c(v)}, w, w′).

– If c(u) = sA, vertex u has neighbors of A but no neighbor of B. In this
case, we have two cases. The other case is that u ∈ S∅ and v ∈ A in a child
node, because adding edge (u, v) in the introduce edge (u, v) node, vertex u
is moved from S∅ to SA. The other case is that u ∈ SA and v /∈ B in a child
node. If v ∈ B, vertex u is in SAB in the parent node. We define hi as follows.
Note that only if c(v) ∈ {al, ar}, we sum up two cases. If c(v) ∈ {bl, br},
hi(c × {c(u)} × {c(v)}, w, w′) := 0, otherwise hi(c × {c(u)} × {c(v)}, w, w′) :=
hj(c × {sA} × {c(v)}, w, w′).

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {al, ar}]hj(c × {s∅} × {c(v)}, w, w′)

+ [c(v) /∈ {bl, br}]hj(c × {sA} × {c(v)}, w, w′).

– If c(u) = sB is almost the same as above case, that is, we replace A(resp., B)
to B(resp., A).

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {bl, br}]hj(c × {s∅} × {c(v)}, w, w′)

+ [c(v) /∈ {al, ar}]hj(c × {sB} × {c(v)}, w, w′).

316 T. Hanaka et al.

– If c(u) = sAB , we consider three cases: u ∈ SA and v ∈ B, u ∈ SB and v ∈ A,
and u ∈ SAB and v is in arbitrary set in the children node. For first and second
cases, vertex u is moved from SA(resp., SB) into SAB by adding edge (u, v). If
u ∈ SAB , v is allowed to be in any set because a vertex in SAB could connect
to all sets. Therefore, we define fi as follows:

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {bl, br}]hj(c × {sA} × {c(v)}, w, w′)

+ [c(v) ∈ {al, ar}]hj(c × {sB} × {c(v)}, w, w′)

+ hj(c × {sAB} × {c(v)}, w, w′).

– If c(u) ∈ {al, ar}, then c(v) /∈ {bl, br, q} since there is no edge between A,B
and Q by the definition of connected partition. There is also no edge between
Al and Ar because (Al, Ar) is a consistent cut. Therefore, if u is in Al or Ar,
then v are in the same set of u or separator sets SA, SAB . Note that because
u is in A, v is not in S∅, SB.

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) = c(u)]hj(c × {c(u)} × {c(v)}, w, w′)

+ [c(v) ∈ {sA, sAB}]hj(c × {c(u)} × {c(v)}, w, w′).

– The case that c(u) ∈ {bl, br} is almost the same as above case, that is, we
replace A by B.

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) = c(u)]hj(c × {c(u)} × {c(v)}, w, w′)

+ [c(v) ∈ {sB , sAB}]hj(c × {c(u)} × {c(v)}, w, w′).

– If c(u) = q, vertex u is in Q. Hence, v must be in S∅, SA, SB , SAB , or Q because
a vertex in Q has no neighbor of A and B by the definition of connected
partition.

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {s∅, sA, sB , sAB , q}]
·hj(c × {c(u)} × {c(v)}, w, w′).

Forget v node: For a forget v node, the state of v would never change forward.
Thus, if cj(v) ∈ {s∅, sA, sB}, a partial solution does not satisfy the condition of
connected partition because any v ∈ S must have neighbors of both A and B.
For this reason, we only sum up for each state cj(v) ∈ {sAB , al, ar, bl, br, q}. The
function hi in forget nodes is defined as follows:

hi(c, w,w′) :=
∑

cj(v)∈{sAB ,al,ar,bl,br,q}
hj(c × {cj(v)}, w, w′).

Join node: We denote each coloring and weights of partial solutions in i, j1, j2
by ci, cj1 , cj2 and wi, wj1 , wj2 , w′

i, w′
j1

, w′
j2

, respectively. Moreover, for a state
subset L ⊆ {s∅, sA, sB , sAB , al, ar, bl, br, q}, we define c−1(L) as the vertex set
such that all vertices satisfy c(v) ∈ L. For a coloring ci, we also define the subset

On the Maximum Weight Minimal Separator 317

D of tuples of (cj1 , cj2) as the combinations of colorings of cj1 , cj2 like Sect. 3
such that:

– ∀v ∈ c−1
i ({s∅, al, ar, bl, br, q}), (cj1(v), cj2(v)) = (ci(v), ci(v)),

– ∀v ∈ c−1
i ({sA}, (cj1(v), cj2(v)) = (sA, s∅), (s∅, sA), (sA, sA),

– ∀v ∈ c−1
i ({sB}), cj1(v), cj2(v)) = (sB , s∅), (s∅, sB), (sB , sB), and

– ∀v ∈ c−1
i ({sAB}), (cj1(v), cj2(v)) = (sAB , s∅), (sAB , sA), (sAB , sB),

(sAB , sAB), (s∅, sAB), (sA, sAB), (sB , sAB), (sA, sB), (sB , sA).

Let S∗ be the vertex subset c−1
i ({s∅, sA, sB , sAB}). To sum up all combi-

nations of vertex states and weights for counting, we define the function hi. If
D = ∅, we define hi(ci, wi, w

′
i) := 0. Otherwise,

hi(ci, wi, w
′
i) :=

∑

wj1
+wj2

=wi+w(S∗)

∑

w′
j1

+w′
j2

=w′
i
+w′(S∗)

∑

(c∗
j1

,c∗
j2

)∈D

hj1(c
∗
j1 , wj1 , w

′
j1)hj2(c

∗
j2 , wj2 , w

′
j2).

From now, we analyze the running time of this algorithm. In each leaf, intro-
duce vertex, introduce edge, and forget node, we can compute fi for each coloring
c and weight w,w′ in O(1)-time because we only use O(1)-operations. Therefore,
the total running time in them is O∗(9tw · W · W ′). However, in a join node,
we sum up all weight combinations and coloring combinations satisfying some
conditions. There are 21 coloring’s combinations for each vertex and W · W ′

weight’s combinations. Therefore, we compute all fi’s in a join node in time
O∗(21tw · W 2). Note that by the definition, O(W ′2) is a polynomial factor.

Theorem 4. For graphs of treewidth at most tw, there exists a Monte-Carlo
algorithm that solves the decision version of Maximum Weight Minimal s-t
Separator in time O∗(21tw · W 2). It cannot give false positives and may give
false negatives with probability at most 1/2.

Using the convolution technique [14], we can obtain a faster Monte-Carlo
algorithm. The technique helps to speed up the computation for join nodes. The
details are omitted from this extended abstract.

Theorem 5. For graphs of treewidth at most tw, there exists a Monte-Carlo
algorithm that solves the decision version of Maximum Weight Minimal s-t
Separator in time O∗(9tw · W 2). It cannot give false positives and may give
false negatives with probability at most 1/2. If the input graph is unweighted, the
running time is 9tw · |V |O(1).

As usual for this type of algorithms, the probability of a false negative can
be made arbitrarily small by repeating the algorithm.

Acknowledgments. We are grateful to Dr. Jesper Nederlof for helpful discussions.

318 T. Hanaka et al.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete, Methods 8(2), 277–284 (1987)

2. Berry, A., Bodat, J.P., Cogis, O.: Generating all the minimal separators of a graph.
Int. J. Found. Comput. Sci. 11(3), 397–404 (2000)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

4. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and pathwidth of permutation
graphs. SIAM J. Discrete Math. 8(4), 606–616 (1995)

5. Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: grouping the minimal
separators. SIAM J. Comput. 31(1), 212–232 (2001)

6. Bouchitté, V., Todinca, I.: Listing all potential maximal cliques of a graph. Theoret.
Comput. Sci. 276(1–2), 17–32 (2002)

7. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M.,
Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in
single exponential time. In: Proceedings of the 52nd Annual Symposium on Foun-
dations of Computer Science (FOCS), pp. 150–159 (2011)

8. Cygan, M., Fomin, F.V., Kowalik, �L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer International
Publishing, Switzerland (2015)

9. Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth
and minimum fill-in. SIAM J. Comput. 38(3), 1058–1079 (2008)

10. Gaspers, S., Mackenzie, S.: On the number of minimal separators in graphs.
arXiv:1503.01203v2 (2015)

11. Kloks, T. (ed.): Treewidth: Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

12. Kloks, T.: Treewidth of circle graphs. Int. J. Found. Comput. Sci. 7(2), 111 (1996)
13. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-

sion. Combinatorica 7(1), 105–113 (1987)
14. Rooij, J.M.M., Bodlaender, H.L., Rossmanith, P.: Dynamic programming on tree

decompositions using generalised fast subset convolution. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 566–577. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-04128-0 51

15. Skodinis, K.: Efficient analysis of graphs with small minimal separators. In: Wid-
mayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 155–166.
Springer, Heidelberg (1999). doi:10.1007/3-540-46784-X 16

16. Suchan, K.: Minimal separators in intersection graphs. Masters thesis, Akademia
Gorniczo- Hutnicza im. Stanislawa Staszica w Krakowie, Cracow (2003)

17. Sundaram, R., Singh, K.S., Rangan, C.P.: Treewidth of circular-arc graphs. SIAM
J. Discrete Math. 7(4), 647–655 (1994)

http://arxiv.org/abs/1503.01203v2
http://dx.doi.org/10.1007/978-3-642-04128-0_51
http://dx.doi.org/10.1007/3-540-46784-X_16

	On the Maximum Weight Minimal Separator
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Tree Decomposition
	2.2 NP-hardness

	3 Dynamic Programming on Tree Decompositions
	4 Algorithms Using Cut & Count
	4.1 Isolation Lemma
	4.2 Cut & Count

	References

