
Copyright © 2017 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.

320  |  www.epidem.com	 Epidemiology  •  Volume 28, Number 3, May 2017

ORIGINAL ARTICLE

Background: We hypothesize that biological perturbations due to 
exposure to ambient air pollution are reflected in gene expression 
levels in peripheral blood mononuclear cells.
Methods: We assessed the association between exposure to ambi-
ent air pollution and genome-wide gene expression levels in periph-
eral blood mononuclear cells collected from 550 healthy subjects 
participating in cohorts from Italy and Sweden. Annual air pollu-
tion estimates of nitrogen oxides (NOx) at time of blood collection 
(1990–2006) were available from the ESCAPE study. In addition to 
univariate analysis and two variable selection methods to investigate 
the association between expression and exposure to NOx, we applied 
gene set enrichment analysis to assess overlap between our most per-
turbed genes and gene sets hypothesized to be related to air pollution 
and cigarette smoking. Finally, we assessed associations between 
NOx and CpG island methylation at the identified genes.

Results: Annual average NOx exposure in the Italian and Swedish 
cohorts was 94.2 and 6.7 µg/m3, respectively. Long-term exposure to 
NOx was associated with seven probes in the Italian cohort and one 
probe in the Swedish (and combined) cohorts. For genes AHCYL2 and 
MTMR2, changes were also seen in the methylome. Genes hypoth-
esized to be downregulated due to cigarette smoking were enriched 
among the most strongly downregulated genes from our study.
Conclusion: This study provides evidence of subtle changes in 
gene expression related to exposure to long-term NOx. On a global 
level, the observed changes in the transcriptome may indicate simi-
larities between air pollution and tobacco induced changes in the 
transcriptome.

(Epidemiology 2017;28: 320–328)

Epidemiologic studies have consistently shown associations 
between long-term exposure to ambient air pollution and 

incidence and prevalence of chronic diseases, such as respira-
tory and cardiovascular disease.1,2 Although the exact mecha-
nisms responsible for these adverse health effects are unclear, 
several studies have suggested pollutant-induced oxidative 
stress and systemic inflammation as potential intermediate 
biological responses to air pollutants.3–5 It has been hypoth-
esized that (early) systemic effects of long-term exposure to 
air pollution can be detected by assessing genome-wide gene 
expression profiles in peripheral blood mononuclear cells.6,7

Although exposure to air pollutants has been shown 
to induce changes in gene expression in animal and in vitro 
experiments,8–10 evidence from human studies is scarce.11,12 
Relevant evidence comes from a study by Wittkopp et al.13 In 
this panel study, week-long exposure assessment of ambient 
air pollutants was combined with the assessment of expres-
sion levels of 35 candidate genes from 10 biologic pathways 
relevant to air pollution exposure responses.13 Positive asso-
ciations were observed between traffic-related pollutants 
elemental carbon, black carbon, primary organic carbon, poly-
cyclic aromatic hydrocarbons (PAHs) in particulate matter 
(PM), and nitrogen oxides (NOx) and the Nrf2 gene (NFE2L2), 
and Nrf2-mediated genes, HMOX1, NQO1, and SOD2.
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Three short-term (1–2 hour) inhalation studies reported 
changes in the expression of genes involved in inflammation, 
tissue growth, and host defense, including IGF-1 signaling, 
insulin receptor signaling, and NRF2-mediated oxidative 
stress response pathway in response to exposure to ultrafine 
particles6; increased expression levels of genes involved in 
vascular inflammation and hemostasis (e.g., IL8RA, TNFAIP6, 
and VEGF) in response to 2 hours exposure to diesel exhaust14; 
and genes involved in oxidative stress, protein degradation, 
and coagulation (e.g., PLAU, F2R, CBL, UBR1) in response 
to 1 hour of exposure to diesel exhaust.7 To date, studies 
are largely inconclusive and have not resulted in clear gene 
expression profiles associated with air pollution. This may in 
part be explained by relatively small study sizes and modest 
exposure contrasts.

Considering the similarities between tobacco smoke (a 
combustion product) and air pollution (mostly combustion 
products), studies of smoking and gene expression might also 
provide some insight into potential gene expression targets of 
air pollution.15 An example of such a study is Beineke et al.16 
in which 4,214 genes from biologic pathways known to be 
affected by both smoking and air pollution (i.e., apoptosis and 
cellular death, immune system development, leukocyte activa-
tion, hematopoiesis, stress response, and alterations in platelet 
activity) were correlated with self-reported smoking status.

In this hypothesis generating study, we assessed the 
association between annual average estimate of NOx con-
centrations and genome-wide changes in gene expression in 
peripheral blood mononuclear cells in a large population using 
state-of-the-art exposure assessment methods.17 We assessed 
the overlap between genes associated to NOx and gene sets 
hypothesized to be related to air pollution exposure and ciga-
rette smoking. Moreover, for genes for which expression lev-
els were associated with NOx,, we assessed the role of DNA 
methylation in the regulation of gene expression at potentially 
cis-acting CpG sites. In addition, we assessed the interaction 
between the top-ranked probes and four inflammatory mark-
ers (IL-2, IL-8, IL-10, TNF-α) that we previously observed to 
be associated with NOx in the same study population.18

METHODS
We combined data from two existing projects: gene 

expression profiles from the “Genomics Biomarkers of Envi-
ronmental Health” (EnviroGenoMarkers)19,20 and long-term 
average NOx concentrations at residential addresses from 
the European Study of Cohorts for Air Pollution Effects 
(ESCAPE).17 Study design and data collection procedures 
have been previously described in detail.18

Study Population
The EnviroGenoMarkers study was based on analyses 

of peripheral blood mononuclear cells of participants from 
two prospective cohorts: the Italian contribution to the Euro-
pean Prospective Investigation into Cancer and Nutrition 

study (EPIC-Italy, 95 individuals [22 men, and 73 women]) 
and the Northern Sweden Health and Disease Study (NSHDS, 
455 individuals [202 men, and 253 women]). In both cohorts, 
blood samples were prospectively collected from healthy sub-
jects at enrolment (around 1990–2006) and cohort members 
were asked to complete a standardized questionnaire focusing 
on dietary and life style.

Our study population, a subset of the EnviroGenoMark-
ers data, was collected in two phases and comprised in total 
221 Non-Hodgkin’s lymphoma cases and 58 breast cancer 
cases, identified through local cancer registries (loss to fol-
low-up <2%), and the same number of controls matched on 
sex, age, center, and date of blood collection were included.18 
Cases were diagnosed on average 6 years (range 2–16 years) 
after recruitment/blood collection.

Ethics Statement
This study was approved by the committees on research 

ethics in Umea and Florence at the relevant institutions. All 
participants provided written consent at recruitment (EPIC-
Italy 1993–1998; NSHDS 1990–2006).

Exposure Assessment
Annual modeled outdoor concentrations of NOx at the 

study participant’s home-address were available from the 
ESCAPE project.17,21 Exposure to particulate matter (PM2.5, 
PM2.5 absorbance, and PM10) was only available for a subset 
of our study population (13 subjects). We therefore restricted 
our analyses to NOx.

18 We natural-log-transformed the distri-
bution of the NOx concentration to limit the influence of high 
concentrations and to normalize the distribution.

Gene Expression Assessment
Total RNA was extracted from peripheral blood mono-

nuclear cell samples stored within 2 hours of collection at 
−80°C. RNA from each sample was used to generate cDNA 
for array hybridization. The cDNA was then labeled with cya-
nine 3. The labeled cDNA was hybridized to Agilent whole 
human genome (4 × 44 K) arrays, containing 43,376 probes 
representing 29,846 genes. Subsequently, the hybridized 
slides were washed and scanned by using an Agilent Technol-
ogies G2565CA DNA Microarray scanner. Measurements for 
both phases were performed at Maastricht University. Tech-
nical performance and quality of the microarrays has been 
described in detail previously.19,20 In short, microarray scan 
images were visually evaluated before and after within- and 
between-array normalization (LOESS and A-quantile, respec-
tively). Good probes were identified based on the number of 
pixels, mean/median intensity ratio, saturation, or foreground/
background intensity ratio. A total of 29,662 probes, repre-
senting 15,216 genes, were selected based on these criteria. 
We imputed missing values in Gene Pattern (version 3.1) 
using the k nearest neighbors approach (k = 15, Euclidian met-
ric). When known, annotation of probes are provided in italics 
within parentheses.
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Data Analysis
We performed univariate analyses to identify transcript 

concentration levels associated with long-term average expo-
sure to NOx. We complemented univariate analysis with two 
additional variable selection approaches (Elastic-Net regres-
sion and the Graphical Unit Evolutionary Stochastic Search 
Algorithm [GUESS]) that are capable of capturing the corre-
lation among genes.22 We call all probes that were identified in 
any of the statistical approaches “noteworthy probes.”

Within the ESCAPE project,17,21 the Swedish cohort 
was among the cohorts with the lowest levels of air pollution, 
while the Italian cohort was among the highest. We therefore 
stratified all statistical analyses by cohort (Table 1; Figure). 
As there was some overlap in the exposure distributions of 
the two cohorts, we also conducted analyses on the combined 
cohorts, while adjusting for country.

All statistical analyses were performed using R version 
3.0.2 (packages: lme4,23 glmnet,24 c060,25 and R2Guess26).

Univariate Mixed-effects Model
We conducted linear mixed-effects modeling to investi-

gate the association between probe-level expression and long-
term exposure to NOx. To account for potential technical noise 
(nuisance variation), we incorporated the dates of three main 
steps of sample processing (i.e., RNA isolation, hybridization, 
and dye labeling) as random effects in the models. Exposure to 
NOx and a priori selected potential confounding factors were 
included as fixed effects in the models. These confounding 
factors were body mass index (BMI) (kg/m2), age (years) in 
three categories: (30–40, 41–50, 51–60), sex, smoking status 

(never smoker, former smoker, current smoker), phase (1 or 
2), future disease status (lymphoma case, breast cancer case, 
control), and sample storage time (years), consistent with pre-
vious analyses of the EnviroGenoMarkers data.19,27

To assess how sensitive our findings were to variations 
in the confounder model, we conducted a set of additional 
analyses. We ran a minimally adjusted model (only age and 
sex included as covariates), a model in which smoking and 
BMI were excluded from the primary set of covariates, and 
a model in which we added education level (primary, techni-
cal, secondary, and university), and physical activity (mod-
erately inactive, moderately active, and active) as covariates. 
In a further sensitivity analysis, we assessed the impact on 
our findings of adjusting our regression models for estimated 
cell-type composition28 (available from an epigenome-wide 
analysis on a subset of the subjects).

We assessed the output from the univariate analysis 
using two approaches. First, we followed an agnostic approach 
using the Benjamini-Hochberg false discovery rate correc-
tion29 to control for false positives. A false discovery rate <0.2 
was used to classify probes as noteworthy.

Second, we followed a candidate gene approach, includ-
ing 35 candidate genes from 10 biologic pathways relevant to 
air pollution exposure responses (coagulation, Klf2-mediated 
immune response, NF-κB signaling, acute phase response, 
Nrf2-mediated oxidative stress response, endoplasmic reticu-
lum stress [UPR], glutathione metabolism, phase I and phase 
II metabolism, endogenous reactive oxygen species [ROS] 
production, and cytokine signaling)13—biologic candidate 
genes—augmented with genes that were associated to air pollu-
tion in epidemiologic studies (OMICS and gene–environment 
interaction) published since 2006 (empirical candidate genes; 
eTable 1; http://links.lww.com/EDE/B167). Empirical candi-
date genes were selected if an association in the same direction 
was observed in at least two previous studies. We assessed the 
overlap (strength and direction of the association) between the 
genes identified from the literature and results from our uni-
variate analysis. In these analyses, we used a P value of 0.05 to 
classify probes as noteworthy for further evaluation.

Variable Selection Methods
Elastic-Net is a form of penalized multiple regression in 

which parameter estimates are achieved by using a combina-
tion of Ridge and Lasso penalties.30 To control the number 
of falsely selected predictors by Elastic-Net, we applied the 
stability selection technique proposed by Meinshausen and 
Bühlmann.31 We accounted for multiple testing by setting 
family-wise error rate (FWER) to 0.05. As a sensitivity analy-
sis, we also set the family-wise error rate at 0.2, relaxing the 
type one error. We set the threshold of selection probability 
(probability of selecting a predictor by algorithm; π) to 0.6.

GUESS is a Bayesian variable selection approach that 
uses an advanced stochastic search Markov Chain Monte 
Carlo algorithm.32 GUESS fits a range of models containing 

TABLE 1.  Characteristics of the Study Population

Characteristics
Swedish Cohort  

(n = 455)
Italian Cohort  

(n = 95)

Sex (N [%])

 ��� Female 253 (56) 73 (77)

 ��� Male 202 (44) 22 (23)

Smoking status (N [%])

 ��� Current smoker 97 (21) 8 (8)

 ��� Former smoker 92 (20) 24 (25)

 ��� Never smoker 266 (59) 63 (66)

Age (years) (N [%])

 ��� <40 28 (6) 2 (2)

 ��� 40–50 134 (29) 29 (31)

 ��� >50 293 (65) 64(67)

Future disease status (N [%])a

 ��� Breast cancer 46 (10) 12 (13)

 ��� Lymphoma 183 (40) 38 (40)

 ��� Control 226 (50) 45 (47)

BMI (kg/m2) (mean ± SD) 26.1 ± 3.8 25.7 ± 3.7

NOx (µg/m3) (median [SD]) 6.7 (5.8) 94.2 (42.5)

aNon-Hodgkin’s lymphoma and breast cancer cases, identified through local Cancer 
Registries (loss to follow-up <2%), occurred on average 6 years (range 1–17 years) after 
recruitment/blood collection.

http://links.lww.com/EDE/B167
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varying combinations of probes (predictors) to the data. Note-
worthy probes were selected based on the marginal posterior 
probability of inclusion, which provides a model-averaged 
measure of importance of each probe with respect to the mod-
els that were fit to the data. We ran five different chains in 
GUESS for 90k iterations and discarded the first 30k itera-
tions as burn-in. Expected and SD of the model size were set 
to 3 and 5, respectively. We used a marginal posterior prob-
ability of inclusion of 10% to call a probe noteworthy (techni-
cal details in eAppendix 1; http://links.lww.com/EDE/B167).

DNA Methylation at Relevant Loci
We assessed the association between long-term expo-

sure to NOx and degree of methylation for all CpG islands (n = 
74) that were in cis position to the noteworthy genes identified 
in the gene expression analysis. Methylation data generated 
using the Infinium HumanMethylation450 BeadChip (450K) 
was available for a subset (466 of 550) subjects.28 We used the 
same univariate mixed-effects models as described above for 
our main gene expression analyses.

Correlation Between Noteworthy Probes and 
Inflammatory Plasma Markers

To explore whether our noteworthy transcripts and 
markers of inflammation in plasma (IL-2, IL-8, IL-10, TNF-
α), which we previously observed to be associated to air pol-
lution in this cohort,18 potentially operate in similar biologic 
pathways, we assessed the interrelationships (Pearson correla-
tion) between identified transcripts and inflammatory markers.

Gene Set Enrichment Analysis
We used gene set enrichment analysis33 to assess whether 

the gene expression pattern associated with NOx in our data has 
similarities to patterns associated with cigarette smoking or 
air pollution responses. We assessed whether the distribution 

of overlap between two sets of genes—associated with either 
“exposure to cigarette smoke” or “biologic responses due 
to exposure to air pollution”—and all genes included in our 
study was random, or whether this overlap primarily occurred 
among our most up- or downregulated genes (i.e., enrichment). 
The first gene set comprised 4,214 genes whose expression in 
peripheral blood was associated with smoking status in a study 
by Beineke et al.16 (smoking set). The second gene set com-
prised 35 genes from 10 biological pathways relevant to air 
pollution responses13 (air pollution set). A similar approach 
using gene set enrichment analysis was described by Wang et 
al.34 demonstrating enrichment of cigarette smoke-related34 
genes among genes affected by indoor air pollution (technical 
details in eAppendix 2; http://links.lww.com/EDE/B167).

To enhance interpretability, we conducted gene set 
enrichment analysis separately for upregulated genes (all 
genes with positive t statistic in our univariate analysis) and 
downregulated genes (all genes with negative t statistic). We 
compared our upregulated genes with the upregulated genes 
in the smoking and air pollution sets and compared our down-
regulated genes with the downregulated genes in the smoking 
set (no downregulated genes were included in the air pollu-
tion set). A P value <0.05 was used as statistical cut-off for 
enrichment.

RESULTS
Table 1 summarizes the baseline characteristics of the 

study participants. The Swedish cohort has a lower proportion 
of women than the Italian cohort (56% vs. 77%), a higher pro-
portion of current smokers (21% vs. 8%), and a lower propor-
tion of never smokers (59% vs. 66%).

We observed a considerable difference in the distri-
bution of NOx concentrations between the two countries 

FIGURE.  Box plot (left) and density 
plot (right) of log(NOx) (µg/m3) con-
centration for Swedish and Italian 
participants. Log(NOx) concentrations 
are shown on the Y axis of the box 
plots and on the X axis of the density 
plot.

http://links.lww.com/EDE/B167
http://links.lww.com/EDE/B167
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(Table 1; Figure). The median (5th percentile, 95th percentile) 
concentration of NOx estimated for the Italian cohort (94.2 
μg/m3 [7.8, 124.6]) was considerably higher than the median 
concentration estimated for Sweden (6.7 μg/m3 [4.8, 19.5]).

Univariate Mixed-effects Model

Agnostic Approach
Following an agnostic approach, we identified six 

noteworthy probes that were associated (false discovery rate 
<0.2) to long-term average exposure to NOx in the Italian 
cohort (Table 2). These probes are A_23_P252075 (AHCYL2) 
(q  value 0.12), A_24_P406830 (MTMR2) (q value 0.12), 
A_32_P175313 (q value 0.17), A_32_P44961 (LARP1B) 
(q  value 0.02), A_32_P156373 (q value 0.17), and A_32_
P61298 (q value 0.17). In Table 2, we show the results from 
the Swedish and combined cohorts for the top-ranked probes 
(based on the q value) in the Italian cohort. Perturbations of 
the noteworthy probes in Italy were all in the same direction 
in the combined cohort and for three probes (A_23_P252075 
(AHCYL2), A_32_P44961 (LARP1B), A_32_P61298) in the 
Swedish cohort. However, these differences did not reach the 
threshold (BH-FDR < 0.2) in either the Swedish or the com-
bined cohort.

To formally explore heterogeneity between cohorts, we 
conducted analyses in the combined population, while includ-
ing an interaction term between cohort and NOx. We observed 
an interaction for four out of six noteworthy probes that were 
associated to NOx in the Italian cohort, but not in the Swedish 
cohort (Table 2) (complete results [by cohort and combined] 
are available in eAppendix3.DOI10.5281/zenodo.50661; 
http://links.lww.com/EDE/B167).

Sensitivity Analyses
To assess how sensitive our findings were to variations 

in the confounder model, we conducted a set of additional 

analyses. Applying a model that was only adjusted for sex 
and age, resulted in eight additional probes being associ-
ated (BH-FDR < 0.2) with NOx in the Italian cohort. One of 
the original findings, probe A_32_P61298, was not retained 
in these analyses. Applying a model in which smoking and 
BMI were excluded as covariates, four of the six probes 
identified in our primary univariate analyses were retained 
(all except A_32_P175313 and A_32_P61298) and four 
additional probes were associated (BH-FDR < 0.2) with 
NOx in the Italian cohort. Applying a model in which we 
added education and physical activity as covariates, we 
observed three probes (A_32_P44961 (LARP1B), A_32_
P175313, A_23_P252075 (AHCYL2)) to be associated (BH-
FDR < 0.2) with NOx in the Italian cohort. All three probes 
were included in our primary model. Applying a model in 
which we corrected for cell-type composition resulted in 
10 additional probes being associated (BH-FDR < 0.2) to 
NOx in the Italian cohort. One of the original findings, probe 
A_32_P175313 (q value = 0.226), no longer met the cut-
off (BH-FDR < 0.2) for noteworthiness after correction for 
cell-type composition.

Candidate Gene Approach
We included 36 probes in our candidate gene approach. 

Eight probes were selected on empirical grounds and 30 probes 
(corresponding to 26 genes that are overlapping between our 
study and study by Wittkopp et al.13) were selected based on 
biologic motivation. IL-6 and HMOX1 were included in both 
lists of candidate genes. Studies from which these genes were 
selected are listed in eTable 1 (http://links.lww.com/EDE/
B167). We present parameter estimates and associated P val-
ues from univariate mixed-effects regression in Table  3. We 
observed a positive association of NOx with NOX1 in the Ital-
ian cohort and with IL-8 in the Swedish (and combined) cohort. 
The direction of these effects was in agreement with what 
has been reported in the literature. One gene was negatively 

TABLE 2.  Selected Associations Between Long-term Exposure to NOx and Transcript Levels Based on Agnostic Approach  
(q Value <0.2) in the Italian, Swedish, and Combined Population

  Italian Cohort Swedish Cohort Combined Cohort
P Value for 
InteractioncAgilent ID Gene Name βa (SE) Q Valueb β (SE) Q Value β (SE) Q Value

A_23_P252075 AHCYL2d 0.23 (0.05) 0.12 0.01 (0.04) 0.99 0.10 (0.03) 0.99 3 × 10−4

A_24_P406830 MTMR2e −0.20 (0.05) 0.12 0.02 (0.03) 0.99 −0.05 (0.03) 0.99 2 × 10−4

A_32_P156373 Unknown 0.31 (0.07) 0.17 −0.06 (0.07) 0.99 0.06 (0.06) 0.99 3 × 10−4

A_32_P175313 Unknown 0.30 (0.07) 0.17 −0.05 (0.06) 0.99 0.07 (0.05) 0.99 1 × 10−3

A_32_P44961 LARP1Bf 0.33 (0.07) 0.02 0.04 (0.06) 0.99 0.13 (0.05) 0.99 6 × 10−1

A_32_P61298 Unknown 0.38 (0.09) 0.17 0.01 (0.09) 0.99 0.07 (0.07) 0.99 8 × 10−1

aEffect estimate per unit changes of the exposure.
bQ value, false discovery rate correction for P value.
cP value, for the interaction between country and NOx in the combined population.
dAdenosylhomocysteinase-like2.
eMyotubularin-related protein 2.
fLa ribonucleoprotein domain family member 1B.
SE indicates standard error.

http://links.lww.com/EDE/B167
http://links.lww.com/EDE/B167
http://links.lww.com/EDE/B167
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associated with exposure to NOx in our analysis (SELP in the 
combined cohort), but the direction of this effect was not in 
agreement with what has been reported in the literature.

Elastic-Net
Application of Elastic-Net with stability selection 

yielded one probe (A_32_P44961 [LARP1B]) that was asso-
ciated (FWER < 0.05) with long-term average exposure to 

NOx in the Italian cohort. By increasing the FWER cut-off to 
20%, Elastic-Net selected three more probes (A_32_P156373, 
A_32_P175313, and A_23_P252075 [AHCYL2]). All probes 
were also identified using univariate analysis. We observed 
no evidence for an association between long-term exposure to 
NOx and gene expression in the combined and Swedish cohort 
for either FWER cut-off values.

TABLE 3.  Parameter Estimates and Standard Error from Univariate Regression for Candidate Genes (Both Empiric and Biologic) 
Previously Associated with Air Pollution in the Epidemiologic Literature

  Italy Cohort Swedish Cohort Combined Cohort

Agilent ID Gene Name βa (SE) β (SE) β (SE)

Empirical candidate genes

 ��� A_23_P502464 NOS2Ab −0.03 (0.08) 0.03 (0.06) 0.02 (0.05)

 ��� A_32_P50123 SRGAP2 −0.16 (0.08) 0.01 (0.08) −0.06 (0.06)

 ��� A_24_P357869  −0.01 (0.07) −0.08 (0.05) −0.06 (0.04)

 ��� A_23_P200829  −0.002 (0.06) 0.04 (0.04) 0.02 (0.03)

 ��� A_23_P115407 GSTM1 −0.06 (0.08) −0.05 (0.07) −0.03 (0.04)

 ��� A_23_P202658 GSTP1 −0.084 (0.08) 0.04 (0.06) −0.01 (0.05)

Empirical and biological candidate genes

 ��� A_23_P120883 HMOX1 0.07 (0.08) 0.07 (0.06) 0.06 (0.05)

 ��� A_23_P71037 IL-6 0.004 (0.14) 0.11 (0.10) 0.05 (0.08)

Biological candidate genes

 ��� A_23_P103996 GCLM 0.06 (0.06) −0.04 (0.04) −0.01 (0.03)

 ��� A_32_P177953  0.06 (0.06) −0.04 (0.05) −0.003 (0.04)

 ��� A_23_P105138 CAT 0.01 (0.06) 0.01 (0.05) 0.01 (0.04)

 ��� A_23_P119196 KLF2 0.04 (0.08) 0.04 (0.07) 0.05 (0.05)

 ��� A_24_P151305  −0.02 (0.05) −0.04 (0.05) −0.01 (0.04)

 ��� A_23_P120933 ATF4 −0.10 (0.07) −0.05 (0.05) −0.07 (0.04)

 ��� A_23_P120941  −0.01 (0.04) −0.07 (0.04) −0.05 (0.03)

 ��� A_23_P137697 SELP −0.15 (0.11) −0.12 (0.08) −0.13 (0.07)

 ��� A_23_P154840 SOD1 −0.01 (0.06) 0.02 (0.04) 0.02 (0.03)

 ��� A_23_P163402 CYP1A1 0.10 (0.08) 0.08 (0.07) 0.09 (0.05)

 ��� A_23_P202658 GSTP1 −0.08 (0.08) 0.04 (0.06) −0.01 (0.05)

 ��� A_23_P204581 TXNRD1 −0.01 (0.06) −0.09 (0.11) −0.08 (0.08)

 ��� A_23_P209625 CYP1B1 0.13 (0.11) 0.08 (0.07) 0.07 (0.06)

 ��� A_23_P215566 AHR −0.01 (0.11) 0.03 (0.06) −0.002 (0.05)

 ��� A_23_P217280 NOX1 0.26 (0.13) 0.05 (0.11) 0.10 (0.09)

 ��� A_23_P250671 GPX1 −0.01 (0.05) 0.02 (0.04) 0.001 (0.03)

 ��� A_23_P352879 GCLC 0.11 (0.07) 0.01 (0.05) 0.04 (0.04)

 ��� A_23_P5761 NFE2L2 −0.01 (0.06) −0.05 (0.04) −0.04 (0.04)

 ��� A_23_P62907 ATF6 0.09 (0.07) 0.01 (0.05) 0.03 (0.04)

 ��� A_23_P7144 CXCL1 −0.18 (0.13) −0.13 (0.13) −0.16 (0.10)

 ��� A_23_P79518 IL1B −0.06 (0.18) −0.13 (0.14) −0.05 (0.12)

 ��� A_23_P89380 IL-8 0.11 (0.11) 0.25 (0.09) 0.23 (0.07)

 ��� A_23_P89431 CCL2 0.13 (0.11) 0.01 (0.09) 0.05 (0.07)

 ��� A_24_P379413 IL6R −0.02 (0.08) −0.03 (0.06) −0.02 (0.05)

 ��� A_24_P77008 PTGS2 −0.24 (0.18) −0.13 (0.16) −0.17 (0.12)

 ��� A_24_P935819 SOD2 −0.21 (0.12) −0.11 (0.13) −0.13 (0.10)

 ��� A_24_P936444 NFE2L2 0.05 (0.06) −0.08 (0.04) −0.02 (0.04)

 ��� A_32_P13728 HSPA8 −0.02 (0.09) 0.046 (0.05) 0.03 (0.04)

aEffect estimate per unit changes of the exposure. Gene abbreviations are listed in eTable (http://links.lww.com/EDE/B167).
SE indicates standard error.
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GUESS
GUESS did not identify any probe that exceeded our 

predefined MPPI cut-off level of 10%.

DNA Methylation at Relevant Loci
We assessed the association between long-term expo-

sure to NOx and degree of methylation for 74 CpG islands 
in cis with our five noteworthy genes. Methylation data were 
available for a subset (466 of 550) subjects. Results from this 
analysis are presented in eTable 2 (http://links.lww.com/EDE/
B167). Methylation of two CpG islands (hypomethylation 
cg03793937 upstream of MTMR2; q value = 0.14, and hyper-
methylation cg06988775 downstream of AHCYL2; q value = 
0.14) was associated (false discovery rate < 0.2) with long-
term exposure to NOx in the Italian cohort.

Correlation Between Noteworthy Probes and 
Inflammatory Markers

The Pearson correlation coefficients between concentra-
tions of four inflammatory markers from our previous study18 
(i.e., IL-2, IL-8, IL-10, and TNF-α) and expression levels of 
the eight noteworthy probes from the agnostic and candidate 
gene approaches are presented in Table 4 for Swedish and Ital-
ian cohorts, separately.

The overall median of correlation coefficients and 
their interquartile range for Italian and Swedish cohorts 
are  = −0.04 (−0.05, 0.11) and  = −0.01 (−0.02, 0.03), respec-
tively. The highest correlation was observed between IL-2 and 
two of the noteworthy probes A_24_P406830 (MTMR2) (= 
0.4) and A_32_P175313 (= 0.28) in the Italian cohort.

Gene Set Enrichment Analysis
We conducted gene set enrichment analysis using the 

results for the Italian cohort. When we compared our results 
with the set of genes negatively associated to cigarette smok-
ing status, we observed enrichment of the overlapping genes 
among the genes that were most strongly downregulated due 
to exposure to air pollution in our analysis (eFigure 1A; http://
links.lww.com/EDE/B167). We did not observe enrichment 

when we compared our upregulated genes to the upregu-
lated smoking genes (eFigure 1B; http://links.lww.com/EDE/
B167) or the air pollution gene set (eFigure 2; http://links.
lww.com/EDE/B167).

DISCUSSION
Our study provides some evidence that subtle changes in 

gene expression are associated with long-term exposure to air 
pollution as measured by NOx in a cohort of adult individu-
als. We identified seven noteworthy probes in the analysis of 
the Italian cohort, and one noteworthy probe in the analysis of 
the Swedish (and the combined Italian-Swedish) cohort. Of 
these A_23_P252075 (AHCYL2) and A_32_P44961 (LARP1B) 
achieved BH_FDR < 0.2 in all sensitivity analyses. Gene-set 
enrichment analyses indicated that our downregulated genes 
overlapped to a certain extent with genes for which smoking-
induced gene expression differences were previously published.

All noteworthy probes we identified in our agnostic 
analysis are novel findings. Targeted analyses provided sup-
port for a potential association with NOX1 and IL-8 and air 
pollution, whereas for some genes (e.g., Nrf2-mediated genes 
HMOX1, NQO1, and SOD213), our point estimates suggested 
associations in the same direction as previously reported, but 
these associations were imprecise.

To date, few reports of associations between air pollu-
tion and gene expression have been replicated. We attribute 
the lack of replication to the small study populations that have 
been used, the relatively low exposure levels that individuals 
in these cohorts experienced, and the lack of adjustment for 
multiple testing in most studies.6,7,13,14 Although our study 
population is still modest in size, the 95 individuals in the Ital-
ian cohort were among the highest exposed within Europe.21

In studies such as ours, the risk of false-positive findings 
is high due to the large number of tests conducted compared 
with the number of observations available. For the univari-
ate analysis, we reduced this risk by controlling the false 
discovery rate and by using evidence from the literature as 
an informal prior in our analysis. A limitation of univariate 

TABLE 4.  Correlation Between Expression Levels of Noteworthy Probes and Concentrations of Inflammatory Markers 
Previously Reported to be Associated with NOx in the Same Study Population

  Italy Sweden

Noteworthy Probes Gene Name IL.2 IL.8 IL.10 TNF-α IL.2 IL.8 IL.10 TNF-α

A_23_P252075 AHCYL2 −0.18 −0.05 −0.04 −0.04 0.007 0.018 0.057 −0.004

A_24_P406830 MTMR2 0.40 0.03 0.00 0.18 −0.082 0.030 −0.044 −0.067

A_32_P156373 Unknown −0.10 0.09 0.09 −0.01 0.055 −0.015 0.063 −0.007

 A_32_ 

P175313

Unknown 0.28 0.16 0.15 0.20 0.001 0.071 0.041 −0.021

A_32_P44961 LARP1B −0.05 0.07 0.06 −0.08 0.002 −0.004 −0.010 −0.067

A_32_P61298 Unknown 0.00 −0.06 −0.13 −0.13 −0.017 0.000 −0.007 −0.068

A_23_P217280 NOX1 0.053 −0.12 −0.18 −0.11 −0.018 0.058 0.014 −0.019

A_23_P89380 IL-8 0.070 0.126 0.113 0.073 0.015 0.093 0.013 0.049
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analysis is that it cannot take the correlation structure among 
genes into account, further increasing the risk of false-positive 
findings.22 We therefore applied two additional approaches 
(Elastic-Net and GUESS) that are capable of capturing the 
correlation among genes. Application of these approaches 
reduces the risk of false-positive findings, but at the cost of 
reduced sensitivity.35 Correspondingly, in the present study, 
agnostic univariate analysis identified six noteworthy genes 
that were associated with NOx, Elastic-Net regression (FWER 
0.2) selected four of these whereas GUESS did not select any. 
We view the three approaches as complementary, but as the 
primary goal of our current analysis was to discover poten-
tial new gene expression targets of ambient air pollution, we 
preferred high sensitivity over a lower risk of false-positive 
findings.

Heterogeneity in Results Across Cohorts
As hypothesized, we observed stronger signals in the 

Italian cohort than in the Swedish cohort. This is likely 
due to the different level of exposure in the two cohorts. 
Although the exposure assessment strategy in both cohorts 
was the same, absolute exposure levels and the exposure 
contrast in the Swedish cohort were low (median 6.65 μg/
m3, SD 5.8), compared with the Italian cohort (median 
94.21 μg/m3, SD 43.0).

Biological Role of Noteworthy Genes
Using the Gene Expression Omnibus,36 we identified 

gene annotations for five of our noteworthy probes (AHCYL2, 
MTMR2, LARP1B, IL-8, and NOX1). Functional analysis of 
these genes using the NIH-DAVID bioinformatics resources37 
yielded no evidence for functional enrichment in any biologic 
pathway likely due to the limited number of probes found in 
this study. Biological roles of noteworthy genes based on lit-
erature review are presented in eTable 3 (http://links.lww.com/
EDE/B167).

Gene Set Enrichment Analysis
Using our univariate and variable selection approaches, 

we focused on a small set of genes that showed the largest per-
turbation. However, following this approach, we might have 
missed signals that did not meet our threshold for noteworthi-
ness because the perturbation in gene expression was modest 
relative to the noise inherent to the microarray technology.33 
Gene set enrichment analysis overcomes this limitation by 
using information (ranking according to the strength of the 
association with exposure to air pollution) from multiple 
genes rather than assessing the genes one by one.33 The obser-
vation that there was enrichment of smoking-associated genes 
among the genes that were negatively associated to exposure 
to NOx in our study provides some indication that the per-
turbation of the transcriptome by exposure to air pollution 
we observed was a true finding, rather than a false positive. 
Furthermore, this observation points toward a shared biologic 
pathway of the effects of cigarette smoke and air pollution on 

the transcriptome which is of interest due to overlap between 
health outcomes that have been related to tobacco smoking 
and air pollution.34

DNA Methylation at Relevant Loci
For two genes (MTMR2 and AHCYL2), we observed an 

effect of long-term exposure to NOx on expression level and 
on methylation status of two CpG islands in cis with these 
genes. The effects of long-term exposure to NOx on methyla-
tion of the two genes were in the same direction as what we 
observed for gene expression (downregulation for MTMR2 
and upregulation for AHCYL2), which does not confirm to 
the often observed inverse correlation between methyla-
tion in promoter regions and gene expression due to a gene 
silencing effect of methylation. In addition, as we tested 74 
CPG islands, there is a likelihood for false positives and we 
are therefore cautious in interpreting these results as a cross-
OMICS signal of air pollution.

Correlation Between Noteworthy Probes and 
Inflammatory Markers

We found positive and relatively high correlation 
between immune marker IL-2 and two noteworthy probes 
(A_24_P406830 [MTMR2], A_32_P175313) in the Italian 
cohort but not in the Swedish cohort. We did not identify fur-
ther information regarding a potential shared pathway between 
the genes and the immune marker. The fact that we observed a 
correlation in the Italian cohort, but not in the Swedish cohort 
does provide some indication for a potential role of NOx in 
inducing this correlation in the Italian cohort by affecting both 
probes; A_24_P406830 (MTMR2), A_32_P175313 and the 
concentration of IL-2.

A limitation of our study is that we have included probes 
without knowing where they bind to the genome (nonanno-
tated probes). Although results for nonannotated probes are 
less informative than the probes that have been annotated, 
they do provide some indication of general perturbation of the 
transcriptome by air pollution. To assess the impact of this 
decision, we removed the 6,848 unannotated probes from the 
analyses. These analyses did not identify any newly associated 
probes.

CONCLUSION
In summary, our study provides some evidence for 

subtle changes in the transcriptome in relation to long-term 
exposure to NOx. Some of these changes are consistent with 
transcriptome perturbations that have been observed among 
tobacco smokers. Our results contribute to the further elucida-
tion of the pathways through which long-term exposure to air 
pollution induces adverse health effects.
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