
Code quality Issues in Student

Programs

Hieke Keuning

Bastiaan Heeren

Johan Jeuring

Technical Report UU-CS-2017-006

April 2017

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands



Code�ality Issues in Student Programs
Hieke Keuning

Open University of the Netherlands
and Windesheim University of

Applied Sciences
hw.keuning@windesheim.nl

Bastiaan Heeren
Open University of the Netherlands

bastiaan.heeren@ou.nl

Johan Jeuring
Utrecht University and Open
University of the Netherlands

j.t.jeuring@uu.nl

ABSTRACT
Because low quality code can cause serious problems in software
systems, students learning to program should pay attention to code
quality early. Although many studies have investigated mistakes
that students make during programming, we do not know much
about the quality of their code. This study examines the presence
of quality issues related to program �ow, choice of programming
constructs and functions, clarity of expressions, decomposition
and modularization in a large set of student Java programs. We
investigated which issues occur most frequently, if students are
able to solve these issues over time and if the use of code analysis
tools has an e�ect on issue occurrence. We found that students
hardly �x issues, in particular issues related to modularization, and
that the use of tooling does not have much e�ect on the occurrence
of issues.

KEYWORDS
Code quality, programming education

ACM Reference format:
Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Quality
Issues in Student Programs. In Proceedings of ITiCSE’17, July 03-05, 2017,
Bologna, Italy., , 6 pages.
DOI: http://dx.doi.org/10.1145/3059009.3059061

1 INTRODUCTION
Students who are learning to program often write programs that
can be improved. They are usually satis�ed once their program pro-
duces the right output, and do not consider the quality of the code
itself. In fact, they might not even be aware of it. Code quality can
be related to documentation, presentation, algorithms and struc-
ture [11]. Fowler [7] uses the term ‘code smells’ to describe issues
related to algorithms and structure that jeopardise code quality. A
typical example is duplicated code, which could have been put in a
separate method. Another example is putting the same code in both
the true-part and the false-part of an if-statement, even though that
code could have been moved outside the if-statement. Low quality
code can cause serious problems in the long term, which a�ect
software quality attributes such as maintainability, performance
and security of software systems. It is therefore imperative to make
students and lecturers aware of its importance.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ITiCSE’17, July 03-05, 2017, Bologna, Italy.
© 2017 Copyright held by the owner/author(s). ACM ISBN 978-1-4503-4704-4/17/07.
DOI: http://dx.doi.org/10.1145/3059009.3059061

For a long time, researchers have been interested in how students
solve programming problems and the mistakes that they make. Re-
cently, large-scale data mining has made it possible to perform
automated analysis of large numbers of student programs, lead-
ing to several interesting observations. For example, Altadmri and
Brown [3] investigated over 37 million code snapshots and found
that students seem to �nd it harder to �x semantic and type errors
than syntax errors.

Althoughmany studies have investigated the errors that students
make, little attention has been paid to code quality issues in student
programs. While Pettit et al. [10] looked at code quality aspects
and found that several metrics related to code complexity increased
with each submission, their study does not elaborate on the causes
of these high metric scores. Aivaloglou and Hermans [1] analysed
a large database of Scratch projects by measuring complexity and
detecting di�erent code smells. Although the complexity of most
Scratch projects was not high, the researchers foundmany instances
of these code smells.

In this study we analyse a wider range of code quality issues,
and observe their appearance over time. Our data set, taken from
the Blackbox database [6], contains over two million Java programs
of novice programmers recorded in four weeks of one academic
year. First, we investigate the type and frequency of code quality
issues that occur in student programs. Next, we track the changes
that students make to their programs to see if they are able to solve
these issues. Finally, we check if students are better at solving code
quality issues when they have code analysis tools installed.

The contributions of this paper are: (1) a selection of relevant
code quality issues for novice programmers, (2) an analysis of the
occurrence and �xing of these issues, and (3) insight into the in�u-
ence of code analysis tools on issue occurrence.

The remainder of this paper is organised as follows: Section 2
elaborates on related studies on student programming behaviour.
Section 3 describes the research questions, the data set we used,
the code quality issues we have selected to investigate, and the
automatic analysis. Section 4 shows the results for each research
question, which are discussed in Section 5. Section 6 concludes and
describes future work.

2 RELATEDWORK
This section discusses previous research into student programming
habits related to code quality. We also consider studies that have
analysed student programming behaviour on a large scale.

Pettit et al. [10] have analysed over 45,000 student submissions
to programming exercises. The authors monitored the progress that
students made over the course of a session, in which students sub-
mit their solutions to an automated assessment tool that provides
feedback based on test results. For each submission they computed



ITiCSE’17, July 03-05, 2017, Bologna, Italy Hieke Keuning, Bastiaan Heeren, and Johan Jeuring

several metrics: lines of code, cyclomatic complexity, state space
(number of unique variables) and the six Halstead complexity mea-
sures (calculations based on the number of operators and operands
of a program). The authors also distinguish between sessions in
which the number of attempts within a speci�c time frame is re-
stricted. The main conclusion from the study is that although the
metric scores increase with each submission attempt, restricting
the number of attempts has a positive in�uence on the code quality
of students. Second, the authors argue that instructors should also
consider coding style and quality, because focusing solely on testing
may result in ine�cient programs. The study does not elaborate
on the particular problems that cause high complexity scores.

Aivaloglou and Hermans [1] analysed a database of over 230,000
Scratch projects. Scratch is a block-based programming language
that is often used to teach children how to program. Besides inves-
tigating general characteristics of Scratch programs, the authors
also looked at code smells, such as cyclomatic complexity, duplicate
code, dead code, large scripts and large sprites (image objects that
can be controlled by scripts). Translating to the object-oriented do-
main, a large script is comparable to a large class and a large sprite
to a large method. In 78% of over 4 million scripts the cyclomatic
complexity is one. Only 4% of the scripts has a complexity over
four. In 26% of the projects the researchers identi�ed code clones
(12% for exact clones), consisting of at least �ve blocks. It should
be noted that Scratch only supports procedure calls within sprites,
leaving copy-pasting code as the only option. Dead code occurs
in 28% of the projects. Large scripts (with at least 18 blocks) are
present in 30% of the projects and large sprites (with at least 59
blocks) in 14% of the projects.

Breuker et al. [5] investigated the di�erences in code quality
between �rst and second year students in approximately 8,400 Java
programs in 207 projects, using a set of 22 code quality properties.
They found that for half of the properties there were no major
di�erences. For the remaining properties, some di�erences could be
attributed to increased project size and complexity for second year
students. Finally, second year students performed better because
their code had smaller methods, fewer short identi�ers, fewer static
methods and fewer assignments in while and if-statements.

Much more research into code smells exists for professional code.
For example, Tufano et al. [12] investigated the repositories of 200
software projects, answering the question when and why smells
are introduced. They calculated �ve metrics related to the size
and complexity of classes and methods, and proper use of object-
orientation. They found that most smells �rst occur when a �le is
created and that, surprisingly, refactorings may introduce smells.

Altadmri and Brown [3] used data from one academic year of the
Blackbox database to investigate what common student mistakes
are, how long it takes to �x them, and how these �ndings change
during an academic year. Although there are various other studies
that look at these aspects, it had not been done on such a large scale
before. Individual source �les were tracked over time by checking
them for 18 mistakes, and calculating how much time had passed
before the mistake disappeared from the source �le. One important
observation from the study is that students seem to �nd it harder
to �x semantic and type errors than syntax errors.

3 METHOD
This study addresses the following research questions:

RQ1 Which code quality issues occur in student code?
RQ2 How often do students �x code quality issues?
RQ3 What are the di�erences in the occurrence of code quality

issues between students who use code analysis extensions
compared to students who do not?

3.1 Blackbox database
Our data set is extracted from the Blackbox database [6], which
collects data from students working in the widely used BlueJ IDE1
for novice Java programmers. BlueJ, used mostly in �rst year pro-
gramming courses, has a simpli�ed user interface and o�ers several
educational features, such as interacting with objects while running
a program.

The Blackbox database stores information about events in BlueJ
triggered by students, such as compiling, testing and creating ob-
jects. Blackbox stores data on sessions, users, projects, code �les
and tests, which are linked to these events. A source �le is a �le of
which there may be multiple versions called snapshots, which are
unique instances of the source �le at a certain event.

The database has been receiving data constantly since June 2013,
and contains millions of student programs to date. BlueJ users have
to give prior consent (opt-in) to data collection, and all collected data
is anonymous. Permission is required to access the database. In this
studywe have investigated programs submitted in four weeks of the
academic year 2014–2015 (the secondweek of September, December,
March and June). From the Blackbox database we extracted data
on source �les, snapshots, compile events, extensions and startup
events, which we stored in a local database. We only extracted data
on programs that are compilable.

3.2 Data analysis
We performed an automatic analysis of all programs in our data set
that compiled successfully. To enable replication and checks, we
have published the code online.2 We counted the source lines of
code (SLOC) for each �le using the cloc tool.3 Although this metric
is sensitive to style and formatting and therefore not very accurate,
it provided us with an indication of the size of a program.

3.2.1 Issues (RQ1). Stegeman et al. [11] have developed a rubric
for assessing code quality, based on their research into professional
code quality standards from the software engineering literature and
interviews with instructors. The rubric is based on a model with
ten categories for code quality. We omit the categories that deal
with documentation (the names, headers and comments categories)
and presentation (the layout and formatting categories). Our study
focuses on the remaining �ve categories that deal with algorithms
and structure, because they are the most challenging for students:

Flow Problems with nesting and paths, code duplication and
unreachable code.

Idiom Unsuitable choice of control structures and no reuse of
library functions.

1http://www.bluej.org
2https://github.com/hiekekeuning/student-code-quality
3https://github.com/AlDanial/cloc



Code�ality Issues in Student Programs ITiCSE’17, July 03-05, 2017, Bologna, Italy

Expressions Expressions that are too complex and use of unsuit-
able data types.

Decomposition Methods that are too long and excessive sharing
of variables.

Modularization Classes with an unclear purpose (low cohesion)
and too many methods and attributes, and tight coupling
between classes.

For each category, we selected a number of issues to investigate
by applying the PMD tool to a limited set of student programs
to identify the issues that occur most frequently. PMD4 is a well-
known static analysis tool that is able to detect a large set of bad
coding practices in Java programs. We also used the Copy/Paste
Detector tool (CPD)5 included with PMD for duplicate detection. In
PMD a rule de�nes a bad coding practice, and running PMD results
into a report of rule violations. In this paper we use the term issue
to refer to a rule in PMD. The PMD version we used o�ers 26 sets
consisting of issues that all deal with a particular aspect.

We discarded sets of issues using the following criteria:

– An issue is too speci�c for Java, such as issues that apply
to Android, JUnit and Java library classes.

– An issue is too advanced, strict or speci�c for novice pro-
grammers, such as exceptions, threads, intermediate-level
OO concepts (abstract classes, interfaces) and very speci�c
language constructs (e.g. the �nal keyword).

– An issue falls under the documentation or presentation
categories.

– An issue points at an actual error.

Our �rst selection consisted of 170 issues in 12 sets. We used the
default value for issues with a minimal reporting threshold, such as
the value 3 for reporting an if-statement that is nested too deeply.
Additionally, we added ‘code duplication’ as three issues that �re for
duplicates of 50, 75 and 100 tokens. Our initial analysis was applied
to a smaller set of programs from four di�erent days throughout the
academic year 2014–2015. For each unique source �le we recorded
for each issue if it occurred in some snapshot of that �le.

For a more detailed analysis we made a selection of the 170 issues.
For each issue we decided whether it should be included or not,
based on the criteria mentioned above. We also discarded all issues
in the ‘controversial’ set, ‘import statements’ set and the ‘unused
code’ set, and issues that occurred in fewer than 1% of the unique
�les. Table 1 shows our �nal set of issues, now grouped according
to the categories of Stegeman et al.

We ran PMD for these 24 issues on all compilable programs in
the �nal data set of four weeks and stored the results in our local
database. We cleaned the database by removing all data of the �les
that could not be processed and �les with 0 LOC. For each of these
24 issues, we counted in how many unique source �les it occurred
at least once, and how often. We also calculated the di�erences in
occurrence over time.

3.2.2 Fixing (RQ2). For RQ2 we examine the changes in a source
�le over time. For each issue we calculated the number of �xes and
the number of appearances. As an example, let us assume that
source �le X has 6 snapshots in which the occurrences of issue Y

4http://pmd.github.io/pmd-5.5.2/
5http://pmd.github.io/pmd-5.4.1/usage/cpd-usage.html

.
Table 1: Selected issues (report level) per category

Flow
CyclomaticComplexity (10) Strict version that counts boolean opera-

tors as decision points.
ModifiedCyclomaticComplexity (10) Counts switch statements as a single deci-

sion point.
NPathComplexity (200)
EmptyIfStmt
PrematureDeclaration

Idiom
SwitchStmtsShouldHaveDefault
MissingBreakInSwitch
AvoidInstantiatingObjectsInLoops

Expressions
AvoidReassigningParameters
ConfusingTernary
CollapsibleIfStmts
PositionLiteralsFirstInComparisons
SimplifyBooleanExpressions
SimplifyBooleanReturns

Decomposition
NCSSMethodCount (50)
NCSSMethodCount (100)

Counts Non-Commenting Source State-
ments, report level in statements.

SingularField The scope of a �eld is limited to one
method.

CodeDuplication (50)
CodeDuplication (100)

Only identi�ed in single �les, not over
projects.

Modularization
TooManyMethods (10) Excludes getters and setters.
TooManyFields (15)
GodClass
LawOfDemeter Call methods from another class directly.
LooseCoupling Use interfaces instead of implementation

types.

are 2 1 3 0 4 2. The number of �xes is 6: the total number of
issues that were solved in a subsequent snapshot (1 + 0 + 3 + 0
+ 2). The number of appearances is 8: the total number of issues
that were introduced in a subsequent snapshot (2 + 0 + 2 + 0 + 4
+ 0). These metrics are simpli�ed measures to investigate �xing:
we cannot be sure the student really �xed the problem, or simply
removed the problematic code.

3.2.3 Extensions (RQ3). BlueJ users may install various exten-
sions to support their programming, such as UML tools, submission
tools and style checkers. We generated a list of all extensions used
in the selected four weeks of the year 2014–2015. We selected ex-
tensions related to code quality from the 29 that were active in at
least 0.05% of all BlueJ-startups in those weeks:

– Checkstyle6 (9,626 start-ups), a static analysis tool for
checking code conventions.

– PMD (3,751 start-ups), the tool used for our analysis.
– PatternCoder7 (507 start-ups), which helps students to im-

plement design patterns.

Findbugs8 translates Java code into bytecode, and then performs
static analysis to identify potential bugs. It is a relevant tool, but
with 242 start-ups not used often enough. We also excluded a small
number of extensions that we could not �nd information about.

For RQ3, we calculated the occurrence of issues for each of the
extensions, and for source �les for which no extensions were used.

6http://checkstyle.sourceforge.net
7http://www.patterncoder.org
8http://�ndbugs.sourceforge.net



ITiCSE’17, July 03-05, 2017, Bologna, Italy Hieke Keuning, Bastiaan Heeren, and Johan Jeuring

4 RESULTS
Table 2 shows some general information on the data sets taken
from the academic year 2014–2015.

Table 2: Data set summary

Initial data set (4 days) Unique source �les 90,066
Snapshots 439,066

Final data set (4 weeks) Unique source �les 453,526
Snapshots 2,661,528
Avg events per source �le 5.87
Median events per source �le 2
Max events per source �le 700
Average LOC per source �le 52.75
Median LOC per source �le 27

4.1 All issues (RQ1)
Table 3 shows the summary of checking the initial data set of four
days for 170 issues. For each unique source �le we recorded for
each issue if it occurred in some snapshot of that �le. In total we
found 574,694 occurrences of 162 di�erent issues (8 issues did not
occur in any �le). The top 10 issues is shown in Table 4.

In the controversial set, seven issues were found in at least 5%
of the unique source �les. DataFlowAnomalyAnalysis is at the top
of the list with 38.6%. This issue deals with rede�ning variables,
unde�nitions (variables leaving scope) and references to unde�ned
variables, which may not always be a serious problem. AvoidLit-
eralsInIfCondition is second with 14.0%. For other issues such as
AtLeastOneConstructor and OnlyOneReturn it is also questionable
whether they are problematic in novice programmer code, therefore
we decided to further omit all issues in this set.

The top 10 also includes issues that we omit in the remainder
of this study. The two issues that occur in the most �les, 84.2%
for MethodArgumentCouldBeFinal and 61.3% for LocalVariable-
CouldBeFinal, are both in the optimization set and point at the
possibility to use the �nal keyword to indicate that a variable will
not be reassigned. A reason for these high percentages may be that
this language construct is not being taught to novice programmers.
UseVarargs deals with the ‘varargs’ option introduced in Java 5, al-
lowing parameters to be passed as an array or as a list of arguments.
UseUtilityClass points at the option to make a class with only static
methods a utility class with a private constructor. ImmutableField
detects private �elds that could be made �nal.

4.2 Selected issues (RQ1)
We now focus on the selection of 24 issues in �ve categories (Flow,
Idiom, Expressions, Decomposition, Modularization), which we
applied to our �nal data set of four weeks. In total we found over
24 million instances of these issues. Table 5 shows in how many
unique source �les an issue occurs at least once, and the average
number of occurrences per KLOC. To calculate this last value, we
�rst calculated the average for each source �le, and then the over-
all average, so the number of snapshots of a source �le does not
in�uence the total.

LawOfDemeter stands out as an issue with a very high number
of occurrences. Upon closer inspection, it was not always clear why
this issue was reported, and it has been suggested online that there

Table 3: Summary of running PMD on the initial data set,
showing per PMD set the number of issues that were seen,
the percentage of unique �les in which at least one issue
from that set occurred, the median of the occurrences in %
and the maximum.

Set Issues seen % of �les with
issues from set Median % Max %

Type resolution 4/4 26.04 3.96 20.1
Optimization 12/12 91.75 2.71 84.2
Unused code 5/5 26.86 2.50 16.2
Code duplication 3/3 4.99 2.28 5.0
Code size 13/13 13.69 1.40 8.2
Controversial 21/22 65.10 1.37 38.6
Import statements 6/6 10.61 1.02 8.5
Design 54/57 81.73 0.32 38.0
Unnecessary 8/8 10.25 0.11 9.6
Empty code 10/11 5.18 0.08 2.2
Coupling 3/5 41.98 0.04 39.7
Basic 23/24 2.52 0.02 1.3

Table 4: Top 10 issues

Set Issue In % of �les
Optimization MethodArgumentCouldBeFinal 84.2
Optimization LocalVariableCouldBeFinal 61.3
Coupling LawOfDemeter 39.7
Controversial Data�owAnomalyAnalysis 38.6
Design UseVarargs 38.0
Design UseUtilityClass 36.2
Design ImmutableField 27.8
Type Res. UnusedImports 20.1
Unused Code UnusedLocalVariable 16.2
Controversial AvoidLiteralsInIfCondition 14.0

might be false positives. We therefore decided to omit this issue in
the remainder of this study.

It is expected that SingularField occurs quite often with 8.2%,
because most of the snapshots in our data set are un�nished pro-
grams. CyclomaticComplexity and the more lenientModifiedCy-
clomaticComplexity version occur quite often with 7.7% and 5.2%
respectively, which could point to serious problems, but that de-
pends on the type of code. LooseCoupling occurs in 6.7% of the �les
implying that students do not always have knowledge of the use of
interfaces. Duplicate50 occurs much more often than Duplicate100
with 4.7% against 1.3%. We argue that the lower threshold of 50
tokens is more suitable for novice programmers, whose programs
are relatively short, so duplicates can be spotted more easily.

Figure 1 shows the occurrence of issues by the month in which
they appeared, grouped by category. In the week of September the
number of issues is quite low, probably because most courses had
just started and only a limited set of topics would have been intro-
duced. For the other three months we cannot see major di�erences,
other than an increase in decomposition issues. In March we see a
slight decrease in issues mainly in the �ow and expressions cate-
gory, but towards the end of the academic year the values slightly
increase.



Code�ality Issues in Student Programs ITiCSE’17, July 03-05, 2017, Bologna, Italy

Table 5: Per issue, column I shows the percentage (%) of
unique �les in which the issue occurs, column II shows the
average number of occurrences per KLOC

Cat Issue I II
M LawOfDemeter 38.7 42.6
D SingularField 8.2 3.8
F CyclomaticComplexity 7.7 1.5
M LooseCoupling 6.7 2.1
I AvoidInstantiatingObjectsInLoops 6.3 1.6
E AvoidReassigningParameters 5.7 1.7
F Modi�edCyclomaticComplexity 5.2 0.8
M TooManyMethods 5.0 0.3
D Duplicate50 4.7 0.7
E ConfusingTernary 4.4 0.7
D NcssMethodCount50 3.9 0.3
E PositionLiteralsFirstInComparisons 3.5 1.6
F NPathComplexity 3.3 0.3
E SimplifyBooleanExpressions 3.1 0.8
F PrematureDeclaration 2.6 0.4
M GodClass 2.1 0.1
F EmptyIfStmt 2.0 0.3
E SimplifyBooleanReturns 1.9 0.4
I SwitchStmtsShouldHaveDefault 1.7 0.3
I MissingBreakInSwitch 1.4 0.2
D Duplicate100 1.3 0.1
E CollapsibleIfStatements 1.3 0.2
M TooManyFields 1.2 0.1
D NcssMethodCount100 1.0 0.0

Figure 1: Issues over time

4.3 Fixing (RQ2)
Table 6 shows our �x metrics for each issue. EmptyIfStmt is solved
in almost half of the cases, which can be expected because an if-
statement with no code in it is probably not �nished. The same
can be said for SingularField: a student might start with de�ning
the �eld of a class that is needed for methods that will be added
later. On the bottom of the list we �nd four issues from the mod-
ularization category (GodClass, LooseCoupling, TooManyFields,
TooManyMethods) that are �xed in fewer than 5% of the appear-
ances.

Overall the rate of �xing issues is low. Either students do not
recognise these issues in their code, or do not care to �x them. It
should be noted that our data set was not cleaned of source �les
that continued to be �xed beyond the weeks (Monday to Sunday)
we investigated, missing some possible �xes.

Table 6: Issue �xes

Cat Issue Appeared Fixed %
F EmptyIfStmt 18,460 9,064 49.1
D SingularField 103,004 30,152 29.3
F PrematureDeclaration 21,008 5,891 28.0
D Duplicate100 35,033 7,388 21.1
E CollapsibleIfStatements 15,087 2,579 17.1
D Duplicate50 91,951 15,520 16.9
E AvoidReassigningParameters 76,359 10,023 13.1
I MissingBreakInSwitch 9,594 1,033 10.8
F NPathComplexity 20,549 2,129 10.4
E ConfusingTernary 36,391 3,558 9.8
E SimplifyBooleanReturns 12,612 1,162 9.2
E SimplifyBooleanExpressions 48,965 4,347 8.9
F Modi�edCyclomaticComplexity 56,822 4,475 7.9
I AvoidInstantiatingObjectsInLoops 78,588 6,167 7.8
I SwitchStmtsShouldHaveDefault 12,507 961 7.7
D NcssMethodCount50 23,569 1,790 7.6
F CyclomaticComplexity 85,426 6,240 7.3
D NcssMethodCount100 6,178 410 6.6
E PositionLiteralsFirstInComparisons 86,536 4,833 5.6
M GodClass 9,575 437 4.6
M LooseCoupling 57,039 2,056 3.6
M TooManyFields 5,539 175 3.2
M TooManyMethods 23,003 515 2.2

4.4 Extensions (RQ3)
Table 7 shows general information on the use of extensions. Figure 2
shows the di�erences in occurrence of issues between source �les
for which extensions were and were not active. The �gure shows
that there is only a small di�erence between the use of a tool
compared to using no tool. Students using no tool even have a
slightly smaller number of issues with 18.2 issues on average per
KLOC versus 19.7 for students that use some tool.

Table 7: Extension use

Name Snapshots KLOCs Unique source �les
Checkstyle 73,553 7,756 10,833
PMD 26,126 1,840 4,299
PatternCoder 2,433 113 609

Figure 2: Issues and extension use

5 DISCUSSION
One of our main �ndings is that most issues are rarely �xed, espe-
cially when they are related to modularization. Another �nding is
that the use of tools has little e�ect on issue occurrence. Compared



ITiCSE’17, July 03-05, 2017, Bologna, Italy Hieke Keuning, Bastiaan Heeren, and Johan Jeuring

to the study of Scratch projects by Aivaloglou and Hermans [1],
we found lower percentages of �les that contain duplicates, large
classes and large methods. Some reasons might be that block-based
code cannot be directly compared to statement-based code and
that block-based programming is targeted at a younger audience.
Another reason is that we investigated single source �les instead
of projects. Our study supports the work of Pettit et al. [10] by
observing that quality issues are not often solved, although we can-
not con�rm the positive e�ect of restricting submission attempts,
because our data set does not contain information on submissions.

From working with PMD as a source code analyser we have
noticed some problems with regard to suitability for students. PMD
integrates with many IDEs and also provides an extension for users
of BlueJ. We found that many of the checks PMD can perform are
not suitable for novice programmers, and may cause confusion
with students that might result in neglecting the tool. We advise
educators to customize the tool by selecting a small set of relevant
checks and adjusting threshold values. Other recommendations
for using PMD for assessing programming exercises have been
proposed by Nutbrown and Higgins [9].

The main focus of the �eld of automated feedback and assess-
ment of programming exercises has been on functional correctness
of programs, although some tools incorporate feedback on quality
aspects as well [8]. This is often done by integrating a lint-like
tool or calculating metrics such as cyclomatic complexity and LOC
(e.g. [2, 4]). Many professional IDEs detect code quality issues and
o�er refactorings, but these are often too advanced for novices and
not intended to support learning. We argue that these tools need to
be better suited to novices, and should be used at various moments
during learning and not only for assessment.

5.1 Threats to validity
The designers of the Blackbox project mention some restrictions of
their data set that also a�ect this study [6]. First, BlueJ is often used
in courses that use an ‘objects-�rst’ approach. Second, it is unknown
on what task the student is working, and what the requirements of
this task are, such as using a particular language construct. Third,
we know nothing about the users of BlueJ. We expect them to
be novices, but some programs have probably been written by
instructors or more experienced programmers.

We have a limited data set of four weeks in one year. We also
cannot be sure that we have all snapshots, events might be missed
because something went wrong (e.g. no internet connection) or
a user continued to edit the code in another program. Because
we store weeks, we miss some snapshots that were compiled just
before or after the week. However, because of its size we believe our
data set has enough information to answer our research questions.
Only tracking single �les and not complete BlueJ projects gives an
incomplete view of the presence of duplicates.

Vihavainen et al. [13] have investigated the e�ect of storing
student data of di�erent granularity: submission-level, snapshot-
level (e.g. compiling, saving), and keystroke-level (e.g. editing text),
and found that data might be lost if only snapshot events are studied.
Although the Blackbox data set also stores keystroke events, we
believe that researching compile events provides us with su�cient

information. For a more detailed analysis, investigating keystrokes
could provide more insight into how students �x quality issues.

Although this study focuses on Java programs, we believe that
the �ndings may apply to other languages too. The issues we inves-
tigated are not Java speci�c and can also be seen in other modern
object-oriented languages. For functional and logic languages some
issues are not applicable or should be adjusted for the paradigm.

6 CONCLUSION AND FUTUREWORK
In this study we have explored quality issues in 2.6 million code
snapshots written by novice programmers using the BlueJ IDE. We
have composed a list of issues that are relevant for novices. We
found that novice programmers develop programs with a substan-
tial amount of code quality issues, and they do not seem to �x them,
especially when they are related to modularization. The use of
tools has little e�ect on the occurrence of issues. Educators should
pay attention to code quality in their courses, and automated tools
should be improved to better support students in understanding
and solving code quality issues. Further research is required to bet-
ter understand how students deal with quality issues, for example
by investigating the changes made in snapshots. Also, it is of im-
portance to examine the reasons why students produce low-quality
code: they may be unaware of it, or they simply do not know how
to �x their code. Paying attention to code quality in education is
vital if we want to keep improving our software systems.

ACKNOWLEDGMENTS
This research is supported by the Netherlands Organisation for
Scienti�c Research (NWO), grant number 023.005.063.

REFERENCES
[1] Efthimia Aivaloglou and Felienne Hermans. 2016. How Kids Code and How We

Know: An Exploratory Study on the Scratch Repository. In Proc. of ICER. 53–61.
[2] Kirsti Ala-Mutka, Toni Uimonen, and Hannu-Matti Jarvinen. 2004. Supporting

students in C++ programming courses with automatic program style assessment.
J. of Inf. Technol. Educ. 3, 1 (2004), 245–262.

[3] Amjad Altadmri and Neil C. C. Brown. 2015. 37 Million Compilations: Investi-
gating Novice Programming Mistakes in Large-Scale Student Data. In Proc. of
SIGCSE. 522–527.

[4] Eliane Araujo, Dalton Serey, and Jorge Figueiredo. 2016. Qualitative aspects of
students’ programs: Can we make them measurable?. In Proc. of FIE. 1–8.

[5] Dennis Breuker, Jan Derriks, and Jacob Brunekreef. 2011. Measuring Static
Quality of Student Code. In Proceedings of ITiCSE. 13–17.

[6] Neil C. C. Brown, Michael Kölling, Davin McCall, and Ian Utting. 2014. Blackbox:
A Large Scale Repository of Novice Programmers’ Activity. In Proc. of SIGCSE.
223–228.

[7] Martin Fowler. 1999. Refactoring: improving the design of existing code. Addison-
Wesley Professional.

[8] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a System-
atic Review of Automated Feedback Generation for Programming Exercises. In
Proceedings of ITiCSE. 41–46.

[9] Stephen Nutbrown and Colin Higgins. 2016. Static analysis of programming
exercises: Fairness, usefulness and a method for application. Computer Science
Education 26, 2-3 (2016), 104–128.

[10] Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam Starbuck.
2015. An Empirical Study of Iterative Improvement in ProgrammingAssignments.
In Proc. of SIGCSE. 410–415.

[11] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a Rubric
for Feedback on Code Quality in Programming Courses. In Proc. of Koli Calling.
160–164.

[12] Michele Tufano, Fabio Palomba, Gabriele Bavota, Rocco Oliveto, Massimiliano
Di Penta, Andrea De Lucia, and Denys Poshyvanyk. 2015. When and why your
code starts to smell bad. In Proc. of ICSE. 403–414.

[13] Arto Vihavainen, Matti Luukkainen, and Petri Ihantola. 2014. Analysis of source
code snapshot granularity levels. In Proc. of SIGITE. 21–26.


