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Abstract
Linking and equating procedures are used to make the results of different test forms comparable. In the
cases where no assumption of random equivalent groups can be made some form of linking design is
used. In practice the amount of data available to link the two tests is often very limited due to logistic
and security reasons, which affects the precision of linking procedures. This study proposes to enhance
the quality of linking procedures based on sparse data by using Bayesian methods which combine the
information in the linking data with background information captured in informative prior distributions.
We propose two methods for the elicitation of prior knowledge about the difference in difficulty of two
tests from subject-matter experts and explain how these results can be used in the specification of priors.
To illustrate the proposed methods and evaluate the quality of linking with and without informative
priors, an empirical example of linking primary school mathematics tests is presented. The results suggest
that informative priors can increase the precision of linking without decreasing the accuracy.

Translational Abstract
If each year a new version of an educational test is used then the results of the new version are not directly
comparable to the results of the reference test version due to the difference in difficulty of the 2 tests and
the differences in the ability of the new and reference populations of students. Typically extra data (other
than the examination data) are collected to compare the difficulty of the items in the two tests. However,
in high stakes testing, where the amount of data that are available to link the reference and the new test
are limited due to security reasons, these extra data do not provide enough information to obtain the
desired levels of certainty. In this article we argue that linking data are not the only source of information
about the difference in the difficulty of the two test forms. Experts may also provide information about
this difference. In the study we propose and evaluate two methods for elicitation of the prior knowledge about
the difference in difficulty of two tests from subject-matter experts. The results prove the utility of the
proposed methodology, since the precision of the linking results increases without the increase in bias.
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If different test forms of an educational test measuring the same
ability are administered to different populations of students (e.g.,
from different years), their results are not directly comparable
because of the differences in the difficulty of the tests and the
differences in the ability in the populations. Linking and equating
techniques are ways to make the scores on the tests comparable.
For linking a current test to the reference test form different
linking designs can be used (Angoff, 1971; Kolen & Brennan,
2004; Lord, 1980; Petersen, Kolen, & Hoover, 1989; Wright &
Stone, 1979).

In high-stakes testing (e.g., examinations) different test forms
often do not have items in common due to security reasons. If the
forms are administered under the assumption of nonequivalent
groups it is necessary to collect additional data to link the different
test forms (Mittelhaëuser, Béguin, & Sijtsma, 2015). Most com-
monly a type of anchor test is used, but the administration of
anchor tests under appropriate conditions is challenging and ex-
pensive (Keizer-Mittelhaëuser, 2014). In this article we consider a
situation in which two test forms can be connected through the so
called linking groups in a pretest nonequivalent group design
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(Béguin, 2000), because that is common for high-stakes examina-
tions in the Netherlands, but the methodology developed in this
article can be also used with different linking designs.

When item response theory (IRT) is used for linking, item
parameters of the items in the current and the reference tests have
to be placed on the same scale (Kolen & Brennan, 2004; von
Davier, 2011). This can be done either by estimating the IRT
parameters in the two tests separately and then placing them on the
same scale using scale transformation methods (Haebara, 1980;
Loyd & Hoover, 1980; Marco, 1977; Stocking & Lord, 1983), or
by estimating the parameters of the two test forms together in
concurrent calibration (Wingersky & Lord, 1984). Once the item
parameters are put on the same scale, the predicted score distri-
bution of the reference population on the current test can be
estimated. A cut-score (i.e., a minimum number of correct re-
sponses needed to pass the test) for the current test can be deter-
mined using IRT observed score equating using equipercentile
linking (Lord & Wingersky, 1984).

Unlike examination data, which usually consist of responses of
thousands of students to test items, the linking data are often not
sufficiently large, such that the uncertainty about the difference
between the difficulties of the two tests and, hence, about the new
cut-score is rather large. These data are often collected in nonex-
amination conditions (with different levels of stress and motiva-
tion) and not from the populations of interest. Thus, the linking
data often do not provide a high enough quality of linking (in terms
of uncertainty and bias of the cut-scores).

From the Bayesian perspective, the data are not the only source
of information about the item parameters. A second source is the
background information which can be captured in the prior distri-
butions. It has been advocated that using informative priors is
useful in practical applications (Goldstein, 2006; Vanpaemel,
2011). The purpose of this study is to develop methods to improve
the quality of linking by combining the information from the
linking data and the informative priors. We explore different ways
of eliciting the prior distributions about the difference in difficulty
of the two tests from subject-matter experts and using them to link
the two tests. In this study we focus on tests that involve the use
of cut-scores to render classification decisions (e.g., pass/fail or
different levels of mastery), but the methods for elicitation of prior
distributions are applicable to other contexts as well.

There have been studies with a focus on specification of infor-
mative priors for the parameters of IRT models. Item features (e.g.,
operations involved in solving the item, number of response alter-
natives, or use of negation in the formulation of the item) can be
used to predict the item parameters (Fisher, 1973; Tatsuoka, 1987),
which can be included as prior knowledge for Bayesian estimation
of the item parameters (Mislevy, 1988). This source of prior
information has been also used in the context of test equating and
linking (Mislevy, Sheehan, & Wingersky, 1993). However, infor-
mation about item features that are good predictors of the difficulty
is not always available. Other authors include judgmental infor-
mation from subject-matter experts in the estimation of the item
parameters (Bejar, 1983; Ozaki & Toyoda, 2006; Swaminathan,
Hambleton, Sireci, Xing, & Rivazi, 2003; Wauters, Desmet, & van
der Noordgate, 2012). The latter has not been done in the context
of test linking, and the expert judgments were only used to im-
prove the estimation of the individual item parameters. Judgmental
information about the items difficulties is also collected in the

context of standard setting (Cizek & Bunch, 2007; Geisinger,
1991; Shepard, 1980). In some standard setting procedures the
cut-score for the test is selected based solely on expert judgments,
in others after the experts’ judgments are collected experts are
informed about the results from the linking data and can update
their judgments before establishing the cut-scores. However, this
updating is not done in a formalized way of quantifying expert
knowledge as prior distributions which are combined with data
using Bayesian statistical inference. In our study we develop a
formal way of combining prior knowledge elicited from subject-
matter experts with information from linking data.

Experts’ judgments of individual items are often not reliable,
however judgments about sets of items are more reliable because
there is less variation in the means than in individual observations.
Hence, combined on the test level expert judgments can provide
valuable information about the relations between two tests. There-
fore, we argue that the expert knowledge about the item difficulties
is especially useful for test equating and linking. Another reason
for a special interest in using experts’ judgments in the context of
test linking is that from the examination data we can estimate the
differences between the item difficulties within the reference test
and within the current test with high precision and the only thing
that is missing is the information about the relations between the
tests. Therefore, the information available from the examination
data can be used to help in obtaining more valid and reliable
judgments with respect to the relations between the two tests.

This article is structured as follows. First, the measurement
model and the equating design used throughout the article are
discussed. Then, in Section Elicitation of prior knowledge about
the difference between the difficulty of two tests, we propose two
methods for elicitation of the prior knowledge about the test
difficulty from experts. The first one is an adaptation of the Angoff
standard setting procedure (Angoff, 1971). The second method
was designed by us for more direct elicitation of the experts’
knowledge about the differences between the difficulties of the
two tests. In Section 4 Empirical example, the two elicitation
methods are compared in terms of the quality of linking with the
elicited priors using an empirical example based on the primary
school mathematics test ”Entreetoets Groep 7.” The article is
concluded with a discussion.

Measurement Model and Equating Design

In this study the marginal Rasch model (Rasch, 1960) is used
assuming a normal distribution for proficiency. It models the
probability of a correct response to an item in a population:

Pr(Xi � 1) � ��

exp(� � �i)
1 � exp(� � �i)

N(�; �, �2)d�, (1)

where Xi denotes a binary coded response (1 for correct and 0 for
incorrect) to item i with difficulty �i of a person randomly sampled
from the population with the mean and the variance of proficiency
� equal to � and �2. The Rasch model was chosen because it has
a clear interpretation of the item difficulty. If �i � �j, then both the
conditional (i.e., given a particular value of �) and the marginal
probability (Equation 1) of a correct response to item i is smaller
than to item j. This is important when translating experts’ judg-
ments of the type “Item i is more difficult than item j” into
statements about the model parameters (�i � �j). This is not
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possible if an item discrimination parameter is added to the model,
like is done in the two parameter logistic model (Lord & Novick,
1968). We assume that all the items, both in the current and in the
reference test, have the same discriminative power. Although the
Rasch model is a rather restrictive model, it has been shown that
equating results using the Rasch model are rather robust to model
violations (Béguin, 2000).

We consider a pretest nonequivalent group equating design with
G linking groups. This design is visualized in Figure 1, where rows
represent persons and columns represent items. We denote the data
matrix of the reference exam by X, the data of the current exam by
Y and the data of the G linking groups by Z1, Z2, . . . , ZG. By X�

we denote the unobserved responses of the reference population to
the current test.

When concurrent Bayesian calibration is used for linking the
two tests, samples from the joint posterior of the model parameters
need to be obtained:

p(�r, �c, �r, �r
2, �c, �c

2, �1, �1
2, . . . , �G, �G

2 | X, Y, Z1, . . . , ZG),

(2)

where �r and �c are the vectors of item difficulties of the items in
the reference and the current tests, respectively; �r and �c are the
means of proficiency of the reference and the current populations
respectively, �e

2 and �c
2 are the corresponding population variances,

and �1, �1
2, . . . , �G, �G

2 are the population parameters in the
linking groups. A zero point for the IRT scale is fixed by setting
the average difficulty of the items in the reference test equal to
zero: ��r. Using samples from the posterior in (Equation 2) the
score distribution of the reference population on the current test
(score distribution in X�) is estimated and the new cut-score is
determined using equipercentile equating (see Appendix A, section
Estimating the cut-score spass).

The linking data are the only data that provide information about
the difference between the average difficulty of the items in the
current test and the average difficulty of the items in the reference
test, denoted by 	 � ��c � �� r; under the stated identification that
�� r � 0, this renders 	 � ��c. Since the linking data are sparse, the
largest part of the uncertainty about what the new cut-score should
be is coming from the uncertainty about �. We aim to increase the

precision of the estimate of the new cut-score by including prior
information about � in the estimation. The following reparametri-
zation is used throughout the article (see Figure 2):

�c
* � �c � ��c � �c � 	 (3)

�c
* � �c � ��c � �c � 	, (4)

The rest of the article is focused on the specification of the prior
distribution of �.

Elicitation of Prior Knowledge About the Difference
Between the Difficulty of Two Tests

Information about the difference between the average difficulty
of the items in the current test and the average difficulty of the
items in the reference test can be collected from subject-matter
experts who can judge the difficulty of the items in the two tests.
In this section we describe the two methods developed for the
elicitation of the prior knowledge about �. In the following section
we compare the performance of these methods in an empirical
elicitation study.

Both methods use item difficulties estimated from the exami-
nation data. Because we also used the data to calibrate the two test
forms on the same scale, we need to divide the examination data
(both from the reference and from the current exams) into two
halves: the first half which is used to facilitate the elicitation of
experts’ knowledge about the mutual order of the items and to
construct priors for the item and the population parameters, here
called the training data, and the second half which is used for the
estimation of the new cut-score, here called the estimation data
(see Appendix A for technical details).

Adaptation of the Angoff Method for Elicitation of the
Prior Knowledge About �

The first method that we developed is an adapted version of the
Angoff method of standard setting (Angoff, 1971). Unlike the
regular use of the Angoff method and other standard setting
procedures we use the experts’ judgments not to set the cut-scores
directly but use these judgments for the specification of the infor-
mative prior for �. In this way the cut-scores can be estimated
based on both the experts’ knowledge and the linking data.

Traditionally in the Angoff method, each expert e � {1: E} from
a panel of E experts is asked for each test item to give the
probability that a minimally competent (borderline) candidate will
answer this item correctly:

pie � Pr(Xip � 1 | �p � �*), (5)

where �� is proficiency of a borderline candidate. These probabil-
ities are then added over items to obtain the expected score of a
borderline candidate which is chosen as a cut-score. In our study,
we use the experts’ evaluations of the probabilities pie differently.
If each expert evaluates all items, then based on the Rasch model
her/his estimate of the difference between the average difficulties
of the items in the current and the reference test denoted by �e can
be computed as

	e �
�i�{c} ln�1 � pie

pie
�

| c | �
�j�{r} ln�1 � pje

pje
�

| r | , (6)

where {r} and {c} are the sets of items in the reference and the
Figure 1. Equating design with G linking groups: rows represent persons,
columns represent items.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

707USING EXPERT KNOWLEDGE FOR TEST LINKING



current tests, respectively. It can be seen that Equation 6 which
defines �e does not include the level of the proficiency �� which
means that the expert’s estimate �e does not have a systematic
upward bias if the expert overestimates the level of the borderline
candidate or a downward bias if �� is underestimated. However, when
giving instructions to experts it is important how �� is defined, as it
may be easier for experts to make predictions about the performance
of a borderline candidate when the level of proficiency is moderate
(e.g., producing probabilities of a correct response between .2 and .8)
than for more extreme definitions of ��.

Letting each expert evaluate all items is very time consuming
and can lead to experts’ judgments being less valid and reliable
due to fatigue and loss of motivation. In our adapted procedure
only a subset of items {r�} from the reference test and a subset of
items {c�} from the current test are used. Then, for each expert we
compute the difference between the average difficulties of the
items in the subsets {c�} and {r�}, denoted by �e

�:

	e
* �

� i�{c*}ln�1 � pie

pie
�

| c* |
�

� j�{r*}ln�1 � pje

pje
�

| r* |
. (7)

	e
* is not equal to �e since the items in the subsets are not fully

representative of the full tests:

	e � (d̂r � d̂c) � 	e
*, (8)

where d̂r is the difference between the average difficulty in the
subset {r�} and the average difficulty in the set {r}, and d̂c is the
difference between the average difficulty in the subset {c�} and
the average difficulty in the set {c}. These two quantities can be
estimated from the training data.

The prior distribution of � is chosen to be a normal distribution

p1(	) � N�(d̂r � d̂c) � �w, �w
2� (9)

where �w �
�ewe	e

*

�ewe
is the weighted mean of 	e

* across the experts and

�w
2 �

�ewe�	e
* � �w�2

1 � �ewe
2 is the weighted variance. The weights are deter-

mined by how well the estimated pie from each expert correlate
with the observed proportions of correct responses to the items
within each test in the training data. Because the probabilities are
bounded between 0 and 1, before computing the correlation the
estimated and the observed probability are logit-transformed, that

is, lie � ln� pie

1�pie
� and li � ln� pi

1�pi
� and the weights are computed

as follows:

we � 1
2(Cor(lre, lr) � Cor(lce, lc))ICor(lre,lr)
0ICor(lce,lc)
0, (10)

where lre and lce are the vectors of logits of probabilities of length
| r* | and | c* | , respectively, evaluated by expert e, and lc and lr are
the observed logit-transformed proportions of correct responses to
the items in the training data. If one of these correlations is
negative for a particular expert then this expert gets a weight of
zero. The weights defined in Equation 10 are in a way themselves
a sort of prior information, regarding the experts, obtained based
on the analyses of training data.

Rulers Method for Direct Elicitation of the Prior
Knowledge About �

One could imagine two rulers on which the positions of the
items within each test are indicated (see Figure 3). As the arrows

Figure 2. Reparametrization of the model parameters.

Figure 3. Two rulers with item difficulties estimated within each test: The arrows indicate that relative position
of the rulers needs to be determined by experts.
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show, the rulers can be arbitrarily shifted to the left or to the right
relative to each other, because the examination data do not tell us
anything about the relative position of these two rulers. Prior
knowledge about how these rulers should be positioned relative to
each other can be elicited from experts. The most direct way would
be to give an expert the rulers with the empirical item positions
within each test and ask her/him to determine the proper mutual
position of the two rulers. But comparing two complete tests with
a large number of items is a very complicated task which is
practically impossible to complete. For that reason, we developed
a procedure in which experts are asked to compare smaller sets of
items which have to be carefully selected. Our method is different
from just asking the experts to specify the mutual order of the
items in the two tests, because the empirical within-test items
orders and the distances between the item difficulties within each
test make many of the orders impossible, for example in Figure 3
the order �1 � �1

* � �2
* � �3

* � �2 is not possible since the distance
between �3

* and �1
* is larger than the distance between �2 and �1.

When developing the elicitation procedure, we carried out a
pilot study with one expert to figure out what problems experts
might experience when comparing sets of items. First, we ob-
served that it was much easier for the expert to compare items of
similar content. Another observation was that sometimes the ex-
pert did not agree with the empirical order of the item difficulties
within a test which made specifying the mutual order of the items
in the two sets senseless. Based on these observations, we devel-
oped the elicitation procedure consisting of several steps. In the
first step, items are selected from the reference and the current test
so that they are similar to each other in content and differ from
each other in difficulty. In the second step, each expert e �
�1 : E	 orders the item difficulties within each test and only those
items for which the expert’s order and the order observed in the
training data match are retained. In the third step, each expert
aligns the remaining items from the reference test to the items from
the current test. In this way, we make sure that the problems
observed in the pilot study will not occur. Below we describe the
three steps of the procedure in detail.

Preliminary item selection.

1. Divide the items within each test into homogenous
groups based on the content, for example in a language
test items may be divided in spelling, grammar, and
punctuation subgroups. Often tests consist of clearly de-
fined subdomains. If that is not the case, then experts can
be asked to help divide the items in homogeneous sub-
groups. The subgroups should not be made too small, six
to eight items per subgroup should be sufficient.

2. Estimate the item difficulties with a Rasch model sepa-
rately for the items in the reference test and in the current
test given the training data.

3. Select the largest subset of items from each homogenous
group, such that the posterior probability of each pair of
items within the subset to have a certain order of item
difficulties is larger than 95%.1 If multiple subsets can be
constructed, then select one of them at random. The
elicitation procedure cannot be used if these subsets
cannot be constructed, that is if either there is not enough

variation in item difficulty or if there are not enough data
to be certain about the order of the item difficulties.

Final item selection (performed separately for each
expert e).

1. An expert orders the items within each homogeneous
group based on their difficulty, for the two tests sepa-
rately.

2. A subset of items from a set is retained if the expert’s
order of this set does not contradict the order observed in
the training data. For example, if the observed order is:

�̂1 � �̂2 � �̂3 � �̂4, (11)

and the expert’s order is:

�1e � �3e � �2e � �4e, (12)

then the expert’s order within the subsets {1, 2, 4} and
{1, 3, 4} do not contradict the empirical order. Both
subsets can be used in the procedure. To make the selec-
tion of items automatic, one of these subsets is chosen
randomly.

3. If for one of the content groups of items, in one of the
tests there is no pair of items to be retained, then this
group is discarded from both tests. Therefore, after the
final selection of items different experts might have dif-
ferent number of item groups to compare.

4. The quality of the judgments of expert e is quantified by
the average proportion of items for which the expert’s
order and the empirical order were the same, denoted by
pe. In the case of empirical and expert orders in (Equation
11) and (Equation 12) this proportion is equal to.75. pe

used to weigh the expert’s judgments, such that the
effect of the prior distribution elicited from an expert
on the combined prior decreases if her/his judgments
rarely match the observed data. The weight of expert e
is equal to

we �
pe � p0

� e(pe � p0)
, (13)

where p0 is the expected average proportion of items
which would be obtained if the order produced by a
hypothetical expert is random.

Shifting two rulers. This stage is done for all content groups
j � 
1 : Je�, where Je is the number of the content groups retained
for expert e and consequently the number of judgments about the
parameter � which are elicited from her/him. Starting from the third
step of the procedure the rulers method is illustrated in Figure 4.

1. The expert is presented with a set of items from the
reference test from one of the content groups ordered

1 This posterior probability can be approximated by the proportion of
samples from the posterior distribution (given in Equations 23 and 24 in
Appendix A) in which a certain order holds for the sampled values of the
item difficulties.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

709USING EXPERT KNOWLEDGE FOR TEST LINKING



from the easiest to the most difficult one, and with an
ordered set of the items from the current test (from the
same content group). The items are positioned according
to the distances between the item difficulties estimated
from the training data. The expert can shift these two sets
of items relative to each other to the right or to the left,
but cannot change the positions of the items within a test,
since they are fixed at the estimated difficulties.

2. The expert places the two sets together on the common
scale according to her/his best guess. In each of the
content groups we obtain the mutual order of the items
and the estimate of the mode of the prior distribution,
denoted by 	̂ej (see “Best guess” in Figure 4).

3. To evaluate the expert’s uncertainty about the estimate,
she/he is asked to place the item sets in the two most
extreme positions which the expert still considers plau-
sible: first in which the set of items from the current test
has the rightmost position on the scale (resulting in an
upper bound 	ej

max) and second in which it has the leftmost
position in the scale (resulting in a lower bound 	ej

min; see
“Extreme 1” and “Extreme 2” in Figure 4).

The above described procedure of experts’ judgments collection
for each expert e results in multiple sets �	̂ej, 	ej

min, 	ej
max	, ∀j �


1 : Je�. Next, we describe how this information can be translated
into the prior distribution of �.

Each pair of sets of items to be ordered presents the expert with
an opportunity to express her/his beliefs about the relative diffi-
culties of the items in the two sets and her/his uncertainty about the
assessment of these relative difficulties. Through our method, each
pair of sets produces an estimate of the mode of the expert’s prior,
as well as an estimate of the lower and the upper bound of the
region that the expert still considers to be credible. This credible
range was operationalized as the 90% credible interval for that
expert’s prior, and hence the lower and the upper bound that were
specified by the expert are used as an estimate of her/his 5% and
95% percentiles, respectively. Because the extreme positions do
not have to be symmetric around the mode, to approximate the
prior knowledge elicited from expert e in judgment j we need a
distribution which allows for skewness. A skew-normal distribu-
tion (Azzalini, 2005) is used:

pej(	) � Skew-normal (�ej, 
ej, �ej), (14)

where �ej specifies the location, 	ej specifies the spread and 
ej

Figure 4. Scheme of the rulers method after the final selection of items.
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specifies the degree of skewness of the distribution. The skew-
normal distribution includes a normal distribution as its special
case when �ej � 0. The parameters of the distribution are chosen
in such a way that 	ej

min and 	ej
max are the fifth and the 95th quantiles

and 	̂ej is the mode (see Appendix B for the details).
Each judgment of expert e adds extra information about which

values of � are plausible according to this expert. Separate judg-
ments of the same expert are assumed to be independent; therefore,
to combine the information from several judgments, we use a
product of the distributions pej�	�:

pe(	) �
� jpej(	)

�
��

�

� jpej(	)d	

, (15)

where the normalizing constant in the denominator ensures that
pe�	� is a proper distribution. This integral does not have a closed
form solution and is therefore approximated here by numerical
integration with Gauss-Hermite quadrature (see Equation 58 in
Appendix B). The motivation for the independence assumption is
that each judgment refers to a different set of items with a unique
combination of item features influencing the item difficulty, which
an expert takes into account.

When combining the information from the different experts, we
use linear opinion pooling (O’Hagan et al., 2006; Stone, 1961):

p2(	) � �
e

wep(e)(	), (16)

where the weights we computed using (Equation 13) make sure that
the results of the experts with higher quality judgments have a larger
influence on the prior p2�	�. We prefer linear opinion pooling over
logarithmic opinion pool because the latter being a geometric mean of
individual distributions leads to unrealistically strong aggregated be-
lieves. Moreover, linear opinion pool does not rule out the low or the
high values of the parameter that are supported by a minority of the
experts (O’Hagan et al., 2006, p. 184).

Differences Between the Two Elicitation Methods

From a practical perspective there are some important differ-
ences between the two proposed methods. While the Angoff
method is simple to implement—the items need to be presented to
the experts, either in a paper-and-pencil or in a computerized
format, the rulers method requires more elaborate preparations. It
has to be implemented in a computerized procedure which may
need some adaptation to a specific set of items. The second
difference between the methods is that the experts’ judgments can
be collected using Angoff method prior to exam administration,
but for collecting the judgments using the rulers method the
examination data have to be available for the specification of item
locations in the computerized procedure. However, the procedure
can be prepared beforehand such that as soon as the examination
data come in, one is able to collect the experts’ judgments.

The methods also differ from the cognitive perspective. First, in
the Angoff method experts provide absolute judgments about each
of the items, while in the rulers method experts provide compar-
ative judgments, ordering sets of items. The latter might provide
better results since people are often more reliable when comparing
objects than when giving absolute judgments (Laming, 2004).

Second, in the Angoff method the items are presented sequentially,
while in the rulers methods sets of items are presented simultane-
ously, which puts higher cognitive demand on the experts. The
number of items presented simultaneously should not exceed the
capacity of working memory (7 � 2; Miller, 1956). Third, unlike
in the Angoff method, in the rulers method partial feedback is
provided to the experts with respect to the item order within each
test. When combining the item orders from two tests they can use
the information in the order of the items within each test as a
reference for aligning the two sets. This kind of external informa-
tion is not available in the Angoff method.

Empirical Example

Data

For illustrating and comparing the methods of test linking using
prior knowledge, we used the data from the test of mathematics for
primary school “Entreetoets Group 7” taken by students in the
Netherlands at the end of the 5th grade. The same test consisting
of 120 items was administered in 2008 and 2009. The test was
divided into 10 groups based on content: (a) mental arithmetics;
(b) mental arithmetics—estimation; (c) arithmetic operations; (d)
number relations; (e) geometry; (f) measurement of length and
surface; (g) measurement of weight and volume; (h) percentages,
fractions and ratios; (i) time; (j) money and then each subgroup
was randomly divided into two parts. We treated the first part as
the reference test and the second part as the current test. The
populations of 2008 and 2009 were treated as the reference and the
current population, respectively. Hence, an equating problem was
artificially created for the data set in which the responses of the
persons from what we labeled as “reference population” to the
items from what we labeled “current test” were actually observed
(see Figure 5). This makes it possible not only to illustrate the
procedures introduced in Section Elicitation of prior knowledge
about the difference between the difficulty of two tests but also to
evaluate them by comparing the estimate of the new cut-score
obtained with the different priors based on the predicted responses
of the reference population to the current test (see Figure 5b
denoted by “?”) with the cut-score, derived from the observed
responses of the reference population to the current test in the
complete data (see Figure 5a). Hence, the latter is used as a proxy
of the true cut-score.

The data set of each year consisted of responses of more than
100,000 students. Because the linking procedures developed in this
study are meant for tests administered to smaller samples, re-
sponses of 2,000 persons from each year were randomly selected
as examination data. The data for three linking groups with re-
sponses to randomly selected eight items from the reference test
and eight items from the current test were selected from the data of
2008. Although they were sampled from the same population as
the examination data, this fact was ignored in the estimation,
assigning separate parameters for the mean and the variance of
proficiency in each linking group.

Because based on this particular arithmetics test students are
assigned to one of five levels of proficiency (from A to E), four
cut-scores need to be estimated. The cut-scores between the levels
in the reference test (denoted by sref) were 49, 42, 35, and 24
correct responses. The corresponding cut-scores for the current test

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

711USING EXPERT KNOWLEDGE FOR TEST LINKING



maintaining the same standard need to be estimated. A true cut-
score for the current test (denoted by spass,true) was determined
from the complete data (see Figure 5a) as such a score that the
proportion of persons from the reference population with scores on
the current test below this score is as close as possible to the
proportion of persons from the reference population with scores on
the reference test below the corresponding sref:

spass,true � argmins���p �I� �
i�{r}

xpi � sref� � I� �
i�{c}

xpi
* � s���2�.

(17)

In this way the true cut-scores for the current test were deter-
mined to be equal to 50, 43, 37, and 26 correct responses.

Method

To evaluate the linking results based on different priors we
analyzed how the estimated cut-scores for the current test (spass)
changed depending on the prior specification.

For each cut-score in the reference test we estimated a cut-score
in the current test using different priors and compared it to the true
cut-score spass,true. To take into account the sampling variability,
we resampled the data (both the persons and the items) for the
linking groups 100 times to examine the distribution of the esti-
mated cut-scores across these resampled data sets, to evaluate how
often each of the cut-scores is correctly estimated:

ktrue � �
k�1

100

I(spass,k � spass,true) (18)

and how large the mean squared error (MSE) is:

MSE � 1
100�

k�1

100

(spass,k � spass,true)
2, (19)

where spass,k is the estimated cut-score from the k-th resampled
data set.

We also used the average number of misclassified students
across the resampled data sets to compare the quality of linking
based on different priors. In each resampled data set the number of
persons from the current population who were assigned to an
incorrect level of proficiency due over- or underestimation of the
cut-scores was counted. If the estimates of the cut-scores are

centered around the true values and do not vary a lot then this
number would be small.

To analyze how the influence of the prior distribution changes
depending on the size of the linking data, we varied the number of
persons per linking group: Nl � 100, 200, 300, and 500.

In addition to p1�	� defined in Equation 9 and p2�	� defined in
Equation 16, we also used a vague prior:

p0(	) � N(0, 100) (20)

to show the added value of using prior knowledge.

Pilot Study

Prior to the main elicitation study a pilot study was conducted
with a group of nine experts who were members of the construc-
tion groups, who develop items for mathematical tests at the Dutch
National Institute for educational measurement. A computerized
procedure implementing the rulers method and a paper-and-pencil
Angoff procedure were tried out during a group meeting in which
each expert evaluated the items using both methods.

Based on the results of the pilot study several decisions were
made. Minor adjustments were implemented in the computerized
procedure to make sure that the instructions were properly fol-
lowed. Furthermore, we decided that it would be better to organize
individual face-to-face sessions with experts instead of group
sessions because in this way any questions that the participants
might have can be answered immediately and instructions can be
clarified if needed (see O’Hagan et al., 2006).

The pilot study demonstrated that it was rather difficult for the
participants to evaluate the item difficulty and order the items along a
single dimension of mathematics ability. Because most of the experts
who participated in the elicitation study were teachers, they had a lot
of practical experience with primary school mathematics but lacked
more theoretical knowledge in item analysis. Having observed this,
we were confronted with two options: develop a specialized training
session to familiarize the experts with basic psychometric concepts
and to teach them use these abstracts concepts in item evaluation, or
to search for a different group of primary school mathematics experts
who already have this knowledge. As O’Hagan et al. (2006) note, it
is important to evaluate what kind of experience and expertise poten-
tial reviewers have and decide on training based on that. We decided

Figure 5. Creating an equating problem from a complete design. The completely dashed areas indicate data
that were not used in the analysis.
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to choose the second option because it was easier to find educational
researchers and test experts specialized in mathematics than develop
and implement an extensive training program. Our choice was also
supported by the fact that the results of one of the participants who
was not only an item writer but also a primary school mathematics
researcher with considerable psychometrics training were closer to the
true value of � than those of the other participants. The results of the
pilot study were generally promising, especially for the rulers method,
and therefore we decided that it was worthwhile continuing with a
new group of carefully selected persons.

Expert Elicitation

Participants. Seven experts (four females and three males)
participated in the elicitation study. These were four primary
schools mathematics researchers from two Dutch universities and

three employees of the Dutch National Institute for educational
measurement working with primary school mathematics tests.
These experts had previous experience in standard setting proce-
dures and in psychometric item analysis. Most of them also had
worked as item writers and had received feedback on item perfor-
mance (on item difficulties among other properties). Moreover,
they had theoretical knowledge about primary school mathematics
and understanding of fundamental psychometric concepts. For
these reasons, we decided not to include a training session as part
of the procedure and rely on their extensive previous training.

Preliminary selection of items. From the 10 content groups
only seven groups were selected for the expert elicitation, because
the other three groups were too small (number relations, geometry,
and money). The items within each test were ordered based on the
observed proportions of correct responses in the training data.

Figure 6. Illustration of the first part of the computerized procedure for the rulers method: Six items have to
be ordered based on their difficulty (translated from Dutch). See the online article for the color version of this
figure.
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Within each of the seven content groups a subset was selected such
that for each pair of items i and j within this subset the posterior
probability of them having a certain order of item difficulties was
larger than .95.2 In total 62 items were selected which were used
both for the Angoff and for the rulers methods. The sets of selected
items is rather representative of the full sets of items in the
reference and the current test in terms of difficulty: d̂r � .10 and
d̂c � .01 (for comparison, the standard deviation of the estimates
of the item difficulties in the reference and the current test were
equal to .60 and .66, respectively).

The item difficulties within each test, which were used for
specifying the locations of the items in the elicitation proce-
dure, were estimated from the training data (see ��i

and ��i
* in

Appendix A).
Procedure. The two methods were administered to each ex-

pert individually in two separate sessions. The period between the
sessions was long enough for there to be no interference between
the two elicitations. The sessions took about 30–45 min, roughly
the same for the two methods. The rulers method was implemented
in a computer application developed for this study. The application
had two parts corresponding to the second and the third steps of the
elicitation procedure described in Section Rulers method for direct

elicitation of the prior knowledge about �. Each expert got a
prerecorded audio-instruction accompanied by a power-point pre-
sentation illustrating the procedures. In the first part of the proce-
dure, experts were presented with sets of three, four, five, or six
items from each content group and each test (see Figure 6). The
content groups were presented in the same order to everyone, but
the order of the item sets within a content group was randomly
chosen for each expert (either reference test– current test or
current test–reference test). Within each set items were pre-
sented in a random order. For each set experts had to fill in the
order of the items based on their difficulty starting from the
easiest item.

After the first part, experts received the instruction for the
second part. In the second part of the procedure experts were
presented with two sets of items: one at the top and one at the
bottom. The items were located according to their estimated item

2 This posterior probability is approximated by the number of samples
from the posterior distribution defined in Equations 23 for the reference
test and Equation 24 for the current test, respectively, in which the sampled
values have that order, the specification of the prior distribution and the
sampling scheme can be found in Appendix A.

Figure 7. Illustration of the second part of the computerized procedure for the rulers method: best guess
(translated from Dutch). The red blocks indicate the item positions on the difficulty scale. The slider at the top
of the screen can be used to change the position of the item sets. See the online article for the color version of
this figure.
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difficulties based on the training data. Each set contained at most
four items. If after the first part there were more than four items in
a set for which the expert’s order matched the empirical order, then
four items were randomly selected to be retained. It was not

possible for the experts to move the items within a set, but only
sets as a whole relative to each other using the slider at the top.
First, the experts had to place the sets in the most plausible position
(see Figure 7). Second, they had to specify the first extreme
position by moving the top set to the right away from the most
likely position (in Figure 7 “Best guess” was substituted by “Ex-
treme 1: Top to the right”) to the most extreme position which is
still plausible. Third, they had to choose the second extreme
position by moving the sets away from the most likely position in
the opposite direction (in Figure 7 “Best guess” was substituted by
“Extreme 2: Top to the left”). Although experts might vary in the
interpretation of what “plausible” means, we argue that specifying
the range of uncertainty for the experts numerically (i.e., “90%
chance that the order is between the extreme positions”) would not
solve this problem because interpretations of “90% chance” might
also differ between persons, because probabilistic statements of
this kind are difficult to make in general (O’Hagan et al., 2006).
For this reason in this study we decided not to quantify the
uncertainty in the instructions for the experts, but rather use a
verbal description and only use a quantification after the expert
judgments are collected.

In the Angoff procedure the same 62 items as used in the rulers
method were given to each expert in a random order. The experts
filled in their responses to a question “Imagine a group of students
from the fifth grade with an average level of proficiency (B/C or
Level 3 of the student monitoring system). How many of these
students will answer this item correctly?” in a booklet with one
item per page (see Figure 8). Note, that instead of asking the
experts about model parameters (item difficulty or probability of a
correct response) which is often difficult for experts to provide direct
information on (Christensen et al., 2010), we translated these ques-
tions into questions that are more familiar to experts and, therefore,
easier to work with. Three extra items were included in the beginning
of the booklet to familiarize the experts with the procedure, such that
the total number of items was 65 but only the results of the 62 items
were taken into account.

Figure 8. Illustration of the Angoff procedure: One item per page is presented
(translated from Dutch). See the online article for the color version of this figure.

Figure 9. Prior distributions elicited from individual experts using the rulers method (a) and combined prior
distributions: p1�	� - Angoff prior, p2�	� - rulers prior (b); 	� - proxy of the true value of �.
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Results

The Angoff method resulted in a prior

p1(	) � N(� � �0.09, �2 � 0.02), (21)

which is shown in Figure 9b. Figure 9a shows the priors elicited
from individual experts in the computerized procedure using the
rulers method. In Figure 9b the combined prior p2�	� and the prior
elicited with the Angoff method p1�	� are shown. Figure 9 also
includes 	� � � 0.145 which was estimated from the observed
responses of almost 20,000 persons from both 2008 and 2009 to all
120 mathematics items (see Figure 5a). A Rasch model was fitted to
the complete data set and the difference between the average esti-
mates of the difficulties of the items in the current and the reference
test was computed. We used it as a proxy for the true value of � to
evaluate how close to the truth the expert’s judgments were. The
mean of the prior distribution p1�	� is slightly above the true value of
� and this prior assigns relatively high density to 	�. The largest mode
of the distribution p2�	� is very close to 	� . Four of the distributions

pe�	� are concentrated around the proxy of the true value 	�. One of the
experts provided a distribution with a mode far away from the judg-
ments of other experts. This was the expert with the lowest quality of
the judgment and the smallest weight we � .04 (for comparison, we �
.14 would be the weight of each expert if equal weights were as-
signed).

Figure 10 shows the distribution of the estimates of the cut-
scores across the resampled data sets, and Table 1 shows how often
each of the four cut-scores was correctly estimated with different
priors. From Figure 10 one may see that with the vague prior there
was a lot of variation in the estimated cut-scores, especially when
Nl � 100. With the informative priors, the estimates of the cut-
scores across the resampled data sets were less spread around the
mode especially with the rulers prior. For all sample sizes and all
cut-scores the rulers prior p2�	� resulted in correctly estimated
cut-scores in more resampled data sets than the vague prior (see
Table 1). The variance of the estimated cut-scores was reduced,
while they were still concentrated around the true value (see Figure

Figure 10. Distributions of the estimates of the cut-scores across the resampled data sets using different priors:
p0�	� - vague prior, p1�	� - Angoff prior, p2�	� - rulers prior. The true cut-scores are marked with a circle. See
the online article for the color version of this figure.
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10). For the rulers prior in all conditions and for all levels of
proficiency, the most frequent estimate of the cut-score was
equal to the true cut-score. The MSEs of the estimated cut-
scores were the smallest for p2�	�. The MSEs of the estimated
cut-scores with the Angoff prior were in some conditions lower
than those for the vague prior, but in some conditions higher,
especially of the cut-score between categories C and D, because
this cut-score is the most sensitive to the value of � due to the
fact that in the corresponding range of scores different scores
are very close to each other in terms of proportions of persons
below the score.

To illustrate the consequences of incorrectly estimating the
cut-scores more concretely, we looked at the average number of
persons misclassified when different priors were used (see Table
2). The use of the rulers method improves the proportion of
misclassifications compared with the use of vague prior; however,
the differences between the results decrease with the sample size
Nl as expected. The use of the Angoff prior improves the results
over the vague prior when the sample size is the smallest, but
results in roughly the same proportion of misclassifications as
with the vague prior when the number of persons in the linking
groups is larger (Nl � 200, 300, and 500). As can be seen from
Tables 1 and 2, among the two elicitation methods developed in
this study the rulers method provided better results than the
Angoff method.

What If the Experts Are Wrong?

The utility of including prior knowledge in test linking depends
on the quality of the expert judgments. In our empirical elicitation
study the pool of seven experts provided judgments relatively
close to the true value of � which to a large extent improved the
linking results. However, the results of linking would be nega-
tively affected if the expert judgments are far from the true value.
When using informative priors based on subject-matter experts
judgments it is important to compare the obtained results with the
results based on the vague priors. The latter reflects the informa-
tion contained in the data only. If the estimated cut-scores obtained
with and without taking the expert judgments into account differ
dramatically then one should decide whether to trust the linking
data or the experts more. On the one hand, as Lunn, Jackson, Best,
Thomas, and Spiegelhalter (2012) argue “there is no such thing as
the true prior.” On the other hand, in the context of test linking
there is no such thing as perfect linking data. In the same way as
the experts might be wrong, the data might introduce bias in the
estimation of the difference between the test difficulties, since the
test are usually administered to different populations of students
(i.e., measurement invariance is not warranted) and in different
conditions (e.g., respondents might not be motivated to do their
best on the test especially on difficult and time intensive items).
Using Bayesian methods for test linking allows to include all

Table 1
Numbers of Data Sets in Which the Estimated Cut-Score was Equal to the True Cut-Score
(kTrue) and Mean Squared Error (MSE) of the Estimates of the Cut-Scores With the Vague Prior
(p0), Angoff Prior (p1), and Rulers Prior (p2) Given Different Number of Persons in the Linking
Groups (Nl)

Cut-score Prior

Nl � 100 Nl � 200 Nl � 300 Nl � 500

ktrue MSE ktrue MSE ktrue MSE ktrue MSE

D/E p0�	� 34� 1.36 59� .47 62� .41 67� .33
p1�	� 38 .86 51� .64 54� .46 65� .35
p2�	� 91� .39 96� .10 91� .12 90� .10

C/D p0�	� 36� 1.39 53� .59 48� .61 46 .57
p1�	� 34 1.13 33 .97 38 .68 49 .54
p2�	� 91� .42 93� .13 84� .22 84� .19

B/C p0�	� 39� 1.02 56� .44 63� .37 75� .25
p1�	� 55� .57 69� .37 66� .34 80� .20
p2�	� 77� .35 81� .22 78� .22 85� .15

A/B p0�	� 57� .46 76� .24 83� .17 96� .04
p1�	� 72� .28 82� .18 88� .12 96� .04
p2�	� 93� .16 98� .02 98� .02 99� .01

� The most frequent estimate of the cut-score is equal to the true cut-score.

Table 2
Average Number of Misclassified Persons (and Percentage from the Number of Persons in the
Current Examination) Across 100 Resampled Data Sets Given Different Number of Person in the
Linking Groups (Nl) With the Vague Prior (p0), Angoff Prior (p1), and Rulers Prior (p2)

Prior Nl � 100 Nl � 200 Nl � 300 Nl � 500

p0�	� 147.21 (7.36%) 82.57 (4.13%) 73.54 (3.68%) 54.24 (2.71%)
p1�	� 109.86 (5.49%) 86.37 (4.32%) 73.20 (3.66%) 49.77 (2.49%)
p2�	� 37.10 (1.85%) 19.63 (.98%) 26.56 (1.33%) 21.34 (1.07%)
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available information and provides possibilities to assign different
weights to different sources of information depending on their
credibility.

An important feature of our proposed elicitation methods is
that they provide explicit methods for evaluating the quality of
experts judgments, by comparing the experts judgments about
the item difficulties within the reference and the current tests
with the observed examination data (see expert weights defined
by Equation 10 for the Angoff method and by Equation 13 for
the rulers method). The procedure can be further extended with
rules for including or excluding results of a certain expert to the
prior distribution by setting thresholds on the minimal value for
the correlation between the experts’ probabilities of the correct
response elicited in the Angoff method and the item difficulties
estimated from the training data within each test (e.g., “the
correlation has to be at least .2 for each test”) and on the
proportion of retained items in the rulers method (e.g., “at least
70% of the items have to be retained”). In this way not only the
relative impact of one expert compared with another can be
regulated, but also judgments of certain experts might be fully
excluded if within the reference and the current test they do not
perform better than if the judgments were random. However,
although this could be done, we argue that it is not very likely
that using a group of carefully selected experts would result in
an “untrue” prior.

In this study the expert weights were assigned based on the
match of expert judgments about item difficulties within the
reference and the current test to the item difficulties estimated
from the examination data. As an anonymous reviewer sug-
gested, the choice of weights can be also (partly) based on the
background information about the experts, for example by
assigning higher weights to experts with more experience.
Moreover, the expert weights for the current linking cycle may
be determined by asking experts to compare items from tests
that have gone through linking procedures in previous years and
evaluating the quality of their judgments. These are all valuable
ideas that should be considered when using the approach pro-
posed in future applications.

Conclusions

In this article we introduced different procedures for elicitation
of prior knowledge for test linking from subject-matter experts.
The empirical elicitation study showed promising results of in-
cluding expert knowledge in test linking. In our study the rulers
method of elicitation based on first ordering items based on diffi-
culties first within each test and then combining the item orders
across the two tests performed better than the Angoff method
based on absolute judgments about the proportions of students
answering the items correctly. However, when deciding to prefer
one method over the other one should also take the practical
considerations into account because the Angoff method is easier to
implement.

Although including expert knowledge in test linking was
demonstrated to decrease the expected number of misclassified
students, there is one limitation of the approach proposed. The
approach is based on the Rasch model because unlike other IRT
models it has a very clear interpretations of the item difficulties,
which can be directly translated into statements that are clear to

the experts. Because the Rasch model is often used in educa-
tional measurement applications and it has been shown to be
rather robust in test linking situations, the applicability of the
methods proposed in this study are still rather broad. However,
in some applications the procedure would not be appropriate
due to strong misfit of the Rasch model to the data.

The overall conclusion is that using informative priors can improve
linking results. Expert judgments collected using the rulers method
and included in the Bayesian estimation can increase the precision of
linking without introducing a lot of bias and consequently decrease
the expected proportion of misclassified persons.
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Appendix A

Gibbs Sampler for Estimating the Cut-Score spass

Here we provide details about how to estimate the cut-score for the
current test spass. To estimate spass we need to estimate the score
distribution of the reference population on the current test (see X* in
Figure 1) for which samples from the joint posterior distribution

p(�c
*, �r, �r

2, 	 | X, Y, Z1, . . . , ZG) (22)

need to be obtained. To obtain samples from this multivariate
distribution we use a Gibbs Sampler algorithm in which at each
iteration each parameter of interest is sampled from its conditional
posterior distribution given the current values of all other param-
eters. To simplify the conditional posterior distributions, not only
the parameters �r, �r

2, �c
* and � are sampled but also the item

parameters of the items in the reference test, the population pa-
rameters of the current population and the linking groups and the
individual ability parameters of all the persons in the reference
population (denoted by the vector �r), the current population
(denoted by the vector �c

*) and the linking groups (denoted by the
vectors �1, . . . , �G).

The examination data sets X and Y (see Figure 1) are both split
in two parts: one for constructing prior distributions, denoted by
X�1� and Y�1�, and another for the estimation of spass, denoted by
X�2� and Y�2�. The subsets of persons from the reference population
whose responses are in X�1� and X�2� are denoted by �R�1�	 and
�R�2�	, respectively. The subsets of persons from the current pop-
ulation whose responses are in Y�1� and Y�2�are denoted by �C�1�	
and �C�2�	, respectively. In the following subsections we will first
describe how the training data X�1� and Y�1�are used for construct-
ing priors, second we will describe how using these priors, the
estimation data X�2� and Y�2� and the data of the linking groups
Z1, . . . , ZG, samples from the posterior distribution needed to
determine the cut-score spass can be obtained, and finally we will
show how to obtain the posterior distribution of spass and its
estimate.

Using Training Data to Construct Priors

When constructing priors, we need to obtain samples from the
posterior distributions:

p��r, �r, �r
2, �r | X(1)�� �

p�{R(1)}
�

i�{r}

exp(xpi(�p � �i))
1 � exp(�p � �i)

� N(�r; 0, 100)Inv-G��r
2; .001, .001�

� �
i�{r}

N(�i; 0, 100) �
p�{R(1)}

N��p; �r, �r
2�

(23)

and

p��c
*, �c

*, �c
2, �c

* | Y(1)� � �
p�{C(1)}

�
i�{c}

exp�ypi��p
* � �i

*��
1 � exp��p

* � �i
*�

� N(�c
*; 0, 100)Inv-G��c

2; .001, .001�
� �

i�{c}
N��i

*; 0, 100� �
p�{C(1)}

N��p
*; �c

*, �c
2�.

(24)

The normal priors for the means and the inverse-gamma priors
for the variance are chosen because of the mathematical conve-
nience of conditional conjugacy.

The initial values, denoted by a superscript (0), for all the
parameters have to be chosen: �r

�0� � 0; �r
2�0� � 1; �c

*�0� �

0,�c
2�0� � 1; �i

�0�~U� � 2, 2�,∀i � �r	; �i
*�0�~U� � 2, 2�,∀i �

�c	, 	�0� � 0. It is not needed to choose the initial values for the
individual person parameters since they are sampled in the first
step of the algorithm.

Below we describe how to sample from the posterior distribu-
tion in (Equation 23). Sampling from the posterior distribution in
(Equation 24) is analogous to sampling from (Equation 23). The
algorithm has five steps:

Step 1

∀p � �R�1�	:

�p ~ p(�p | . . . ) � p(�p | Xp�, �r, �r
2, �r), (25)

which depends on the data only through the sumscore Xp� �

�i Xpi , because the Rasch model holds. Sampling from this
distribution can be done using the conditional composition algo-
rithm (Marsman, Maris, Bechger, & Glas, 2014):

a. Sample a candidate value from the population distribution
� ~ N��p; �r,�r

2�
b. Simulate a vector of responses X to the items in the reference test

Pr(Xi � 1 | �i, �) �
exp(� � �i)

1 � exp(� � �i)
. (26)

c. Compute X� � �i Xi. If X� � Xp�then � is accepted as a sample
from (25). Otherwise, Steps a, b, and c are repeated.

Step 2

�r ~ p(�r | . . . ) � p��r | �r, �r
2� � N(�r; 0, 100)

� �
p�{R(1)}

N��p; �r, �r
2� � N 
�r;

�p�{R(1)} �p

�r
2

1
100 � N(1)

�r
2

, 1
1

100 � N(1)

�r
2
�,

(27)
where N�1� is the number of persons in the subset �R�1�	.

Step 3

�r
2 ~ p��r

2 | . . . � � p��r
2 | �r, �r� � Inv-G��r

2; .001, .001� �
p�{R(1)}

N��p; �r, �r
2�

� Inv-G��r
2; .001 �

N(1)

2
, .001 �

� p�{R(1)}(�p � �r)
2

2
�. (28)

(Appendices continue)
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Step 4

∀i � �r	 :

�i ~ p(�i | . . . ) � N(�i; 0, 100) �
p�{R(1)}

exp(xpi(�p � �i))
1 � exp(�p � �i)

.

(29)

The normalizing constant for this distribution does not have a
closed form solution, therefore we use Metropolis algorithm (Me-
tropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) to sample
from this conditional posterior with a normal proposal density
centered around the current value of the parameter.

Step 5

At the end of each iteration, the parameters have to be re-scaled
to keep the chosen identification of the scale, namely �� r � 0
�r � �r � �� r, and �i � �i � �� r,∀i � �r	. The individual person
parameters do not have to be re-scaled since their values at the end
of iteration t do not influence the values of the parameters in
iteration t 
 1.

By repeatedly going through these five steps, samples from
the posterior in (Equation 23) and analogously in (Equation 24)
are obtained. The posterior distributions of the population
means and of the item difficulties can be approximated by
normal distributions with the means and the variances equal the
average values of these parameters across the samples from
(Equation 23) and (Equation 24) and the variances of the
sampled values of these parameters, respectively. The posterior
distribution of the populations’ variances can be approximated
with inverse-gamma distributions with hyperparameters chosen
based on the averages and the variance of the sampled values of
these parameters. These approximations are used as priors for
these parameters in the next step of the analysis (estimation of
the cut-score spass):

p(�r, �r
2, �r, �c

*, �c
2, �c

*) � N��r; �r0, �r0
2 �Inv-G��r

2; �r0, �r0�
� �

i�{r}
N��i; ��i

, ��i

2 �N��c
*;�c0

* , �c0
2 �

� Inv-G��c
2; �c0, �c0�

� �
i�{c}

N��i
*; ��i

*, ��i
*

2 �. (30)

Because the mean and the variance of a random variable with
the inverse-gamma distribution with parameters 
 and � are equal

to �

��1 and �2

���1�2���2�
, respectively, we choose the following values

for the hyperparameters:

�r0 �
(�� r

2)2

Var��r
2�

� 2 (31)

�r0 � (�� r
2)� (�� r

2)2

Var��r
2�

� 1� (32)

where �� r
2 and Var��r

2� are the average and the variance of the
sampled values of �r

2. The hyper parameters for the distribution of
�c

2 are chosen analogously.

The average sampled values of the item difficulties are used to
facilitate the collection of expert judgements. In the Angoff
method they are used to compute �̂c and �̂r (see Equation 8). In the
rulers method they are used to select the items and to determine
their position on the rulers which experts move in the third stage
of the procedure.

Sampling From the Posterior Distribution Needed to
Determine the Cut-Score

To estimate the cut-score spass we need to sample from the
posterior:

p(�r, �r, �r
2, �c

*, �c
*, �c

2, �1, �1, �1
2, . . . ,

�G, �G, �G
2 , �r, �c

*, 	 | X, Y, Z1, . . . , ZG) (33)

which is proportional to the product of the density of the data:

f(X(2), Y(2), Z1, . . . , ZG) � �
p�{R(2)}

�
i�{r}

exp(xpi(�p � �i))
1 � exp(�p � �i)

� �
p�{C(2)}

�
i�{c}

exp�ypi��p
* � �i

*��
1 � exp��p

* � �i
*�

� �
g�1

G

�
p�{Eg}

�
i�{eg�r}

exp�zgpi(�p � �i)�
1 � exp(�p � �i) �

i�{eg�c}

exp�zgpi��p � �i
* � 	��

1 � exp��p � �i
* � 	�

,

(34)
where �Eg	 denotes the set of persons in linking group G and �eg	
denotes the set of items answered by linking group G; and the joint
prior distribution

p(�r, �r, �r
2, �c

*, �c
*, �c

2, �1, �1, �1
2, . . . , �G, �G, �G

2 , �r, �c
*, 	)

� p(	)p(�r, �r
2, �r, �c

*, �c
2, �c

*)

� �
p�{R(2)}

N��p; �r, �r
2� �

p�{C(2)}

N��p
*; �c

*, �c
2�

� �
g

�N(�g; 0, 100)Inv-G��g
2; .001, .001� �

p�{Eg}
N��p; �g, �g

2��,

(35)

where the priors of the population means and variances of the
reference and the current population, and the item difficulties are
estimated from the training data (see Equation 30).

The initial values, denoted by a superscript (0), for all the
parameters are chosen in the same way as when sampling from
(Equation 23) and (Equation 24) with the following initial values
for the additional parameters �g

�0� � 0, �g
2�0� � 1, ∀g � 
1 : G�

Sampling from the conditional posteriors of the parameters in
(Equation 33) is similar to sampling from the conditional posteri-
ors of �r, �r, �r

2, and �r in (Equation 23). The following steps are
involved:

Step 1a

∀p � �R�2�	 :

�p ~ p(�p | . . . ) � N��p; �r, �r
2� �

i�{r}

exp(xpi(�p � �i))
1 � exp(�p � �i)

(36)

which is analogous to sampling from (Equation 25).

(Appendices continue)
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Step 1b

∀p � �C�2�	 :

�p
* ~ p��p

* | . . . � � N��p
*; �c

*, �c
2� �

i�{c}

exp�ypi��p
* � �i

*��
1 � exp��p

* � �i
*�

(37)

which is analogous to sampling from (Equation 25).

Step 1c

∀g � 
1 : G�, ∀p � �Eg	 :

�p ~ p(�p | . . . ) � N��p; �g, �g
2� �

i�{r�eg}

exp(zgpi(�p � �i))
1 � exp(�p � �i)

� �
i�{c�eg}

exp�zgpi��p � �i
* � 	��

1 � exp��p � �i
* � 	�

, (38)

which is analogous to sampling from (Equation 25).

Step 2a

�r ~ p(�r | . . . ) � N 
�r;

�r0

�r0
2 �

� p��R(2)	�p

�r
2

1
�r0

2 � N(2)

�r
2

, 1
1

�r0
2 � N(2)

�r
2
�,

(39)

where N�2� is the number of persons in the set �R�2�	.

Step 2b

�c
* ~ p��c

*, | . . . � � N 
�c
*;

�c0
*

�c0
2 �

� p�{C(2)}�p
*

�c
2

1
�c0

2 � M(2)

�c
2

, 1
1

�c0
2 � M(2)

�c
2
�,

(40)

where M�2� is the number of persons in the set �C�2�	.

Step 2c

∀g � 
1 : G� :

�g ~ p(�g, | . . . ) � N 
�g;

� p��Eg	�p

�g
2

1
100 �

Ne

�g
2

, 1
1

100 �
Ne

�g
2
�,

(41)

Step 3a

�r
2 ~ p��r

2 | . . . � � Inv-G��r
2; �r0 � N(2)

2 , �r0 �
�p�{R(2)} (�p � �r)

2

2
�.

(42)

Step 3b

�c
2 ~ p(�c

2 | . . . )

� Inv-G��c
2; �c0 � M(2)

2 , �c0 �
� p�{C(2)}��p

* � �c
*�2

2
�.

(43)

Step 3c

∀g � 
1 : G� :

�g
2 ~ p(�g

2 | . . . ) � Inv-G��g
2; .001 �

Ne

2 , .001

�
� p�{Eg}(�p � �g)

2

2
�. (44)

Step 4a

∀i � �r ⁄ �e1� . . . �eG		:

�i ~ p(�i | . . . ) � N��i; ��i
, ��i

2 � �
p�{R(2)}

exp(xpi(�p � �i))
1 � exp(�p � �i)

,

(45)

which is analogous to sampling from (Equation 29).

Step 4b

∀i � �c ⁄ �e1� . . . �eG		 :

�i
* ~ p(�i | . . . ) � N��i

*; ��i
*, ��i

*
2 � �

p�{C(2)}

exp�ypi��p
* � �i

*��
1 � exp��p

* � �i
*�

,

(46)

which is analogous to sampling from (Equation 29).

Step 4c

∀g � 
1 : G�, ∀i � �r�eg	:

�i ~ p(�i | . . . ) � N��i; ��i
, ��i

2 �

� �
p�{R(2)}

exp(xpi(�p � �i))
1 � exp(�p � �i) �

p�{Eg}

exp(zgpi(�p � �i))
1 � exp(�p � �i)

, (47)

which is analogous to sampling from (Equation 29).

(Appendices continue)
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Step 4d

∀g � 
1 : G�, ∀i � �c�eg	 :

�i
* ~ p(�i

* | . . . ) � N��i
*; ��i

*, ��i
*

2 �

� �
p�{C(2)}

exp�xpi��p
* � �i

*��
1 � exp��p

* � �i
*� �

p�{Eg}

exp�zgpi��p � �i
* � 	��

1 � exp��p � �i
* � 	�

,

(48)

which is analogous to sampling from (Equation 29).

Step 5

	 ~ p(	 | . . . ) � p(	)�
g�1

G

�
p�Eg

�
i��c�eg	

exp(zgpi(�p � �i
* � 	))

1 � exp(�p � �i
* � 	)

,

(49)

which is similar to sampling from the conditional posterior distri-
butions of the item difficulties, the Metropolis algorithm is used to
sample from this distribution.

Step 6

The parameters are re-scaled to make sure that �� r � 0 and
��c

* � 0 : �r � �r � �� r, �g � �g � �� r,∀g � 
1 : G�, �i � �i �

�� r,∀i � �r	, �c
* � �c

* � ��c
*, and �i

* � �i
* � ��c

*, ∀i � �c	.

Estimating the Cut-Score spass

After the burn-in, at each iteration t the unobserved responses of
the persons from the reference population to the current exam (X*)
are simulated according to the Rasch model using the values of the
model parameters at iteration t sampled from (Equation 33) using
the Gibbs sampler described in the previous subsection:

xpi
*(t) ~ Bernoulli� exp��p

(t) � ��i
*(t) � 	(t)��

1 � exp��p
(t) � (�i

*(t) � 	(t))��,

∀p � {R(2)}, ∀i � {c}. (50)

A sample from the posterior distribution of the cut-score, de-
noted by spass

�t� , is such a score that the number of students from the
reference population with observed scores on the reference test
below sref is as close as possible to the number of students from the
reference population with simulated scores on the current test at
iteration t below this score:

spass
(t) � argmins�� �

p�{R(2)}
�I� �

i�{r}
xpi � sref� � I� �

i�{c}
xpi

*(t) � s���2�.

(51)

Using a large number of sampled values from the posterior in
(Equation 33), a sequence of values �spass

�1� , spass
�2� , . . . , spass

�T� 	 is ob-
tained, which is a sample from the posterior distribution of the
cut-score is obtained. The maximum a posteriori estimate of spass

is the mode of this sample. The posterior variance of spass is the
variance in this sample.

(Appendices continue)
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Appendix B

Approximating the Experts’ Judgements With a Skew-Normal Distribution

In this section we describe how to choose the parameters of the
skew-normal distribution pej�	�, such that its mode, fifth percentile
and 95th percentile would match the values of 	̂ej, 	ej

min and 	ej
max,

respectively. The skew-normal distribution with parameters 
, �, 	
is given by:

f(x) � 2
�2�


exp��(x � �)2

2
2 � �
��

�
x��



1

�2�
exp�� t2

2�dt. (52)

First, we determine the value of the skewness parameter 
. Let
us by qp��, �, 
� denote the p-th percentile of the skew-normal
distribution with parameters 
, � and 	 and by m��, �, 
� the mode
of this distribution. The larger the skewness is, the further away
from 1 the ratio below is:

r(�, �, 
) �
q95(�, �, 
) � m(�, �, 
)
m(�, �, 
) � q5(�, �, 
) . (53)

The values of the parameters � and 	 do not influence the value
of this ratio. For all values of 
 ranging from �4 to 4, with equal
interval steps of .001, we estimated the mode m��, 0, 1�—with the
precision up to .0001, which is sufficient for the application at
hand—and computed the ratio r��, 0, 1�, using the “sn”
R-package. And then for each judgement of each expert we chose:

�ej � arg min
�

�
	ej

max � 	̂ej

	̂ej � 	ej
min � r(�, 0, 1) � . (54)

Second, we choose the value of the parameter 	 which deter-
mines the spread of the distribution:


ej �
	ej

max � 	ej
min

q95(�ej, 0, 1) � q5(�ej, 0, 1) . (55)

And finally, we choose the value of the parameter � which
determines the location of the distribution:

�ej � 	ej
max � q95(�ej, 0, 1)
ej. (56)

Next, we show how to approximate the expert-specific normal-
izing constant, denoted by Ze, for the product of skew-normal
distributions in Equation 19:

Ze � �
��

�� ��
j�1

Je
2


ej
��	 � �ej


ej
����ej

	 � �ej


ej
��d	, (57)

where ��x� denotes the standard normal density and ��x� denotes
the standard normal cumulative distribution function. This integral
can be approximated using the Gauss-Hermite the weights w �
�w1, . . . , wK	 and the nodes y � �y1, . . . , yK	:

Ze � 2
��

�
i�1

K

wi���2�e1yi�

� �
j�2

Je
2


ej
���2
e1yi � �e1 � �ej


ej
����ej

�2
e1yi � �e1 � �ej


ej
�.

(58)

This integral has to be computed only once for each expert;
therefore, we can use a very large number of nodes to obtain an
accurate approximation. In the empirical example we used K �
20, 000.
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