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INTRODUCTION

Establishing causal associations between risk factors, 

treatments, or other exposures, and outcomes is a 
key aim in many epidemiologic studies. However, in 
observational studies, the attempt is often hampered by 

ABSTRACT 

Background: In observational research on causal effects, missing data and confounding are very common problems. 
Multiple imputation and propensity score methods have gained increasing interest as methods to deal with these, but 
despite their popularity methodologists have mainly focused on how they perform in isolation.
Methods: We studied two approaches to implementing propensity score methods following multiple imputation, both 
of which have been used in applied research, and compared their performance by way of Monte Carlo simulation 
for a continuous outcome and partially unobserved covariate, treatment or outcome data. In the first, so-called Within, 
approach, propensity score analysis is performed within each of m imputed datasets, and the resulting m effect 
estimates are averaged. In the Across approach, for each subject the m estimated propensity scores are averaged 
first, after which the propensity score method is implemented based on each subject’s average propensity score. 
Because of its common use, complete case analysis was also implemented. Five propensity score estimators were 
studied, including regression, matching, and inverse probability weighting.
Results: The Within approach was found to be superior to the Across approach in terms of bias as well as variance 
in settings with missing covariate data, when missing data were missing at random as well as when they were 
missing completely at random. In settings with incomplete treatment or outcome values only, the Within and Across 
approaches yielded similar results. Complete case analysis was generally least efficient and unbiased only in 
scenarios where missing data were missing completely at random.
Conclusion: We advise researchers not to use the Across approach as the default method, because even when 
data are missing completely at random, this may yield biased effect estimates. Instead, the Within is the preferred 
approach when implementing propensity score methods following multiple imputation.
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missing data and confounding.
Simply ‘ignoring’ missing data, which typically means 

that a complete case analysis is performed, often is 
inappropriate, because the conditions under which it 
is unbiased are very restrictive [1-4]. Even when these 
conditions are met, for example because the complete 
cases are truly a random subset of the study sample, 
discarding incomplete records may render the estimator 
unnecessarily inefficient [1-3]. An alternative to complete 
case analysis is multiple imputation (MI), in which 
missing data are filled in with random draws from their 
predictive distributions based on the observed data, 
thereby producing multiple plausible datasets. Inferences 
are typically made using a simple set of rules known as 
Rubin’s Rules [1]. MI is a popular method for dealing 
with missing data, because it is flexible, relatively easy to 
implement with readily available statistical packages, and 
often provides valid estimates of effect and standard errors 
in situations where simpler techniques, including complete 
case analysis, fail [1-3].

To address the problem of confounding, researchers 
have traditionally used multivariable regression for data 
analysis. More recently, the use of propensity score 
methods has gained increasing interest [5]. A subject’s 
propensity score is the conditional probability of being 
assigned to treatment given their measured covariates 
[6-7]. Among those subjects with the same propensity 
score, the distribution of measured covariates is expected 
to be the same between treated and untreated individuals 
[6]. Thus, by conditioning on the propensity score 
treatment status becomes independent of covariates. 
Several propensity score methods have been described: 
stratification, matching on the propensity score, inverse 
probability of treatment weighting (IPW), and covariate 
adjustment in multivariable regression [6-7]. However, 
despite increasing popularity, it is largely unclear how 
these perform in the presence of missing data.

Few have investigated approaches that combine 
missing data techniques with methods for confounding. 
Mitra and Reiter studied two approaches that combine 
multiple imputation with propensity score matching [8]. In 
both, missing covariate data are imputed m times through 
multiple imputation. For each of the completed datasets, 
a propensity score is then estimated for each subject. In 
the so-called Within approach, propensity score analysis 
is performed within each of m imputed datasets, and the 
resulting m effect estimates are averaged. In the Across 
approach, for each subject the m estimated propensity 
scores are averaged first, after which the propensity score 
method is implemented based on each subject’s average 
propensity score. While both approaches were shown to 
be superior to complete case analysis in terms of bias, it 
was found that the Across method was less biased than 
the Within method, especially in the presence of missing 
covariate data [8]. However, as with any simulation study, 
these results may not extend beyond the settings that were 

considered. For example, while it was assumed that the 
treatment and outcome variables were fully observed, none 
have compared the approaches in settings with incomplete 
data for one or both of these variables. Furthermore, 
although it has been argued that often the outcome should be 
included in the imputation model [3,9,10] it was excluded 
from the imputation model in the previous study. With the 
outcome included, subsequent simulations have found the 
Within approach to be preferred [11,12]. Nevertheless, 
in applied research, the Across approach appears to have 
gained interest since its introduction [13-21].

Our aim was therefore to provide further insight 
into how propensity scores analysis should be applied 
in combination with multiple imputation. Specifically, we 
compared the Within and Across approaches in settings 
with missing covariate data, missing treatment indicators, 
and missing outcomes. Because of their common use, 
complete case analyses were also studied. The remainder 
of this article is structured as follows. The notation and set-
up for the simulations are detailed in Sections 2 and 3. 
Section 4 details anticipated sources of bias. Results are 
presented in Section 5 and discussed in Section 6. Finally, 
we conclude with a summary in Section 7.

METHODS 

Notation

Suppose the random vector Z = (X1,X2,…,Xg,T,Y) is 
observed on n subjects. The first g variables of Z represent 
covariates, whereas T and Y refer to a binary treatment 
indicator variable and a continuous outcome, respectively. 
Realisations are printed in lower case letters. We denote 
an n×(g+2) matrix by Z, whose ith row Zi = (Xi1,Xi2,…,X 
ig,Ti,Yi) represents the ith (i = 1,2,...,n) subject’s record. 
For each i,j element in Z, define a missing indicator 
variable Mij that takes the value of 1 if it is observed and 0 
otherwise. Further, we write z = (zobs,zmis) to indicate that z 
can be partitioned into an observed part zobs and a missing 
part zmis. In multiple imputation, values of zmis are imputed 
m times by drawing from posterior predictive distributions, 
resulting in m completed datasets z(k), k = 1,2,...,m that 
may be subjected to propensity score analysis. A detailed 
description of the Across and Within approaches are 
given in the Supplementary Material.

Simulation methods

We used a series of Monte Carlo simulations to 
examine the performance of the Across, the Within, and 
complete case approaches under various missing data 
mechanisms. The simulations were carried out in several 
stages. In the first stage, complete data are generated 
following one of the data generating mechanisms detailed 

e12630-2



ORIGINAL ARTICLES Epidemiology Biostatistics and Public Health - 2017, Volume 14, Number 4

PS methods and multiple imputation

below. These were chosen for comparability with Mitra 
and Reiter [8]. Second, missing data are introduced into 
one of the variables. Third, a number of approaches 
are applied to estimate the treatment-outcome effect. For 
each scenario (combination of complete data generating 
mechanism and missing data mechanism), this process 
was repeated 1000 times. A full factorial design was 
used. All simulations were conducted with R Statistical 
Software version 3.1.1 [22]. For multiple imputation we 
used the mice package [23]. Continuous and binary 
variables were imputed using the norm and logreg options, 
respectively. The number of imputations was set to m = 
5 for efficiency. For any incomplete variable, all other 
variables, including the outcome, were included in the 
imputation model. In all simulations, we used correctly 
specified propensity score and imputation models.

Data generating mechanisms

We considered g = 2 covariates, a binary treatment 
indicator variable (Ti) and a continuous outcome (Yi) for 
n = 1100 subjects. Data were simulated by sequentially 
drawing (Xi1,Xi2), Ti, and Yi for i = 1,2,...,n from the 
respective distributions. Let (Xi1,Xi2)~N(μ,Σ), where μ = 
(10,10) and Σ has variances equal to 5 and covariance 
2.5 (correlation 0.5).

The value of Ti was assigned by drawing from a 
Bernoulli distribution with parameter (i.e. the probability 
of treatment assignment) defined as a function of the ith 
subject’s covariate data. In particular, we let 

Pr(Ti = 1|Xi1,Xi2) = expit(-7.8+0.255Xi1+0.255Xi2)

where expit(η) is the inverse logit function exp(η)/
(1+exp(η)). As such, the log odds of treatment increases 
with 0.255 for every unit increase in either X1 or X2. 
This mechanism assigns approximately 100 subjects to 
treatment (T=1) and 1000 subjects to the control group 
(T=0).

We defined the outcome Yi such that, for all i,

Yi= 2Ti+Xi1+0.5Xi2 + εi,	 εi~N(0,σ2)

where εi is independent of (Ti Xi1,Xi2). The interest lies 
in estimating treatment effect βTY = 2, that is, the conditional 
treatment effect, which—because of homogeneity and the 
collapsibility of the causal difference in means—equal the 
marginal treatment effect. Clearly, both covariates serve as 
a confounder for the association between T and Y. We 
varied σ2 = 1,9 to show that larger residual variances 
(σ2=9) correspond with larger discrepancies between 
Across and Within estimates in the case of missing 
covariate data.

Missing data mechanisms

To aid understanding, we initially restricted ourselves 
to simple missing data mechanisms, namely univariate 
missing completely at random (MCAR) mechanisms, and 
finally considered univariate missing at random (MAR) 
settings. The mechanisms for generating missing data were 
as follows:

1.	 MCAR covariate values. Any subject’s X2 value 
was allowed to be missing with probability Pr(Mi2 
= 1|Z) = p, p = 0.2,0.4,0.6,0.8. For columns j 
= 1,3,4 in Z, we let Pr(Mij = 1|Z) = 0.

2.	 MCAR treatment indicator values. We allowed 
for missing treatment status with Pr(Mi3 = 1|Z) = 
p, p = 0.2,0.4,0.6,0.8, and let the missingness 
probability of the other variables equal 0.

3.	 MCAR outcome values. We considered the same 
missing data mechanisms as in ii except that 
we simulated missing outcomes as opposed to 
missing treatment indicator values.

4.	 MAR covariate values. Two MAR mechanisms 
were considered. Under mechanism MAR1, 
missing covariate values were simulated with 
Pr(Mi2 = 1|Z) = expit(-8.2 + 0.8Xi1)(1-Ti). Under 
mechanism MAR2, Pr(Mi2 = 1|Z) = expit(-13 + 
0.8Yi). These mechanisms set approximately 40% 
of the subjects’ X2 values to missing.

Effect estimators

For all simulated datasets, the Within and Across 
estimates were obtained as described in the Supplementary 
Material. Because of their common use, complete case 
analyses were also performed for comparison. A number of 
propensity score methods were investigated. The regression 
estimates of the treatment effect were obtained by linearly 
regressing the outcome on treatment and the logit of the 
estimated propensity score. The term matching is used to 
refer to pair matching performed by selecting for each 
treated subject a single untreated control without replacement 
using a greedy nearest neighbour matching algorithm. No 
restrictions were placed on the maximum acceptable 
difference between the propensity scores of any two 
matched subjects. We also performed matching on the logit 
of the propensity score using a calliper distance of 0.05. A 
fourth effect estimator was obtained using inverse probability 
weighting (IPW) where treated subjects are weighted by the 
inverse of their propensity score and untreated subjects by 
the inverse of its complement. Finally, we applied iterative 
inverse probability weighting (IIPW) using a convergence 
threshold of 10-4 and a maximum of 100 iterations per 
dataset [24]. Calliper matching and iterative IPW were 
used because matching and IPW are sensitive to practical 
non-positivity [24,25]. More details on practical non-
positivity and IIPW are given in the Supplementary Material.
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Variance estimation

An appealing property of the standard multiple 
imputation approach is that it facilitates estimation of 
standard errors that reflect both the variability in the data 
and the uncertainty in the imputations.1 However, for 
the Across approach, the between-imputation variance 
component of Rubin’s multiple imputation variance estimator 
cannot fully capture the uncertainty of the imputations. For 
example, when there are only missing covariates, the 
between-imputation variance would be zero, because the 
same set of propensity scores is used for each dataset.

As an alternative to Rubin’s rules for variance 
estimation, analysts can implement a bootstrapping 
procedure that is akin to the full mechanism bootstrapping 
approach described by Efron [26]. Here, bootstrapping is 
implemented as follows:

1.	 Sample with replacement n rows from the 
incomplete dataset z to obtain a bootstrapped 
dataset zb.

2.	 Impute missing values m times through multiple 
imputation, producing for k = 1,2,...,m an 
imputed dataset zb

(k).
3.	 Apply the analysis procedure (e.g. Within or 

Across approach) to the m imputed datasets to 
obtain a single effect estimate for the bootstrapped 
dataset.

4.	 Repeat steps 1-3 B times to obtain B bootstrap 
replicates.

The bootstrap variance and confidence interval for 
the effect estimate can be obtained from the bootstrap 
replicates using standard formulae.

For the scenarios with MAR missingness, we estimated 
variances and confidence intervals using Rubin’s rules and 
the bootstrapping procedure outline above. As discussed, 
the former can be expected to yield too narrow standard 
errors and therefore suboptimal coverage. To illustrate 
this, we applied Rubin’s rules for the regression estimators 
using the modified degrees of freedom formula detailed 
elsewhere to obtain 95% confidence intervals [27,28]. 
As for bootstrapping, we calculated bootstrap sample 
variances and 95% percentile confidence intervals, using 
the 2.5th and 97.5th percentiles as the lower and upper 
bounds, based on 1000 bootstrap samples.

Performance measures

The primary performance measure of interest is bias, 
estimated by the mean deviation of the estimated effect 
from the true effect of treatment on the outcome (βTY) across 
all 1000 simulations, but we also provide empirical 
variances and mean squared errors (MSE).

For the MAR scenarios, coverage probabilities and 
the mean estimated variances relative to the corresponding 
empirical variances are also provided. Based on 1000 

simulations, the Monte Carlo standard error for the true 
coverage probability of 0.95 is √(0.95(1-0.95)/1000)≈ 
0.0069, implying that the estimated coverage probability 
is expected to lie with 95% probability between 0.936 
and 0.964.29 Empirical coverage rates outside this 
interval provide evidence against the true coverage 
probabilities being equivalent to the nominal level of 0.95.

Potential sources of bias

To see how the Within approach following multiple 
imputation might avoid bias due to missing data, it is 
instructive to consider large samples, so that uncertainty 
in imputation model parameters may be ignored. Under 
correct model specification and missingness that is at 
random (strictly, ‘ignorable’ in the sense defined by 
Rubin1), multiple imputation allows for the information 
lost because of missingness to be restored in such a way 
that the imputed datasets follow closely the distribution 
of the full data. Therefore, any analysis procedure may 
be anticipated to give similar results when applied to the 
imputed data and to the unobserved full data. 

Note that only the Within approach fully adheres to 
Rubin’s original MI algorithm, where averaging across 
imputations is deferred until the last step. In the context of 
propensity score matching, this may seem unsatisfactory. 
Untreated subjects who would be considered unsuitable 
matches based on their ‘true’ propensity scores, may be 
included in the matched set because by random variability 
their estimated propensity scores, based on the imputed 
data, better resemble the treated subjects’ propensity 
scores. Untreated subjects whose propensity scores are 
overestimated tend to be included in the matched set; 
conversely, untreated subjects whose propensity scores are 
underestimated tend to be left out. This may then lead to bias 
by a systematic lack of exchangeability between treatment 
groups of the matched pseudopopulations. Intuitively, the 
Across approach may be preferable because of the lesser 
reliance on random variability. This problem of random 
variability is due to the nature of propensity score matching-
based estimators, and is not expected to introduce bias 
when for example regression adjustment is used.

The Across approach would appear more robust 
against the aforementioned source of bias, because 
matched pseudopopulations are formed after the pooling 
of propensity scores across imputed datasets. However, for 
large m the Across approach is comparable to conditional 
mean imputation, which, as illustrated in the Supplementary 
Material, may also introduce bias. Given its resemblance, 
the Across approach is also expected to be biased in the 
case of missing covariate data.

When treatment or outcome data are missing and 
covariate data are fully observed, the Within and 
Across approaches should yield similar results. Consider 
again a setting with MCAR missingness, now affecting 
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treatment indicator values only. With large samples, 
propensity score model estimates would be similar across 
imputations. Since all covariate values are observed, 
this implies that propensity score estimates too would 
exhibit little to no variation across the complete datasets, 
rendering the Within and Across approaches effectively 
indiscernible. With complete treatment and covariate 
data, the propensity score estimates would be exactly the 
same across imputed datasets, because the outcome does 
not enter the propensity score model fitting. Therefore, 
Within and Across estimates would be identical under 
missing outcome values only.

Daniel et al. showed how causal diagrams can be 
used to infer that in nearly all scenarios considered here, 
conditioning on the complete cases (i.e. prior to matching, 
IPW, or IIPW) does not itself induce bias.4 It follows that 
when other sources of bias, here practical non-positivity 
and confounding, are adequately addressed, the treatment 
effect can be validly estimated. Among the missing data 
mechanisms considered, it is only MAR2 that biases 
complete case analysis, namely by inducing a relation 
between treatment status and the (unmeasured) error on the 
outcome through collider stratification.

MAR1 is an example of a mechanism that accentuates 
practical non-positivity. Under this mechanism, untreated 
subjects with large X1 values are more likely to be have 
missing X2 values than others. When untreated subjects 
have systematically lower X2 values even before the 
introduction of missingness, the consequence of this 
mechanism is that the propensity score distributions of 
groups of treated and untreated subjects become more 
distinct. As a result, estimators that are sensitive to practical 
non-positivity (e.g. matching and IPW) become more 
biased when incomplete records are discarded. Note that 
the matching and IPW methods described in Section 3.3 
are estimators of the average effect on the treated (ATT) 
and the average effect (ATE) on all subjects, respectively 
[30]. A sufficient condition for these measures of effect 
to coincide is that of collapsibility and homogeneity of 
the treatment effect. This joint condition is met in our 
simulations. The assumptions of ATT and ATE estimators 
with respect to positivity are, however, not the same. ATE 
estimators require the covariate distributions of the treated 
and untreated to have common support, whereas ATT 
estimators require only the support of the treated to be 
shared by that of the untreated but not vice versa [31]. This 
may in part explain possible differences between matching 
versus IPW estimates.

RESULTS

Bias

In this section, we present graphically the estimated 
biases for the effect estimators of interest. Results on these 

and other performance measures are presented in tabular 
form in the Supplementary Material.

Missing (MCAR) covariate values

Figure 1 depicts the estimated biases for the scenarios 
with MCAR covariate data. Apart from those based on 
matching or IPW, the complete case and Within estimators 
were not identifiably biased. The Across approach, 
however, showed substantial bias, especially when either 
the missingness probability, the residual variance σ2 or 
both were large. The regression-, matching-, calliper 
matching-, and IIPW-based estimators were all negatively 
biased for the Across approach. In contrast, Across IPW 
estimates were on average overestimated. Complete case 
matching and IPW estimates were also systematically 
overestimated, with the extent of bias increasing with the 
extent of missingness.

Missing (MCAR) treatment indicator values

Figure 2 depicts the estimated biases for the scenarios 
with MCAR treatment indicator values. The Across and 
Within estimates were on average highly similar. Apparent 
from the figure is also the trend that as the percentage of 
incomplete cases increases, the treatment effect becomes 
on average progressively more underestimated by 
both the Across and Within estimators. Conversely, the 
complete case matching and IPW estimators systematically 
overestimated the treatment effect, particularly for large 
missingness probabilities.

Missing (MCAR) outcome values

Figure 3 depicts the estimated biases for the scenarios 
with MCAR outcomes. For all propensity score methods, 
the Across and Within estimators yielded identical results. 
Again, the complete case matching and IPW estimators 
showed bias, particularly when the extent of missingness 
was large. The corresponding Within and Across estimators 
were less biased. The regression-, calliper matching-, and 
IIPW-based estimators resulted in minimal bias.

Missing (MAR) covariate values

Figure 4 depicts the estimated biases for the scenarios 
with MAR covariate data. The complete case matching 
and IPW estimators generally showed more bias than 
in the corresponding MCAR covariate settings with a 
comparable proportion of incomplete records (40%). 
The regression-, calliper matching-, and IIPW-based 
estimators showed minimal bias for both the complete 
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case analysis and Within approach when the missingness 
of X2 depended on X1 and T (mechanism MAR1). As for 
the scenarios where the missingness dependend on the 
outcome Y (MAR2), the Within but not the complete case 
approach yielded estimates close to the true treatment 
effect. As before, Across estimates were systematically too 
low for the regression-, matching-, calliper matching-, and 
IIPW-based estimators.

Other performance measures

In general, the Within estimators were associated 
with the smallest empirical variances and MSEs. The 
simulations also illustrate the implications of using Rubin’s 
rules in estimating the variance. The variances of the 
Across regression estimators were underestimated and 
the coverage probability too low (see Supplementary 
Material). Conversely, when applying the bootstrapping 
procedure, the estimated variances were on average close 
to the respective empirical variances. Despite generally 
adequate coverage probabilities for the Within approach, 
the variances for calliper matching-, and IIPW-based 
estimators were on average overestimated.

DISCUSSION

Our primary focus was on examining the relative 
performance of two approaches to implementing propensity 
score methods following multiple imputation. Although 
the Across approach has been applied in practice, our 
simulations show that, as expected, it fails in settings with 
missing confounder data, even when the missingness is 
completely at random and complete case estimators are 
unbiased.

As stated, untreated subjects with propensity scores 
that are by random variability underestimated are more 
likely to be selected as matches than subjects whose 
propensity score is overestimated. This problem of random 
variability is inherent to propensity score methods, and 
is not expected to introduce bias when for example 
regression adjustment is used. However, its impact 
was negligible in our simulations, because the calliper 
matching estimates were highly similar to the regression 
estimates. The second explanation for the discrepancy in 
bias between the approaches rests on the resemblance 
of the Across approach to conditional mean imputation in 
the context of missing covariate data. This explanation is 
consistent with our observations that the Across approach 

FIGURE 1. Biases of treatment effect estimators for various degrees of missing (MCAR) covariate data and residual variances σ2. 

Abbreviations: C. matching, calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse probability weighting; CCA, complete case 
analysis. Error bars represent 95% confidence intervals for the simulation estimates of bias.
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showed more bias for larger missingness probabilities and 
larger residual variances.

Conversely, with complete confounder data, the 
Across approach is not comparable to conditional mean 
imputation. Instead, the bias observed in settings with 
missing treatment indicator values probably is largely 
attributable to a phenomenon, known as separation or 
‘perfect prediction’, that is associated with regression 
models for categorical responses. Separation occurs if 
the responses, here treatment status, can be perfectly 
separated by a single predictor or a linear combination of 
predictors. The problem lies with the Normal approximation 
to the posterior distribution of the parameters of the logistic 
regression model that is used by the software to predict 
missing treatment indicator values. When in the presence 
of separation, logistic regression is applied to the complete 
cases, modelling the probability of being assigned to 
treatment as Pr(Ti = 1|Xi1,Xi2,Yi) = expit(α0 + α1Xi1 + α2Xi2 
+ α3Yi), then we can find an infinite sequence of parameter 
specifications with monotonically increasing likelihood 
converging to unity, such that for at least one parameter 
α the estimate a tends to infinity [32,33]. Hence, the 
maximum likelihood estimate does not exist. Nevertheless, 

given the near-flat nature of the likelihood, typically very 
large values for the maximum likelihood estimate a and 
its variance are returned by standard software. If the 
Normal approximation to the posterior distribution of the 
parameters is applied, then it is not unlikely that values 
are drawn such that in the imputation step subjects with 
incomplete data are assigned to the treatment group 
whilst the observed data clearly suggests that these 
subjects should be assigned to the control group [32]. In 
other words, the Normal approximation to the posterior 
distribution is poor. One way to prevent these implausible 
imputations is to add to the dataset a few observations 
such that separation is no longer present and with such 
small weights that the impact on the imputation model is 
limited [34]. mice implements such a data augmentation 
method to deal with this phenomenon [3,34]. but we 
suspect that in our simulations the impact of the weights 
was large enough to produce bias.

Although unbiasedness is arguably more crucial than 
valid variance estimation, sufficiently large variances, even 
if they can be estimated validly, may render unbiased 
estimators of little practical use [29]. In our simulations, 
the Within approach was superior or comparable to the 

FIGURE 2. Biases of treatment effect estimators for various degrees of missing (MCAR) treatment indicator values and residual 
variances σ2.

Abbreviations: C. matching, calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse probability weighting; CCA, complete case 
analysis. Error bars represent 95% confidence intervals for the simulation estimates of bias.
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Across in terms of either criterion. Another drawback of 
the latter approach is the difficulty in making inferences 
as to the precision of effect estimates. Bootstrapping may 
provide correct standard errors, but we acknowledge 
that this approach is computationally intensive. Further, 
because coverage is affected by the bias in both variance 
and effect estimation, it is likely to be poor in general for 
Across estimators. Bootstrapping for the (calliper) matching 
estimators here yielded slightly overestimated variances 
and conservative empirical coverage rates. A similar 
phenomenon was observed by Austin and Small [35]. The 
bootstrapping procedure defined in Section 3.4 resembles 
the ‘complex bootstrap’ of Austin and Small. The rather 
large discrepancies between the mean estimated variances 
and the empirical variances for the IIPW estimators are 
possibly attributable to the unstable nature of inverse 
probability weighting. Further investigation and development 
of bootstrapping approaches to variance estimation for the 
(calliper) matching and (iterative) IPW estimators represent 
an interesting direction for future research.

Our findings contrast with those of Mitra and 
Reiter [8]. A crucial difference between the simulations 
is the inclusion of the outcome in the model used to 

impute missing covariate values. Failing to include the 
outcome leads to imputed datasets that do not reflect the 
association between covariate and outcome that would 
have been observed had there been no missing values. 
The consequence of this is that if one adjusts for the 
imputed covariate values to estimate the treatment effect, 
the variation in outcomes between the treatment groups 
that is due to the partially unobserved covariate would in 
part be attributed to the differences in treatment status.

As with any simulation study, an important limitation 
of this study is the potentially limited generalisability. The 
scenarios considered here represent only a small and 
simplified subset of those likely to be encountered in 
applied research. Some of the missingness probabilities 
that were studied are probably unrealistic, and only a 
single sample size was considered. Practical non-positivity 
and separation are perhaps less relevant in settings with 
larger samples and fewer incomplete cases. Furthermore, 
we considered only two covariates and assumed that 
the propensity score and imputation models could be 
correctly specified. Applied researchers do not have the 
luxury of knowing the data generating and missing data 
mechanisms and often need to assess and account for 

FIGURE 3. Biases of treatment effect estimators for various degrees of missing (MCAR) outcomes and residual variances σ2. 

Abbreviations: C. matching, calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse probability weighting; CCA, complete case 
analysis. Error bars represent 95% confidence intervals for the simulation estimates of bias.
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multiple sources of bias. However, rather than scrutinising 
methods for these issues in isolation only, it may be 
interesting to additionally study how they perform in 
combination. Conducting simulations for specific scenarios 
of interest may be particularly desirable given the limited 
generalisability of our results. If these are not possible, we 
advise researchers not to use the Across approach as the 
default method, because it appears to offer no advantage 
over the Within method.

CONCLUSION

In medical research, confounding and missing data 
are common problems that often occur simultaneously. 
Complete case analysis, although valid under various 
circumstances, is discouraged as the default procedure, 
because it leads to a loss of valuable information and it 
is typically unknown whether the conditions under which 
complete case analyses are valid are satisfied. When 
multiple imputation is to be followed by the implementation 
of a propensity score method, researchers could apply 
the Across and Within approaches. The present study 

highlights a number of aspects of the Across approach 
that render it suboptimal. Our simulations indicate that 
the Within approach is superior to the Across approach 
in terms of both bias and variance in settings with 
missing confounder data. For incomplete treatment and/or 
outcome data, the approaches yield similar estimates. We 
advise researchers not to use the Across approach as the 
default method, because even in MCAR settings, this may 
yield biased effect estimates. Finally, when matching or 
IPW are the propensity methods of choice, we recommend 
practical non-positivity to be adequately addressed, e.g. 
by using a narrow calliper or an iterative reweighting 
algorithm. One should be aware, however, that trimming 
away or down-weighting observations may direct the focus 
of inference to a narrower population that may not reflect 
that of primary interest. 
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SUPPLEMENTARY MATERIAL

This Supplementary Material has three parts. The first 
contains a discussion of the Within and Across approaches; 
the second part reviews the positivity assumption and 
provides sample R code for the iterative inverse probability 
weighting estimators for the complete case, Across and 
Within approaches; and the third part provides the results 
of the simulation studies on all performance measures.

A Within and Across approaches

Two approaches to implementing propensity score 
methods following multiple imputation to address missing 
data are described: the Within and Across approaches [1]. 
The first step in the analysis procedure is to estimate within 
each of m imputed datasets a vector of propensity scores 
e(k)=(e1

(k),e2
(k),…,en

(k)) typically using logistic regression. In 
the Within approach, any propensity score method is 
implemented within each completed dataset using e(k), 
yielding an estimate of the relation between treatment 
and outcome, βw

(k). The Within estimate is defined as 
the average of βw

(1),βw
(2),βw

(m). In the Across approach, 
the propensity score method is implemented within each 
completed dataset, now using eA=(e1

A,es
A,…,en

A ), where 
ei

A=∑(k=1)
mei

(k)/m. As in the Within approach, the resulting 
estimates βA

(1),βA
(2),βA

(m) are averaged, yielding the single 
estimate βA. This procedure deviates slightly from the 
Across approach described by Mitra and Reiter [1]. The 
modified Across approach described here is equivalent to 
the original procedure when T and Y are fully observed, 
but can additionally accommodate missings on T and/
or Y. Henceforth, we will refer to this modified procedure 
simply as the Across approach.

In what follows, we first give a heuristic explanation 
for the bias due to the Across approach in a simple setting 
with missing covariate data and then offer more technical 
arguments. Consider for simplicity the case with only 
a single continuous covariate X, and suppose that the 
treatment-outcome effect can be parameterised through the 
linear regression model

where β1 is the parameter of interest. Further, assume 
that the relationship between the probability of being 
assigned to treatment (T = 1) given X can be modelled by 
a logistic function

In this case, we may rewrite the treatment-outcome 

model in terms of a linear transformation logit e(X)=α0+α1 
X of the covariate values, the logit of the propensity score 
e(X),

The ordinary least squares estimator of the true treatment 
effect is unbiased if the regressors of the linear model are 
T and X, or T and β1. A similar observation can be made 
in the case of multiple covariates [2]. However, if we 
impute missing X values using conditional mean imputation, 
and regress Y on T and the (linearly transformed) imputed 
covariates to estimate the treatment effect, then, as illustrated 
in Figure 1, the estimator will be biased—provided that the 
conditional variance of Y given T and X is greater than zero 
and treatment assignment depends on X.

Likewise, in the case of missing (e.g. MCAR) X values, 
averaging (transformed) imputed values across many 
multiply imputed datasets (i.e. effectively conditional mean 
imputation) also renders the effect estimator biased. The 
crux of the matter lies in that the default imputation model 
is the linear regression with X as the dependent variable 
and T and Y as the independent variables, whereas the 
analysis model regards Y as the dependent variable. 
Switching dependent and independent variables results 
in best fit equations that are not in general equivalent 
(unless orthogonal regression is used). Bias can therefore 
also be expected for the Across approach, because in 
the context of missing covariate data it is comparable to 
conditional mean imputation, except that taking the logit 
of the average propensity score is not the same as taking 
the average of the logit of propensity scores.

We shall now describe the asymptotic behaviour of the 
Across approach in a simple setting with a binary confounder 

FIGURE 1. A single random sample (left) with missing 
completely at random (MCAR) covariate data imputed using 
conditional mean imputation (right). A valid treatment effect 
(A) is obtained by the regression of Y on T and X (the analysis 
model) applied to the complete cases. Applying the analysis 
model to the subset with covariate values imputed through 
conditional mean imputation yields a biased treatment effect 
estimate (B).
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X, binary treatment variable T, and binary outcome Y; 
missingness is MCAR and univariate, only affecting X.

Let ε be a uniformly distributed random variable over 
the interval (0, 1). Define Y to be equal to ε < f(T,X) 1 if for 
some deterministic mapping f to the interval (0, 1), and let 
it be 0 otherwise. For any subject with realisations u of ε 
and x of X, let Y0=I(u<f(0,x)) and Y1 = I(u<f(1,x)) being the 
indicator function) denote the outcomes if treatment were 
set, possibly contrary to fact, to 0 and 1, respectively. 
Suppose further that ε is independent of T given X, so that 
there is no unmeasured confounding, i.e., (Y0,Y1)⊥T|X. 
We also assume consistency throughout, i.e., that for any 
treated subject is observed and for any untreated subject 
is observed. In addition, it is assumed that positivity (i.e.,  
0<Pr(T=1|X=x)<1 for x=0,1) holds.

The marginal odds ratio OR for the causal effect of T 
on Y among the treated (ATT) is

	
(1)

By the consistency assumption, E[Y1 |T=1]=E[Y|T=1]. 
Since f(T,X)=Pr(Y=1|T,X),

Hence, we may rewrite (1) as follows:

	
(2)

Now consider the inverse probability weighting 
estimator

	
(3)

with weights W defined as follows. First, let W*=1 
if T=1 and W*=Pr(T=1|X)/Pr(T=0|X) if T=0. Then, let 
W=W*/E[W* |T=1] if T=1 and W=W*/E[W* |T=0] 
if T=0. Clearly, the numerator of (2) coincides with that of 
(3). Also, we have

	

             
(4)

It is easily verified that E[W*|T=0]=Pr(T=1)/Pr(T=0);

FIGURE 2. Asymptotic results (solid lines) of the Across inverse probability weighting estimator of the odds ratio for the marginal 
causal treatment-outcome effect in a hypothetical setting with a binary confounder, binary treatment variable and binary outcome 
(default parameter values given in text). Dashed lines indicate the true OR of 1. S1 and S2 represent sufficient conditions for 
asymptotic unbiasedness; see text.
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Thus, the right-hand side of (4) becomes EX {Pr(Y=1|T=0,X) 
|T=1}, and, therefore, (3) is equal to the right-hand side 
of (2).

Now suppose that X is unobserved with constant non-
zero probability. Clearly, since the missingness is completely 
at random, an application of the above inverse probability 
weighting estimator to the complete records would result 
in correct inference as to the OR. However, the missing 
data mechanism is typically unknown to the researcher, 
so that one might opt for multiple imputation and proceed 
under the less restrictive ignorability assumption. Since all 
variables under consideration are binary, misspecification 
may easily be averted by selecting a fully saturated 
imputation model, e.g., an additive logistic regression 
of X on T and Y, allowing for interaction between T and 
Y, so that Pr(X=1|T,Y) is consistently estimated from the 
observed data. Following imputation, the propensity score 
model parameterised by Pr(T=1|X) can also be consistently 
estimated from each imputed sample.

With the number of imputations m and sample 
size tending to infinity, the Across approach produces 
estimated propensity scores that equal their true equivalents 
for subjects with observed covariate values; however, for 
an incomplete record with realisations t and y of T and Y, 
the estimated propensity score equals

	
(5)

The Across propensity score estimate (5) is not 
generally equal to the respective true propensity score. 
Sufficient conditions for equality (and therefore asymptotic 
unbiasedness of the Across approach) are (S1) the 
independence between T and X and (S2) the deterministic
relation between X and Y given T.

We may compute the quantity estimated by the 
Across approach in the context of inverse probability 
weighting, with weights defined with the ATT in mind, as 
follows. As above, the weights are defined as a function 

of the (estimated) propensity scores; specifically, redefine 
W* such that 

with A denotinig ∑xPr(T=1|X=x) Pr(X=x|T=0,Y) and 
M being the indicator variable that takes the value of 
1 if X is missing and 0 otherwise. Next, observe that 
E[WY|T=1]=E[Y|T=1],, as before, and

	
(6)

The numerator of (6) may be evaluated using

Similarly, the denominator may be evaluated using

Substituting E[WY|T=1] and E[WY|T=0] in (3) with 
(6) and E[WY|T=1], respectively, yields the quantity 
asymptotically estimated by the Across approach.

To fix ideas, suppose that X, T, Y, and M are 
distributed such that 

The discrepancies between the true OR of 1 (consistently 
estimated by the Within approach) and the asymptotic 
results of the Across approach for the above distribution and 
one-way deviations are depicted in Figure 2.
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truncate <- function(x,left=0.05,right=0.95){
	 Q <- quantile(x,probs=c(left,right))
	 x[x>Q[2]] <- Q[2]; x[x<Q[1]] <- Q[1]
	 return(x)
}

IIPTW <- function(
	 # Iterative Inverse Probability of Treatment Weighting
	 # Returns a list with weights and number of iterations 
	 data, # a dataframe containing columns T, X1, X2 and Y
	 formula =`T~X1+X2’,
	 T =`T’

B Practical non-positivity and iterative inverse probability weighting

Given the propensity score, treated and untreated subjects tend to be comparable or ‘exchangeable’ with respect 
to measured covariates. In ‘counterfactual outcomes parlance, the distribution of potential outcomes is expected to be the 
same for subjects with the same propensity score. Estimators typically compare outcomes between groups of subjects with 
‘exchangeable’ observations. However, these comparisons become problematic if a treatment group has observations that 
are not ‘exchangeable’ with any of those in the other group. This problem represents a violation of the practical positivity 
assumption, i.e. that for each level of confounders there are records of both treated and untreated individuals in the dataset. 
Regression adjustment responds to this problem by extrapolating over covariate/propensity score regions of non-positivity 
through modelling the outcome, which may be appropriate under homogeneity assumptions, yet less attractive when these are 
not tenable. Indeed, one might question the ability of the model to accurately predict outside the region of positivity. Semi- or 
nonparametric methods, such as matching and IPW, do not involve explicit modelling of the outcome with respect to the PS, 
but are sensitive to practical non-positivity.

The consequences in terms of bias due to practical non-positivity are perhaps most intuitive in the setting where propensity 
score matching is used to estimate the ATT. When the upper tail of the propensity score distribution of the treated group shares 
no support with the propensity score distribution of the untreated group, it may be that for those subjects in this propensity 
score region the most suitable (closest in terms of the propensity score) matches are those with a substantially lower propensity 
score. As a result, unless corrections for non-positivity are made, treatment is still associated with the covariates in the matched 
set, potentially leading to bias.

IPW adjusts for confounding by weighting observations such that the association between treatment and confounders 
is removed. Suppose that at some (possibly multidimensional) covariate level, there are only treated subjects in the sample. 
With mere categorical confounders, this would preclude the fitting of a propensity score model. With continuous covariates, 
random zeros are inevitable because of the infinite number of confounder levels. In such settings, parametric models can 
be used to obtain estimated propensity scores by ‘borrowing’ information from individuals with similar covariate values to 
those that have zero probability of occurring. However, although weights may be defined at every level of the covariate, 
reweighting observations that have zero frequency of occurring is impossible. As such, if zero frequencies of being assigned 
to treatment (but not to the control group) tend to occur in, say, the lower or upper end of the covariate distribution, treatment 
will still be associated with the covariate in the pseudopopulation, so that the IPW estimator may be biased by residual 
confounding.

To improve covariate balance in the presence of practical non-positivity, Van der Wal proposed an algorithm in which 
the dataset is iteratively reweighted [3]. The idea underpinning this algorithm is as follows. By fitting a propensity model on 
the weighted dataset, new weights can be estimated that (partially) adjust for the residual confounding. Multiplying these 
weights with the original yields weights that, when applied to the dataset, correct for confounding more than the original 
weights. As the covariate balance improves, the probability of being assigned to treatment becomes less dependent on the 
covariate values, and so the variance of the log-transformed new weights reduces. The above process is therefore repeated 
until the variance drops below a convergence threshold.

The iterative inverse probability weighting (IIPW) algorithm was defined in the context of complete data. With multiply 
imputed data, one can apply IIPW within each imputed dataset, in a way consistent with the Within approach, until the 
algorithm converges within each dataset or until a maximum number of iterations is reached. Alternatively, at each iteration 
one can average the estimated propensity scores across the imputed datasets, as per the Across approach, before reweighting 
the imputed datasets. Sample R code for these algorithms is given below.
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	 left =0,
	 right =1,
	 cstop =1e-4,
	 maxit =100,
	 estimand =`ATE’
	 ){
	 warning <- FALSE
	 it <- 1
	 n <- nrow(data)
	 w <- rep(1,n)
	 for(i in 1:maxit){
		  psnew <- predict(glm(formula=as.formula(formula),
		              family=binomial,data=data,weights=w),type=`response’)
		  if(estimand==`ATE’){wnew <- ifelse(data[,T]==1,1/psnew,1/(1-psnew))}
		  if(estimand==`ATT’){wnew <- ifelse(data[,T]==1,1,psnew/(1-psnew))}
		  if(estimand==`ATU’){wnew <- ifelse(data[,T]==1,(1-psnew)/psnew,1)}
		  if(i>=2 && var(log(wnew))<=cstop){it <- i; break}
		  if(i==maxit){it <- i; warning <- TRUE}
		  w <- truncate(w*wnew,left,right)
		  w <- w/mean(w)
	 }
	 if(warning==TRUE){warning(`Algorithm did not converge’);it<-NA}
	 return(list(w=data$w,it=it))
}

IIPTW.A <- function(
	 # Iterative Inverse Probability of Treatment Weighting
	 # consistent with the Across approach
	 # Returns a list with weights for each imputed dataset and the number 
	 # of iterations
	 data, # a list of multiply imputed datasets
	 formula =`T~X1+X2’,
	 T =`T’,
	 left =0,
	 right =1,
	 cstop =1e-4,
	 maxit =100,
	 estimand =`ATE’
	 ){
	 warning <- FALSE
	 it <- 1
	 m <- length(data)
	 n <- nrow(data[[1]])
	 for(i in 1:m){data[[i]]$w <- rep(1,n)}
	 psnew <- matrix(nrow=n,ncol=m)
	 for(i in 1:maxit){
		  for(u in 1:m){
			   psnew[,u] <- predict(glm(formula=as.formula(formula),
				    family=binomial,data=data[[u]],
				    weights=data[[u]]$w),type=`response’)
		  }
		  psnewA <- apply(psnew,1,mean)
		  for(u in 1:m){
		  if(estimand==`ATE’){data[[u]]$wnew <- 
			   ifelse(data[[u]][,T]==1,1/psnewA,1/(1-psnewA))}
		  if(estimand==`ATT’){data[[u]]$wnew <-	
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			   ifelse(data[[u]][,T]==1,1,psnewA/(1-psnewA))}
		  if(estimand==`ATU’){data[[u]]$wnew <- 
			   ifelse(data[[u]][,T]==1,(1-psnewA)/psnewA,1)}
		  }
		  if(i>=2 && prod(unlist(lapply(data,FUN=function(x)
		         {var(log(x$wnew))<=cstop})))==1){it <- i; break}
		  if(i==maxit){it <- i; warning <- TRUE}
			      for(u in 1:m){
		  data[[u]]$w <- truncate(data[[u]]$w*data[[u]]$wnew,
			     left=left,right=right)
		  data[[u]]$w <- data[[u]]$w/mean(data[[u]]$w)
		  }
	 }
	 if(warning==TRUE){warning(`Algorithm did not converge.’);it<-NA}
	 return(list(w=lapply(data,function(x)x$w),it=it))
}

IIPTW.W <- function(
	 # Iterative Inverse Probability of Treatment Weighting
	 # consistent with the Within approach
	 # Returns a list with weights for each imputed dataset and the number # of iterations
	 data, # a list of multiply imputed datasets
	 formula =`T~X1+X2’,
	 T =`T’,
	 left =0,
	 right =1,
	 cstop =1e-4,
	 maxit =100,
	 estimand =`ATE’
	 ){
	 out <- lapply(data,FUN=IIPTW,formula=formula,T=T,
	         left=left,right=right,cstop=cstop,maxit=maxit,
	         estimand=estimand)
	 w <- lapply(out,function(x)x$w)
	 itmax <- max(unlist(lapply(out,function(x)x$it)))
	 return(list(w=w,it=itmax))
}
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C Results

TABLE 1. Performance of treatment effect estimators for various degrees p of missing (MCAR) covariate data and residual 
variances σ2.

CCA Within Across

σ2 p PS method Bias Var. MSE Bias Var. MSE Bias Var. MSE

1 20 Regression -0.002 0.016 0.016 -0.003 0.015 0.015 -0.063 0.016 0.020

Matching 0.037 0.033 0.034 0.037 0.021 0.022 -0.028 0.029 0.030

C. matching -0.003 0.032 0.032 -0.001 0.019 0.019 -0.069 0.028 0.033

IPW 0.091 0.322 0.330 0.067 0.263 0.268 0.077 0.262 0.268

IIPW 0.001 0.031 0.031 0.008 0.043 0.043 -0.025 0.172 0.173

40 Regression -0.003 0.020 0.020 -0.002 0.017 0.017 -0.128 0.022 0.039

Matching 0.050 0.044 0.046 0.039 0.020 0.021 -0.086 0.032 0.040

C. matching -0.005 0.046 0.046 -0.002 0.019 0.019 -0.134 0.032 0.050

IPW 0.048 0.461 0.463 0.022 0.288 0.288 0.039 0.288 0.289

IIPW 0.006 0.088 0.088 0.005 0.039 0.039 -0.081 0.029 0.036

60 Regression 0.011 0.029 0.030 0.010 0.021 0.021 -0.199 0.042 0.082

Matching 0.078 0.071 0.077 0.051 0.024 0.026 -0.150 0.048 0.071

C. matching 0.015 0.075 0.075 0.012 0.024 0.024 -0.203 0.054 0.096

IPW 0.127 0.566 0.582 0.061 0.257 0.261 0.088 0.254 0.262

IIPW 0.017 0.064 0.064 0.017 0.036 0.036 -0.132 0.038 0.056

80 Regression 0.008 0.060 0.060 0.002 0.042 0.042 -0.335 0.128 0.240

Matching 0.112 0.172 0.185 0.055 0.040 0.043 -0.268 0.117 0.189

C. matching 0.004 0.198 0.198 0.006 0.045 0.045 -0.340 0.143 0.258

IPW 0.281 0.884 0.963 0.079 0.264 0.271 0.127 0.254 0.270

IIPW 0.014 0.107 0.108 0.018 0.053 0.054 -0.217 0.089 0.136

9
 

20 Regression 0.013 0.134 0.134 -0.002 0.112 0.112 -0.106 0.116 0.127

Matching 0.063 0.242 0.246 0.029 0.142 0.142 -0.071 0.209 0.214

C. matching 0.021 0.251 0.251 -0.008 0.139 0.139 -0.116 0.217 0.231

IPW 0.082 0.539 0.545 0.057 0.405 0.409 0.075 0.410 0.416

IIPW 0.021 0.284 0.285 0.012 0.207 0.207 -0.056 0.220 0.223

40 Regression -0.003 0.174 0.174 0.009 0.115 0.115 -0.222 0.139 0.188

Matching 0.047 0.314 0.316 0.051 0.140 0.142 -0.188 0.202 0.237

C. matching 0.001 0.339 0.339 0.011 0.143 0.143 -0.249 0.217 0.279

IPW 0.085 0.747 0.754 0.077 0.430 0.436 0.109 0.433 0.445

IIPW -0.012 0.346 0.346 0.010 0.224 0.224 -0.148 0.240 0.261

60 Regression 0.001 0.287 0.287 0.009 0.130 0.130 -0.363 0.214 0.346

Matching 0.073 0.489 0.494 0.050 0.146 0.149 -0.321 0.278 0.380

C. matching 0.012 0.548 0.548 0.012 0.153 0.153 -0.386 0.315 0.464

IPW 0.111 1.172 1.184 0.088 0.457 0.465 0.135 0.458 0.476

IIPW 0.013 0.550 0.550 0.031 0.283 0.284 -0.246 0.413 0.474

80
 

Regression 0.027 0.589 0.589 0.015 0.180 0.180 -0.593 0.490 0.842

Matching 0.142 1.076 1.096 0.075 0.189 0.194 -0.507 0.483 0.740

C. matching 0.018 1.225 1.225 0.024 0.198 0.199 -0.625 0.612 1.002

IPW 0.214 1.848 1.894 0.091 0.459 0.467 0.170 0.435 0.464

IIPW 0.005 0.997 0.997 0.029 0.290 0.291 -0.503 0.483 0.735

Abbreviations: CCA, complete case analysis; p, missingness probability (%); PS method, propensity score method; Var., empirical variance; MSE, 
empirical mean squared error; C. matching, calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse probability weighting.
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TABLE 2. Performance of treatment effect estimators for various degrees p of missing (MCAR) treatment indicator values and 
residual variances σ2.

CCA Within Across

σ2 p PS method Bias Var. MSE Bias Var. MSE Bias Var. MSE

1
 
 
 
 

20 Regression 0.008 0.015 0.015 -0.003 0.014 0.014 -0.005 0.014 0.014

Matching 0.049 0.032 0.035 0.042 0.020 0.022 0.038 0.027 0.028

C. matching 0.003 0.032 0.032 -0.002 0.018 0.018 -0.006 0.026 0.026

IPW 0.041 0.347 0.348 0.017 0.253 0.254 0.018 0.247 0.247

IIPW 0.005 0.029 0.029 -0.005 0.033 0.033 -0.026 0.027 0.027

40 Regression 0.004 0.019 0.019 -0.026 0.015 0.016 -0.031 0.015 0.016

Matching 0.048 0.044 0.046 0.017 0.019 0.019 0.014 0.024 0.024

C. matching -0.003 0.044 0.044 -0.024 0.019 0.020 -0.027 0.024 0.025

IPW 0.104 0.423 0.433 0.029 0.211 0.212 0.029 0.203 0.204

IIPW 0.001 0.054 0.054 -0.022 0.039 0.039 -0.059 0.028 0.032

60 Regression -0.005 0.033 0.033 -0.071 0.021 0.027 -0.081 0.022 0.028

Matching 0.064 0.071 0.075 -0.024 0.026 0.027 -0.030 0.032 0.033

C. matching -0.005 0.070 0.070 -0.067 0.025 0.030 -0.072 0.031 0.036

IPW 0.147 0.545 0.567 -0.005 0.165 0.165 -0.006 0.154 0.154

IIPW 0.005 0.112 0.112 -0.066 0.041 0.045 -0.132 0.040 0.057

80 Regression 0.015 0.065 0.065 -0.163 0.033 0.060 -0.186 0.034 0.069

Matching 0.096 0.160 0.169 -0.108 0.040 0.051 -0.111 0.042 0.054

C. matching 0.003 0.187 0.187 -0.157 0.039 0.063 -0.160 0.042 0.068

IPW 0.278 0.927 1.004 -0.111 0.128 0.141 -0.104 0.113 0.124

IIPW 0.020 0.170 0.171 -0.160 0.045 0.070 -0.257 0.076 0.142

9 20 Regression 0.011 0.131 0.131 0.002 0.131 0.131 -0.001 0.131 0.131

Matching 0.053 0.222 0.225 0.045 0.155 0.157 0.043 0.204 0.206

C. matching 0.004 0.228 0.228 0.001 0.156 0.156 -0.002 0.209 0.209

IPW 0.099 0.528 0.538 0.074 0.409 0.415 0.077 0.402 0.408

IIPW 0.023 0.257 0.258 0.021 0.223 0.223 0.003 0.215 0.215

40 Regression -0.021 0.183 0.184 -0.046 0.185 0.187 -0.052 0.185 0.188

Matching 0.026 0.327 0.328 0.001 0.217 0.217 0.001 0.245 0.245

C. matching -0.030 0.341 0.342 -0.039 0.215 0.216 -0.037 0.250 0.251

IPW 0.067 0.815 0.820 0.020 0.457 0.458 0.030 0.433 0.434

IIPW 0.012 0.541 0.541 -0.030 0.273 0.273 -0.068 0.271 0.276

60 Regression 0.022 0.297 0.297 -0.047 0.290 0.292 -0.060 0.290 0.294

Matching 0.072 0.472 0.478 -0.000 0.309 0.309 -0.002 0.324 0.324

C. matching 0.004 0.532 0.532 -0.046 0.314 0.316 -0.047 0.331 0.333

IPW 0.146 1.021 1.042 0.016 0.470 0.471 0.037 0.449 0.450

IIPW 0.015 0.485 0.485 -0.044 0.356 0.358 -0.093 0.352 0.360

80 Regression -0.017 0.549 0.549 -0.161 0.501 0.527 -0.188 0.504 0.540

Matching 0.125 1.011 1.026 -0.100 0.527 0.536 -0.106 0.538 0.549

C. matching 0.052 1.189 1.191 -0.160 0.535 0.561 -0.165 0.553 0.581

IPW 0.232 1.954 2.008 -0.068 0.683 0.688 -0.029 0.645 0.646

IIPW -0.023 1.029 1.029 -0.130 0.600 0.617 -0.209 0.584 0.627

Abbreviations: CCA, complete case analysis; p, missingness probability (%); PS method, propensity score method; Var., empirical variance; MSE, 
empirical mean squared error; C. matching, calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse probability weighting.
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TABLE 3. Performance of treatment effect estimators for various degrees p of missing (MCAR) outcomes and residual variances σ2.

CCA Within Across

σ2 p PS method Bias Var. MSE Bias Var. MSE Bias Var. MSE

1 20 Regression 0.004 0.014 0.014 0.005 0.015 0.015 0.005 0.015 0.015

Matching 0.053 0.033 0.036 0.044 0.024 0.026 0.044 0.024 0.026

C. matching 0.010 0.033 0.033 0.006 0.024 0.024 0.006 0.024 0.024

IPW 0.084 0.324 0.331 0.059 0.261 0.265 0.059 0.261 0.265

IIPW -0.011 0.244 0.244 0.007 0.064 0.064 0.007 0.064 0.064

40 Regression 0.004 0.020 0.020 0.003 0.022 0.022 0.003 0.022 0.022

Matching 0.054 0.049 0.052 0.039 0.034 0.035 0.039 0.034 0.035

C. matching 0.002 0.046 0.046 0.001 0.032 0.032 0.001 0.032 0.032

IPW 0.087 0.421 0.428 0.049 0.290 0.292 0.049 0.290 0.292

IIPW -0.002 0.074 0.074 0.011 0.101 0.101 0.011 0.101 0.101

60 Regression 0.004 0.031 0.031 0.003 0.035 0.035 0.003 0.035 0.035

Matching 0.061 0.068 0.071 0.047 0.043 0.045 0.047 0.043 0.045

C. matching 0.000 0.073 0.073 0.010 0.043 0.043 0.010 0.043 0.043

IPW 0.171 0.524 0.553 0.056 0.291 0.294 0.056 0.291 0.294

IIPW 0.011 0.060 0.061 -0.004 0.189 0.189 -0.004 0.189 0.189

80 Regression 0.003 0.073 0.073 0.000 0.082 0.082 0.000 0.082 0.082

Matching 0.116 0.166 0.179 0.040 0.092 0.094 0.040 0.092 0.094

C. matching 0.020 0.193 0.193 -0.001 0.090 0.090 -0.001 0.090 0.090

IPW 0.234 1.029 1.084 0.045 0.301 0.303 0.045 0.301 0.303

IIPW 0.015 0.300 0.301 0.002 0.087 0.087 0.002 0.087 0.087

9 20 Regression -0.004 0.135 0.135 -0.003 0.139 0.139 -0.003 0.139 0.139

Matching 0.051 0.245 0.248 0.023 0.198 0.199 0.023 0.198 0.199

C. matching 0.007 0.254 0.254 -0.016 0.199 0.200 -0.016 0.199 0.200

IPW 0.065 0.499 0.503 0.035 0.450 0.451 0.035 0.450 0.451

IIPW -0.015 0.311 0.311 -0.001 0.434 0.434 -0.001 0.434 0.434

40 Regression -0.002 0.181 0.181 -0.004 0.199 0.199 -0.004 0.199 0.199

Matching 0.054 0.333 0.336 0.031 0.255 0.256 0.031 0.255 0.256

C. matching -0.002 0.358 0.358 -0.011 0.265 0.265 -0.011 0.265 0.265

IPW 0.149 0.665 0.687 0.079 0.456 0.463 0.079 0.456 0.463

IIPW 0.003 0.380 0.380 0.006 0.283 0.283 0.006 0.283 0.283

60 Regression 0.007 0.293 0.293 0.004 0.326 0.326 0.004 0.326 0.326

Matching 0.070 0.476 0.481 0.042 0.373 0.375 0.042 0.373 0.375

C. matching -0.007 0.548 0.549 0.004 0.381 0.381 0.004 0.381 0.381

IPW 0.170 1.119 1.148 0.077 0.675 0.681 0.077 0.675 0.681

IIPW 0.034 0.637 0.638 0.019 0.393 0.393 0.019 0.393 0.393

80 Regression 0.007 0.597 0.597 0.024 0.698 0.699 0.024 0.698 0.699

Matching 0.139 1.055 1.074 0.053 0.723 0.726 0.053 0.723 0.726

C. matching 0.034 1.244 1.245 0.018 0.727 0.728 0.018 0.727 0.728

IPW 0.320 1.938 2.041 0.060 1.000 1.004 0.060 1.000 1.004

IIPW 0.036 1.115 1.116 0.004 0.824 0.824 0.004 0.824 0.824

Abbreviations: CCA, complete case analysis; p, missingness probability (%); PS method, propensity score method; Var., empirical variance; MSE, 
empirical mean squared error; C. matching, calliper matching; IPW, inverse probability weighting; IIPW, iterative inverse probability weighting.
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TABLE 4. Performance of treatment effect estimators for various (MAR) missingness mechanisms and residual variances σ2.

CCA Within Across

σ2 p PS method Bias Var. MSE Bias Var. MSE Bias Var. MSE

1 MAR1 Regression -0.003 0.016 0.016 0.002 0.014 0.014 -0.059 0.016 0.020

Matching 1.054 0.075 1.187 0.042 0.018 0.020 -0.084 0.029 0.036

C. matching -0.010 0.034 0.034 0.005 0.016 0.016 -0.115 0.028 0.041

IPW -0.546 1.373 1.671 0.061 0.271 0.275 0.068 0.269 0.274

IIPW -0.003 1.128 1.128 -0.002 0.036 0.036 -0.021 0.024 0.025

MAR2 Regression -0.186 0.055 0.090 -0.011 0.036 0.036 -0.216 0.065 0.111

Matching -0.172 0.205 0.235 0.039 0.036 0.038 -0.236 0.088 0.144

C. matching -0.181 0.210 0.243 -0.004 0.039 0.039 -0.303 0.105 0.197

IPW -0.005 0.187 0.187 0.038 0.283 0.284 -0.003 0.307 0.307

IIPW -0.153 0.121 0.144 -0.001 0.045 0.045 -0.145 0.057 0.078

9 MAR1 Regression -0.007 0.145 0.145 0.001 0.112 0.112 -0.105 0.117 0.128

Matching 1.044 0.257 1.347 0.046 0.138 0.140 -0.178 0.203 0.235

C. matching -0.001 0.297 0.297 0.011 0.141 0.141 -0.201 0.214 0.254

IPW -0.532 2.143 2.425 0.081 0.409 0.415 0.093 0.407 0.416

IIPW -0.003 2.358 2.358 0.001 0.210 0.210 -0.026 0.208 0.209

MAR2 Regression -0.812 0.225 0.885 -0.014 0.147 0.147 -0.394 0.234 0.389

Matching -0.745 0.506 1.061 0.038 0.166 0.167 -0.362 0.305 0.436

C. matching -0.746 0.516 1.072 -0.016 0.170 0.170 -0.487 0.388 0.625

IPW -0.540 0.542 0.833 0.016 0.472 0.472 -0.134 0.544 0.562

IIPW -0.654 0.570 0.998 -0.024 0.234 0.234 -0.440 0.318 0.512

Abbreviations: CCA, complete case analysis; MDM, missing data mechanism; PS method, propensity score method; Var., empirical variance; MSE, 
empirical mean squared error; CP, empirical coverage probability, VR, ratio of mean estimated variance to empirical variance; C. matching, calliper 
matching; IPW, inverse probability weighting; IIPW, iterative inverse probability weighting. Under mechanism MAR1, the missingness of X2 depends on 
X1 and T only. Under MAR2, the missingness depends on Y only. Both MAR1 and MAR2 result in ~40% incomplete records.
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