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Abstract
Modern version control systems are largely based on the UNIX
diff3 program for merging line-based edits on a given file. Un-
fortunately, this bias towards line-based edits does not work well
for all file formats, which may lead to unnecessary conflicts. This
paper describes a data type generic approach to version control that
exploits a file’s structure to create more precise diff and merge al-
gorithms. We prototype and prove properties of these algorithms
using the dependently typed language Agda; Our ideas can be, nev-
ertheless, be transcribed to Haskell yielding a more scalable imple-
mentation.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.7 [Distri-
bution, Maintenance, and Enhancement]: Version control; D.3.3
[Language Constructs and Features]: Data types and structures

General Terms Algorithms, Version Control, Agda, Haskell

Keywords Dependent types, Generic Programming, Edit dis-
tance, Patches

1. Introduction
Version control has become an indispensable tool in the develop-
ment of modern software. There are various version control tools
freely available, such as git or mercurial, that are used by thou-
sands of developers worldwide. Collaborative repository hosting
websites, such as GitHub and Bitbucket, haven triggered a huge
growth in open source development.

Yet all these tools are based on a simple, line-based diff algo-
rithm to detect and merge changes made by individual developers.
While such line-based diffs generally work well when monitoring
source code in most programming languages, they tend to observe
unnecessary conflicts in many situations.

For example, consider the following example CSV file that
records the marks, unique identification numbers, and names three
of students:

Name , Number , Mark
Alice , 440 , 7.0
Bob , 593 , 6.5
Carroll , 168 , 8.5

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, contact the Owner/Author. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax
+1 (212) 869-0481. Copyright held by Owner/Author. Publication Rights Licensed to ACM.

Copyright c© ACM [to be supplied]. . . $15.00

Adding a new line to this CSV file will not modify any exist-
ing entries and is unlikely to cause conflicts. Adding a new col-
umn storing the date of the exam, however, will change every line
of the file and therefore will conflict with any other change to the
file. Conceptually, however, this seems wrong: adding a column
changes every line in the file, but leaves all the existing data un-
modified. The only reason that this causes conflicts is the granular-
ity of change that version control tools use is unsuitable for these
files.

This paper proposes a different approach to version control
systems. Instead of relying on a single line-based diff algorithm,
we will explore how to define a generic notion of change, together
with algorithms for observing and combining such changes. To this
end, this paper makes the following novel contributions:

• We define a universe representation for data and a type-indexed
data type for representing edits to this structured data in
Agda [17]. We have chosen a universe that closely resembles
the algebraic data types that are definable in functional lan-
guages such as Haskell (Section 2.1). By being able to diff any
Haskell datatype, we can in particular diff the output of any
Haskell parser.

• We define generic algorithms for computing and applying a diff
and prove that these algorithms satisfy several basic correctness
properties (Section 3.3).

• We define a notion of residual to propagate changes of different
diffs on the same structure. This provides a basic mechanism
for merging changes and sets the ground for resolving conflicts
(Section 4).

Background
The generic diff problem is a very special case of the edit distance
problem, which is concerned with computing the minimum cost
of transforming a arbitrarily branching tree A into another, B.
Demaine provides a solution to the problem [8], improving the
work of Klein [12]. The instantiation of this problem to lists is
known as the least common subsequence (LCS) problem [5, 7]. The
popular UNIX diff tool provides a solution to the LCS problem
considering the edit operations to be inserting and deleting lines of
text.

Our implementation follows a slightly different route, in which
we choose not to worry too much about the minimum number of
operations, but instead choose a cost model that more accurately
captures which changes are important to the specific data type in
question. In practice, the diff tool creates patches by observing
changes on a line-by-line basis. However, when different changes
must be merged, using tools such as diff3 [11], there is room for
improvement.



1.1 Patches, informally
Before we delve into the definition of patches, we first have to
specify what patches are supposed to be. Intuitively, a patch is
simply the description of a transformation between two values of
the same type.

The usual operations one expects to perform over patches are:
(A) given two values, we need to be able to describe how to
transform one into the other, and, (B) given a patch and a value,
we need to be able to apply this patch to the value, if possible.

From this description, we could already define a trivial patch
over any type A equipped with decidable equality, which indeed
have the expected operations: (A) a diff function; and (B) an apply
function.

Patch : Set
Patch = A × A

di� : A→ A→ Patch
di� x y = (x , y)

apply : Patch→ A→Maybe A
apply (x , y) z with x == z
...| True = just y
...| False = nothing

It should be clear that this implementation of patches is not de-
sirable. Even though creating a patch is very efficient, the result-
ing patches do not tell us anything about which changes have been
made. Our specification should rule out this trivial implementation.
In particular, we expect a few more properties of patches:

i) They should describe the minimal transformation between two
values, for some notion of minimality.

ii) Computing and applying patches must be efficient.

Nevertheless, every patch must store information about its
source on which it operates and the target value it produces. The
dummy implementation above, however, stores too much informa-
tion. We will show how to exploit A’s structure to address this.
Before we present the data type generic definitions and algorithms,
however, we will present a specific instance of our diff algorithm
for binary trees.

1.2 Diffing Binary Trees
On this section we will define a patch for binary trees together with
its diff function. For the purpose of this example, we assume the
existence of a Patch, di�A and costA for diffing the elements of
type A inside the tree.

data Tree (A : Set) : Set where
Leaf : Tree A
Node : A→ Tree A→ Tree A→ Tree A

The first step is to fix a t : Tree A and figure out the possible
structural transformations one can perform over t. As this is the
information we need to represent using a Patch. For this situation:

i) We can add or remove subtrees from t.

ii) If t is a Node with a value a : A inside, we can modify a and
recursively diff the two subtrees of t.

To calculate a patch between two trees, we need to find a way
of traversing recursive types, inserting and removing values as we
go. We begin by observing that the type of binary trees is, in fact,
the least fixpoint of a (bi)functor:

TreeF : Set→ Set→ Set
TreeF A X = Unit ] A × X × X

Tree : Set→ Set
Tree A = Fix (TreeF A)

We then define the type of the head of a Tree to be isomorphic
to TreeF A 1, where 1 is the unit type. The head of a fixpoint
gives us information about which constructor, together with non-
recursive arguments, is used as the topmost constructor in a value.
It is not hard to see that TreeF A 1 ≈ Maybe A.

Although this specific example is around binary trees, the gen-
eral case has to handle the fixpoint of any functor (definable in our
choice of universe, of course). The idea is compute an alternative
representation of the values of a fixpoint. The very definition of a
fixpoint says that the values of a Fix F will be composed of a con-
structor, some non-recursive and some recursive parts. We define
head and children of a fixpoint to access these respective parts.

For the present example, we can always represent a Tree A in
a list of TreeF A 1, by adding the head of the current value to
the beginning of the list and recursing on the children. We call this
serialization.

hd : {A : Set}→ Tree A→Maybe A
hd Leaf = nothing
hd (Node x _ _) = just x

ch : {A : Set}→ Tree A→ List (Tree A)
ch Leaf = []
ch (Node _ l r) = l :: r :: []

The serialization transforms a Tree into a list of things that
describe the shape of the tree as seen by traversing its nodes in
a given order, and can later be used to reconstruct the Tree. Now
we just need to be able to insert and delete heads in our serialized
tree.

serialize : {A : Set}→ Tree A→ List (Maybe A)
serialize t = hd t :: concat (map serialize (ch t))

In short, a serialized Tree A, or, List (TreeF A 1), can be
seen as the list of constructors used as they are seen in a preorder
traversal of the Tree.

By reducing a tree to a list, or, any fixpoint into a list of heads
for that matter, the definition of patches becomes simpler. The
structural operations one can perform over lists are: copy an empty
list; insert or delete a head from the beginning of the list and recurse
on the tail; or modify the head in the beginning of the list and
recurse on the tail. Encoding this in a datatype gives us:

data TPatch (A : Set) : Set where
Nil : TPatch A
Ins : Maybe A → TPatch A→ TPatch A
Del : Maybe A → TPatch A→ TPatch A
Mod : Patch (Maybe A)

→ TPatch A→ TPatch A

With a representation of the possible transformations an element
of Tree A can undergo we are ready to write our first diffing
algorithm. Note how we will diff lists of trees and serialize them as
we proceed, instead of serializing everything first. This is mainly
an efficiency concern.



di� : {A : Set}→ (as bs : List (Tree A))→ TPatch A
di� [] [] = Nil
di� (x :: xs) [] = Del (hd x) (di� (ch x ++ xs) [])
di� [] (y :: ys) = Ins (hd y) (di� [] (ch y ++ ys))
di� (x :: xs) (y :: ys)
= let

d1 = Ins (hd y) (di� (x :: xs) (ch y ++ ys))
d2 = Del (hd x) (di� (ch x ++ xs) (y :: ys))
d3 =Mod (di�A (hd x) (hd y))

(di� (ch x ++ xs) (ch y ++ ys))
in d1 t d2 t d3

The three base cases are not very interesting, if one of the
arguments is the empty list, there is only so much one can do.
The last case is slightly more complicated. We can always delete
or insert a MaybeA, but now, additionally, we can also compare
the MaybeA values on the beginning of both lists and try to change
one into the other. This is done by the di�A function. Afterwards,
we have to choose one of the three patches we have: d1, d2 and d3.
The associative operator _ t _ simply chooses the patch with the
least cost.

Consider the situation in which a Leaf is transformed into a
Node x, for some x : A. There are two ways for performing
this transformation. We can Del the current hd Leaf and Ins the
hd (Node x), this patch would be encoded by:

Del nothing (Ins (just x) Nil) (p.1)

Or, we could Mod the constructor from a Leaf into a Node x:

Mod (di�A nothing (just x)) Nil (p.2)

The cost function is the tool we use to favor some patches over
others. In this example, which of the two should we prefer?

It is clear that the patch p.1 should be selected, as it immediately
tells us that the structure of the tree will change, by deletions and
insertions. Whereas the second patch, p.2, gives the impression that
we are simply changing the value inside a Node. That is, patch p.1
describes the actual changes better than patch p.2. Hence, patch p.1
should have a lower cost.

When we say we want patches to be minimal, we are referring to
them having a minimal cost. Thus, the cost notion should express
how closely a patch represents the changes in a descriptive fashion
instead of the computational effort needed to apply such patch. We
will define this function for the general case later on, in Section 3.4.

Applying patches is simple: we traverse the patch structure and
update the tree that is being patched as we go along. Crucially,
it relies on the plug function to reassemble trees from their head
and children. In this example, we can define the plug function as
follows:

plug : {A : Set}
→Maybe A→ List (Tree A)
→Maybe (Tree A)

plug nothing ts = just Leaf
plug (just x) (l :: r :: ts) = just (Node x l r)
plug _ _ = nothing

Note that the apply function has to be partial, for the same
reason that plug is partial: if we are plugging a just, we need at least
two Trees. This is not a problem as we can prove that the patches
produced and manipulated by our algorithms are well-formed and
applying them will always produce a valid result.

2. Generic Programming
Now that we have an intuition of what patches should be like, and
what sort of functions we need to define them, we need to introduce
some generic programming notions in order to solve the problem
in the general case. As usual, we start by choosing our universe of
types. We have chosen to define patches on the universe of Regular
Tree Types [16], as it contains most of the algebraic data types one
can define in Haskell. We will give a brief overview of the universe;
a complete library for generic programming can be found online 1.

2.1 Regular Tree Types
The universe of regular tree types [16] (sometimes also called
context-free types [3]) defines a set of codes and an interpretation
function from codes to Set. This universe can express polynomial
types with type application and least fixpoints.

The type of codes with n (de Bruijn style) type variables is
defined by:

data U : N→ Set where
u0 : {n : N}→ U n
u1 : {n : N}→ U n
_⊕_ : {n : N}→ U n→ U n→ U n
_⊗_ : {n : N}→ U n→ U n→ U n
def : {n : N}→ U (suc n)→ U n→ U n
µ : {n : N}→ U (suc n)→ U n
var : {n : N}→ U (suc n)
wk : {n : N}→ U n→ U (suc n)

The N index gives the number of free type variables available in
the expression. The most recently bound variable may be referred
to using the var constructor; the weakening constructorwk discards
the topmost variable, allowing access to the others. The least fix-
point, µ , and definitions, def , bind a variable. Products, coprod-
ucts, the unit type and the empty type are standard.

As a simple example, we can represent the type of binary trees
of booleans as:

boolU : U 0
boolU = u1 ⊕ u1

treeU : U 1
treeU = µ (u1 ⊕ (wk var ⊗ var ⊗ var))

btreeU : U 0
btreeU = def treeU boolU

Here we use the def constructor to instantiate the treeU type.
We now need to provide an interpretation function that maps

a given code, in U, to a Set. On a first try, it would be natural
to attempt interpreting only closed type expressions, U 0, using
explicit substitution whenever necessary. This approach, however,
would require some non-trivial substitution machinery [2], and
complicate the definition of our generic operations. Instead, we
choose to interpret open type expressions in a suitable environment.

We could choose the environment to be a list of types, describ-
ing how to interpret every de Bruijn index. In our scenario, how-
ever, it needs to be a telescope [9]. That is, every new variable may
refer to previous variables in its definition.

data T : N→ Set where
[] : T 0
_::_ : {n : N}→ U n→ T n→ T (suc n)

1 https://github.com/VictorCMiraldo/cf-agda



With codes and telescopes at hand, we can interpret every type
expression without the need for explicit substitutions or renamings.
For every code T and every telescope Γ, we can compute a set JT KΓ

as follows:

Ju0KΓ = 0

Ju1KΓ = 1

JTa ⊕ TbKΓ = JTaKΓ + JTbKΓ

JTa ⊗ TbKΓ = JTaKΓ × JTbKΓ

Jdef F xKΓ = JF Kx,Γ
Jvar Kx,Γ = JxKΓ

Jwk T Kx,Γ = JT KΓ

Jµ T KΓ = JT Kµ T,Γ
We will define this interpretation as an Agda datatype.

data ElU : {n : N}→ U n→ T n→ Set where
unit : {n : N}{t : T n}

→ ElU u1 t
inl : {n : N}{t : T n}{a b : U n}

(x : ElU a t)→ ElU (a ⊕ b) t
inr : {n : N}{t : T n}{a b : U n}

(x : ElU b t)→ ElU (a ⊕ b) t
_,_ : {n : N}{t : T n}{a b : U n}

→ ElU a t→ ElU b t→ ElU (a ⊗ b) t
top : {n : N}{t : T n}{a : U n}

→ ElU a t→ ElU var (a :: t)
pop : {n : N}{t : T n}{a b : U n}

→ ElU b t→ ElU (wk b) (a :: t)
mu : {n : N}{t : T n}{a : U (suc n)}

→ ElU a (µ a :: t)→ ElU (µ a) t
red : {n : N}{t : T n}{F : U (suc n)}{x : U n}

→ ElU F (x :: t)
→ ElU (def F x) t

Our universe of codes gives us a clear inductive structure that we
can use to define generic functions. To improve readability of our
code, we will sometimes drop Agda-specific syntax from now on,
and instead, sketch the main ideas underlying our definitions. The
complete development is available online at https://github.
com/VictorCMiraldo/cf-agda.

Following the lines of the example, Section 1.2, the generic
functions we will need throughout the paper are the generic ver-
sions of the head, children and plug functions. From now on, we
assume we have these functions with the following types:

µ-hd : J µ ty K t→ J ty K (u1 :: t)
µ-ch : J µ ty K t→ List (J µ ty K t)
µ-plug : J ty K (u1 :: t)→ List (J µ ty K t)
→Maybe (J µ ty K t)

Moreover, plug must satisfy the expected correctness property:

∀x . plug(hd x)(ch x) ≡ just x
We stress that the implementation of the aforementioned func-

tions is slightly different, and requires a more general type. The
complete definitions can be found in our library.

3. Structural Patches
Following the inductive structure given by our codes, we shall
define the type of patches over a given type.

Recalling Section 1.1, the idea is using as much (type) structure
as possible to mimic our simple definition of patches, as a pair of

source and target. More formally, our patch type should behave as
the diagonal functor ∆ mapping an objectA to the pair (A,A) with
analogous action on arrows.

In this section we will define PatchΓ T , the type of patches over
some code T and telescope Γ. The subscripts Γ will be omitted
when they can be inferred by the context. We will use = to refer
to definitions, ≡ to refer to propositional equality and ≈ to refer to
isomorphism.

Let us start by defining patches over the most basic types in our
universe.

T ≡ u0 ; When T is the empty type, the type of patches is on T
is empty. There are no transformations one can make because there
are no values to be transformed.

Patch u0 = 0 ≈ ∆Ju0K
T ≡ u1 ; When T is the unit type, there is only one possible
transformation: no change at all.

Patch u1 = 1 ≈ ∆Ju1K
T ≡ Ta ⊗ Tb ; When T is a product of two types, again, there is
only one possible transformation: to transform the components of
the pair separately:

Patch (Ta ⊗ Tb) = Patch Ta × Patch Tb

≈ ∆JTaK ×∆JTbK
≈ ∆JTa ⊗ TbK

T ≡ Ta ⊕ Tb ; When T is a coproduct of two types, we are faced
with more options. There are four possibilities: one for each choice
of inl and inr for the source and target. When tag associated with the
source and target coincide, the patch only needs information about
the underlying change. When the tag associated with the source and
target is different, the patch on the coproduct should record both.

Patch (Ta ⊕ Tb) = Patch Ta + Patch Tb + 2× JTaK × JTbK
≈ ∆JTaK + 2× JTaK × JTbK + ∆JTbK
≈ ∆JTa ⊕ TbK

The universe of context free types uses a telescope to interpret
variables and application. In fact, if we look closely at the defi-
nition of ElU for var , wk and def we can see that all we need to
do is manipulate the telescope. The definition of Patch for these
constructors will follow the same approach.

T ≡ var ; When T is the topmost variable, we can assert that we
have at least one element on Γ, hence Γ = τ,Γ′.

Patchτ,Γ′ var = PatchΓ′ τ

≈ ∆JτKΓ′

≈ ∆Jvar Kτ,Γ′
T ≡ wk T ; Weakenings are also very simple, we just need
to drop the topmost variable and Patch recursively. Here, we also
have a non-empty telescope, hence Γ = τ,Γ′.

Patchτ,Γ′ (wk T ) = PatchΓ′ T

≈ ∆JT KΓ′

≈ ∆Jwk T Kτ,Γ′
T ≡ def F x ; When T = def F x, we simply need to patch
F , adding x to the telescope in order to bind the topmost variable,



that is, de Bruijn index 0, of F to x.

PatchΓ (F x) = Patchx,Γ F

≈ ∆JF Kx,Γ
≈ ∆Jdef F xKΓ

3.1 Least Fixpoints
Handling finite types with variables and application is just routine
induction. Patching fixpoints is more challenging as they can grow
and shrink arbitrarily. That is, we can always insert and delete
subtrees.

To give a generic definition, we need to find a way to uniformly
describe how the fixpoints in our universe grow or shrink. The idea
is that the fixpoint of any F -structure can be serialized as a list of
F1 by fixing a traversal order. This is a generalization of how we
handled binary trees in Section 1.2. In fact, the generic serialization
function can be defined as:

serialize : {n : N}{t : T n}{ty : U (suc n)}
→ ElU (µ ty) t→ List (ElU ty (u1 :: t))

serialize x = µ-hd x :: concat (map serialize (µ-ch x))

This gives us a uniform way to handle fixpoints generically. Fol-
lowing the same intuition from the patches over trees, Section 1.2,
we can always insert or delete heads in the serialized fixpoint or
modify the contents of a head recursively. Thus,

Patch (µ F ) = List(F 1 + F 1 + Patch(F 1))

This reads as “A patch of the (least) fixpoint of an F -structure is
a list of edit operations over F 1”. Whereas the edit operations are,
in turn, a coproduct representing insertion, deletion or modification,
respectively.

But when we try to define a deserialization function, we run into
problems. Take, for instance, the deserialization of the empty list.
What should that be? The inverse of serialization is clearly a partial
function.

Hence, it is clear that if we use this serialization-based ap-
proach, our definition of Patch (µ F ) is not isomorphic to
∆ (µF ), precisely because of the partiality of deserialization.

We could define Patch (µ F ) a bit more carefully. The use of
indexed lists to keep track of how many elements a patch consumes
and produces or the use of Σ-types to restrict the patches to those
that have a well defined source and a destination could do the
job. The actual implementation uses the Σ-type approach, but for
presentation and simplicity purposes, we will omit this for now.

3.2 Patches, in Agda
With a general idea of patches at hand, we can now define the Agda
datatype of patches by induction on codes and telescopes.

We will define the type D A t ty of diffs for the code ty and
telescope t with a free-monad structure on A. This parameter A is
used to add information, as we shall see shortly; its type, TU→Set,
is just the type of inductive type-families over codes and telescopes,
defined by ∀{n} → T n→ U n→ Set.

data D (A : TU→Set)
: {n : N}→ T n→ U n→ Set

where
D-unit : {n : N}{t : T n}→ D A t u1

D-pair : {n : N}{t : T n}{a b : U n}
→ D A t a→ D A t b→ D A t (a ⊗ b)

D-inl : {n : N}{t : T n}{a b : U n}
→ D A t a→ D A t (a ⊕ b)

D-inr : {n : N}{t : T n}{a b : U n}
→ D A t b→ D A t (a ⊕ b)

D-setl : {n : N}{t : T n}{a b : U n}
→ ElU a t→ ElU b t→ D A t (a ⊕ b)

D-setr : {n : N}{t : T n}{a b : U n}
→ ElU b t→ ElU a t→ D A t (a ⊕ b)

D-def : {n : N}{t : T n}{F : U (suc n)}{x : U n}
→ D A (x :: t) F→ D A t (def F x)

D-top : {n : N}{t : T n}{a : U n}
→ D A t a→ D A (a :: t) var

D-pop : {n : N}{t : T n}{a b : U n}
→ D A t b→ D A (a :: t) (wk b)

D-A : {n : N}{t : T n}{ty : U n}
→ A t ty→ D A t ty

D-mu : {n : N}{t : T n}{a : U (suc n)}
→ List (Dµ A t a)→ D A t (µ a)

Besides the definitions for the basic type constructors, as we
presented previously, the D-A constructor can be used to store
values of type A. As a result, the type for diffs forms a free monad
by construction. This structure will be used for storing additional
information, when we have conflicts, as we shall see later (Section
4.1).

The only other interesting case is that for fixed points. These are
handled by a list of edit operations:

data Dµ (A : TU→Set)
: {n : N}→ T n→ U (suc n)→ Set

where
Dµ-ins : {n : N}{t : T n}{a : U (suc n)}

→ ElU a (u1 :: t)→ Dµ A t a
Dµ-del : {n : N}{t : T n}{a : U (suc n)}

→ ElU a (u1 :: t)→ Dµ A t a
Dµ-dwn : {n : N}{t : T n}{a : U (suc n)}

→ D A (u1 :: t) a→ Dµ A t a

Dµ-A : {n : N}{t : T n}{a : U (suc n)}
→ A t (µ a)→ Dµ A t a

In addition to the constructors for inserting, deleting, or modi-
fying subtrees, we add a new constructor storing the parameter A.

Finally, we define the type synonym Patch t ty as D (λ _ _→
⊥) t ty. In other words, a Patch is a D structure that never uses the
D-A constructor, that is, has no extra information.

Source and Destination From the first sections of the paper we
have been stressing that we want our patches to be isomorphic to
a pair of values, representing the patch’s source and a destination.
As you might expect, we can compute these values from any given
patch:

D-src : {A : TU→Set}{n : N}{t : T n}{ty : U n}
→ D A t ty→Maybe (ElU ty t)

D-dst : {A : TU→Set}{n : N}{t : T n}{ty : U n}
→ D A t ty→Maybe (ElU ty t)



Note that these functions are partial. There are some patholog-
ical cases in which these may fail, precisely those that bump into
the deserialization problem we mentioned earlier. There are two
options for ruling out problematic patches from the elements of D.
Firstly, we could use derivatives instead of heads for inserting and
deleting subtrees, hence guaranteeing that they all have one hole.
Alternatively, we could choose to add two additional N indexes to
Dµ, keeping track of how many elements that patch expects and
produces. Both these options complicate the further development
considerably. We chose to let D represent more patches than we
need and rule out the pathological cases using Σ-types, whenever
necessary.

We then say that a Patch p is well-formed iff there exists two
elements x and y such that D-src p ≡ just x and D-dst p ≡ just y.
In Agda, we can define a data type expressing when a patch is well-
formed as follows:

WF : {A : TU→Set}{n : N}{t : T n}{ty : U n}
→ D A t ty→ Set

WF {A} {n} {t} {ty} p
= Σ (ElU ty t × ElU ty t)
(ń xy→ D-src p ≡ just (p1 xy) × D-dst p ≡ just (p2 xy))

It is mechanical to prove that eliminating constructors of D
and Dµ preserve well-formed patches, which allows one to define
functions by induction on well-formed patches only. This allows us
to rule out any pathological examples in our developments.

3.3 Producing Patches
We are now ready to define a generic function gdi� that, given two
elements of a regular tree type, computes the patch recording their
differences. For finite types and type variables, the gdi� functions
follows the structure of the type in an almost trivial fashion.

gdi� : {n : N}{t : T n}{ty : U n}
→ ElU ty t→ ElU ty t→ Patch t ty

gdi� {ty = u1} unit unit
= D-unit

gdi� {ty = var} (top a) (top b)
= D-top (gdi� a b)

gdi� {ty = wk u} (pop a) (pop b)
= D-pop (gdi� a b)

gdi� {ty = def F x} (red a) (red b)
= D-def (gdi� a b)

gdi� {ty = ty ⊗ tv} (ay , av) (by , bv)
= D-pair (gdi� ay by) (gdi� av bv)

gdi� {ty = ty ⊕ tv} (inl ay) (inl by)
= D-inl (gdi� ay by)

gdi� {ty = ty ⊕ tv} (inr av) (inr bv)
= D-inr (gdi� av bv)

gdi� {ty = ty ⊕ tv} (inl ay) (inr bv)
= D-setl ay bv

gdi� {ty = ty ⊕ tv} (inr av) (inl by)
= D-setr av by

gdi� {ty = µ ty} a b
= D-mu (gdi�L (a :: []) (b :: []))

Diffing fixpoints is much more challenging. Since we never
really know how many children will need to be handled in each
step, gdi�L handles lists of subtrees, or forests. Our algorithm,
heavily inspired by [13], works as follows:

gdi�L : {n : N}{t : T n}{ty : U (suc n)}
→ List (ElU (µ ty) t)→ List (ElU (µ ty) t)→ Patchµ t ty

gdi�L [] [] = []
gdi�L [] (y :: ys)
= Dµ-ins (µ-hd y) :: (gdi�L [] (µ-ch y ++ ys))

gdi�L (x :: xs) []
= Dµ-del (µ-hd x) :: (gdi�L (µ-ch x ++ xs) [])

gdi�L (x :: xs) (y :: ys)
= let

hdX , chX = µ-open x
hdY , chY = µ-open y
d1 = Dµ-ins hdY :: (gdi�L (x :: xs) (chY ++ ys))
d2 = Dµ-del hdX :: (gdi�L (chX ++ xs) (y :: ys))
d3 = Dµ-dwn (gdi� hdX hdY)

:: (gdi�L (chX ++ xs) (chY ++ ys))
in d1 tµ d2 tµ d3

Here, µ-open x computes the pair of the head, µ-hd x and
children µ-ch x of any given tree x.

The first three branches are simple. To transform [ ] into [ ], we
do not need to perform any action; to transform [ ] into y : ys ,
we need to insert the respective head and add the children to the
forest; and finally, to transform x : xs into [ ] we need to delete
the respective values. The interesting case happens when we want
to transform x : xs into y : ys . Here we have three possible diffs
that perform the required transformation. We want to choose the
diff with the least cost. The associative operator _ tµ _ returns
the patch with the lowest cost. As we shall see in section 3.4,
this notion of cost is very delicate. Before we explore the cost
function, however, let us introduce a few interesting results and
special patches.

Correctness of gdi� As we mentioned previously, not all patches
are well-formed. We can prove, however, that gdi� is guaranteed to
produce well-formed patches:

D-src (gdi� x y) ≡ just x

D-dst (gdi� x y) ≡ just y

Identity Patch For all x : JtyKΓ, we can compute the identity
patch on x, written D-id x. Moreover, it has x as its source and
destination.

In fact, looking at the definition of gdi�, it is not hard to see
that whenever x ≡ y, gdi� x y will produce a patch without
any occurrence of D-setl, D-setr, Dµ-ins and Dµ-del, as they are
the only constructors that introduce new information. We call these
constructors the change-introduction constructors.

Inverse Patch Given a patch p : PatchΓ ty, if it is not the identity
patch, then it has some change-introduction constructors inside. We
can compute the inverse patch of p, D-inv p by swapping D-setl’s
with D-setr’s and Dµ-ins’s with Dµ-del’s. It satisfies the following
properties:

D-src (D-inv p) ≡ D-dst p

D-dst (D-inv p) ≡ D-src p

Therefore, if p is well-formed, then D-inv p is well-formed.

Composition of Patches Given two well-formed patches p, q :
PatchΓ ty, if D-src p ≡ D-dst q then we can define the composi-
tion of p and q, p ◦D q, which also satisfies the expected properties:

D-src (p ◦D q) ≡ D-src q

D-dst (p ◦D q) ≡ D-dst p



3.4 The Cost Function
As we mentioned earlier, the cost function is one of the key pieces
of the diff algorithm. Its role is to assign a natural number to
patches.

cost : {n : N}{t : T n}{ty : U n}→ Patch t ty→ N

The cost of transforming x into y intuitively leads one to think
about how far is x from y. We believe that the cost of a patch induce
a metric on our universe:

dist x y = cost (gdi� x y)

Remember that we call a function dist a metric if the following
three properties are satisfied:

dist x y = 0 ⇔ x = y (1)
dist x y = dist y x (2)

dist x y + dist y z > dist x z (3)

We can now proceed to calculate the cost function from this
specification.

Equation (1) tells that the cost of not changing anything must
be 0, therefore, the cost of D-id x should be 0, for all x. That is
easy to achieve, as D-id x is the patch over x with no change-
introduction constructors, we just assign a cost of 0 to every non-
change-introduction constructor.

Equation (2), on the other hand, tells us that it should not matter
whether we go from x to y or from y to x, the effort is the
same. In other words, inverting a patch should preserve its cost.
The inverse operation leaves everything unchanged but flips the
change-introduction constructors to their dual counterpart. We will
hence assign a cost c⊕ = cost D-setl = cost D-setr and cµ =
cost Dµ-ins = cost Dµ-del. This guarantees the second property
by construction. If we define cµ and c⊕ as constants, however, the
cost of inserting a small subtree will be the same cost as inserting
a very large subtree. This is probably undesirable and may lead
to unexpected behavior. Instead of constants, c⊕ and cµ will be
functions, c⊕ x y = cost (D-setr x y) = cost (D-setl x y)
and cµ x = cost (Dµ-ins x) = cost (Dµ-del x). For now this
suffices. We shall give them a concrete definition later on.

Equation (3) is concerned with composition of patches. The
aggregate cost of changing x to y, and then y to z should be
greater than or equal to changing x directly to z. This is al-
ready trivially satisfied. Let us denote the number of change-
introduction constructors in a patch p by #p. In the best case
scenario, #(gdi� x y) + #(gdi� y z) = #(gdi� x z), this
is the situation in which the changes of x to y and from y to z
are non-overlapping. If they are overlapping, then some changes
made from x to y must be changed again from y to z, yielding
#(gdi� x y) + #(gdi� y z) > #(gdi� x z), and since the
change-introduction constructors are the ones with non-zero cost,
this also implies equation (3).

Let us make a short summary of what happened so far. We began
by defining patches and how to compute them. We then saw the
need of a relation over patches, that would let one choose between
patches with the same source and destination. This motivates the
cost function. In order to define the cost function, however, we
started from its specification and computed a suitable (abstract)
definition for cost. Given the special patches (identity, inverse and
composition) and the restrictions imposed by the specification, we
saw that there were only two values left to be defined, and for nearly
whatever definition we gave to those values the cost will induce a
metric.

Let costL = sum·map costµ, the cost function is then defined
by:

cost (D-A ())
cost D-unit = 0
cost (D-inl d) = cost d
cost (D-inr d) = cost d
cost (D-setl xa xb) = c⊕ xa xb
cost (D-setr xa xb) = c⊕ xa xb
cost (D-pair da db) = cost da + cost db
cost (D-def d) = cost d
cost (D-top d) = cost d
cost (D-pop d) = cost d
cost (D-mu l) = costL l

costµ (Dµ-A ())
costµ (Dµ-ins x) = cµ x
costµ (Dµ-del x) = cµ x
costµ (Dµ-dwn x) = cost x

In order fill in the gaps that are left in the Agda code we abstract
away c⊕ and cµ, package everything inside a record and write the
rest of the code passing those records as module parameters.

record Cost : Set where
constructor cost-rec
�eld
c⊕ : {n : N}{t : T n}{x y : U n}
→ ElU x t→ ElU y t→ N

cµ : {n : N}{t : T n}{x : U (suc n)}
→ ElU x (u1 :: t)→ N

c⊕-sym-lemma : {n : N}{t : T n}{x y : U n}
→ (ex : ElU x t)(ey : ElU y t)
→ c⊕ ex ey ≡ c⊕ ey ex

It is straightforward to prove that the cost (D-id x) ≡ 0 and
cost (D-inv p) ≡ cost p. For the later we need the symmetry
lemma over c⊕, which is why it is packaged together.

To complete our definition and be able to run our algorithm, we
still need to choose suitable definitions for c⊕ and cµ. Different
cost models will favor certain changes over others – yielding very
different behavior for our diff algorithm.

We will now calculate one possible choice for cµ and c⊕ that
favors ‘smaller’ changes further down in the tree. That is, we want
the changes made to the outermost structure to be more expensive
than the changes made to the innermost parts. For example, in a
CSV file context, this would consider inserting a new line to be a
more expensive operation than updating a single cell.

The rest of this section is quite technical and might not be
of much interest to some readers. In the end of the calculation
we provide the definitions we use for c⊕ and cµ in order to get
the behavior we want. Nevertheless, let us take a look at where
the difference between cµ and c⊕ comes into play, and calculate
from there. Assume we have stopped execution of gdi�L at the
d1 tµ d2 tµ d3 expression. Here we have three patches, that
perform the same changes in different ways, and we have to choose
one of them.

d1 = Dµ-ins hdY : : gdi�L (x : : xs) (chY ++ ys)
d2 = Dµ-del hdX : : gdi�L (chX ++ xs) (y : : ys)
d3 = Dµ-dwn (gdi� hdX hdY )

: : gdi�L (chX ++ xs) (chY ++ ys)



For now, we will only compare d1 and d3. Since the cost of
inserting and deleting subtrees is necessarily the same, the analysis
for d2 is analogous. By choosing d1, we would be opting to insert
hdY instead of transforming hdX into hdY , this is preferable
only when we do not have to delete hdX later on when computing
gdi�L (x : : xs) (chY ++ ys). Deleting hdX is inevitable when
hdX does not occur as a subtree in the remaining structures to diff,
that is, hdX /∈ chY ++ ys. Assuming, without loss of generality,
that this deletion happens in the next step, we can calculate:

d1 = Dµ-ins hdY : : gdi�L (x : : xs) (chY ++ ys)

= Dµ-ins hdY : : gdi�L (hdX : : chX ++ xs) (chY ++ ys)

= Dµ-ins hdY : : Dµ-del hdX

: : gdi�L (chX ++ xs) (chY ++ ys)

= Dµ-ins hdY : : Dµ-del hdX : : tail d3

Hence, cost d1 is cµ hdX + cµ hdY + w, for w =
cost (tail d3). Here hdX and hdY are values of the same type,
ElU ty (tcons u1 t).

As our data types will typically be sums-of-products, hdX and
hdY are values of the same finitary coproduct, corresponding to
the constructors of a (recursive) data type.

We will now consider the patch redundancy problem we briefly
mentioned in Section 1.2. Recall the two patches that could change
a Leaf into a Node:

(p.1) Del nothing (Ins (just x) Nil)

(p.2) Mod (di�A nothing (just x)) Nil

As we mentioned on the example, the cost function is what is
going to favor one over the other. Let us take a look at this very
situation but in a more general setting. In what follows we will use
ij to denote the j-th injection into a finitary coproduct. If hdX
and hdY comes from different constructors, then hdX = ij x

′

and hdY = ik y′ where j 6= k. The patch from hdX to hdY
will therefore involve a D-setl x′ y′ or a D-setr y′ x′, hence
the cost of d3 becomes c⊕ x′ y′ + w. The reasoning behind this
choice is simple: since the outermost constructor is changing, the
cost of this change should reflect this. As a result, we need to select
d1 instead of d3, that is, we need to attribute a cost to d1 that is
strictly lower than the cost of d3. Note that we are calculating the
specification our functions cµ and c⊕ needs to satisfy in order to
obtain the desired behavior.

cost d1 < cost d3

⇔ cµ (ij x
′) + cµ (ik y

′) + w < c⊕ (ij x
′) (ik y

′) + w
⇐ cµ (ij x

′) + cµ (ik y
′) < c⊕ (ij x

′) (ik y
′)

If hdX and hdY come from the same constructor, on the other
hand, the story is slightly different. In this scenario we prefer
to choose d3 over d1, as we want to preserver the constructor
information. We now have hdX = ij x

′ and hdY = ij y
′, the

cost of d1 still is cµ (ij x
′) + cµ (ik y

′) +w but the cost of d3 will
be cost (gdi� (ij x

′) (ij y
′)) + w. Since gdi� (ij x

′) (ij y
′) will

reduce to gdi� x′ y′ preceded by a sequence of D-inr and D-inr,
which have zero cost. Hence, cost d3 = cost (gdi� x′ y′) + w.

Remember that we want to select d3 instead of d1, based on
their costs. The way to do so is to enforce that d3 will have a
strictly smaller cost than d1. We hence calculate the relation our
cost function will need to respect:

cost d3 < cost d1

⇔ dist x′ y′ + w < cµ (ij x
′) + cµ (ij y

′) + w
⇐ dist x′ y′ < cµ (ij x

′) + cµ (ij y
′)

Recall that our objective was to calculate a specification for the
cost function that guarantees as many constructors as possible are
preserved. We did so by analyzing the case in which we want gdi�
to preserve the constructor against the case where we want gdi� to
delete or insert new constructors. By transitivity and the relations
calculated above we get:

dist x′ y′ < cµ (ij x
′) + cµ (ik y

′) < c⊕ (ij x
′) (ik y

′)

Note that there are many definitions that satisfy the specifica-
tion we have outlined above. So far we have calculated a rela-
tion between cµ and c⊕ that encourages the diff algorithm to favor
(smaller) changes further down in the tree.

The choice of cµ and c⊕ function determines how the diff
algorithm works; finding further evidence that the choice we have
made here works well in practice requires further work. Different
domains may require different relations. Nevertheless, since our
algorithms are defined abstractly on the Cost details, we plan to
later allow customization of the algorithm’s behavior by changing
the cost assigned to specific datatypes.

To run our diff algorithm, we define a generic sizeElU function
and declare a top-down Cost as follows:

sizeElU : {n : N}{t : T n}{u : U n}→ ElU u t→ N
sizeElU unit = 1
sizeElU (inl el) = 1 + sizeElU el
sizeElU (inr el) = 1 + sizeElU el
sizeElU (ela , elb) = sizeElU ela + sizeElU elb
sizeElU (top el) = sizeElU el
sizeElU (pop el) = sizeElU el
sizeElU (mu el)
= let (hdE , chE) = µ-open (mu el)
in sizeElU hdE + foldr _+_ 0 (map sizeElU chE)

sizeElU (red el) = sizeElU el

top-down-cost
= cost-rec (ń ex ey→ sizeElU ex + sizeElU ey)
sizeElU
(ń ex ey→ (+-comm (sizeElU ex) (sizeElU ey)))

3.5 Applying Patches
We have defined an algorithm to compute a patch, but we have
not yet defined an algorithm to apply a patch. This is one of the
simplest algorithms of our whole development. We will omit most
of the trivial cases here, but focus on the treatment of coproducts
and fixpoints.

A Patch T is an object that describe possible changes that can
be made to objects of type T . Consider the case for coproducts,
that is, T = X + Y . Suppose we have a patch p modifying one
component of the coproduct, mapping (inl x) to (inl x′). What
should be the result of applying p to the value (inr y)? As there
is no sensible value that we can return, we instead choose to make
the application of patches a partial function that returns a value of
Maybe T .

The overall idea is that a Patch T specifies how to transform
a given t1 : T into a t2 : T . The gapply function is performs the
changes that a patch prescribes on t1, yielding t2. For example,
consider the case for the D-setl constructor, which is expecting to
transform an inl x into a inr y. Upon receiving a inl value, we need
to check whether or not its contents are equal to x. If this holds,
we can simply return inr y as intended. If not, we fail and return
nothing.



The definition of the gapply function proceeds by induction on
the patch:

gapply : {n : N}{t : T n}{ty : U n}
→ Patch t ty→ ElU ty t→Maybe (ElU ty t)

gapply (D-inl diff) (inl el) = inl <$> gapply diff el
gapply (D-inr diff) (inr el) = inr <$> gapply diff el

gapply (D-setl x y) (inl el) with x ?
=-U el

...| yes _ = just (inr y)

...| no _ = nothing

gapply (D-setr y x) (inr el) with y ?
=-U el

...| yes _ = just (inl x)

...| no _ = nothing
gapply (D-setr _ _) (inl _) = nothing
gapply (D-setl _ _) (inr _) = nothing
gapply (D-inl diff) (inr el) = nothing
gapply (D-inr diff) (inl el) = nothing
gapply {ty = µ ty} (D-mu d) el = gapplyL d (el :: []) �= lhead
...

Where <$> is the applicative-style application for the Maybe
monad; �= is the usual bind for the Maybe monad and lhead is
the partial function of type [a ] → Maybe a that returns the
first element of a list, when it exists. Despite the numerous cases
that must be handled, the definition of gapply for coproducts is
reasonably straightforward.

The case for fixpoints is handled by the gapplyL function:

gapplyL : {n : N}{t : T n}{ty : U (suc n)}
→ Patchµ t ty→ List (ElU (µ ty) t)
→Maybe (List (ElU (µ ty) t))

gapplyL [] [] = just []
gapplyL [] _ = nothing
gapplyL (Dµ-A () :: _)
gapplyL (Dµ-ins x :: d) l = gapplyL d l �= gIns x
gapplyL (Dµ-del x :: d) l = gDel x l �= gapplyL d
gapplyL (Dµ-dwn dx :: d) [] = nothing
gapplyL (Dµ-dwn dx :: d) (y :: l) with µ-open y
...| hdY , chY with gapply dx hdY
...| nothing = nothing
...| just y’ = gapplyL d (chY ++ l) �= gIns y’

This function proceeds by induction on the patch. In the base
case, when the patch is empty, it checks that the list of values is
also empty. Insertion and deletion are handled by two auxiliary
functions, gIns and gDel.

Inserting a new head x in a list of values l is done by taking the
appropriate number of recursive arguments from l, plugging x with
those values and returning the result and the rest of l. This is done
by the µ-close function, which uses plug internally.

gIns x l with µ-close x l
...| nothing = nothing
...| just (r , l’) = just (r :: l’)

Removing a head x from a a list of values l is the dual operation.
We take the head of the first element of the list, if it matches x we
then concatenate the recursive children of that first element with
the rest of the list.

gDel x [] = nothing
gDel x (y :: ys) with x == (µ-hd y)
...| True = just (µ-ch y ++ ys)
...| False = nothing

Our apply function satisfies an important correctness property.
Given a well-formed patch p, we have that applying p to its source
yields its destination:

gapply p (D-src p) ≡ just (D-dst p)

This lemma and the others relating diffing and operations over
patches, provides the beginning of an equational theory of patches.

4. Residuals and Conflicts
So far, we have seen algorithms to create and apply patches, which
could be used to make some simple version control system. In the
real world, however, the most desired functionality of a VCS is
merging. It is precisely here that we expect to be able to exploit the
structure of files to avoid unnecessary conflicts.

The task of merging changes arise when we have multiple users
changing the same file at the same time. Imagine Bob and Alice
perform edits on a file A0, resulting in two patches p and q. We
might visualize this situation in the following diagram:

A1 A0
poo q // A2

Our idea, inspired by Tieleman [21], is to incorporate the
changes made by p into a new patch, that may be applied to A2

which we will call the residual of p after q, denoted by q/p. Sim-
ilarly, we can compute the residual of p/q. The diagram in Figure
1 informally illustrates the desired result of merging the patches p
and q using their respective residuals:

A0

p

}}

q

!!
A1

q/p !!

A2

p/q}}
A3

Figure 1. Residual patch square

The residual p/q of two patches p and q captures the notion of
incorporating the changes made by p in an object that has already
been modified by q.

It only makes sense to speak about the residual p/q is p and q
have the same source. We say that two patches are aligned when
they are both well-formed and have the same source, we denote “p
is aligned with q” by p || q.

It is here that the notion of conflict enters the stage. It is very
important to clearly identify which situations we will consider as
conflicts. In fact, computing a residual p/q, might give rise to the
situations in figure 2.

Most of the readers might be familiar with the update-update,
delete-update and update-delete conflicts, as these are familiar
from existing version control systems. We refer to these conflicts
as update conflicts.

The grow conflicts are slightly more subtle, and in the majority
of cases they can be resolved automatically. This class of conflicts
roughly corresponds to the alignment table that diff3 calculates
[11] before deciding which changes go where. The idea is that



• If Alice changes a1 to a2 and Bob changed a1 to a3, with
a2 6= a3, we have an update-update conflict;

• If Alice deletes information that was changed by Bob we have
an delete-update conflict;

• If Alice changes information that was deleted by Bob we have
an update-delete conflict.

• If Alice adds information to a fixed-point, which Bob did not,
this is a grow-left conflict;

• If Bob adds information to a fixed-point, which Alice did not, a
grow-right conflict arises;

• If both Alice and Bob add different information to a fixed-point,
a grow-left-right conflict arises;

Figure 2. Propagating Alice’s changes, p over Bob’s, q.

if Bob adds new information to a file, it is impossible that Alice
changed it in any way, as it was not in the file when Alice was
editing it. Hence, we have no way of automatically knowing how
this new information affects the rest of the file. This depends on
the semantics of the specific file, therefore we flag it as a conflict.
The grow-left and grow-right are easy to handle. If the context
allows, we could simply transform them into actual insertions or
copies. They represent insertions made by Bob and Alice in disjoint
places of the structure. A grow-left-right is more complex, as it
corresponds to a overlap and we can not know for sure which
should come first unless more information is provided. As our
patch data type is indexed by the types on which it operates, we
can distinguish conflicts according to the types on which they may
occur. For example, an update-update conflict must occur on a
coproduct type, for it is the only type for which Patches over it can
have different inhabitants. The other possible conflicts must happen
on a fixed-point. In Agda, we can therefore define the following
data type describing the different possible conflicts that may occur:

data C : {n : N}→ T n→ U n→ Set where
UpdUpd : {n : N}{t : T n}{a b : U n}

→ ElU (a ⊕ b) t→ ElU (a ⊕ b) t→ ElU (a ⊕ b) t
→ C t (a ⊕ b)

DelUpd : {n : N}{t : T n}{a : U (suc n)}
→ ValU a t→ ValU a t→ C t (µ a)

UpdDel : {n : N}{t : T n}{a : U (suc n)}
→ ValU a t→ ValU a t→ C t (µ a)

GrowL : {n : N}{t : T n}{a : U (suc n)}
→ ValU a t→ C t (µ a)

GrowLR : {n : N}{t : T n}{a : U (suc n)}
→ ValU a t→ ValU a t→ C t (µ a)

GrowR : {n : N}{t : T n}{a : U (suc n)}
→ ValU a t→ C t (µ a)

4.1 Incorporating Conflicts
Although we have now defined the data type used to represent
conflicts, we still need to define our residual operator. Note that we
are adding conflict information in the place of that extra parameter
we discussed in Section 3.2:

res : {n : N}{t : T n}{ty : U n}
→ (p q : Patch t ty)(hip : p || q)
→ D C t ty

The residual operation is defined by induction on both patches.
As our patch type has quite a few constructors, the definition nec-

essarily covers many different cases. Instead of providing the entire
Agda definition here2, we will discuss a handful of typical branches
in some detail.

We begin by describing the branch when one patch changes the
head of a fixpoint, but the other deletes it, that is, we are computing
the residual:

(Dµ-dwn dx : : dp)/(Dµ-del y : : dq)

We want to describe how to apply the changes p = (Dµ-dwn dx : :
dp) to a structure that has been modified by the patch q =
(Dµ-del y : : dq), assuming both patches have the same
source. Well, since the destination of q has no occurrence of y
at that point anymore (as it was deleted), this is going to depend
on the changes dx that the patch p made to y. If dx is the iden-
tity patch, we can simply ignore it and say that p/q = dp/dq. If
not, then we have a update-delete conflict at hand, so we say that
p/q = Dµ-A (UpdDel dx y) : : (dp/dq).

The remaining cases follow a similar reasoning. For p/q the
idea is to come up with a patch that can be applied to an object
already modified by q but still produces the changes specified by p.
When not possible we simply flag that as a conflict.

The attentive reader might have noticed a symmetric structure
on our conflict data type. This is no coincidence, we can always
compute the symmetric conflict by:

C-sym : {n : N}{t : T n}{ty : U n}
→ C t ty→ C t ty

C-sym (UpdUpd o x y) = UpdUpd o y x
C-sym (DelUpd x y) = UpdDel y x
C-sym (UpdDel x y) = DelUpd y x
C-sym (GrowL x) = GrowR x
C-sym (GrowR x) = GrowL x
C-sym (GrowLR x y) = GrowLR y x

Moreover, this symmetric structure is also present on the resid-
ual itself. Note that D A t ty is functorial on A (by construction),
let D-map be its action on arrows of type A → B, we can prove
that for all p, q : D ⊥ t ty, if p and q are aligned, then:

p/q ≡ D-map C-sym (mirrorp,q(q/p))

Where mirrorp,q has type D A t ty → D A t ty, for all A.
This mirrorp,q will take the residual q/p and transport its structure
to be that of p/q. This happens by inserting and removing Dµ-del s
where necessary.

This is a particularly interesting result, and tells us that the con-
cepts of residuals and patch commutation, as used by Darcs [10],
should not be so far apart. By carefully studying the mirrorp,q func-
tion we should be able to find sufficient conditions to prove certain
merge strategies converge. This is the kind of result we want, in
order to build a functional and reliable Version Control System.

5. Summary, Related Work and Conclusions
This is not the first paper to study the possibility of using data type
generic programming for structure-aware version control. The ear-
liest related work studies the tree edit distance [7, 8, 12]. Algo-
rithms typically compare the Euler traversal of two trees, i.e., the
string of labels encountered during a preorder traversal. The oper-
ations for transforming one tree into another is given by the list of
operations transforming these Euler traversals.

In an untyped setting, there is not much to lose by flattening
the tree structure. In a typed setting, however, using a list of values

2 The complete Agda code is publicly available and can be found in https:
//github.com/VictorCMiraldo/diff-agda.



to represent a patch over a tree may discard important structural
information: what guarantees do we have that we can reconstruct a
well-typed tree from a flattened list? It is precisely this information
that we hope to preserve by adopting a data type generic approach.

The work by Lempsink et al. [13] was the first to define an
efficient, data type generic diff algorithm. The authors did not,
however, consider the problem of merging diffs. More recently,
Vassena [23] extended this work to try and define a diff3 algo-
rithm. Both of these approaches use a heterogeneous rose tree as
the underlying universe of their generic algorithms. The diff algo-
rithm performs a linearized traversal over such rose trees.

Working with such rose trees presents several difficult prob-
lems. Patches are represented as lists of edit operations. When
merging two patches, these must be aligned – that is, we need to en-
sure that both patches can be applied to the same trees. Vassena [23]
argues that one can populate both patches with no-op edit opera-
tions, that perform no modification, in order to align them.

In this paper, we have taken a fundamentally different approach.
By using a well-established universe with more structure from the
outset, we hope to introduce more structure in our definition of diff
data type and residual. As a result, we were hoping to avoid some
of the issues with alignment and the recovery of structure that has
previously been discarded that untyped algorithms face. In our ex-
perience, however, the ‘list of children’ based traversals that we
have defined makes the recursive structure of our algoritms unnat-
ural, but bearable. Reasoning with these lists of edit operations,
however, becomes complex and unwieldy.

Other generic algorithms and data structures, such as zippers,
generic equality, or generic parsing and pretty printing, all directly
exploit the structure of the types in question, rather than flattening
structure to a linear representation. We believe that this is certainly
an avenue of research that is worth exploring further, even if it is
not immediately clear how to do so.

Finally, there are several pieces of related work on version
control systems that are worth mentioning here:

Antidiagonal Although easy to be confused with the diff problem,
the antidiagonal is fundamentally different from the diff/apply
specification. Piponi [19] defines the antidiagonal for a type T
as a typeX such that there existsX → T 2. That is,X produces
two distinct T ’s, whereas a diff produces a T given another T .

Pijul The VCS Pijul is inspired by Mimram[14], where they use
the free co-completion of a category to be able to treat merges
as pushouts. In a categorical setting, the residual square (Figure
1) looks like a pushout. The free co-completion is used to make
sure that for every objects Ai, i ∈ {0, 1, 2} the pushout exists.
Still, the base category from which they build their results
handles files as a list of lines, thus providing an approach that
does not take the file structure into account.

Darcs The canonical example of a formal VCS is Darcs [1]. The
system itself is built around the theory of patches developed by
the same team. A formalization of such theory using inverse
semigroups was done by Jacobson [10]. They use auxiliary ob-
jects, called Conflictors to handle conflicting patches, however,
it has the same shortcoming for it handles files as lines of text
and disregards their structure.

Homotopical Patch Theory Homotopy Type Theory, and its no-
tion of equality corresponding to paths in a suitable space, can
also be used to model patches. Licata et al [4] developed such a
model of patch theory.

Separation Logic Swierstra and Löh [20] use separation logic and
Hoare calculus to be able to prove that certain patches do not
overlap and, hence, can be merged. They provide increasingly
more complicated models of a repository in which one can

apply such reasoning. Our approach is more general in the file
structures it can encode, but it might benefit significantly from
using similar concepts.

Conclusion
This paper tried to give a different approach to generic version
control than what has been previously attempted. We have shown
that even using a fundamentally different universe, we stumbled
upon similar problems: modeling edits of tree-structured in a linear
fashion will be problematic when one tries to merge different edits.
Although we have managed to define a diff algorithm and compute
with residuals, enabling us to define a diff3, reasoning about the
resulting functions is not at all easy – let alone verifying the formal
properties of our algorithms. We believe there is still further work
to be done in this area, exploiting the inductive structure of types
and trees in the merging of patches.
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