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Abstract. In this paper, we give new, tight subexponential lower
bounds for a number of graph embedding problems. We introduce two
related combinatorial problems, which we call String Crafting and
Orthogonal Vector crafting, and show that these cannot be solved
in time 2o(|s|/ log |s|), unless the Exponential Time Hypothesis fails.

These results are used to obtain simplified hardness results for several
graph embedding problems, on more restricted graph classes than previ-
ously known: assuming the Exponential Time Hypothesis, there do not
exist algorithms that run in 2o(n/ log n) time for Subgraph Isomorphism

on graphs of pathwidth 1, Induced Subgraph Isomorphism on graphs
of pathwidth 1, Graph Minor on graphs of pathwidth 1, Induced

Graph Minor on graphs of pathwidth 1, Intervalizing 5-Colored

Graphs on trees, and finding a tree or path decomposition with width
at most c with a minimum number of bags, for any fixed c ≥ 16.

2Θ(n/ log n) appears to be the “correct” running time for many pack-
ing and embedding problems on restricted graph classes, and we think
String Crafting and Orthogonal Vector Crafting form a useful
framework for establishing lower bounds of this form.

1 Introduction

Many NP-complete graph problems admit faster algorithms when restricted to
planar graphs. In almost all cases, these algorithms have running times that
are exponential in a square root function of either the size of the instance n

or some parameter k (e.g. 2O(
√

n), nO(
√

k) or 2O(
√

k)nO(1)) and most of these
results are tight, assuming the Exponential Time Hypothesis. This seemingly
universal behaviour has been dubbed the “Square Root Phenomenon” [1]. The
open question [2] of whether the Square Root Phenomenon holds for Subgraph
Isomorphism in planar graphs, has recently been answered in the negative:
assuming the Exponential Time Hypothesis, there is no 2o(n/ log n)-time algo-
rithm for Subgraph Isomorphism, even when restricted to (planar) graphs
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of pathwidth 2 [3]. The same lower bound holds for Induced Subgraph and
(Induced) Minor and is in fact tight: the problems admit 2O(n/ log n)-time
algorithms on H-minor free graphs [3].

The lower bounds in [3] follow by reductions from a problem called String

3-Groups. We introduce a new problem, String Crafting, and establish
a 2Ω(|s|/ log |s|)-time lower bound under the ETH for this problem by giving a
direct reduction from 3-Satisfiability. Using this result, we show that the
2Ω(|s|/ log |s|)-time lower bounds for (Induced) Subgraph and (Induced) Minor
hold even on graphs of pathwidth 1.

Alongside String Crafting, we introduce the related Orthogonal Vec-

tor Crafting problem. Using this problem, we show 2Ω(|n|/ log |n|)-time lower
bounds for deciding whether a 5-coloured tree is the subgraph of an interval
graph (for which the same colouring is proper) and for deciding whether a graph
admits a tree (or path) decomposition of width 16 with at most a given number
of bags.

For any fixed k, Intervalizing k-Coloured Graphs can be solved in time
2O(n/ log n) [4]. Bodlaender and Nederlof [5] conjecture a lower bound (under
the Exponential Time Hypothesis) of 2Ω(n/ log n) time for k ≥ 6; we settle this
conjecture and show that it in fact holds for k ≥ 5, even when restricted to trees.
To complement this result for a fixed number of colours, we also show that there
is no algorithm solving Intervalizing Coloured Graphs (with an arbitrary
number of colours) in time 2o(n), even when restricted to trees.

The minimum size path and tree decomposition problems can also be solved
in 2O(n/ log n) time on graphs of bounded treewidth. This is known to be tight
under the Exponential Time Hypothesis for k ≥ 39 [5]. We improve this to
k ≥ 16; our proof is also simpler than that in [5].

Our results show that String Crafting and Orthogonal Vector

Crafting are a useful framework for establishing lower bounds of the form
2Ω(n/ log n) under the Exponential Time Hypothesis. It appears that for many
packing and embedding problems on restricted graph classes, this bound is tight.

For some omitted proofs, we refer to the full version of this paper [6].

2 Preliminaries

Strings. We work with the alphabet {0, 1}; i.e., strings are elements of {0, 1}∗.
The length of a string s is denoted by |s|. The ith character of a string s is
denoted by s(i). Given a string s ∈ {0, 1}∗, s denotes binary complement of s,
that is, each occurrence of a 0 is replaced by a 1 and vice versa; i.e., |s| = |s|, and
for 1 ≤ i ≤ |s|, s(i) = 1−s(i). E.g., if s = 100, then s = 011. With sR, we denote
the string s in reverse order; e.g., if s = 100, then sR = 001. The concatenation
of strings s and t is denoted by s · t. A string s is a palindrome, when s = sR.
By 0n (resp. 1n) we denote the string that consists of n 0’s (resp. 1’s).

Graphs. Given a graph G, we let V (G) denote its vertex set and E(G) its edge
set. Let Nb(v) denote the open neighbourhood of v, that is, the vertices adjacent
to v, excluding v itself. We assume all graphs are simple.
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Treewidth and Pathwidth. A tree decomposition of a graph G = (V,E) is a tree
T with vertices t1, . . . , ts with for each vertex ti a bag Xi ⊆ V such that for all
v ∈ V , the set {ti ∈ {t1, . . . , ts} | v ∈ Xi} is non-empty and induces a connected
subtree of T and for all (u, v) ∈ E there exists a bag Xi such that {u, v} ∈ Xi.
The width of a tree decomposition is maxi{|Xi|−1} and the treewidth of a graph
G is the minimum width of a tree decomposition of G. A path decomposition is
a tree decomposition where T is a path, and the pathwidth of a graph G is the
minimum width of a path decomposition of G.

A graph is a caterpillar tree if it is connected and has pathwidth 1.

Subgraphs and Isomorphism. H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆
E(G); we say the subgraph is induced if moreover E(H) = E(G)∩{{u, v} | u, v ∈
V (H)}. We say a graph H is isomorphic to a graph G if there is a bijection
f : V (H) → V (G) so that (u, v) ∈ E(H) ⇐⇒ (f(u), f(v)) ∈ E(G).

Contractions, Minors. We say a graph G′ is obtained from G by contracting
edge (u, v), if G′ is obtained from G by replacing vertices u, v with a new vertex
w which is made adjacent to all vertices in Nb(u)∪Nb(v). A graph G′ is a minor
of G if a graph isomorphic to G′ can be obtained from G by contractions and
deleting vertices and/or edges. G′ is an induced minor if we can obtain it by
contractions and deleting vertices (but not edges).

We say G′ is an r-shallow minor if G′ can be obtained as a minor of G and
any subgraph of G that is contracted to form some vertex of G′ has radius at
most r (that is, there is a central vertex within distance at most r from any other
vertex in the subgraph). Finally, G′ is a topological minor if we can subdivide
the edges of G′ to obtain a graph G′′ that is isomorphic to a subgraph of G (that
is, we may repeatedly take an edge (u, v) and replace it by a new vertex w and
edges (u,w) and (w, v)).

For each of (induced) subgraph, induced (minor), topological minor and shal-
low minor, we define the corresponding decision problem, that is, to decide
whether a pattern graph P is isomorphic to an (induced) subgraph/(induced)
minor/topological minor/shallow minor of a host graph G.

3 String Crafting and Orthogonal Vector Crafting

We now formally introduce the String Crafting problem:

String Crafting

Given: String s, and n strings t1, . . . , tn, with |s| =
∑n

i=1 |ti|.
Question: Is there a permutation Π : {1, . . . , n} → {1, . . . , n}, such that

the string tΠ = tΠ(1) · tΠ(2) · · · tΠ(n) fulfils that for each i, 1 ≤ i ≤ |s|,
s(i) ≥ tΠ(i).

i.e., we permute the collection of strings {t1, t2, . . . tn}, then concatenate these,
and should obtain a resulting string tΠ (that necessarily has the same length as
s) such that on every position where tΠ has a 1, s also has a 1.
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We also introduce the following variation of String Crafting, where,
instead of requiring that whenever tΠ has a 1, s has a 1 as well, we require
that whenever tΠ has a 1, s has a 0 (i.e. the strings tΠ and s, viewed as vectors
over the reals, are orthogonal). These problems are closely related, and have the
same complexity. However, sometimes one problem will be more convenient as
a starting point for a reduction than the other.

Orthogonal Vector Crafting

Given: String s, and n strings t1, . . . , tn, with |s| =
∑n

i=1 |ti|.
Question: Is there a permutation Π : {1, . . . , n} → {1, . . . , n}, such that

the string tΠ = tΠ(1) · tΠ(2) · · · tΠ(n) fulfils that for each i, 1 ≤ i ≤ |s|,
s(i) · tΠ(i) = 0, i.e., when viewed as vectors, s is orthogonal to tΠ .

Theorem 1. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm that solves the String Crafting problem in 2o(|s|/ log |s|) time, even
when all strings ti are palindromes and start and end with a 1.

Proof. Suppose we have an instance of 3-Satisfiability with n variables and
m clauses. We number the variables x1 to xn and for convenience, we number
the clauses Cn+1 to Cn+m+1.

We assume by the sparsification lemma that m = O(n) [7, Corollary 2].
Let q = �log(n + m)�, and let r = 4q + 2. We first assign an r-bit number to

each variable and clause; more precisely, we give a mapping id : {1, . . . , n+m} →
{0, 1}r. Let nb(i) be the q-bit binary representation of i. We set, for 1 ≤ i ≤ n+m:

id(i) = 1 · nb(i) · nb(i) · nb(i)
R · nb(i)R · 1

Note that each id(i) is an r-bit string that is a palindrome, ending and starting
with a 1.

We first build s, by taking the concatenation of n strings, one for each
variable.

Suppose the literal xi appears ci times in a clause, and the literal ¬xi appears
di times in a clause. Set fi = ci + di. Assign the following strings to the pair of
literals xi and ¬xi:

– axi is the concatenation of the id’s of all clauses in which xi appears, followed
by di copies of the string 1 · 0r−2 · 1.

– a¬xi is the concatenation of the id’s of all clauses in which ¬xi appears, fol-
lowed by ci copies of the string 1 · 0r−2 · 1.

– bi = id(i) · axi · id(i) · a¬xi · id(i).

Now, we set s = b1 · b2 · · · bn−1 · bn.
We now build the collection of strings ti. We have three different types of

strings:

– Variable selection: For each variable xi we have one string of length (fi + 2)r
of the form id(i) · 0r·fi · id(i).

– Clause verification: For each clause Ci, we have a string of the form id(i).
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– Filler strings: A filler string is of the form 1 · 0r−2 · 1. We have n + 2m filler
strings.

Thus, the collection of strings ti consists of n variable selection strings (of
total length (3m + 2n)r), m clause verification strings (of length r), and n + 2m
filler strings (also of length r). Notice that each of these strings is a palindrome
and ends and starts with a 1.

The idea behind the reduction is that s consists of a list of variable identifiers
followed by which clauses a true/false assignment to that variable would satisfy.
The variable selection gadget can be placed in s in two ways: either covering all
the clauses satisfied by assigning true to the variable, or covering all the clauses
satisfied by assigning false. The clause verification strings then fit into s only
if we have not covered all of the places where the clause can fit with variable
selection strings (corresponding to that we have made some assignment that
satisfies the clause).

Furthermore, note that since Σn
i=1fi = 3m, the length of s is (3n+6m)r, the

combined length of the variable selection strings is (2n + 3m)r, the combined
length of the clause verification strings is mr, and the filler strings have combined
length (n + 2m)r.

In the following, we say a string ti is mapped to a substring s′ of s if s′ is
the substring of s corresponding to the position (and length) of ti in tΠ .

Lemma 1. The instance of 3-Satisfiability is satisfiable, if and only if the
constructed instance of String Crafting has a solution.

Proof. First, we show the reverse implication. Suppose we have a satisfying
assignment to the 3-Satisfiability instance. Consider the substring of s formed
by bi, which is of the form id(i) ·axi · id(i) ·a¬xi · id(i). If in the satisfying assign-
ment xi is true, we choose the permutation Π so that variable selection string
id(i)·0r·fi ·id(i) corresponding to xi is mapped to the substring id(i)·a¬xi ·id(i); if
xi is false, we map the variable selection string onto the substring id(i)·axi ·id(i).
A filler string is mapped to the other instance of id(i) in the substring.

Now, we show how the clause verification strings can be mapped. Suppose
clause Cj is satisfied by a literal xi (resp. ¬xi). Since xi is true (resp. false), the
substring axi (resp. a¬xi) of s is not yet used by a variable selection gadget and
contains id(j) as a substring, to which we can map the clause verification string
corresponding to Cj .

Note that in s now remain a number of strings of the form 1 · 0r−2 · 1 and
a number of strings corresponding to id’s of clauses, together 2m such strings,
which is exactly the number of filler strings we have left. These can thus be
mapped to these strings, and we obtain a solution to the String Crafting

instance. It is easy to see that with this construction, s has a 1 whenever the
string constructed from the permutation does.

Next, for the forward implication, consider a solution Π to the String

Crafting instance. We require the following lemma:

Lemma 2. Suppose that ti = id(j). Then the substring w of s corresponding to
the position of ti in tΠ is id(j).
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Proof. Because the length of each string is a multiple of r, w is either id(k)
for some k, or the string 1 · 0r−2 · 1. Clearly, w can not be 1 · 0r−2 · 1 because
the construction of id(i) ensures that it has more than 2 non-zero characters,
so at some position w would have a 1 where w′ does not. Recall that id(i) =

1 ·nb(i) ·nb(i) ·nb(i)
R ·nb(i)R ·1. If j 
= k, then either at some position nb(k) has

a 0 where nb(j) has a 1 (contradicting that Π is a solution) or at some position
nb(k) has a 0 where nb(j) has a 1 (again contradicting that Π is a solution).
Therefore j = k. ��

Clearly, for any i, there are only two possible places in tΠ where the variable
selection string id(i) · 0r·fi · id(i) can be mapped to: either in the place of id(i) ·
axi · id(i) in s or in the place of id(i) ·a¬xi · id(i), since these are the only (integer
multiple of r) positions where id(i) occurs in s. If the former place is used we
set xi to false, otherwise we set xi to true.

Now, consider a clause Cj , and the place where the corresponding clause
verification gadget id(j) is mapped to. Suppose it is mapped to some substring
of id(i) · axi · id(i) · a¬xi · id(i). If id(j) is mapped to a substring of axi then (by
construction of axi) xi appears as a positive literal in Cj and our chosen assign-
ment satisfies Cj (since we have set xi to true). Otherwise, if id(j) is mapped to
a substring of a¬xi xi appears negated in Cj and our chosen assignment satisfies
Cj (since we have set xi to false).

We thus obtain a satisfying assignment for the 3-Satisfiability instance.
��

Since in the constructed instance, |s| = (3n + 6m)r and r = O(log n),m =
O(n), we have that |s| = O(n log n). A 2o(|s|/ log |s|)-time algorithm for String

Crafting would give a 2o(n log n/ log (n log n)) = 2o(n)-time algorithm for deciding
3-Satisfiability, violating the ETH. ��

Note that we can also restrict all strings ti to start and end with a 0 by a
slight modification of the proof.

Theorem 2. Assuming the Exponential Time Hypothesis, Orthogonal Vec-

tor Crafting can not be solved in 2o(|s|/ log |s|) time, even when all strings ti
are palindromes and start and end with a 1.

Proof. This follows from the result for String Crafting, by taking the com-
plement of the string s. ��

Again, we can also restrict all strings ti to start and end with a 0.
As illustrated by the following theorem, these lower bounds are tight. The

algorithm is a simpler example of the techniques used in [3–5].

Theorem 3. There exists algorithms, solving String Crafting and Orthog-

onal Vector Crafting in 2O(|s|/ log |s|).
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4 Lower Bounds for Graph Embedding Problems

Theorem 4. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm solving Subgraph Isomorphism in 2o(n/ log n) time, even if G is a
caterpillar tree of maximum degree 3 or G is connected, planar, has pathwidth 2
and has only one vertex of degree greater than 3 and P is a tree.

Proof. By reduction from String Crafting. We first give the proof for the
case that G is a caterpillar tree of maximum degree 3, We construct G from s
as follows: we take a path of vertices v1, . . . , v|s| (path vertices). If s(i) = 1, we
add a hair vertex hi and edge (vi, hi) to G (obtaining a caterpillar tree). We
construct P from the strings ti by, for each string ti repeating this construction,
and taking the disjoint union of the caterpillars created in this way (resulting
in a graph that is a forest of caterpillar trees, i.e., a graph of pathwidth 1). An
example of this construction is depicted in Fig. 1. The constructed instance of
G contains P as a subgraph, if and only if the instance of String Crafting

has a solution: the order in which the caterpillars are embedded in G gives the
permutation of the strings: when a caterpillar in P has a hair, G must have a hair
at the specific position, which implies that a position with a 1 in the constructed
string t must be a position where s also has a 1.

Fig. 1. Simplified example of the graphs created in the hardness reduction for Theo-
rem4. The bottom caterpillar represents the host graph (corresponding to string s), the
top caterpillars represent the strings ti and form the guest graph. Here s = 101110101
and t1 = 1010, t2 = 101 and t3 = 00.

Since the constructed instance has O(|s|) vertices, this establishes the first
part of the lemma. For the case that G is connected, we add to the graph G
constructed in the first part of the proof a vertex u and, for each path vertex vi,
an edge (vi, u). To P we add a vertex u′ that has an edge to some path vertex of
each component. By virtue of their high degrees, u must be mapped to u′ and
the remainder of the reduction proceeds in the same way as in the first part of
the proof. ��

This proof can be adapted to show hardness for a number of other problems:

Theorem 5. Suppose the Exponential Time Hypothesis holds. Then there is no
algorithm solving Induced Subgraph, (Induced) Minor, Shallor Minor

or Topological Minor in 2o(n/ log n) time, even if G is a caterpillar tree of
maximum degree 3 or G is connected, planar, has pathwidth 2 and has only one
vertex of degree greater than 3 and P is a tree.
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5 Tree and Path Decompositions with Few Bags

In this section, we study the following problem, and its analogously defined vari-
ant Minimum Size Path Decomposition (k-MSPD). Theorem 6 is an improve-
ment over Theorem 3 of [5], where the same was shown for k ≥ 39; our proof is
also simpler.

Minimum Size Tree Decomposition of width k (k-MSTD)

Given: A graph G, integer b.
Question: Does G have a tree decomposition of width at most k, that has

at most b bags?

Theorem 6. Let k ≥ 16. Suppose the Exponential Time Hypothesis holds, then
there is no algorithm for k-MSPD or k-MSTD using 2o(n/ log n) time.

Proof. By reduction from Orthogonal Vector Crafting. We begin by
showing the case for MSPD, but note the same reduction is used for MSTD.

For the string s, we create a connected component in the graph G as follows:
for 1 ≤ i ≤ |s| + 1 we create a clique Ci of size 6, and (for 1 ≤ i ≤ |s|) make
all vertices of Ci adjacent to all vertices of Ci+1. For 1 ≤ i ≤ |s|, if s(i) = 1, we
create a vertex si and make it adjacent to the vertices of Ci and Ci+1.

For each string ti, we create a component in the same way as for s, but
rather than using cliques of size 6, we use cliques of size 2: for each 1 ≤ i ≤ n
and 1 ≤ j ≤ |ti| + 1 create a clique Ti,j of size 2 and (for 1 ≤ j ≤ |ti|) make all
vertices of Ti,j adjacent to all vertices of Ti,j+1. For 1 ≤ j ≤ |ti|, if ti(j) = 1,
create a vertex ti,j and make it adjacent to the vertices of Ti,j and Ti,j+1.

An example of the construction (for s = 10110 and t1 = 01001) is shown
in Fig. 2. We now ask whether a path decomposition of width 16 exists with at
most |s| bags. Due to space constraints, we omit the correctness proof of the
construction. ��

6 6 6 6 6 6

2 2 2 2 2 2

1 11 1 1

Fig. 2. Simplified example of the graph created in the hardness reduction for The-
orem6. The circles and ellipses represent cliques of various sizes. The component
depicted in the top of the picture corresponds to t1 = 01001, while the component
at the bottom corresponds to s = 10110.
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6 Intervalizing Coloured Graphs

In this section, we consider the following problem:

Intervalizing Coloured Graphs

Given: A graph G = (V,E) together with a proper colouring c : V →
{1, 2, . . . , k}.

Question: Is there an interval graph G′ on the vertex set V , for which c
is a proper colouring, and which is a supergraph of G?

Intervalizing Coloured Graphs is known to be NP-complete, even for 4-
coloured caterpillars (with hairs of unbounded length) [8]. In contrast with this
result we require five colours instead of four, and the result only holds for trees
instead of caterpillars. However, we obtain a 2Ω(n/ log n) lower bound under
the Exponential Time Hypothesis, whereas the reduction in [8] is from Multi-

processor Scheduling and to our knowledge, the best lower bound obtained
from it is 2Ω( 5√n) (the reduction is weakly polynomial in the length of the jobs,
which is Θ(n4), as following from the reduction from 3-Partition in [9]). In
contrast to these hardness results, for the case with 3 colours there is an O(n2)
time algorithm [10,11].

Theorem 7. Intervalizing Coloured Graphs does not admit a 2o(n/ log n)-
time algorithm, even for 5-coloured trees, unless the Exponential Time Hypoth-
esis fails.

Proof. Let s, t1, . . . , tn be an instance of Orthogonal Vector Crafting. We
construct G = (V,E) in the following way:

S-String Path. We create a path of length 2|s| − 1 with vertices p0, . . . p2|s|−2,
and set c(pi) = 1 if i is even and c(pi) = 2 if i is odd. Furthermore, for even
0 ≤ i ≤ 2|s| − 2, we create a neighbour ni with c(ni) = 3.

Barriers. To each endpoint of the path, we attach the barrier gadget, depicted
in Fig. 3. The gray vertices are not part of the barrier gadget itself, and represent
p0 and n0 (resp. p2|s|−2 and n2|s|−2). Note that the barrier gadget operates on
similar principles as the barrier gadget due to Alvarez et al. [8]. We shall refer
to the barrier attached to p0 as the left barrier, and to the barrier attached to
p2|s|−2 as the right barrier.

The barrier consists of a central vertex with colour 1, to which we connect
eight neighbours (clique vertices), two of each of the four remaining colours. Each
of the clique vertices is given a neighbour with colour 1. To one of the clique
vertices with colour 2 we connect a vertex with colour 3, to which a vertex with
colour 2 is connected (blocking vertices). This clique vertex shall be the barrier’s
endpoint. Note that the neighbour with colour 1 of this vertex is not considered
part of the barrier gadget, as it is instead a path vertex. We let Cl (el) denote
the center (endpoint) of the left barrier, and Cr (er) the center (endpoint) of the
right barrier.
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1

4
5 5

41
1 1

1
3 131

1 2 2 1
3

3
2

(a) Barrier Gadget

4
3
2

5

1

(b) Interval Representation

Fig. 3. (a) Barrier Gadget. The gray vertices are not part of the barrier gadget itself,
and show how it connects to the rest of the graph. (b) How the barrier gadget may
(must) be intervalized.

T-String Paths. Now, for each string ti, we create a path of length 2|ti|+1 with
vertices qi,0, . . . , qi,2|ti| and set c(qi,j) = 3 if j is odd and set c(qi,j) = 2 if j is
even. We make qi,1 adjacent to U . Furthermore, for odd 1 ≤ j ≤ 2|ti| − 1, we
create a neighbour mj with c(mj) = 1. We also create two endpoint vertices of
colour 3, one of which is adjacent to qi,0 and the other to qi,2|ti|,

Connector Vertex. Next, we create a connector vertex of colour 5, which is made
adjacent to p1 and to qi,1 for all 1 ≤ i ≤ n. This vertex serves to make the entire
graph connected.

Marking Vertices. Finally, for each 1 ≤ i ≤ |s| (resp. for each 1 ≤ i ≤ n and
1 ≤ j ≤ |ti|), if s(i) = 1 (resp. ti(j) = 1), we give p2i−1 (resp. qi,2j−1) two
neighbours (called the marking vertices) with colour 4. For each of the marking
vertices, we create a neighbour with colour 3.

This construction is depicted in Fig. 4. In this example s = 10100, t1 = 01
and t2 = 001. Note that this instance of Orthogonal Vector Crafting is
illustrative, and does not satisfy the restrictions required in the proof.

Informally, the construction works as follows: the barriers at the end of the
path of p-vertices can not be passed by the remaining vertices, meaning we have
to “weave” the shorter q-paths into the long p-path. The colours enforce that
the paths are in “lockstep”, that is, we have to traverse them at the same speed.
We have to map every q-vertex with colour 3 to a p-vertex with colour 2, but
the marking vertices prevent us from doing so if both bitstrings have a 1 at that
particular position.

Due to space constraints, we omit the correctness proof of the construction.
The number of vertices of G is linear in |s|, and we thus obtain a 2o(n/ log n)

lower bound under the Exponential Time Hypothesis. ��
Note that the graph created in this reduction only has one vertex of super-

constant degree. This is tight, since the problem is polynomial-time solvable for
bounded degree graphs (for any fixed number of colours) [12].
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Fig. 4. Example of the graph created in the hardness reduction for Theorem 7.

To complement this result for a bounded number of colours, we also show a
2Ω(n)-time lower bound for graphs with an unbounded number of colors, assum-
ing the ETH. Note that this result implies that the algorithm from [4] is optimal.

Theorem 8. Assuming the Exponential Time Hypothesis, there is no algorithm
solving Intervalizing Coloured Graphs in time 2o(n), even when restricted
to trees.

7 Conclusions

In this paper, we have shown for several problems that, under the Exponential
Time Hypothesis, 2Θ(n/ log n) is the best achievable running time - even when the
instances are very restricted (for example in terms of pathwidth or planarity).
For each of these problems, algorithms that match this lower bound are known
and thus 2Θ(n/ log n) is (likely) the asymptotically optimal running time.

For problems where planarity or bounded treewidth of the instances (or,
through bidimensionality, of the solutions) can be exploited, the optimal run-
ning time is often 2Θ(

√
n) (or features the square root in some other way). On

the other hand, each of problems studied in this paper exhibits some kind of
“packing” or “embedding” behaviour. For such problems, 2Θ(n/ log n) is often
the optimal running time. We have introduced two artificial problems, String
Crafting and Orthogonal Vector Crafting, that form a useful frame-
work for proving such lower bounds.

It would be interesting to study which other problems exhibit such behav-
iour, or to find yet other types of running times that are “natural” under the
Exponential Time Hypothesis. The loss of the log n-factor in the exponent is due
to the fact that log n bits or vertices are needed to “encode” n distinct elements;
it would be interesting to see if there are any problems or graph classes where a
more compact encoding is possible (for instance only log1−ε n vertices required,
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leading to a tighter lower bound) or where an encoding is less compact (for
instance log2 n vertices required, leading to a weaker lower bound) and whether
this can be exploited algorithmically.
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