
Chapter 8
Endotoxins, Glucans and Other Microbial
Cell Wall Agents

Ioannis Basinas, Grethe Elholm and Inge M. Wouters

Abstract During the last decades an increasing interest in microbial cell wall agents
has been established, since exposure to these agents has been linked to a wide range
of adverse and beneficial health effects. The term microbial cell wall agents refers to
a group of molecules of different composition that are integral structural components
of microorganisms like gram-negative and gram positive bacteria and fungi. The
available information on exposure characteristics for these cell wall agents within
indoor environments and their associated health effects is summarized in this chapter.

Large variation in exposure levels of microbial cell wall agents in indoor occu-
pational environments is documented, whereas actual airborne levels of exposures
and determinants of residential indoor air are lacking. Standardisation of methods
for determination is highly recommended for future studies.

Endotoxins, cell wall agents of gram-negative bacteria, are well studied and
involved in the development of adverse and protective health effects, but for cell
wall agents of fungi, like glucans the evidence is more limited and inconclusive.
For other microbial cell wall agents, like muramic acid, EPS and ergosterol, stu-
dies have been sparse and very diverse in their design and applied methods.

Future recommendations include studies in large populations with a longitudi-
nal design involving both exposure assessment and health effects assessment of
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distinct microbial cell wall agents and co-existent microbes, which is needed to
understand the role of individual and combined exposures in health.

Keywords Cell wall agents · endotoxins · glucans

8.1 Introduction

A variety of potentially hazardous agents can be found in indoor air. Generally dusty
and moist indoor environments are unpleasant to most people, but determining which
components in the air are significantly associated with specific health outcomes is
very challenging. Some indoor air exposures have already been found to have a
negative impact on human health, others are still only under suspicion and yet some
appear to even have beneficial effects. Micro-organisms, such as bacteria and fungi,
and agents from a microbiological origin have been widely studied in relation to
indoor air-related health outcomes. Agents composing the cell walls of microbes,
such as endotoxins, glucans and extracellular polysaccharides are often implicated as
risk factors or used as markers for exposure to microbiological agents. This chapter
aims to summarise the available information on the exposure characteristics for these
cell wall agents within indoor environments and their associated health effects.

8.2 What Are Microbial Cell Wall Agents?

Microbial cell wall agents are a group of molecules of different composition that
are integral structural components of microorganisms (Fig. 8.1). They are released
into the environment following replication, apoptosis, lysis or death of the microbial
cell. Depending on their origin, fungal, gram positive or gram negative bacteria,
microbial cell walls consist of different types of polysaccharides, proteins and acids.
Although similar structures may also be present in outer layers of cereals and plant
tissues, they are mostly considered to represent microbial exposures. Microbial cell
wall agents are an important constituent of the so called “organic dust” arising from
microbial, plant and animal origin. During the last decades an increasing interest in
microbial cell wall agents has been established, since exposure to these agents has
been linked to a wide range of adverse and beneficial health effects.

8.3 Why Are Microbial Cell Wall Agents Important?

Several symptoms and diseases have been associated with exposure to cell wall
agents. These include systemic reactions (e.g. inflammation, fever and chills), aller-
gies, acute respiratory symptoms, chronic respiratory disorders such as chronic
bronchitis and asthma, as well as cancer (Smit et al., 2006; Madsen et al., 2012;
Basinas et al., 2012a; Gladding et al., 2003; Li et al., 2006; Fang et al., 2013;
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Fig. 8.1 Cell wall structures of three different types of microbial organisms. (a) Gram-positive
bacteria which have an outer cell wall containing a thick layer of peptidoglycan. (b) Gram-
negative bacterial cell walls which contain a thin layer of peptidoglycan and a lipid bilayer con-
taining lipopolysaccharide. (c) Fungal cell walls which are composed of beta-glucan structures
and chitin. (From Vatansever et al., 2013)
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Eduard et al., 2004; Rylander et al., 1999; Vogelzang et al., 2000; Eduard et al.,
2009; Braun-Fahrlander et al., 2002).

Bacterial endotoxins, peptidoglycans (incl. muramic acid), the fungal sourced
β-D-glucans and fungal extracellular polysaccharides are all microbial cell wall
agents that are either considered to have a key role in associations with health
effects or, as not all necessarily have human antigenic and/or inflammatory proper-
ties themselves, being used as markers for exposure to microbes.

Once released and aerosolised, microbial cell wall agents can enter the human body
mainly through inhalation. Exposure through other routes has not been thoroughly stu-
died yet. Generally the potential for dermal absorption can be considered as rather
small because of a high molecular agent weight (Bos and Meinardi, 2000), whereas
direct or inadvertent (i.e. through hand to mouth contact and eating in contaminated
areas) exposure by ingestion can occur (Cherrie et al., 2006; Gorman et al., 2012) but
it is likely of lesser importance for respiratory diseases. After entering the human body
some microbial cell wall agents may trigger a line of different receptors which evoke
an increase in the release of cytokines, chemokines, adhesion molecules, and other
mediators resulting in an inflammatory reaction (Reed and Milton, 2016).

The main microbiological cell wall agents that have been studied either as inde-
pendent agents or as markers of exposures in relation to human health outcomes
are summarized below. It is important to note that other cell wall agents of micro-
bial origin (e.g. various types of proteins) exist but at present their immunological
importance is either considered rather small or remains unknown.

8.4 Microbial Cell Wall Agents

8.4.1 Endotoxins

Endotoxins are commonly also known as Lipopolysaccharides (LPS) in reference to
their purified derivative and chemical structure, which typically comprises of a long
polysaccharide complex chain bound to a lipid A component (Douwes et al., 2003;
Williams, 2007b). They are located at the external cell wall membrane of gram-
negative bacteria and are released to the environment primarily following cell repli-
cation, death or lysis (Williams, 2007a). Endotoxin and their purified derivatives
are present in the oral and nasal cavity and throughout the gastrointestinal tract of
mammals, and are found ubiquitously on plant surfaces, animals, and soil (Bos
et al., 2007). They are considered as one of the main and biologically most active
pro-inflammatory constituents of organic dusts (Sigsgaard et al., 2010).

8.4.2 Glucans

The (1→3)-β-D-glucans are glucose polymers which are part of the cell wall struc-
ture of fungi (and of some bacteria), yeasts and mushrooms (Douwes et al., 2003;
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Sigsgaard et al., 2005; Williams, 1997). They can also be present in the bran of
some cereal (e.g. oat and barley) and be produced as a result of plant synthesis in
response to tissue wounds (Finkelman et al., 2005; Lazaridou and Biliaderis,
2007). Their physicochemical properties vary depending on their source.
Generally, they are stable molecules, non-soluble in water, and composed of a
β-D-linked linear backbone containing anhydroglucose repeat units linked with a
glycosidic bond between the 1 and 3 positions and sometimes bearing side chains
at position 6 (Williams et al., 2005). In fungi they form the cell wall through a
linkage to mannoproteins (i.e. fungal proteins linked with chains of up to several
hundred mannoses), proteins, lipids and chitin and the (1→6)-β-side-branches
(Miura, 2005). Their exact primary structure, solubility, degree of branching, and
molecular weight play an important role in glucans biological activity (Zeković
et al., 2005). Glucans are mainly studied for their immunomodulatory properties.

8.4.3 Peptidoglycans and Muramic Acid

Peptidoglycans are composed of amino acids and sugar polymers and form the
backbone of the cell walls of bacteria (Figure 8.1). They are present in both gram-
positive and gram-negative bacteria (Fig. 8.1). Within gram-positive bacteria, pep-
tidoglycans form the core of the cell wall membrane comprising up to 70% of the
composition, whereas in gram-negative bacteria they form only a minor part of the
cell wall. Therefore peptidoglycans are considered to be a marker of exposure to
gram-positive bacteria. Peptidoglycans are formed by alternating N-acetyl-
muramic and N-acetylglucosamine acid residues linked by β -1→4 bonds with a
pentapeptide attached to the d-lactoyl group of each combination residue (Vollmer
et al., 2008; Meroueh et al., 2006). The N-acetyl-muramic acid constituent is an
amino saccharide which is also commonly known as muramic acid and is mea-
sured as a marker for the presence and quantification of peptidoglycans (Poole
et al., 2010; Van Strien et al., 2004; Lappalainen et al., 2012; Karvonen et al.,
2014). Peptidoglycans are known to induce an inflammatory response.

8.4.4 Extracellular Polysaccharides and Ergosterol

Extracellular Polysaccharides (EPS) are stable carbohydrates that dominate the
cell wall and periphery of fungal structures including septa, spores and hyphens,
whereas ergosterol is a steroid alcohol (sterol) compound of the fungal cell mem-
brane. While their immunomodulatory value is considered rather small, both
ergosterol and EPS are considered as good markers for fungal exposures.
Particularly EPS from Aspergillus and Penicillium spp. have been shown to corre-
late well with the biomass of viable fungi in house dust. On the other hand ergos-
terol is considered a good marker for both viable and non-viable fungal biomass
(Douwes et al., 1999; Casas et al., 2016).
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8.5 Methods of Quantification

Overviews of exposure measurement techniques of biological agents including
microbial cell wall agents have been described previously by Douwes et al. (2003)
and Casas et al. (2016). In short, quantification of microbial cell wall agents relies
on the collection of dust followed by subsequent laboratory analysis of the agents
within the dust. For an airborne exposure route the preferable sampling method is
active airborne sampling: air is sucked though a sampling head by means of a
(portable) pump in which dust is captured through filtration. Based on the sam-
pling characteristics of the sampler specific size fractions of dust may be captured.
Generally, in occupational studies the inhalable dust fraction is sampled.
Alternatively passive sampling methods capturing settling airborne dust may be
employed, e.g through air exposure of petri dishes, “pizza boxes” or electrostatic
collectors (Frankel et al. 2012b). Instead of airborne sampling many epidemiologi-
cal studies in the past have relied on dust samples of floor dust samples represent-
ing settled dust or mattress dust samples. Those dust samples are collected using a
combination of regular vacuum cleaners fitted with specialised sampling devices
like nozzles with collection filters or specially designed bags).

Endotoxins contained in the dust are generally measured by the Limulus
Amebocyte Lysate (LAL) assay. The LAL is a biological assay which makes use
of an enzyme reaction process from the horseshoe crab, Limulus Polyphymus to
quantify non-cell bound endotoxins. Results are expressed in Endotoxin Units
(EU), a standardized metric introduced to account for differences in biological
activity (potency) per mass unit between endotoxins. The assay is very sensitive
and available in several formats from which the kinetic colorimetric ones are con-
sidered as the most precise, and thus are most commonly used. Inter-laboratory
variations have been described, mainly sourcing from differences in sampling and
analytical methodologies between laboratories (Chun et al., 2006). To overcome
the problem of batch to batch differences and interference, and to protect the
horseshoe crab from extinction, an endotoxin assay has recently become available
that uses recombinant Factor C (rFC) reagent produced from the cDNA of the
Mangrove horseshoe crab (Cacinoscorpius rotundicauda) (Ding et al., 1995).
Studies in livestock facilities and houses showed good correlation between results
from the recombinant Factor C (rFC) assay compared to the LAL assay (Thorne
et al., 2010; Alwis and Milton, 2006). However, little is still known on interfer-
ence of other agents on the rFC assay results. It can be expected that the recombi-
nant assay will be applied more and more in future studies.

Endotoxins can also be measured chemically through gas chromatography /
mass spectrometry (GC/MS) to identify and quantify 3-hydroxy fatty acids (3-
OHFAs) in the lipid A of endotoxin (Saraf et al., 1997). The method quantifies
both cell bound and non-cell bound endotoxin with results expressed in mass con-
centrations, and thus cannot be compared directly to results obtained with the
LAL assay. It has not been widely applied and associations with human health
endpoints remain to be fully studied.
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Several different assays have been applied in studies investigating (1→3)-β-D-
glucans, including assays based on a modification of the Limulus amebocyte
lysate (LAL) assay in which only active factor G is present. Earlier this method
was referred to as the LAL assay, whereas later a commercially available
Glucatell assay became available based on the same principle (Rylander, 1997;
Cherid et al., 2011). A number of immunoassays to detect glucans have been
developed and applied as well. Initially an inhibition immunoassay was developed
(Douwes et al., 1996), which had relatively low sensitivity. More recently, several
laboratories have developed more sensitive sandwich Enzyme Immunoassays
(EIAs) (Noss et al., 2010b; Sander et al., 2008; Milton et al., 2001). Few data are
available comparing outcomes of different (1→3)-β-D-glucans assays where
results are typically expressed in units of mass. An interlaboratory comparison
study showed that results of different methods were comparable in relative terms
as most methods correlated moderately well with each other. Yet direct compari-
son of results between laboratories and assays is compromised, due to discrepan-
cies in applied standards and extraction procedures resulting in major differences
in absolute levels (Brooks et al., 2013). Available comparison data is yet to scarce
to provide reliable conversion factors.

Peptidoglycans are determined through GC/MS analysis by quantification of
their composite muramic acid (Poole et al., 2010; Van Strien et al., 2004;
Lappalainen et al., 2012; Karvonen et al., 2014). The muramic acid content is
regarded to be a measure of exposure to gram-positive bacteria. Similarly, ergos-
terol, which can be determined through GC/MS analyses, is a measure of fungal
biomass (Saraf et al., 1997; Miller and Young, 1997). Fungal extracellular poly-
saccharides (EPS) are considered fungal biomarkers as well, although they allow
for a certain level of differentiation of mould genera present. They are measured
through a specific sandwich enzyme immunoassay (Douwes et al., 1999).

8.6 Exposure Limits

A number of countries have established occupational exposure limits for exposure
to organic dust, which are commonly used as guidelines for advising and protect-
ing workers from overexposure to microbial agents. Generally, these limits have
been established based on the available information on exposure levels within cer-
tain industries and vary considerably from country to country. For example, the
occupational exposure limit (OEL) for organic dust is 3mg/m3 of ‘‘total’’ dust in
Denmark and 5mg/m3 in Norway and Sweden (Arbeidstilsynet, 2011;
Arbejdstilsynet, 2007). In the US, the Occupational Safety and Health
Administration (OSHA) has since 1989 advised a permissible exposure limit of
10mg/m3 for total grain dust (OSHA, 1995). Whereas the National Health
Council of the Netherlands has recommended a Health-Based OEL (HBROEL) of
1.5mg/m3 of inhalable grain dust (DECOS, 2011).
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However, despite the well-recognised strong inflammatory capability, thus far
no agent- and environment-specific (i.e. residential or occupational) health-based
limit values for exposure to microbial cell wall agents have been established. The
only exception, to our knowledge, is the limit for endotoxin that was established
by the National Health Council of the Netherlands in conjunction with the
Nordic research council (DECOS, 2010). They jointly proposed a HBROEL of
90 EU/m3, largely based on acute respiratory effects.

8.7 Exposures in Indoor and Occupational Environments

Despite the broad recognition of different cell wall agents playing a part in the
development of respiratory symptoms and other health disorders, relatively little is
actually known with respect to their airborne exposure levels and prevalence.
Most exposure information is available for endotoxin and (1→3)-β-D-glucans air-
borne concentrations and an overview of measured airborne levels for these two
agents across different occupational and residential environments is provided in
Table 8.1. It should be noted that most data from residential environments relate
to floor dust and/or mattress dust rather than airborne exposure levels. However,
the focus of the current overview is on airborne levels as those are considered to
be more representative of inhalation exposures.

In general, the levels of exposure to endotoxins and glucans are very varied
across both occupational and residential environments. In occupational settings,
levels are clearly dependent on the presence or absence of an exposure source
such as manure, composted waste, animals, and/or plant materials. For endotoxin
the highest levels of exposure commonly occur among workers in primary agricul-
tural workplaces such as poultry, dairy and pig farms and among those involved
in cotton processing and grain handling. Average personal concentrations mea-
sured within these industries are reported to typically range between a few hun-
dred to many thousands of EU/m3 (Table 8.1). Other workplaces with
considerably high exposures to endotoxin include waste collection and handling,
seed and paper processing and veterinary practices. The levels of exposure within
these environments can be several orders of a magnitude higher than those
reported within residential and office environments.

Similarly, (1→3)-β-D-glucans exposures appear to be an issue mainly in work-
places of agricultural production, waste collection and management, paper proces-
sing as well as podiatry clinics. Direct comparisons between these results however
cannot be made because measured concentrations for glucans largely depend on
the type and inherent sensitivity of the quantification assay applied within a study
(see methods of quantification section above). The higher sensitivity of the LAL
assay (Sander et al., 2008; Douwes, 2005) may, at least partly, explain the
reported lower levels of exposure in studies that use this methods compared with
those using the inhibition enzyme immunoassays (EIA). Other parameters such as
the extraction medium, or the type of filter used and its storage or transport
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conditions may also play a role as has been described for endotoxin (Noss et al.,
2010a; Spaan et al., 2007). However, such analytical errors are unlikely to be a
major contributor to the total variability of exposure for these agents as differences
in intra-laboratory variations are generally small.

Besides exposure sources, other important determinants of endotoxin exposure
include the dustiness of materials handled, the production in bulk (i.e. in large
quantities), and the cyclical nature of the process (Spaan et al., 2008a). Personal
levels of exposure largely depend on the activities performed by the workers as
well as the environmental conditions and workplace characteristics. For example,
among livestock workers practices related to ventilation, animal feeding, distribu-
tion of bedding and improved building hygiene have been demonstrated as impor-
tant determinants for exposure to endotoxins and (1 → 3)-β-D-glucans (Basinas
et al., 2015; Samadi et al., 2009; Thilsing et al., 2015). Similarly, in sewage
treatment plants higher exposures have been reported among workers performing
activities related to cleaning and maintenance (Spaan et al., 2008b).

Within residential environments the level of airborne endotoxin exposure has
been reported to average between 0.36-6.5 EU/m3 in absence of an obvious expo-
sure source (Table 8.1) which is similar to that reported for the general environ-
ment (Madsen, 2006). However, in other settings where a direct source of
exposure is present, such as the burning of biomass, airborne endotoxin levels
may increase to 64.0 EU/m3 (Table 8.1). Similar differences in exposure patterns
have been reported for glucan exposures with burning of biomass (Semple et al.,
2010) and with the presence of moisture/mould problems within the building
(Adhikari et al., 2010). The importance of mould as an exposure source for resi-
dential and public environments is well documented also from exposure studies in
schools and office buildings (Rylander et al., 1998) and this is broadly supported
by results from studies that utilised samples of settled house dust, like floor dust
and mattress dust (Douwes et al., 1999; Douwes et al., 1998; Schram et al., 2005;
Gehring et al., 2001). Very little information is available concerning other determi-
nants of airborne levels of these agents within home environments. However,
results from studies on settled house dust suggest that keeping pets, the number of
occupants in the home, the flooring type, whether or not the house is a farm resi-
dence, the season and the heating system are important factors in determining
the dust composition in these environments (Douwes et al., 1998; Schram et al.,
2005; Giovannangelo et al., 2007; Casas et al., 2013; Abraham et al., 2005; Holst
et al., 2015a).

The other microbial cell wall agents which have been reported to be elevated in
settled dust from indoor environments of houses and farms include muramic acid
and ergosterol (Poole et al., 2010; Van Strien et al., 2004) as well as EPS
(Giovannangelo et al., 2007; Casas et al., 2013). However, little is known about
actual airborne levels of these agents (Dales et al., 2006; Adhikari et al., 2014).
Furthermore, it has to be noted that collection of samples and analysis of settled
house dust, primarily from floor and mattresses, has been the most common
approach for determination of microbial cell wall agent concentrations in epide-
miological studies in the home environment. This is due to the increased
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cost-efficiency of these sampling strategies compared to active airborne dust sam-
pling, as they allow collection of dust to be performed by the participants them-
selves. As deposited dust is time-integrated, it is less vulnerable to short term
variation in exposure and allows relative ranking of exposure levels (Douwes,
2005; Tischer et al., 2011). Nevertheless, results obtained through these methods
are unlikely to be fully representative of actual airborne levels and personal expo-
sure within indoor home environments (Adhikari et al., 2010; Adhikari et al.,
2014; Noss et al., 2008; Samadi et al., 2010). Recently a simple and rather inex-
pensive method for passive collection of airborne dusts, the Electrostatic Dustfall
Collectors (EDCs), has become available which is proving rather promising with
regard to sampling efficiency for endotoxin and glucans (Noss et al., 2010a; Noss
et al., 2008; Samadi et al., 2010; Frankel et al., 2012b; Jacobs et al., 2014).

8.8 Health Effects

8.8.1 Endotoxin Exposure and the Janus Faced
Effect on Health

Endotoxin is a well-established pro-inflammatory agent with a broad range of
health effects documented in epidemiological, toxicological, and experimental stu-
dies in humans. It is considered one of the main causes of respiratory disease in
populations highly exposed to organic dusts such as farmers, cotton and grain
workers (Rylander, 2006). Endotoxin can cause both acute and chronic effects.
Endotoxin exposure has been linked to acute symptoms such as wheezing, dys-
pnea, irritation of the nose and throat, chest tightness, dry cough, fever, headache,
and acute airway obstruction and inflammation (Douwes et al., 2003; Rylander,
2006; Bakirci et al., 2007; Castellan et al., 1987). High endotoxin exposure has
been shown to cause organic dust toxic syndrome (ODTS) and to increase the risk
of chronic respiratory diseases, including extrinsic allergic alveolitis (i.e. Famer’s
lung), chronic bronchitis, accelerated lung function decline, asthma and asthma-
like syndrome. Endotoxin can also simply increase disease severity by causing
lung function adverse effects and promoting inflammatory responses (Smit et al.,
2006; Donham et al., 2000; Sigsgaard et al., 2004; Wang et al., 2002; Liu, 2002).
Positive associations between endotoxin and malignant disease such as nasopharyn-
geal cancers have also been reported among cotton workers(Li et al., 2006; Fang
et al., 2013). In contrast, more recently a protective effect of endotoxin exposure
against lung cancer has also been proposed (Lenters et al., 2010). However, evi-
dence supporting this association remains limited primarily to studies among cotton
workers (Astrakianakis et al., 2007; McElvenny et al., 2011). Respiratory symptoms
and bronchial hyperresponsiveness have been demonstrated among workers and
healthy volunteers to initiate with exposure levels in the range of 100 to 200 EU/m3

(Basinas et al., 2012a; Smit et al., 2008; Castellan et al., 1987; Larsson et al., 1994;
Smit et al., 2010; Latza et al., 2004).
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During recent decades evidence has become available for an inverse association
between endotoxin exposure and atopy, allergic rhinitis and/or atopic asthma.
These protective effects from endotoxin have been observed particularly among
children (Braun-Fahrlander et al., 2002; Gereda et al., 2000; Douwes et al., 2006;
Schram-Bijkerk et al., 2005; Von Mutius et al., 2000) but also among adults, in
workers such as farmers (Eduard et al., 2004; Portengen et al., 2005) agriculture
workers (Basinas et al., 2012a; Smit et al., 2008; Smit et al., 2010) and even for
residential endotoxin exposures (Gehring et al., 2004; Bakolis et al., 2012).
Among the adult population the protective effects of endotoxin against atopy and
atopic sensitization were always observed in conjunction with a significant
increase in risk for non-allergic respiratory morbidity (Basinas et al., 2012a;
Eduard et al., 2004; Smit et al., 2008; Smit et al., 2010; Portengen et al., 2005)
suggesting a Janus-faced (i.e. dual) role for endotoxin on the development of
health symptoms among humans. For example, in a pooled analysis of four epide-
miological studies from the Netherlands and Denmark including workers in farm-
ing, agricultural processing and power plants using biofuel as well as students in
veterinary medicine, an inverse dose-dependent association between measured
endotoxin exposure and allergic sensitization and hay fever (i.e. allergic rhinitis)
was observed (Basinas et al., 2012a). However, in the same population increased
endotoxin exposure was associated with an increased risk for organic dust toxic
syndrome and chronic bronchitis when exposure exceeded 100 EU/m3 (Fig. 8.2).
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Fig. 8.2 The association between endotoxin exposure and prevalence of hay fever (circles) and
chronic bronchitis (filled circles) in a population of 3883 Dutch and Danish employees in veterin-
ary medicine, power plants using biofuel, agricultural processing, and farming. (From Basinas
et al., 2012a)
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These findings are in line with the hygiene hypothesis (see below) and suggest
that some individuals may be more susceptible to endotoxin exposure than others.
Though initial interpretation of these findings was fairly cautious, because of the
cross-sectional nature of the research studies, emerging results from longitudinal
studies among Danish farmers and Dutch agricultural workers seem to confirm the
protective effects of adult endotoxin exposure on atopy and atopic sensitization
(Elholm et al., 2011; Spierenburg et al., 2016). The individual immunological
response to endotoxin exposure is determined by the interaction between dose and
timing of exposure, other environmental factors and genetic predisposition
(Vandenbulcke et al., 2006).

8.8.2 A Proposed Immunological Mechanism Supporting
the Hygiene Hypothesis

The hygiene hypothesis suggests that exposure to microbial components like endo-
toxin promotes the development of a healthy immune system. The adaptive
immune response is thus modified by prior events like infection (Liebers et al.,
2008). The initial proposed mechanism associated with the hygiene hypothesis was
that an increased microbial exposure induces a shift from atopic T-helper type 2
(Th2) responses to Th1-dominated responses through stimulation of the innate
immune system. In addition, it has emerged that regulatory T cells (Treg) play a cru-
cial role in suppressing allergic and non-allergic immune responses (Schaub et al.,
2006; Renz et al., 2006; Sigsgaard and Heederik, 2005). Toll-like receptors (TLRs)
present on the cell surface of innate immune cells recognize microbial motifs called
microbial-associated molecular patterns (MAMPs) (Sabroe et al., 2003). Following
entry to the body through the airways, endotoxins/LPS will encounter alveolar
macrophages carrying CD14 and LPS binding receptors (Ingalls et al., 1999). The
binding of LPS to CD14 is mediated by LPS binding protein (LBP). Via toll-like
receptors (TLR-3 and TLR-4) (Beutler, 2004) the alveolar macrophages will be
activated, leading to the production and release of proinflammatory cytokines
(Reed and Milton, 2016). Cytokines associated with endotoxin exposure are
TNF-α, interleukin (IL) 1-β, IL-6, and IL-8, as well as metabolites of arachidonic
acid. These cytokines will then recruit and activate neutrophils, resulting in local
and systemic inflammation with leukocytosis and neutrophilia. This effect can also
be seen experimentally or observationally: swine dust, cotton dust, or grain dust
exposure is found to increase IL-1β, IL-6, IL-8, TNF-α, and circulating neutrophils
in the airways and causes airway obstruction and methacholine responsiveness
(Li et al., 1995; Schwartz et al., 1995; Wang et al., 1999; Wang et al., 1997;
Senthilselvan et al., 1997; Malmberg and Larsson, 1993; Forteza et al., 1994; Jorna
et al., 1994; Rylander and Bergstrom, 1993). Impairment of TLR4 has also been
found to be associated with a history of atopic disease (Prefontaine et al., 2010).
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8.8.3 The Role of T Regulatory Cells (Treg)

Lack of functional Treg cells, due to a defect in Treg activation is associated with
insufficient repression of both Th1 and Th2 immune responses and has been found
to be associated with atopic disease (Savilahti et al., 2010; Braga et al., 2011;
Braga et al., 2012; O’Garra and Vieira, 2004). Tregs are a subpopulation of T cells
which modulate the immune system, maintain tolerance to self-antigen, and pre-
vent autoimmune disease. T regulatory cells are a T cell subset that produces
IL-10 and TGF-β. Treg cells may act both by cytokine production and by cell–cell
contact signals, as programmed death-1, glucocorticoid-induced TNF receptor,
membrane TGF-β, and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4).
Treg cells contribute to the control of allergen-specific immune responses in five
major ways: (1) Treg cells suppress antigen-presenting cells that support the gen-
eration of effector Th2 and Th1 cells. (2) They suppress Th2 and Th1 cells.
(3) They regulate B cells by suppression of allergen-specific Immunoglobulin E
(IgE) antibodies and induction of Immunoglobulin G4 (IgG4), A (IgA), or both.
(4) They suppress mast cells, basophils, and eosinophils. (5) They interact with
resident tissue cells and remodeling (Braga et al., 2012).

8.8.4 Microbial Diversity vs. The Effect of Single Agents

Besides endotoxin, Ege et.al (Ege et al., 2011) recently argued that most likely it
is the diversity and wider range of types of microbes offered by the farming envir-
onment that contributes to beneficial effects of farming exposure, rather than a
single agent such as endotoxin. Other studies have tried to determine the effect of
specific microorganisms on the development of allergies, and recently the effect of
exposure to Acinetobacter lwoffii F78 and Lactococcus lactis G121 was investi-
gated (Debarry et al., 2007). These two bacteria are in particular found on cattle
farms. Both bacteria showed an ability to reduce allergic reactions in mice, to acti-
vate mammalian cells in vitro, and to induce a Th1-polarizing program in dendritic
cells (Brand et al., 2011). Findings like these suggest that exposure to other com-
ponents than cell wall agents may affect health as well, however the specific role
and contribution to the health effects of the various microbial agents as well as
their potential synergic effects with cell wall agents is still to be established.

8.8.5 Diverse Microbial Exposure and TLR Expression

Research has shown that prenatal and/or early life exposure to the rich microbial
environment of traditional farms induces an up-regulation of innate immunity
receptors that is both robust and long-lasting (Stern et al., 2007). Exposure of the
mother during pregnancy to inhalant allergens is less likely to result in sensitiza-
tion in the child than exposure of the child in early infancy (Kihlstrom et al.,
2003; Szepfalusi et al., 2000). It has been seen that peripheral blood cells from
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farm children expressed significantly higher levels of CD14,Toll-like receptor
2 (TLR2) and Toll-like receptor 4 (TLR4) than cells from non-farm children.
Furthermore, it was indicated that it was farming exposure of the pregnant mothers
that were associated with the enhanced expression (Ege et al., 2006; Lauener
et al., 2002). Additionally reduced maternal Treg numbers and increased Th2 cyto-
kine production during pregnancy has been found to influence the allergy risk of
the child (Hinz et al., 2010). There is evidence that among children of farmers
genetic variation in TLR2 is a major determinant of the susceptibility to asthma
and allergies (Eder et al., 2004).

8.8.6 (1 → 3)-β-D-Glucan Exposure and Known Health Effects

Indoor exposure to fungi has been associated with the development of respiratory
symptoms, though the mechanisms are far from clear (Douwes, 2005). It has been
shown that (1 → 3)-β-D-glucan can initiate a wide range of biological responses in
vertebrates including stimulation of the mononuclear phagocyte system (Di Luzio,
1979), activation of neutrophils (Zhang and Petty, 1994), macrophages (Adachi
et al., 1994; Lebron et al., 2003), complement (Saito et al., 1992) and possibly
eosinophils (Mahauthaman et al., 1988). These potent biological properties of
(1 → 3)-β-D-glucan are relevant irrespective of originating from either live or dead
organisms. However, clarifying the health effect of (1 → 3)-β-D-glucan exposure
has so far been very challenging and largely inconclusive as many studies have
reported conflicting results. Some of the health effects which have been evaluated
include lung function [forced expiratory volume in 1 s (FEV1) and peak flow (PEF)
variability], nasal congestion, airway hyperreactivity, atopy, symptoms (upper and
lower respiratory symptoms, eye irritations, head ache, fatigue/tiredness, joint pains,
skin symptoms, flu-like symptoms, nausea, gastro-intestinal symptoms), inflamma-
tion characterized by inflammatory cells (T-lymphocytes, neutrophils, eosinophils,
macrophages), and cytokines and other inflammatory markers –i.e interleukin
(IL)-1ß, IL-4, IL-6, IL-8, IL-10, Interferon (INF)-c, Tumour necrosis factor (TNF)-
a, Eosinophil cationic protein (ECP), Myeloperokidase (MPO), C-reactive protein
(CRP), albumin- in blood, sputum and nasal lavage (Douwes, 2005).

In an epidemiological context positive associations with glucan exposures have
been reported among both adults and children in relation to symptoms of upper
airway irritation and inflammation, airway responsiveness, increased peak expira-
tory flow variability, systemic reactions and atopy (Gladding et al., 2003;
Rylander et al., 1999; Thorn et al., 1998; Thorn and Rylander, 1998; Douwes
et al., 2000; Bønløkke et al., 2006). Interpretation of the study findings though
need to be made cautiously as population sizes were rather small, study designs
were cross-sectional and in some cases potential interactions with other co-
existing exposures were not taken into account. In a number of studies strong cor-
relations between endotoxin and (1 → 3)-β-D-glucan levels have been reported
and previously experimental studies in animals have suggested inflammatory
responses to enhance in response to combinations of glucans and endotoxin expo-
sures (Douwes, 2005). More research studies with improved and standardised
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exposure assessments in longitudinal designs are warranted to provide insight on
the actual health effects of exposure to glucans.

8.8.7 Health Effects of Other Cell Wall Agents

As mentioned earlier, to date only a limited number of studies addressed the health
effects of cell wall agents other than endotoxins and (1 → 3)-β-D-glucans. There is
some evidence for a potential and maybe even independent role for muramic acid
and ergosterol in the development of health symptoms. Specifically, in a case com-
parison study of symptomatic and non-symptomatic workers of an office building
with a history of water damage Park et al. (2008) examined the association
between house dust measured fungi, ergosterol and endotoxin levels and asthma.
The authors reported increased levels of ergosterol and total fungi to be associated
with an increased prevalence of current asthma (Park et al., 2008). A similar asso-
ciation has also been reported in a cross-sectional analysis of the 1996 follow up
of the European Community Respiratory Health Survey (ECRHS) cohort
(Dharmage et al., 2001). However, cross-sectional studies from Canada reported
no association between ergosterol and respiratory symptoms and cough among ele-
mentary school children (Dales et al., 1999), whereas neither ergosterol nor indoor
moulds seem to influence the illness-associations with endotoxin exposure in
infants (Dales et al., 2006). In contrast to these findings, among school-aged farm
children from Austria, Germany, and Switzerland, increased levels of muramic
acid were found to be associated with lower prevalence of wheezing but not with
atopic sensitization (Van Strien et al., 2004). An inverse association between
increased levels of muramic acid in classroom dust and the prevalence of wheeze
and daytime breathlessness has been reported also among Chinese school children
(Zhao et al., 2008). Based on these findings muramic acid like endotoxin has been
suggested to serve as an independent marker of microbial exposure (Van Strien
et al., 2004). Similar inverse associations have been found between EPS exposure
in mattress dust in German school children and doctor-diagnosed asthma and rhini-
tis(Tischer et al., 2011). More recently, chitin, one of the earliest identified and
most abundant extracellular polysaccharides in nature, has been hypothesised as
playing a role in the development of asthma and allergies but the actual supporting
evidence to date remains rather small (Brinchmann et al., 2011).

8.9 Conclusions and Future Directions

We spend a large proportion of our time indoors, and it is needless to say that our
indoor environment will affect us for better or for worse. Indoor and occupational
exposures to microbial cell wall agents and their associated health effects are far
from elucidated. It is therefore of great importance to continue to improve our
understanding of cell wall component agents that contaminate our indoor air and
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how they affects us. It is clear that the well-studied endotoxins are involved in the
development of the adverse and protective health effects, but for glucans the evi-
dence is more limited and inconclusive. There is some evidence that other micro-
bial cell wall agents are involved in the development of the adverse and/or
protective health effects as well. However, relevant studies have been sparse and
very diverse in their design and applied methods.

In addition, the literature shows large variation in exposure to microbial cell
wall agents in indoor occupational environments, and we still simply lack studies
of actual airborne levels of exposures and determinants of residential indoor air.
The fact that many different assays and sampling methods have been deployed for
evaluation of exposures and levels complicates comparison of results and affects
the establishment of proper exposure limits to protect workers from excess expo-
sure to these agents. Standardisation in methods of determination is highly recom-
mended for future studies as well as a broader adaptation of the recently available
passive airborne dust sampling methods (e.g. EDCs or dustfall collectors) for resi-
dential exposures. It has recently been suggested that both PM10 and PM>10 size
fractions elicit a pro-inflammatory response in airway epithelial cells (Hawley
et al., 2015), which means that dust size fractions should be taken into considera-
tion when assessing potential risks from exposure to agricultural dusts and other
microbial agents which could be found in the indoor environment.

Next to direct effects of cell-wall agents, other components and/or microbial
diversity might be important with respect to both detrimental and beneficial health
effects. The development and application of molecular techniques in exposure
assessment – as reviewed by Casas et al. (2016) – will aid to study the role of
microbial diversity and specific microbes in future studies, and may help to under-
stand the role of the individual and combined exposures in health. Such knowl-
edge is highly needed both for the development of targeted prevention strategies
and the establishment of adequate exposure limits especially within workplaces.
Further research, in particular studies in large populations with a longitudinal
design involving the assessment of the health effects of both distinct microbial cell
wall agents and co-existent microbes is needed to provide more in-depth insight.
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Zeković DB, Kwiatkowski S, Vrvić MM et al (2005) Natural and modified (1→3)-β-d-glucans in
health promotion and disease alleviation. Crit Rev Biotechnol 25:205–230. doi:10.1080/
07388550500376166

Zhang K, Petty HR (1994) Influence of polysaccharides on neutrophil function: specific antago-
nists suggest a model for cooperative saccharide-associated inhibition of immune complex-
triggered superoxide production. J Cell Biochem 56:225–35

Zhao Z, Sebastian A, Larsson L et al (2008) Asthmatic symptoms among pupils in relation to
microbial dust exposure in schools in Taiyuan, China. Pediatr Allergy Immunol 19:455–65.
doi:10.1111/j.1399-3038.2007.00664.x

190 I. Basinas et al.

http://dx.doi.org/10.1164/ajrccm.157.6.9706081
http://dx.doi.org/10.1128/AEM.00527-10
http://dx.doi.org/10.1183/09031936.00091210
http://dx.doi.org/10.1159/000090393
http://dx.doi.org/10.1159/000090393
http://dx.doi.org/10.1016/j.jaci.2004.01.783
http://dx.doi.org/10.1378/chest.117.5.1488
http://dx.doi.org/10.1111/j.1574-6976.2007.00094.x
http://dx.doi.org/10.1046/j.1365-2222.2000.00959.x
http://dx.doi.org/10.1080/00039899909602256
http://dx.doi.org/10.1002/ajim.10042
http://dx.doi.org/10.1080/09629359791550
http://dx.doi.org/10.1093/annhyg/mei047
http://dx.doi.org/10.1080/07388550500376166
http://dx.doi.org/10.1080/07388550500376166
http://dx.doi.org/10.1111/j.1399-3038.2007.00664.x

	8 Endotoxins, Glucans and Other Microbial Cell Wall Agents
	8.1 Introduction
	8.2 What Are Microbial Cell Wall Agents?
	8.3 Why Are Microbial Cell Wall Agents Important?
	8.4 Microbial Cell Wall Agents
	8.4.1 Endotoxins
	8.4.2 Glucans
	8.4.3 Peptidoglycans and Muramic Acid
	8.4.4 Extracellular Polysaccharides and Ergosterol

	8.5 Methods of Quantification
	8.6 Exposure Limits
	8.7 Exposures in Indoor and Occupational Environments
	8.8 Health Effects
	8.8.1 Endotoxin Exposure and the Janus Faced Effect on Health
	8.8.2 A Proposed Immunological Mechanism Supporting the Hygiene Hypothesis
	8.8.3 The Role of T Regulatory Cells (Treg)
	8.8.4 Microbial Diversity vs. The Effect of Single Agents
	8.8.5 Diverse Microbial Exposure and TLR Expression
	8.8.6 (1 &rarr; 3)-β-D-Glucan Exposure and Known Health Effects
	8.8.7 Health Effects of Other Cell Wall Agents

	8.9 Conclusions and Future Directions
	References




