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A B S T R A C T

Long-term exposure to air pollution has been associated with several adverse health effects including cardio-
vascular, respiratory diseases and cancers. However, underlying molecular alterations remain to be further in-
vestigated. The aim of this study is to investigate the effects of long-term exposure to air pollutants on (a)
average DNA methylation at functional regions and, (b) individual differentially methylated CpG sites. An as-
sumption is that omic measurements, including the methylome, are more sensitive to low doses than hard health
outcomes.

This study included blood-derived DNA methylation (Illumina-HM450 methylation) for 454 Italian and 159
Dutch participants from the European Prospective Investigation into Cancer and Nutrition (EPIC). Long-term air
pollution exposure levels, including NO2, NOx, PM2.5, PMcoarse, PM10, PM2.5 absorbance (soot) were estimated using
models developed within the ESCAPE project, and back-extrapolated to the time of sampling when possible. We
meta-analysed the associations between the air pollutants and global DNA methylation, methylation in
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functional regions and epigenome-wide methylation. CpG sites found differentially methylated with air pollution
were further investigated for functional interpretation in an independent population (EnviroGenoMarkers pro-
ject), where (N = 613) participants had both methylation and gene expression data available.

Exposure to NO2 was associated with a significant global somatic hypomethylation (p-value = 0.014).
Hypomethylation of CpG island's shores and shelves and gene bodies was significantly associated with higher
exposures to NO2 and NOx. Meta-analysing the epigenome-wide findings of the 2 cohorts did not show genome-
wide significant associations at single CpG site level. However, several significant CpG were found if the analyses
were separated by countries. By regressing gene expression levels against methylation levels of the exposure-
related CpG sites, we identified several significant CpG-transcript pairs and highlighted 5 enriched pathways for
NO2 and 9 for NOx mainly related to the immune system and its regulation.

Our findings support results on global hypomethylation associated with air pollution, and suggest that the
shores and shelves of CpG islands and gene bodies are mostly affected by higher exposure to NO2 and NOx.
Functional differences in the immune system were suggested by transcriptome analyses.

1. Introduction

Ambient air pollution includes gaseous components such as nitrogen
oxides, benzene, and sulfur dioxide as well as particulate matter. The
latter consists of acids, organic chemicals, metals and soil or dust par-
ticles of varying aerodynamic diameters. Because of their small size,
these particles can be inhaled deeply into the lungs and deposited in the
alveoli. The smallest particles can penetrate the lung epithelium and
reach the blood stream (Brook et al., 2010). Exposure to air pollution is
associated with adverse health outcomes including cardiovascular and
respiratory diseases (Brook et al., 2010; Nawrot et al., 2011). There is
increasing evidence that toxic substances in ambient air at levels that
are at or below the current limits in the European Union may increase
the risk of lung cancer. Analyses of large European cohorts showed that
a 10 μg/m3 increase in PM10 was associated with a 22% (95% con-
fidence interval [CI]: 3 to 45%) greater risk for lung cancer, while a
5 μg/m3 increase in PM2.5 was associated with an 18% (95% CI: −4 to
46%) increased risk (Raaschou-Nielsen et al., 2013). However, the
potential modes of action of air pollutants are not well understood.
Also, hard health outcomes such as cancer or cardiovascular diseases
may not be sensitive enough (or require very large cohorts) to de-
monstrate low-dose effects.

Previous research suggests that inflammation, oxidative damage,
and mitochondrial dysfunction (Demetriou et al., 2012; Mostafavi et al.,
2015; Pettit et al., 2012) may be the underlying mechanisms leading
from exposure to air pollution to health outcomes. Global DNA hypo-
methylation induces genomic instability, for instance through chro-
matin structure modelling (You and Jones, 2012), loss of imprinting,
and increased activation of oncogenes (Feinberg and Tycko, 2004).
Epigenetic studies report an inverse association between global me-
thylation and long-term exposure to ambient air pollution (Baccarelli
et al., 2009; De Prins et al., 2013; Janssen et al., 2013; Sanchez-Guerra
et al., 2015; Tao et al., 2014), especially affecting 5-hydro-
xymethylcytosine methylation (Sanchez-Guerra et al., 2015). However,
analyses of global methylation in these studies were based on the in-
vestigation of LINE-1 or Alu regions, or by means of HPLC, ELISA,
LUMA or LC-MS, and analyses of functional regions in the genome have
not yet been performed in relation to long-term exposure to air pollu-
tion.

Methylation levels at specific loci in genes including tissue factor F3,
interferon gamma (IFN-γ), interleukin 6 (IL-6), toll-like receptor 2 (TLR-
2), intercellular adhesion molecule 1 (ICAM-1), ten-eleven transloca-
tion (TET1) have been reported to be affected by exposure to air pol-
lution (Bind et al., 2015; Bind et al., 2014; Lepeule et al., 2014;
Somineni et al., 2015). Recent studies using Illumina Infinium Human
Methylation 450 K technology (a) identified CpG sites whose methy-
lation levels were affected by short and mid-term exposure to particu-
late matter (Panni et al., 2016); (b) investigated the association be-
tween long-term ambient air pollution exposure and DNA methylation
(candidate sites and global) in monocytes of adults (Chi et al., 2016);

(c) identified differential offspring DNA methylation in mitochondria-
related genes in association with NO2 exposure during pregnancy
(Gruzieva et al., 2016). Also, long-term exposure to air pollution has
been found associated with epigenetic aging measures (Ward-Caviness
et al., 2016).

Using data from the Italian and Dutch components of the European
Prospective Investigation into Cancer and Nutrition cohort study
(EPIC), we investigate if differences in global DNA methylation or DNA
methylation at certain functional regions could be induced by long-term
exposure to air pollutants and could be used as a marker of low-dose
effects. In addition, we adopt an epigenome-wide association study
(EpWAS) approach to identify possible CpG sites whose methylation
levels are affected by long-term exposure to air pollution. Using an
independent population in which DNA methylation profiles and gene
expression are available in the same participants (N = 613), we linked
full-resolution gene expression levels data and methylation levels at
exposure-related CpG sites to potentially characterise the functional
consequences of these methylation alterations.

2. Methods

We first assessed the association between ambient air pollution es-
timates and global DNA methylation including functional regions in the
two EPIC cohorts. In the second part of the manuscript, we performed
an epigenome-wide association study. Finally, we investigated the
transcripts associated with air pollution CpGs in the
EnviroGenoMarkers study.

2.1. Study populations

EPIC is a multi-centre prospective cohort based on healthy, middle-
aged subjects who agreed, following an active invitation, to participate
in the study and to have their health status followed up for the rest of
their lives. The present study included participants from two large
population-based cohorts: the Italian and Dutch components of the
EPIC study (EPIC-Italy, N = 47,749 and EPIC-Netherlands (EPIC-NL),
N = 33,066); (Beulens et al., 2010; Palli et al., 2003).

- The Italian samples originate from two case-control studies on
breast cancer (N = 231) (van Veldhoven et al., 2015) and colorectal
cancer (N = 304), from two EPIC – Italy centres: Varese and Turin.

- The Dutch samples originate from a longitudinal study on weight
change in healthy women nested within EPIC-NL (N = 170).

The rationale and design of the EPIC study have been described
elsewhere (Riboli and Kaaks, 1997). The EPIC study protocol was ap-
proved by the ethical review boards of the International Agency for
Research and Cancer (IARC) and by the local participating centres. For
all participants, anthropometric measurements and lifestyle variables
were collected at recruitment (1993–1998) through standardized
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questionnaires, together with a blood sample. The Italian cancer cases
were diagnosed with colon or breast cancer> 1 year after recruitment,
and were healthy at the time of sampling.

2.2. Air pollution exposure assessment

Following the ESCAPE protocol (Beelen et al., 2013; Eeftens et al.,
2012) addresses of the participants have been geocoded and air pol-
lution concentrations at the baseline residential addresses of study
participants were estimated by land-use regression models in a three-
step, standardized procedure. First, particulate matter with an aero-
dynamic diameter of< 10 μm (PM10), particulate matter with aero-
dynamic diameter of< 2.5 μm (PM2.5), PM2.5 absorbance (PM2.5abs)
determined by measurement of light reflectance (a marker for soot and
black carbon), nitrogen oxides (NOx), and nitrogen dioxide (NO2) were
measured in different seasons at residential locations for each cohort
between October 2008, and April 2011 (Beelen et al., 2013; Eeftens
et al., 2012). PMcoarse was calculated as the difference between PM10

and PM2.5 (i.e., PM with diameter 2.5–10 μm). In Varese, only NO2 and
NOx were available. Second, land-use regression models were devel-
oped for each pollutant in each study area, with the yearly mean con-
centration as the dependent variable and an extensive list of geo-
graphical attributes as possible predictors (Beelen et al., 2013; Eeftens
et al., 2012). Generally, predictors for PM10, PM2.5, NOx, and NO2 were
related to traffic and population density. Variables related to industry,
proximity to a port, and altitude were also predictors in some models.
The models generally explained a large fraction of measured spatial
variation, the R2 from leave-one-out cross-validation usually falling
between 0.60 and 0.80. Finally, the models were used to assess ex-
posure at the baseline address of each cohort member. Details on this
procedure can be found on the website http://www.escapeproject.eu/
manuals/. In EPIC-NL and the Turin component of EPIC Italy PM10,
PMcoarse, PM2.5, PM2.5 absorbance, NOx and NO2 are available. In the
Varese component of EPIC-Italy only NOx and NO2 are available.

Air pollution measurements were performed in
2008–2011,> 10 years after enrolment. We therefore extrapolated air
pollution concentrations predicted by the land use regression models
back to the time of enrolment using the absolute difference and the
ratio between the two periods, based on data from routine background
monitoring network site(s). For each study participant's home address,
the back extrapolated concentration was obtained by either multiplying
the modelled ESCAPE annual mean concentration with the ratio be-
tween average annual concentrations as derived from the routine
monitoring site(s) for baseline and for the ESCAPE measurement period
time or by adding to the modelled ESCAPE annual mean concentration
the difference between the baseline and the ESCAPE measurement
period time. The needed routine measurement data for back-extra-
polation were only available for NO2 and NOx in EPIC-Italy and for
NO2, NOx, PM10 and PM2.5 absorbance in EPIC-NL. Details about the
back-extrapolation method can be found on the following website
http://www.escapeproject.eu/manuals/Procedure_for_extrapolation_
back_in_time.pdf.

2.3. Epigenome-wide DNA methylation

Epigenome-wide DNA methylation profiles were obtained using the
Illumina Infinium® HumanMethylation450 BeadChip. Epigenome-wide
DNA methylation analyses were performed on samples using the
Illumina Infinium HumanMethylation450 platform. Laboratory proce-
dures were carried out according to manufacturers' protocols at the
Human Genetics Foundation (Turin, Italy) and at ServiceXS BV (Leiden,
The Netherlands) for the Italian and Dutch samples respectively. Buffy
coats (leukocytes) stored in liquid nitrogen were thawed, and genomic
DNA was extracted using the QIAGEN QIAsymphony DNA Midi Kit.
DNA (500 ng) was bisulphite-converted using the Zymo Research EZ-96
DNA Methylation-Gold™ Kit, and hybridised to Illumina Infinium

Human Methylation450K BeadChips. These were subsequently scanned
using the Illumina HiScanSQ system, and sample quality was assessed
using control probes present on the micro-arrays. Finally, raw intensity
data were exported from Illumina GenomeStudio (version 2011.1).
Data pre-processing was carried out using in-house software written for
the R statistical computing environment. For each sample and each
probe, measurements were set to missing if obtained by averaging in-
tensities over less than three beads, or if averaged intensities were
below detection thresholds estimated from negative control probes.
Background subtraction and dye bias correction (for probes using the
Infinium II design) were also performed. The probes targeting auto-
somal CpG loci (number of sex chromosomes = 11,648) were selected
for further analyses. In these lists probes targeting non-specific CpGs
(N = 40,590) were removed (Price et al., 2013). Probes detected
in< 20% of the samples were excluded from the analyses leaving us
with N = 398,372 and 339,810 for Italy and the Netherlands respec-
tively for the analyses. Methylation levels at each CpG locus were ex-
pressed as the ratios of intensities arising from methylated CpGs over
those arising from the sum of methylated and unmethylated CpGs (Beta
values). The data was trimmed for outliers defined by> 3 interquartile
ranges below the first quartile or above the fourth quartile.

2.4. Gene expression

Both blood-derived methylation (using the same Illumina 450 K
technology) and genome-wide gene expression profiles (Agilent
4 × 44 K human whole genome microarray platform) were available in
N = 613 participants from the EnviroGenomarkers study, which is
described elsewhere (www.envirogenomarkers.net) (Georgiadis et al.,
2016). Briefly, this study combines subjects from EPIC-ITALY (EPIC-
Turin, EPIC-Florence, EPIC-Naples, EPIC-Varese, EPIC-Ragusa), which
are different from the EPIC-Italy samples used for the air pollution
EpWAS, and subjects from the Northern Sweden Health and Disease
Study (NSHDS) (Bingham and Riboli, 2004; Hallmans et al., 2003).
Both studies used population-based recruitment with standardized
lifestyle and personal history questionnaires, anthropometric data and
blood samples collected at recruitment (1993–1998 for EPIC-ITALY;
1990–2006 for NSHDS). The EnviroGenomarkers project and its asso-
ciated studies and protocols were approved by the Regional Ethical
Review Board of the Umea Division of Medical Research, as regards the
Swedish cohort, and the Health Unit Local Ethical Committee, as re-
gards the Italian cohort, and all participants gave written informed
consent.

2.5. Statistical analyses

2.5.1. DNA methylation
After removing subjects that failed quality control for the DNA

methylation arrays (N = 5 for EPIC-Italy and N = 11 for EPIC-NL) and
those with missing values on air pollution estimates or confounders
(N = 15 covariates and 61 air pollution for EPIC-Italy), 454 and 159
subjects were included in the analyses for EPIC-Italy and EPIC-NL, re-
spectively.

Because of the strong air pollution contrast between Italy and the
Netherlands, with lower air pollution estimates in the Netherlands not
overlapping with those of Italy (Fig. S1), pooling data from both
countries would hamper the possibility to disentangle country-specific
from exposure effects, and would therefore penalize our results inter-
pretability. For that reason, we meta-analysed the 2 EPIC cohorts and
also adopted a stratified approach by showing the results of the two
datasets separately. We considered three ways to define individual
methylation profiles in concordance with a method described in a
previous study (van Veldhoven et al., 2015): (i) global methylation, as
measured by the arithmetic mean of beta-values across all somatic
probes (N = 337,779) that were retained after quality control checks
both in EPIC Italy and EPIC NL, (ii) methylation of seven categories of
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CpG sites: physical characteristics (CpG islands, shelves, shores, or
other) and functional characteristics (promoter, gene body or inter-
genic), and (iii) EpWAS: methylation fraction at each of the CpG sites
assayed that passed quality control (N = 398,372 and 339,810 for Italy
and the Netherlands). Irrespective of the DNA methylation metric, we
investigated potential differences in relation to exposure to long-term
air pollution estimates in EPIC-Italy and EPIC-NL.

As already proposed (Campanella et al., 2014), DNA methylation
levels were modelled as dependent variable in a generalized linear
model with beta-distributed response using the parameterization of
Ferrari and Cribari-Neto (2004). The β value (0–1 scale) represents the
difference in methylation percentage for every unit (μg/m3) increase of
air pollutant. To account for residual technical confounding, all models
were adjusted for the position of the sample on the micro-array. Ad-
justment covariates included age at blood collection (continuous),
smoking status (never, former, current), and sex; except for EPIC-NL
which has only females and never and former smokers. In EPIC-Italy,
models were also adjusted for the eventual prospective cancer diagnosis
later in life (breast or colon cancer). All analyses were adjusted for
blood cell composition estimated using an established de-convolution
approach (Houseman et al., 2012). We employed a cross-phenotype
meta-analysis approach (CPMA) (Cotsapas et al., 2011) based on the
associations between global and regional methylation and air pollution
and we used fixed effects models with inverse-variance weighting for
individual CpG sites. In the latter, multiple testing was corrected for by
using a stringent Bonferroni correction (ensuring a control of the family
wise error rate below 0.05 in the epigenome-wide analyses significance
level = 1.1e−7). For completeness, we report CpG sites that are sig-
nificant after FDR-correction (< 0.20).

2.5.2. Targeted integration of gene expression data, pathway analyses
We used linear regressions models relating all assayed transcripts

(N = 29,662) to the methylation levels in a subset of CpG sites found to
be associated with air pollution in at least one cohort. As already re-
ported, (Chadeau-Hyam et al., 2014) we used a linear model approach
to account for technical variation during the acquisition of gene ex-
pression and methylation profiles. Specifically, we ran a linear model
setting the dates of the main experimental steps: RNA isolation, label-
ling, and hybridization, for gene expression data and array and position
on array for methylation data. Removing from the observed values of
gene expression and methylation levels the estimates of the random
effects we obtained ‘technically de-noised’ profiles which were subse-
quently used in the linear models for targeted integration. CpG–tran-
script pairs were considered significant based on Bonferroni 5% sig-
nificance level (per-test significance level α′ = 0.05 / (N × 29,662),
where N denotes the number of CpG sites under investigation. Genes
whose expression level was found involved in any CpG-transcript pairs
were uploaded into an online overrepresentation analysis tool, DAVID
6.7 (https://david.ncifcrf.gov), to identify enriched pathways. Path-
ways with Bonferroni p-value smaller than 0.001 and fold change
bigger than 1.5 were considered significant (Huang da et al., 2009). We
additionally performed the same pathways analyses using genes ex-
pressed in human peripheral blood leukocyte (Palmer et al., 2006) as
background.

3. Results

Population characteristics and air pollution estimates are reported
in Tables 1, A.1 and Fig. A.1. Across all air pollution estimates, levels in
Italy were much higher than those in the Netherlands, with limited
overlap. The EPIC-NL study only consisted of female nonsmokers.
Characteristics of the excluded subjects with missing values are com-
pared with the study population in Supplementary Table A.2.

3.1. Global methylation

We observed inverse associations between NO2 levels and global
methylation on somatic chromosomes in EPIC-Italy (β =−0.00007;
SE = 0.00003; p-value = 0.014), in EPIC-NL (β =−0.00388;
SE = 0.00133; p-value = 0.031); and from the meta-analyses of the
results of both cohorts (CPMA p-value = 0.014; Table 2). In association
to NOx, we observed a significant difference of −0.01% in methylation
for every unit (μg/m3) increase in NOX exposure in EPIC-Italy and a
trend for lower methylation in the meta-analysis (CPMA p-
value = 0.089).

A meta-analysis on exposure to NO2 identified statistically sig-
nificant average hypomethylation associated to NO2 in all genetic and
functional regions except for CpG-islands (CPMA p-values ranging from
0.010 to 0.029). Meta-analysing results from both studies, we found
consistent average hypomethylation across shelves, shores, other non-
CpG-island related regions and gene bodies (CPMA p-values ranging
from 0.019 to 0.045) in relation to environmental exposure to NOx.
These associations were also detected in stratified analyses by cohort,
but were weaker in EPIC-NL. We conducted meta-analyses for ex-
posures to PM which did not result in any statistically significant
finding. In EPIC-Italy, exposures to PM10 and PMcoarse were found sig-
nificantly associated with hypermethylation on the promoter region of
genes (PM10: β = 0.0005; SE = 0.0002; p-value = 0.032; PMcoarse:
β = 0.0007; SE = 0.0003; p-value = 0.035).

For the available back-extrapolated data, we found a significant or
borderline significance global hypomethylation on somatic chromo-
somes in relation to exposure to NO2 and NOx in both countries and
with the two back-extrapolation methods (Supplemental Table A.3 and
A.4). As previously observed, almost all functional regions except CpG
islands were hypomethylated and the associations were weaker in EPIC-
NL. Back-extrapolated data for particulate matter were only available in
EPIC-NL (PM10 and PM2.5 absorbance). As previously observed, no
significant associations were seen for PM2.5 absorbance but a significant
or borderline significance hypermethylation was seen for PM10 on so-
matic chromosomes and functional regions except CpG islands, shores
and promoters (contrary to previously).

Sensitivity analyses excluding the subjects that developed cancer

Table 1
Population characteristics at sampling.

EPIC-Italy EPIC-Netherlands

N 454 159
Females 323 (71%) 159 (100%)
Age 54.2 ± 7.1 58.8 ± 5.6
Smoking
Never 234 (52%) 93 (58%)
Former 111 (24%) 66 (42%)
Current 109 (24%) –

BMI 25.5 ± 4.0 25.7 ± 4.2
Education
Primary school 253 (56%) 29 (18%)
Secondary school 164 (36%) 107 (67%)
University level 37 (8%) 23 (15%)

Cancers cases n (%)
Breast cancer 82 (18%) NA
Colon cancer 133 (29%) NA

Time to diagnosis (year) 6.10 3.36
Air pollution estimates (μg/m3)
NOx 92.83 (34.46–131.00) 29.69 (24.25–42.58)
NO2 50.00 (22.26–67.92) 19.98 (16.74–28.91)
PM10 46.91 (38.24–53.23) 24.49 (23.96–26.16)
PMcoarse 16.75 (10.88–20.65) 8.05 (7.71–8.57)
PM2.5 30.95 (26.74–32.73) 16.63 (16.40–17.12)
PM2.5abs 3.38 (2.34–3.64) 1.19 (1.10–1.48)

Counts (percentages) and means ± standard deviation are reported for categorical and
continuous variables, respectively. Air pollution estimates are reported as mean
(5th–95th centile). NA: not applicable.
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Table 2
Association between global methylation and air pollution estimates in EPIC-Italy and EPIC-NL.

β EPIC-Italy β EPIC-NL CPMA

SE p-value SE p-value p-value

NO2

Somatic probes −7.37e−5 3.00e−5 0.014 −2.88e−3 1.33e−3 0.031 0.014
Relation to CpG island
Island −4.04e−5 2.80e−5 0.140 −1.63e−3 1.23e−3 0.185 0.359
Shelves −1.48e−4 5.95e−5 0.013 −4.67e−3 2.40e−3 0.051 0.020
Shores −8.50e−5 3.36e−5 0.011 −2.62e−3 1.17e−3 0.025 0.010
Other −1.28e−4 5.11e−5 0.012 −3.68e−3 1.92e−3 0.055 0.020

Position on gene
Promoter −6.23e−5 2.67e−5 0.019 −2.46e−3 1.16e−3 0.033 0.019
Gene body −8.05e−5 3.14e−5 0.010 −2.82e−3 1.30e−3 0.029 0.010
Intergenic −9.17e−5 3.86e−5 0.017 −3.03e−3 1.61e−3 0.060 0.029

NOx

Somatic probes −1.37e−4 6.64e−5 0.039 −9.17e−4 5.76e−4 0.112 0.089
Relation to CpG island
Island −2.37e−5 6.19e−5 0.702 −5.05e−4 5.31e−4 0.341 0.653
Shelves −3.24e−4 1.31e−4 0.014 −2.05e−3 1.03e−3 0.045 0.019
Shores −1.59e−4 7.44e−5 0.032 −1.15e−3 5.03e−4 0.022 0.021
Other −2.87e−4 1.13e−4 0.011 −1.54e−3 8.22e−4 0.061 0.020

Position on gene
Promoter −9.54e−5 5.91e−5 0.106 −7.61e−4 5.01e−4 0.129 0.216
Gene body −1.57e−4 6.93e−5 0.024 −9.89e−4 5.60e−4 0.077 0.045
Intergenic −1.91e−4 8.51e−5 0.025 −1.08e−3 6.95e−4 0.119 0.067

PM10

Somatic probes 2.87e−4 2.53e−4 0.257 −2.22e−3 4.77e−3 0.642 0.885
Relation to CpG island
Island 3.98e−4 2.17e−4 0.067 -3.15e−3 4.36e−3 0.470 0.394
Shelves 3.12e−4 4.94e−4 0.529 −3.04e−3 8.52e−3 0.721 0.358
Shores 4.12e−4 2.69e−4 0.125 −1.63e−3 4.19e−3 0.698 0.773
Other 2.73e−4 4.17e−4 0.513 −1.64e−3 6.82e−3 0.811 0.306

Position on gene
Promoter 4.56e−4 2.12e−4 0.032 −2.46e−3 4.14e−3 0.553 0.260
Gene body 2.47e−4 2.62e−4 0.346 −2.04e−3 4.63e−3 0.659 0.685
Intergenic 3.14e−4 3.17e−4 0.322 −1.42e−3 5.74e−3 0.805 0.601

PMcoarse

Somatic probes 4.88e−4 3.86e−4 0.206 −1.11e−2 8.83e−3 0.209 0.489
Relation to CpG island
Island 5.37e−4 3.32e−4 0.105 −1.35e−2 8.07e−3 0.095 0.172
Shelves 6.13e−4 7.54e−4 0.416 −1.12e−2 1.58e−2 0.478 0.771
Shores 6.33e−4 4.11e−4 0.123 −1.29e−2 7.74e−3 0.095 0.192
Other 5.04e−4 6.36e−4 0.428 −1.15e−2 1.26e−2 0.364 0.918

Position on gene
Promoter 6.85e−4 3.24e−4 0.035 −1.31e−2 7.64e−3 0.087 0.067
Gene body 4.17e−4 3.99e−4 0.297 −9.50e−3 8.59e−3 0.269 0.729
Intergenic 5.45e−4 4.84e−4 0.260 −1.06e−2 1.06e−2 0.320 0.749

PM2.5

Somatic probes −4.10e−4 5.87e−4 0.486 −5.61e−3 5.86e−3 0.338 0.887
Relation to CpG island
Island 1.36e−5 5.07e−4 0.979 −7.52e−3 6.17e−3 0.223 0.712
Shelves −6.25e−4 1.15e−3 0.586 −1.11e−2 1.04e−2 0.285 0.878
Shores −4.24e−5 6.27e−4 0.946 −6.58e−3 5.46e−3 0.228 0.720
Other −5.95e−4 9.68e−4 0.539 −7.69e−3 8.27e−3 0.353 0.799

Position on gene
Promoter 2.92e−6 4.96e−4 0.995 −6.03e−3 5.39e−3 0.263 0.596
Gene body −4.08e−4 6.07e−4 0.502 −5.45e−3 5.65e−3 0.335 0.874
Intergenic −3.90e−4 7.36e−4 0.597 −5.72e−3 7.06e−3 0.418 0.627

PM2.5abs

Somatic probes −1.21e−3 2.63e−3 0.647 −2.94e−2 2.09e−2 0.161 0.857
Relation to CpG island
Island 1.94e−3 2.27e−3 0.392 -2.89e−2 2.21e−2 0.190 0.699
Shelves −3.51e−3 5.14e−3 0.494 −6.04e−2 3.69e−2 0.102 0.543
Shores 2.91e−5 2.80e−3 0.998 −3.30e−2 1.95e−2 0.090 0.784
Other −3.80e−3 4.33e−3 0.380 −4.25e−2 2.95e−2 0.150 0.588

Position on gene
Promoter 1.09e−3 2.22e−3 0.624 −2.68e−2 1.92e−2 0.164 0.596
Gene body −1.39e−3 2.72e−3 0.609 −3.06e−2 2.01e−2 0.128 0.874
Intergenic −2.32e−3 3.29e−3 0.481 −3.21e−2 2.52e−2 0.202 0.627

The different measures for particulate matter (PM10, PM2.5, PM2.5 absorbance and PMcoarse) are available in 297 subjects of the Turin centre while NO2 and NOx are available for 454
subjects. β = regression coefficient; SE = standard error for regression coefficient. β value (0–1 scale) represents the difference in methylation for every unit (μg/m3) increase of air
pollutant. The cross phenotype meta-analysis p-value is shown as CPMA p-value.
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later in life were conducted, and provided similar results for NOx ex-
posure. Although the direction of the association remained the same,
we observed weaker, non-significant associations for NO2

(Supplemental Table A.5). Sensitivity analyses not correcting for cancer
case status provided similar results, though with stronger associations
for NO2 (Table A.6.).

3.2. Epigenome-wide analyses

The meta-analyses of EPIC-NL and EPIC-Italy showed that no in-
dividual CpG sites were significantly associated to the air pollution
components and indicated high heterogeneity between the site-specific
methylation levels (Table A.7).

By stratifying site-specific methylation differences by study, the
analyses of NO2 (Table 3, Table A.8) revealed 12 significant associa-
tions in EPIC-Italy (Fig. A.3) and none in EPIC-NL (Fig. A.4). Of the 12
significant CpG sites in EPIC-Italy, the vast majority (11 CpG sites)
showed hypomethylation. The epigenome-wide association study of
NOx identified 1 and 6 differentially methylated CpG in EPIC-Italy and
EPIC-NL, respectively (Table 3, Table A.8). Of the differentially me-
thylated sites found in EPIC-NL, 5 CpG sites were hypomethylated.

In EPIC-Italy, we identified only 1 differentially methylated CpG site
in relation to PM2.5 (Table 4, Table A.8) but no significant CpG sites
with the other PM metrics. More associations were found in EPIC-NL,
where we identified 4, 9, and 7 differentially methylated CpG loci, for
PM10, PM2.5, and PM2.5abs respectively (Table 4; Table A.8). Among
those, 2 CpG sites were found associated with the 3 exposures with the
same direction: cg17629796 (hypomethylated) and cg03513315 (hy-
permethylated). Four additional CpG sites overlapped for PM2.5 and
PM2.5abs: cg07084345 and cg00005622 (hypomethylated), cg04319606
and cg09568355 (hypermethylated). The use of back-extrapolated ex-
posure estimates affected the associations only marginally, however
CpG cg03513315 and cg17629796 were no longer significantly asso-
ciated with PM10 in EPIC-NL (Tables A.9, A.10).

In total, we identified 32 unique CpG sites differentially methylated
at an epigenome-wide level with at least one of the 5 air pollution
components in at least 1 cohort. Of these, 21 CpG sites were annotated.

FDR significant CpG sites with an adjusted p-value of maximum 0.2 are
presented in Table A.11 and A.11 for respectively EPIC-Italy and EPIC-
NL.

Concerning the cancer cases in the EPIC-Italy we performed 2 sen-
sitivity analyses: i) when excluding the subjects that developed cancer
later in life, all identified CpG sites remained nominally significant
(p < 0.05), 12 being Bonferroni significant (p < 0.05/
14 = 3.75e−03) except for cg22856765 (p = 0.0575) (Table A.13); ii)
when not correcting for cancer case status, all associations remained
significant (p < 3.75e−06) (Table A.14).

3.3. Investigation of the CpG-transcript pairs

To study the association between the 21 exposure-related and an-
notated CpG sites (Tables 3 and 4) and transcriptomic profiles, we as-
sessed the association of the 21 × 29,662 = 622,902 CpG–transcript
pairs in the EnviroGenoMarkers study. We identified 2135 significant
CpG–transcript pairs, corresponding to 620 unique genes, that were
associated to CpG sites related to NO2, 598 genes for NOx related CpGs,
41 for PM10, 174 for PM2.5 and 173 unique genes for PM2.5abs. The
number of positive and inverse associations is shown is Table A.15.
Gene enrichment analyses using the default background (all genes ex-
pressed in Homo sapiens) and based on these sets of transcripts identi-
fied significantly enriched pathways (setting the EASE score below 0.01
and the minimal number of genes per group to 5) as summarised in
Table 5. We found 5 enriched pathways for NO2 and 9 for NOx mainly
relating to the immune system and its regulation. No significant en-
riched pathway was found for the particulate matter exposures. Chan-
ging the background list of genes to those found expressed in leukocytes
from human peripheral blood (Palmer et al., 2006), we found no sig-
nificant enriched pathway after correction for multiple testing. How-
ever, several nominally significant pathways were found: 26, 42, 5, and
4 for NO2, NOx, PM2.5 and PM2.5abs respectively (Table A.16). Several of
the pathways found for NO2 and NOx relate to the immune system and
its regulation.

Table 3
CpG sites whose methylation is significantly associated with exposure to NO2 or NOX for EPIC-Italy and EPIC-NL at Bonferroni significance level (p < 1.1e−7).

CpG Gene CHR Localisation on Gene Localisation on CGI β SE p-Value

NO2 EPIC-Italy
cg08120023 C1orf203 1:116947203 – Body −0.00321 0.00054 3.02e−9
cg18201392 RNF2 1:185023741 – 5UTR −0.00483 0.00090 8.02e−8
cg04914283 EPHB2 1:23181832 – Body −0.00464 0.00086 5.85e−8
cg18164357 C11orf67 11:77534497 South shelf 5UTR −0.00892 0.00155 9.61e−9
cg16205861 – 12:54146572 South shore – −0.00387 0.00072 6.57e−8
cg03870188 MCF2L 13:113717830 North shelf Body −0.00429 0.00075 1.02e−8
cg12790758 MEIS2 15:37369914 – Body −0.00439 0.00081 7.06e−8
cg20939320 NCRNA00119 3:132563279 – Body −0.00616 0.00112 3.49e−8
cg21156210 RG9MTD2 4:100485208 Island TSS1500 0.01002 0.00185 6.03e−8
cg13420207 CACNA2D1 7:81666278 – Body −0.00983 0.00181 5.56e−8
cg22856765 THAP1 8:42693384 – 3UTR −0.00818 0.00139 4.27e−9
cg13918628 CD72 9:35610380 – 3UTR −0.01169 0.00220 1.02e−7

NOx EPIC-Italy
cg05036212 – 2:119609691 North shore – 0.00370 0.00067 3.60e−8
EPIC-NL
cg08509991 COL17A1 10:105845720 – TSS200 0.05303 0.00988 8.01e−8
cg09487985 – 12:34484805 North Shelf – −0.02267 0.00413 4.01e−8
cg18059012 PATL2 15:44969129 – TSS200 −0.02653 0.00495 8.54e−8
cg18351711 ODZ3 4:183243982 – TSS1500 −0.03160 0.00572 3.28e−8
cg12232118 TRIM15 6:30131458 – 5UTR −0.02979 0.00488 1.03e−9
cg09499965 – 7:151220664 South Shelf – −0.02527 0.00408 5.97e−10

CpGs sites that are significant after correction for multiple testing are shown (Bonferroni p-value 1.1e−7).
The number of subjects in the analyses in EPIC-Italy is 454.
β value (0–1 scale) represents the difference in methylation for every unit (μg/m3) increase of air pollutant. TSS = transcription start site, UTR = untranslated region.
Column headers: Gene = UCSC annotated gene; CHR = chromosome and Chromosomal position; localisation on Gene = UCSC gene region feature category; Localisation on
CGI = UCSC relation to CpG islands; β= regression coefficient; SE = standard error for regression coefficient.
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4. Discussion

By affecting the epigenome and downstream processes, DNA me-
thylation has the ability to biologically mediate the effect of environ-
mental exposures. The main finding of this study was that lower DNA
methylation levels in several functional regions on the genome in-
cluding CpG island's shores and shelves and gene bodies were asso-
ciated with exposure to higher ambient outdoor concentrations of NO2

and NOx.
In EPIC-Italy, global hypomethylation was found associated with

higher annual averages of NO2 and NOx. The association with NOx did
not reach statistical significance in EPIC-NL, which could be attributed
to a lower statistical power, to the overall lower exposure levels ob-
served in the Netherlands, or to other population differences between
the 2 cohorts. Future studies should further investigate whether the

methylome is actually sensitive to low levels of exposure. Reduced
global DNA methylation in blood quantified by high-performance liquid
chromatography has been previously reported after mid-term exposure
of 60 days to ambient NO2 (De Prins et al., 2013), while a study with
annual NOx exposures did not find this association investigating Alu
and LINE repeats (Chi et al., 2016). Since a hallmark of cancer is
genome instability (Hanahan and Weinberg, 2011), lower DNA me-
thylation resulting from exposure to NO2 and NOx could enable the
development of cancers. This hypothesis is reinforced in a recent meta-
analysis showing evidence for a relationship between NO2, as a proxy
for traffic-related air pollution, and lung cancer (Hamra et al., 2015).
Indeed, global DNA hypomethylation has been suggested to play an
important role in environment-related cancers (Cao, 2015; Koestler
et al., 2012; van Veldhoven et al., 2015).

Our study investigated epigenome-wide DNA methylation and long-

Table 4
CpG sites whose methylation is significantly associated with exposure to PM10, PM2.5, and PM2.5abs for EPIC-Italy and EPIC-NL at Bonferroni significance level (p < 1.1e−7).

CpG Gene CHR Localisation on gene Localisation on CGI β SE p-Value

PM10 EPIC-NL
cg17629796 – 13:30707265 – – −0.38612 0.07252 1.01e−7
cg03025825 SMG6 17:1975245 – Body −0.39554 0.07483 1.25e−7
cg03513315 PES1 22:30988383 Island TSS1500 0.22314 0.04245 1.47e−7
cg21232615 C9orf11 9:27292606 – Body −0.34525 0.06082 1.37e−8

PM2.5 EPIC-NL
cg12575202 – 10:133331128 – – −0.46704 0.08005 5.40e−9
cg08630381 – 13:100612277 Island – 0.46095 0.07291 2.58e−10
cg17629796 – 13:30707265 – – −0.56342 0.09407 2.11e−9
cg07084345 – 15:61972967 – – −0.51254 0.07480 7.26e−12
cg04319606 C2orf70 2:26785290 Island TSS200 0.26098 0.06824 1.31e−7
cg09568355 – 2:45228633 Island – 0.26098 0.04958 1.41e−7
cg03513315 PES1 22:30988383 Island TSS1500 0.30682 0.05820 1.35e−7
cg25489413 ZMIZ2 7:44794343 – TSS1500 −0.36547 0.06762 6.48e−8
cg00005622 – 8:145180403 North shore – −0.39818 0.06408 5.16e−10
EPIC-Italy
cg23890774 – 19:36618841 Island – 0.07774 0.01385 1.98e−8

PM2.5abs EPIC-NL
cg17629796 – 13:30707265 – – −2.18426 0.36365 1.90e−9
cg16608593 MTA1 14:105912068 Island Body −1.07134 0.18704 1.02e−8
cg07084345 – 15:61972967 – – −1.84644 0.28999 1.92e−10
cg04319606 C2orf70 2:26785290 Island TSS200 1.37346 0.25425 6.59e−8
cg09568355 – 2:45228633 Island – 0.99171 0.18423 7.32e−8
cg03513315 PES1 22:30988383 Island TSS1500 1.18511 0.21738 4.99e−8
cg00005622 – 8:145180403 North shore – −1.32860 0.25132 1.25e−7

CpGs sites that are significant after correction for multiple testing are shown (Bonferroni p-value: 1.1e−7).
The number of subjects in the analyses in EPIC-Italy is 297.
β value (0–1 scale) represents the difference in methylation for every unit (μg/m3) increase of air pollutant. TSS = transcription start site, UTR = untranslated region.
Column headers: Gene = UCSC annotated gene; CHR = chromosome and Chromosomal position; localisation on Gene = UCSC gene region feature category; Localisation on
CGI = UCSC relation to CpG islands; β= regression coefficient; SE = standard error for regression coefficient.

Table 5
Significant pathways associated with the CpG-transcript pairs.

Database Term Count p-Value Fold enrichment Bonferroni-corrected p-Value (5%)

NO2

GOTERM_BP_FAT GO:0002694~regulation of leukocyte activation 23 9.50e−9 4.44 2.24e−5
GOTERM_BP_FAT GO:0050865~regulation of cell activation 23 2.53e−8 4.21 5.99e−5
GOTERM_BP_FAT GO:0051249~regulation of lymphocyte activation 20 1.64e−7 4.33 3.87e−4
INTERPRO IPR001849:Pleckstrin homology 27 7.16e−7 3.09 6.42e−4
GOTERM_CC_FAT GO:0044459~plasma membrane part 108 7.63e−7 1.57 2.58e−4

NOx

GOTERM_BP_FAT GO:0046649~lymphocyte activation 28 1.52e−10 4.45 3.54e−7
GOTERM_BP_FAT GO:0045321~leukocyte activation 30 6.40e−10 3.92 1.49e−6
GOTERM_BP_FAT GO:0050865~regulation of cell activation 24 6.70e−9 4.33 1.56e−5
GOTERM_BP_FAT GO:0051249~regulation of lymphocyte activation 22 7.71e−9 4.70 1.79e−5
GOTERM_BP_FAT GO:0002694~regulation of leukocyte activation 23 1.23e−8 4.38 2.86e−5
GOTERM_BP_FAT GO:0050863~regulation of T cell activation 19 2.54e−8 5.13 5.91e−5
GOTERM_BP_FAT GO:0001775~cell activation 30 3.20e−8 3.30 7.45e−5
GOTERM_BP_FAT GO:0002684~positive regulation of immune system process 26 1.38e−7 3.45 3.22e−4
SP_PIR_KEYWORDS B-cell 7 1.03e−6 17.89 4.40e−4
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term air pollution using the Illumina 450 K technology, which enabled
us to study the overall methylation across the main functional genomic
regions. In subjects exposed to higher levels of NO2 and NOx, we ob-
served lower methylation levels in CpG island's shores and shelves and
gene bodies, however not in CpG-islands. CpG island's shores are de-
fined as the 2 kb of sequences flanking a CpG island; they have been
reported to be more dynamic than the island itself (Bibikova et al.,
2011; Irizarry et al., 2009) and are thought to have a functional role in
the regulation of gene expression (Tao et al., 2014; Vanderkraats et al.,
2013). Flanking the shores, shelves are defined as the neighbouring
2 kb genomic regions. In the assembly of shores and shelves there are
various levels of stability corresponding to different levels of control on
gene expression (Edgar et al., 2014). Although the method we used to
determine global methylation averages the results of a high-resolution
epigenome-wide array, we find a stable signal in shore and shelve re-
gions. Describing the molecular pathways leading to global or regional
hypo- or hypermethylation is speculative since the process has not been
completely elucidated yet. However, a central role for reactive oxygen
species has been put forward (Wu and Ni, 2015).

Cancer-associated DNA hypomethylation as well as hypermethyla-
tion occur, and these two types of epigenetic abnormalities usually
seem to affect different DNA regions (Ehrlich, 2002). In this study, we
also found a positive association (hypermethylation) between DNA
methylation on promoter regions and PM10 and PMcoarse exposures.
Other studies reported an inverse association between the global me-
thylome (Alu repeats) and short time PM-exposure (Bellavia et al.,
2013). We only found this association in the Italian cohort, possibly
because of its higher exposure levels or larger size. At the gene-specific
level, increased DNA methylation of tumour suppressor genes has been
reported in carcinogenesis (Feinberg and Tycko, 2004) and particulate
matter is classified by IARC as a group 1 carcinogen (Loomis et al.,
2014). Further studies will be needed to confirm whether tumour
suppressor genes drive the effects of higher methylation in relation to
particulate matter exposure.

Based on the cohort-specific EpWASes, we identified several novel
single CpG sites not previously associated to air pollution. For example,
the CpG site cg03513315 located on the PES1 gene (Pescadillo
Ribosomal Biogenesis Factor) was positively associated to PM10, PM2.5

and PM2.5abs in EPIC-NL. This gene seems to play a role in breast cancer
proliferation and tumorigenesis. Also, the CpG cg18351711 located on
the promoter region of the gene ODZ3 also known as Teneurin
Transmembrane Protein 3 (TENM3) was inversely associated to NOx in
EPIC-NL and is involved in regulation of neuronal development. Using
meta-analyses to combine the epigenome-wide findings in EPIC-Italy
and EPIC-NL did not provide evidence of robust associations between
epigenome-wide methylation and air pollution components. Since
several CpG loci were associated with NO2, NOx, PM2.5, PM10 and
PM2.5abs exposures in EPIC-Italy or EPIC-NL, we attempted to further
generalize these study-specific results from EPIC-Italy and EPIC-NL to
other studies, including the German KORA F3, F4 studies (Holle et al.,
2005; Wichmann et al., 2005) and the Spanish REGICOR study (Grau
et al., 2007). Of the CpG sites we found differentially methylated in
relation to exposure in either EPIC-Italy or EPIC-NL, none reached
statistical significance either by a replication approach (taking into
account multiple testing) in either KORA or REGICOR, or when per-
forming a meta-analysis combining all the cohorts (Appendix p3, Table
A.3). A translation of the CpGs associated with at least one of the ex-
posures in at least one of the cohorts to the transcriptomic level resulted
in significant pathways for NOX and NO2 exposure mainly in the im-
mune system. One important mechanism of air pollution induced health
effects is the induction of a persistent inflammatory state mediated by
the immune system (Patel et al., 2013). A study in older men of the
Normative Aging study used a targeted approach to show that exposure
to particles is associated to the methylation state of inflammatory genes
(Bind et al., 2015).

A study on short-term to mid-term exposure to PM2.5 including

KORA F3 and F4 meta-analysed data from 450 K human methylation
Infinium arrays in 3 cohorts and did identify several significant CpG
sites (Panni et al., 2016), as did a study in cord blood that meta-ana-
lysed 4 cohorts (Gruzieva et al., 2016). Possible explanations for the
negative (not replicated) results of our epigenome-wide analyses of
long-term exposure can involve (i) differences in the study populations;
however, sensitivity analyses stratifying for sex or smoking status in our
studies did not result in more replication (results not shown); (ii) dif-
ferences in exposure levels, with Italy being the highest exposed cohort,
the Netherlands having a narrow exposure range, and with only minor
overlap between the 2 cohorts; (iii) air pollution being a mixture of
pollutants which may have multiple and synergistic effects. In the case
of PM, either the compounds absorbed to the particles can cause da-
mage or the particles themselves can cause inflammatory reactions
(Gong et al., 2014). Hence, the complexity of toxicological pathways
involved could be related to exposure levels, and at an epigenome-wide
level this might be an important reason why we observe study-specific
results. Using single probe analyses to identify strong replicable signals
for a complex exposure such as long-term air pollution should be ad-
dressed in larger populations.

Despite the large number of tests performed in epigenome-wide
association studies, previous studies have been able to find and re-
plicate strong exposure-triggered signals, for instance in relation to
smoking (Guida et al., 2015; Zhang et al., 2014). Air pollution occurs at
levels that are much lower than other exposures such as smoking and
this can explain differences in the magnitude of health effects or the
molecular changes underlying them.

Future studies can explore the epigenome-wide signals of exposure
to long-term air pollution in the general population by either pooling
the results of several cohorts with well-matched laboratory conditions
and accurate air pollution exposure models or by performing larger
meta-analyses including several studies. These additional analyses
should also include non-linear models to account for possible complex
dose-response relationship.

Our study has specific strengths and limitations. We used GIS
(Geographical Information System) and land use regression modelling
based on actual measurements in the designated study areas combined
with predictor variables for nearby traffic intensity, population/
household density and land use models, which have been generated and
validated in the ESCAPE study (Beelen et al., 2013; Eeftens et al., 2012).
Several studies have shown that the spatial distribution of air pollution
is stable over 10-years periods (Eeftens et al., 2012; Gulliver et al.,
2011) and can be applied successfully to estimate air pollution con-
centrations several years forwards or backwards in time. Although the
absolute level of exposure to air pollution has generally decreased over
time, measured and predicted NO2 values from LUR models, from
samples collected> 10 years apart, had good agreement and showed
spatial stability (Cesaroni et al., 2012). Also in this study, we observed
associations with global and regional methylation both when exposure
was assessed at the historical home address (with data on air pollution
dating from> 15 years later than the population sampling), and with
back-extrapolated estimates. Since we have methylation information
only at a single time point, we cannot describe the effect of exposure to
air pollutants over time. For regional methylation, we did not correct
for multiple testing as we only look at the results of these analyses
marginally and never compare them or either conclude on the joint
associations. Nevertheless, all of the associations would survive cor-
rection for 5 tests which correspond to the effective number of tests
performed among the 7 actual tests.

Due to the nested case–control design of this study population
cancer cases have been included in EPIC-Italy. These individuals were
diagnosed with colon or breast cancer> 1 year after recruitment.
However, these cancers are not known to be related to air pollution. In
order to account for potential bias, we corrected for disease status in
our models and performed sensitivity analyses by restricting the study
population to healthy controls and by not adjusting for the cancer case
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status. In these analyses the sign and estimates of the effect sizes were
consistent, and most of the relevant associations were found nominally
significant.

5. Conclusions

In our study, lower DNA methylation levels in CpG island's shores
and shelves and gene bodies in adults were associated with exposure to
higher ambient outdoor concentrations of NO2 and NOx. These differ-
ences in methylation may point to a mechanism underlying the asso-
ciation between air pollution and health outcomes. Our results may
indicate a specific response to low dose exposure which should be
further studied to test whether the methylome can be used as a low-
dose marker. Exposure to air pollutants, however, was not associated
with differential DNA methylation in single probes in the combined
analyses of the two cohorts.
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