
A Lazy Language Needs a Lazy Type System
Introducing Polymorphic Contexts

S. Doaitse Swierstra

Utrecht University

Utrecht, The Netherlands

doaitse@swierstra.net

Marcos Viera

Universidad de la Republica

Montevideo, Uruguay

mviera@�ng.edu.uy

Atze Dijkstra

Standard Chartered

London, UK

atze@atzedijkstra.net

ABSTRACT
Most type systems that support polymorphic functions are based on

a version of System-F. We argue that this limits useful programming

paradigms for languages with lazy evaluation. We motivate an

extension of System-F alleviating this limitation.

First, using a sequence of examples, we show that for lazily

evaluated languages current type systems may force one to write a

program in an unnatural way; in particular, we argue that in such

languages the relationship between polymorphic and existential

types can be made more systematic by allowing to pass back (part

of) an existential result of a function call as an argument to the

function call that produced that value.

After presenting our extension to System-F we show how we

can implement the strict-state thread monad ST by using a returned

existential type to instantiating a polymorphic function that returns

that type. Currently this monad is built-in into the runtime system

of GHC and as such has become part of the language.

Our proposed language extension, i.e. the introduction of poly-
morphic contexts, reverses the relationship between the context of

a function call and the called function with respect to where it is

decided with which type to instantiate a type variable.

CCS CONCEPTS
•Theory of computation→ Functional constructs;Type struc-
tures;

KEYWORDS
type systems, lazy evaluation, existentials, System-F, state monad

ACM Reference format:
S. Doaitse Swierstra, Marcos Viera, and Atze Dijkstra. 2017. A Lazy Language

Needs a Lazy Type System. In Proceedings of IFL Conference, Leuven, Belgium,
August 31-September 2, 2016 (IFL 2016), 12 pages.

DOI: http://dx.doi.org/10.1145/3064899.3064906

1 INTRODUCTION
In a strict language a value of type

∃ x . x → Int → (x, Int)

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

IFL 2016, Leuven, Belgium
© 2016 ACM. 978-1-4503-4767-9/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/3064899.3064906

does not make much sense; the only way to call such a function is by

passing the x returned as part of the result, but this will lead to non-

termination. In languages with lazy evaluation and letrec bindings

we can however provide such an useful argument by passing part

of the computed result
1
:

let f :: ∃ x . x → Int → (x, Int) = ...
in let (x, v) = f x 3

in v

We claim that conventional System F based way of introducing

existential types [10] excludes some useful programming paradigms

and thus we propose a small extension to System F. The larger part

of this paper consists of two examples in which we show how

to put our extension to good use. We show in Section 2 how the

current way of dealing with existential types in Haskell (GHC)

forces undesirable strictness on our programs and can make our

programs unnecessarily complicated. Next we discuss our type

system in Section 3. We then proceed by showing in Section 4 how

we can encode the ST -monad, so there is no longer the need to have

it built into the language. We �nish with some possible extensions,

discussion and conclusions.

2 BEING LESS STRICT
In order to explain what kind of programs we should like to write,

we start out with the repmin problem [5]. We start with a lazy

version and convert that into a strict version that performs the

same number of pattern matches. Next we write a similar version

of an identity function. When we convert that function back to a

lazy version, similar to the �rst version of repmin we run into a

typing problem.

2.1 repmin
The challenge is to write a function repmin :: Tree → Tree which

returns a binary tree with the same shape as the argument tree,

but with the leaf values replaced by the minimum of the original

leaf values. A straightforward solution, which also can be seen as a

speci�cation of the problem, is given in Figure 1. Note that in this

solution no use of lazy evaluation is made and that each node of the

tree is inspected twice in a pattern match during the computation.

The reason that this problem has drawn a lot of attention is

that, provided the programming language supports lazy evaluation

(call by need), the result can be computed by inspecting each con-

structor of the argument tree only once (Figure 2): in the function

repmin′ we tuple the computation of the minimal leaf value with

the construction of the resulting tree. The latter uses the computed

1
As in Haskell our let’s are to be interpreted as letrec’s

IFL 2016, August 31-September 2, 2016, Leuven, Belgium S. Doaitse Swierstra, Marcos Viera, and Atze Dijkstra

data Tree = Leaf Int
| Bin Tree Tree

repmin t = let m = minval t in replace t m

minval :: Tree→ Int
minval (Leaf v) = v
minval (Bin l r) = minval l ‘min‘ minval r

replace :: Tree→ Int → Tree
replace (Leaf) m = Leaf m
replace (Bin l r) m = replace l m ‘Bin‘ replace r m

Figure 1: repmin in a strict language

data Tree = Leaf Int | Bin Tree Tree

repmin :: Tree→ Tree
repmin t = let (m, r) = repmin′ t m in r

repmin′ :: Tree→ Int → (Int, Tree)
repmin′ (Leaf v) m = (v, Leaf m)
repmin′ (Bin l r) m = (ml ‘min‘ mr, tl ‘Bin‘ tr)

where (ml, tl) = repmin′ l m
(mr, tr) = repmin′ r m

Figure 2: repmin in a lazy language

repmin2 :: Tree→ Tree
repmin2 t = let (m, reconstruct) = repmin2′ t

in reconstruct m

repmin2′ :: Tree→ (Int, Int → Tree)
repmin2′ (Leaf v) = (v, Leaf)
repmin2′ (Bin l r) = (ml ‘min‘ mr

, λm→ t� m ‘Bin‘ tfr m)
where (ml, t�) = repmin2′ l

(mr, tfr) = repmin2′ r

Figure 3: strict version of repmin2

minimal value which is passed as the parameter m. In the top func-

tion repmin the minimal value computed by repmin′ is passed back
as argument to the same call of repmin′ as the value to be bound

to argument m. Such programs are referred to as circular programs.
If we perform a global �ow analysis of the program, inspired by

analyses from the attribute-grammar world [4, 6, 8], we discover

that no information �ows from the Int parameter to the Int part

of the result. This implies that we can replace the type Tree →
Int → (Int, Tree) with the type Tree→ (Int, Int → Tree), provided

the program is adapted accordingly. Figure 3 shows the result of

this transformation. The Int part of the result again contains the

computed minimal value and the Int → Tree part is a function that

constructs the sought tree from the passed minimal value; we have

“remembered” the shape of the argument tree in that function.

This code maintains the characterizing property of our lazy

repmin solution: each constructor of the tree is only inspected once

in a pattern match; the order in which values are to be evaluated

however has been made more explicit (although lazy evaluation

still evaluates them in the same order!). Note that the �rst version

of repmin depends essentially on lazy evaluation (the let actually

is a letrec in Haskell), whereas repmin2, despite being here writ-

ten in Haskell, could straightforwardly be transcribed into a strict

language like ML.

2.2 idTree
The next step in introducing our problem is that instead of writ-

ing a repmin function we want to write an identity function of

type Tree → Tree. In later sections we will provide variations on

this example to make it more interesting, but for the time being it

serves its purpose. Where repmin2 computed an intermediate rep-

resentation holding the minimal value of the leaves tupled with a

function which remembered the shape of the tree, our �rst identity

function idTree2 (Figure 4) uses a similar intermediate structure

which contains all the values stored in the leaves of the original

tree in a nested Cartesian product tupled with a tree-reconstruction

function. The latter function, as before, has remembered the shape

of the argument tree and, once provided with the leaf values that

were harvested from that tree, reconstructs that very tree. Since, in

contrast to the repmin2 function, the type of the intermediate result
depends on the shape of the tree, we have introduced an existential

type vs in this intermediate representation.

To make explicit what is going on we introduce some notation

to make the places where existential values are constructed and

deconstructed explicit using the pack/unpack paradigm [10]. In a

packing expression lt, em the t denotes the existential type and

the e a value of a type in which this type may occur. The unpack
function is implicitly called by using pattern matching (following

Pierce [12]); binding to a ltv , vm pattern makes that the a freshly

new type constant is bound to the type variable tv and the value

part to the variable v.

When pairing the two parts of the result in the branches of

idTree2′ we thus hide whether we combine an Int value with a

function of type Int → Tree as in the �rst alternative of idTree2′

or a pair of existentially typed values returned by the recursive

function calls with a function taking such a pair as in the second

alternative. When we unpack the packed value in idTree2 using

pattern matching we can however be sure that it is safe to apply

the function to its accompanying value, because this was the case

when we packed them together.

Now suppose we have a language with lazy evaluation and that

we prefer the lazy version of repmin over repmin2, and thus we set

out to de�ne a similar idTree (Figure 5), in which we do not use an

intermediate representation.

We now run into a problem, since this program is type-incorrect

and we cannot provide a type for idTree′. In the �rst alternative

of idTree′ the argument w is of type Int, whereas in the second

alternative the type is a pair of values, and these two types do not

unify. So, why is the �rst version of repmin permitted, and is our

corresponding version of idTree is rejected? When checking the

types at runtime we do not run into problems.

A Lazy Language Needs a Lazy Type System IFL 2016, August 31-September 2, 2016, Leuven, Belgium

idTree2 :: Tree→ Tree
idTree2 t = let l tvs, (vs, reconstruct)m = idTree2′ t

in reconstruct vs

idTree2′ :: Tree→ ∃ vs . (vs, (vs→ Tree))
idTree2′ (Leaf v) = l Int, (v, Leaf)m
idTree2′ (Bin l r)
= l (tvsl , tvsr),
((vsl, vsr), (λ(vsl, vsr) → t� vsl ‘Bin‘ tfr vsr))m

where l tvsl , (vsl, t�)m = idTree2′ l
l tvsr , (vsr, tfr)m = idTree2′ r

Figure 4: idTree2

idTree :: Tree→ Tree
idTree t = let (vs, r) = idTree′ t vs in r

idTree′ (Leaf v) w
= (v, Leaf w)

idTree′ (Bin l r) ∼(vsl′, vsr ′)
= ((vsl, vsr), tl ‘Bin‘ tr)

where (vsl, tl) = idTree′ l vsl′

(vsr, tr) = idTree′ r vsr ′

Figure 5: A type incorrect idTree

idTree :: Tree→ Tree
idTree t = let l tvs, fm = idTree′ t

(vs, r) = f vs
in r

idTree′ :: Tree→ ∃ vs . vs→ (vs, Tree)
idTree′ (Leaf v) = l Int, (λw → (v, Leaf w))m
idTree′ (Bin l r) =

let l tvsl ,� m = idTree′ l
l tvsr , fr m = idTree′ r

in l (tvsl , tvsr),
(λ∼(vsl′, vsr ′) → let (vsl, tl) = � vsl′

(vsr, tr) = fr vsr ′

in ((vsl, vsr), tl ‘Bin‘ tr))m

Figure 6: idTree, computing the types �rst

It appears that we actually are in need of a dependent type; the

type of the returned structure containing the leaf values, and thus

the type of the second argument which holds the leaf values from

which the tree is to be reconstructed, entirely depends on the shape

of the argument tree. By rewriting the code, and making use of

some explicit lambda’s we reach the solution given in Figure 6.

Unfortunately this version cannot be transcribed into GHC while

keeping its semantics. One of GHC’s design decisions has been to

forbid irrefutable patterns, and thus all pattern matching for ex-

istential data types has to be strict using a case construct, which

top (Bin) = "Bin"

top (Leaf) = "Leaf"

main = let infTree = Bin infTree infTree
in print . top . idTree $ in�ree

Figure 7: GHC version is too strict

excludes the use of let-based bindings with existential types as their

right hand side. In requiring strict pattern matching the “computa-

tion” of the complete type is enforced before being able to pack it

with the existential construct, and we have thus silently changed

the semantics of our original idTree. This is demonstrated by the

program in Figure 7. The GHC solution will not terminate since it

enforecs a complete traversal of an in�nite tree trying to construct

an in�nite type representing the shape of the in�nite tree argument.

In this sense the GHC solution is not an honest realization of the

identity function.

A more serious, methodological shortcoming, of this last version

of idTree is that we had to separate the computation of the type

from the computation of the values: �rst we inspect the tree, this

gives us the types and constructs the computations to be performed,

and then we perform the computations. So can we make Figure 5

type check?

2.3 ∃̄
One way of looking at the type-incorrect idTree is not to see the

type of the gathered leaves as something which is computed by

inspecting the parameter tree, but as something which is computed

by the function too, and returned as part of its result; the func-

tion then expects a value of this returned type as a lazy evaluated

argument. Intuitively the type of idTree′ is something like:

idTree′ :: Tree→ tvs → ∃ tvs . (tvs, Tree)

This notation re�ects the operational idea that the function

idTree′ not only returns a value of type tvs , but also the type tvs
itself. The notation is however a bit unconventional since the tvs in

the argument position is also supposed to be introduced by this ∃
quanti�er, which is unfortunately not re�ected in the notation at all.

To overcome this problem we introduce a new quanti�er ∃̄, which

is to be interpreted as the speci�cation above; hence it introduces

a type variable which is bound to a type computed as part of the

result of the function, but which scopes over (part of) the signature

too:

idTree′ :: Tree→ ∃̄ tvs . tvs → (tvs, Tree)

By extending the scope to an earlier position in the list of argu-

ments, we express that both the tvs argument and the tvs part of the

result are to be the same for each call to idTree′, but furthermore

opaque at the calling position.

Before paying attention to the precise type rules relating to ∃̄
we will give yet another example of its usefulness.

2.4 sortTree
As a next step in showing that it may be undesirable to separate the

computation of the type from the computation of part of the result

IFL 2016, August 31-September 2, 2016, Leuven, Belgium S. Doaitse Swierstra, Marcos Viera, and Atze Dijkstra

idTree t = let l tvs, (vs, r)m = idTree′ vs
in r

idTree′ :: Tree→ ∃̄ vs . (vs→ (vs, Tree))
idTree′ (Leaf v)
= lInt, (λw → (v, Leaf w))m

idTree′ (Bin l r)
= λ∼(vsl′, vsr ′) →

let l tvsl , (vsl, tl)m = idTree′ l vsl′

l tvsr , (vsr, tr)m = idTree′ r vsr ′

in l (tvsl , tvsr), ((vsl, vsr), tl ‘Bin‘ tr)m

Figure 8: idTree using ∃̄

sortTree t = let (vs, [], res) = sortTree′ t [] vs
in res

insert v [] = [v]
insert v (w : ws) = if v < w then v : w : ws

else w : insert v ws

sortTree′ :: Tree→ [Int] → [Int] → ([Int], [Int], Tree)
sortTree′ (Leaf v) rest ∼(x : xs) = (insert v rest, xs, Leaf x)
sortTree′ (Bin l r) rest xs
= let (vl, xsl, tl) = sortTree′ l vr xs

(vr, xsr, tr) = sortTree′ r rest xsl
in (vl, xsr, Bin tl tr)

Figure 9: Sorting using lists

we modify our idTree example by requiring that the leaf values

from the original tree are to be reordered in such a way that a pre�x

traversal of the resulting tree �nds and increasing list of leaf values;

the resulting tree however should have the same shape again.

In order to explain our algorithm we �rst give a version (Figure 9)

in which we use conventional lists to represent collected leaf values.

In order to avoid expensive concatenations we thread two list values

through the tree: one in a backwards direction in which we collect

the leaf values, and one in a forwards direction from which we take

leaf values. At the top level the constructed �rst value is used to

initialise the second one.

The helper function sortTree′ takes as arguments:

• the Tree to be sorted

• the sorted list rest containing the leaf values following the

node in a pre�x traversal

• the list xs of values still not used in building the result tree.

It returns:

• a sorted list of leaf values containing the leaf values of

this node and the leave values following the node at hand

in a pre�x traversal (i.e. it adds its contained leaves to its

second argument),

• a tail of the parameter xs containing the values to be used

in constructing the rest of the tree

• the �nal tree constructed from the pre�x of its xs argument

data OrdList cl where
OrdList :: cl → (Int → cl → (Int, cl)) → Ordlist

sortTree t = let l tvs, (OrdList vs, , res)m
= sortTree′′ t
(OrdList () (λx () → (x, ()))) vs

in res
sortTree′′ :: Tree→ ∀ rest . OrdList rest

→ ∃̄ xs . xs→ (OrdList xs, rest, Tree)
sortTree′′ (Leaf v) (OrdList (rest :: trest) insert)∼(x, xs)
= l (Int, trest),

(OrdList
(ins v rest)
(λw (x, xs) → if w < x then (w, (x, xs))

else (x, insert w xs))
, xs, Leaf x)m

sortTree′′ (Bin l r) (rest :: trest) xs
= let l tl , (vl, xsl, tl)m

= sortTree′′ l (vr :: tr) xs
l tr , (vr, xsr, tr)m
= sortTree′′ r (rest :: trest) xsl

in l tl , (vl, xsr,Bin tl tr)m

Figure 10: Sorting using Cartesian products

Our next step (Figure 10) is to replace the intermediate lists

with nested Cartesian products. This guarantees that the top-level

sortTree function cannot cheat, e.g. by secretly replacing elements

in the list of leaf values, and each node adds exactly one element to

the list and removes exactly one element

The data type Ordlist represents a sorted list to which elements

can be added using the function part it carries. This makes more

explicit what is going on. We have used scoped type variables to

get hold of the type of the parameter rest and used explicit type

annotations in vr :: tr to indicate how the polymorphic type rest
in the calls is to be instantiated. Note that the returned type does

not simply depend on the shape of the argument tree anymore, but

also on the polymorphic type rest!

3 POLYMORPHIC CONTEXTS
3.1 The ∃̄ quanti�er
By inspecting at the uses of ∃̄ in both examples we see that the

types constructed do not play a role at all at the place where they

are fed back into the computation; they only serve to describe the

type of part of the result of the function which is used to pass back

an argument of that type. This suggests that it is more natural to

compute this type as part of the result and use a pattern-matching

letrec construct to get access to this type; thus making it possible

to enforce that the value passed back is described by the computed

type. It is here that we deviate from the standard way of dealing

with existential values. We observe that once all arguments to the

function call have been given the computed type in principle is

fully determined, and could be computed by the callee. This might

A Lazy Language Needs a Lazy Type System IFL 2016, August 31-September 2, 2016, Leuven, Belgium

however imply that we have to split the computation: one part in

which we just do enough work to compute the type, and once the

type has been determined the rest of the computation to compute

its associated value, as in Figure 6. We thus distinguish between

a type being computable, meaning that all information needed to

compute it is available, and computed, meaning that it has been

computed from this available information.

This brings us to the most important message of this paper; we

are dealing with a situation in which the rôles of the context in which
a function is called and the function itself are reversed with respect to
which side of the function call decides how types are to be instantiated:

• when calling a polymorphic function it is the context which

decides on the type of the polymorphic argument and it is

the duty of the function to return a value consistent with

that type.

• a function requiring a polymorphic context decides on the

type returned by the call and it is the duty of the context

to pass back an argument consistent with that type.

For the callee it looks like calling into a polymorphic context.

In our idTree example the context behaves as a function of type

∀ a . a→ a.

We may wonder what is the correct place to insert the ∃̄ quanti-

�er. Just as the type rules of System-F can be used to show that there

is no essential di�erence between the types ∀ a . Int → a→ a and

Int → ∀ a . a→ a, we do not distinguish between ∃̄ tvs . Tree→
tvs → (tvs, Tree) and Tree→ ∃̄ tvs . tvs → (tvs, tree).

3.2 Type rules

e = v -- variable

| e e -- application

| λ(v : σ) → e -- abstraction

| ∃̄ α . e -- introduction

| e [ν] -- elimination

| l (α = σ), e m -- pack

| e1 8 ... 8 en -- function alternatives

| let p = e1 in e2 -- local binding

| ... -- other terms

p = v -- variable

| l ν , p m -- unpack

| ... -- other patterns

σ = α -- type variable

| ν -- type name from the program

| σ → σ -- abstraction

| ∀ α . σ -- universal quanti�cation

| ∃̄ α . σ -- our existential

| l (α = σ),σ m -- packed existential

| ... -- other types

Figure 11: Structures

In Figure 11 we have given the underlying syntax of our exten-

sion, as far as it deviates from standard System-F. We have made

idTree :: Tree→ Tree
idTree t = let l tvs, (vs, r)m = idTree′ [tvs] t vs in r

idTree′ :: ∃̄ tvs . Tree→ tvs → (tvs, Tree)
idTree′ = idTree′Leaf 8 idTree′Bin
idTree′Leaf = ∃̄ tvs .

λ(Leaf v) w → l(tvs = Int), (v, Leaf w)m
idTree′Bin = ∃̄ tvs .

λ(Bin l r) ∼(vsl′, vsr ′) →
let l tvsl , (vsl, tl)m = idTree′ [tvsl] l vsl′

l tvsr , (vsr, tr)m = idTree′ [tvsr] r vsr ′
in l (tvs = (tvsl , tvsr)),

((vsl, vsr), tl ‘Bin‘ tr)m

Figure 12: annotated idTree using ∃̄

the underlying typing a lot more explicit than in the example code

thus far, which was made to resemble Haskell as much as possi-

ble. In practice a lot of this information can be inferred, as we are

assuming in a lot of our example code.

In Figure 12 we have rephrased our idTree function once more,

but now with more explicit typing directives, and making clear how

function alternatives can be represented. Our function idTree′ is

composed of alternatives idTree′Leaf and idTree′Bin, each de�ned

as a ∃̄-quanti�ed λ-expression. We require that all parameters with

a type introduced by the ∃̄ match lazily, so they cannot be inspected

at runtime when matching the pattern. The alternatives are tried in

order until a match occurs. The result of the function is constructed

by explicitly packing a value with the corresponding type.

If we look at the de�nition of idTree we see that the expression

returns an existentially typed value; the type part is given the name

tvs , and this is also the type which is to be used in typing the ex-

pressions. Since this very much resembles the way polymorphic

functions are instantiated we have again borrowed notation from

System-F in idTree′ [tvs]. To paraphrase Henry Ford
2

we say that

the calling environment can pick any type as long as it is the re-

turned tvs , because that is the only way in which the returned result

can match the left-hand side ltvs, (vs, r)m.

Λ `p p : σ

Λ, v → σ `p v : σ
(varpat)

ν < Λ
Λ, ν `p p : [α 7→ ν] σ

Λ, ν `p lν, p m : l (α = ν), σm (unpackpat)

Figure 13: Pattern

We start out with a new form of judgement for dealing with

patterns in the environment. We extend the rules given by Harper

2
“A customer can have a car painted any color he wants as long as it is black”

IFL 2016, August 31-September 2, 2016, Leuven, Belgium S. Doaitse Swierstra, Marcos Viera, and Atze Dijkstra

[7] with the form needed for our speci�c purpose, i.e. dealing with

values packed with an existential type. To introduce notation we

show the rule varpatwhich states that a variable is a proper pattern

and adds a bindingv 7→ σ to the environment. The rule unpackpat

states that if a pattern p introduces names in an environment Λ
then so does lν , pm. The existential type is given a name ν , which

is stored in the environment, in which it has to be unique.

Γ `e e : σ

Γ `e e : [α 7→ σ ′] σ
Γ `e l(α = σ ′), e m : l (α = σ ′), σm (pack)

Γ `e e : [α 7→ σ] σ ′ → ... → l(α = σ), σ ′′m
Γ `e ∃̄ α . e : ∃̄ α . σ ′ → ... → σ ′′

(E.I)

Γ `e e : ∃̄ α . σ ′ → ... → σ ′′

Γ, ν `e e [ν] : [α 7→ ν] σ ′ → ... → l(α = ν), σ ′′m (E.E)

Γ `e ei : σ
Γ `e (e1 8 ... 8 en) : σ

(Choice)

Λ `p p : σ
Γ Λ `e e1 : σ
Γ Λ `e e2 : σ ′

Γ `e let p = e1 in e2 : σ ′
(Letrec)

Figure 14: Expression

In Figure 14 we have given the rules for our form of existential

types. We are intentionally incomplete as we only wish to clarify

the non-standard construct ∃̄ α . σ for our existential types in

the context of the given examples. Our conjecture is that System-

F cannot deal with the computational order in which types are

computed (as a result) and passed back (into an earlier parameter),

and hence we do not provide a translation to System-F. This is due

to the System-F approach to unpacking, which uses a continuation

style of formulation in e.g. Harper’s book [7] open e as t with x :

σ in e′, which does not allow x to be referred to in e.
Both the language for expressions e and types σ are open ended,

describing the subset of what Haskell o�ers required for our exam-

ples. We furthermore require that all environments and the types

therein are well-formed.

The rule pack describes how we can forget (part of) a type and

replace it by an existential type.

Rule E.I forgets about type σ ′ in σ by replacing it by a type

variable α ; rule E.E does the inverse, by reintroducing the forgotten

type. Since we have no longer access to the original type we assume

this to be the name of some anonymous type with name ν .

To show how these rules can be used in typing our desired form

of idTree we consider the various function alternatives. Due to the

choice rule, both alternatives must have type ∃̄ tvs . Tree→ tvs →
(tvs, Tree). We sketch the derivation of the �rst alternative:

Γ, v 7→ Int,w 7→ Int `e (v, Leaf w) : (Int, Tree)
var(*2)

Γ, v 7→ Int,w 7→ Int `e l(tvs = Int), (v, Leaf w)m
: l (tvs = Int), (tvs, Tree)m

pack

Γ `e λ(Leaf v) w → l(tvs = Int), (v, Leaf w)m
:Tree→ Int → l(tvs = Int), (tvs, Tree)m

abs(*2)

Γ `e ∃̄ tvs . λ(Leaf v) w → l(tvs = Int), (v, Leaf w)m
:∃̄ tvs . Tree→ tvs → (tvs, Tree)

E.I

If we read the derivation bottom-up, by applying the introduction

rule E.I we derive the type of the lambda abstraction to be Tree→
Int → l(tvs = Int), (tvs, Tree)m. Then, with the application of the

usual rule for abstraction (abs) twice we determine that the type

of l(tvs = Int), (v, Leaf w)m is l(tvs = Int), (tvs, Tree)m given that

v and w are bound to Int in the environment. Applying pack we

conclude that this type is correct given that the pair (v, Leaf w)
has type (Int, Tree).

In the second branch, the type of the lambda abstraction is

Tree → (tvsl , tvsr) → l(tvs = (tvsl , tvsr)), (tvs, Tree)m, with tvsl
and tvsr coming from the recursive calls of idTree′. We show how

the rules are applied in the derivations corresponding to the �rst

binding of the let expression.

The derivation for the pattern:

vsl 7→ tvsl , tl 7→ Tree, tvsl `p (vsl, tl) : (tvsl , Tree)
varpat(*2)

vsl 7→ tvsl , tl 7→ Tree, tvsl `p ltvsl , (vsl, tl)m :

l(tvs = tvsl), (tvs, Tree)m

unpackpat

If we read the pattern judgment Λ `p p :σ as an output Λ produced

out of the inputs p and σ , we can see how the existential type is

unpacked by giving the name tvsl , and the pair pattern introduces

the bindings vsl 7→ tvsl and tl 7→ Tree.
The derivation for the right hand side, assume Γ includes idTree′ 7→

∃̄ tvs . Tree → tvs → (tvs, Tree), l 7→ Tree, vsl′ 7→ tvsl , vst 7→
tvsl , lt 7→ Tree, tvsl :

Γ `e idTree′ : ∃̄ tvs . Tree→ tvs → (tvs, Tree)
var

Γ `e idTree′ [tvsl]:
Tree→ tvsl → l(tvs = tvsl), (tvs, Tree)m

E.E

Γ `e idTree′ [tvsl] l : tvsl → l(tvs = tvsl), (tvs, Tree)m
app-var

Γ `e idTree′ [tvsl] l vsl′ : l(tvs = tvsl), (tvs, Tree)m
app-var

In this case we apply the usual rules for app and var (which

we applied together under the name app-var) twice. Then, by

aplying the elimination E.E, we conclude that idTree′ has type

∃̄ tvs . Tree → tvs → (tvs, Tree), which can be uni�ed to the type

we already have in the context.

3.3 Safety
We want to stress the di�erences between our ∃̄ and the conven-

tional ∃. Suppose we want to de�ne the following function:

f :: ∃ x . x → Bool → (x, Int)
f = λv True → (v + 1, v)

8 λc False→ (chr (ord c + 1), ord c)

This function does not compile using ∃, while it is valid if we use

∃̄. In case such a function was accepted using the conventional

existentials, then the following code would be wrongly accepted

too:

A Lazy Language Needs a Lazy Type System IFL 2016, August 31-September 2, 2016, Leuven, Belgium

newSTRef :: a→ ST s (STRef s a)
writeSTRef :: STRef s a→ a→ ST s ()
readSTRef :: STRef s a → ST s a

runST :: (∀ s . ST s a) → a

Figure 15: Types of the ST operations

let l tc, gm = f -- unpacking f

(i, v1) = g c True
(c, v2) = g i False

in ...

Here we instantiate the existential type of f with a type constant

and then bind the resulting value to a g. Both calls of g are now

assuming that the same type constant is used for the existential

value in the type of f , causing type checking to succeed where its

should not. With our ∃̄ this cannot happen since we cannot unpack

f but only a result. Suppose f has type ∃̄ x . x → Bool → (x, Int), if

we want to unpack it we have to start by eliminating the ∃̄ by doing

f [tc]. This expression has type tc → Bool → l(α = tc), (α , Int)m
and thus it cannot be used as right hand side of a let binding.

4 THE ST MONAD
In our last example we will show how we can put the fact that we

have made it possible to have lazy unpacking to further good use.

We will use the type stemming from the unpacking match to pa-

rameterise a polymorphic function, which returns that existentially

typed value!

The state monad ST [9] is an important Haskell data type, and a

de-facto required part of any Haskell infrastructure. Although there

are good reasons for supporting this data type at a very low level,

and for providing it with extensive runtime support, the question

arises whether we can implement the data type in Haskell itself.

The ST -monad represents a stateful computation; i.e. a compu-

tation that takes a state and transforms it into another state. Such

transformations include extending the state by introducing a new

variable, and writing and reading already introduced variables. The

code in Figure 15 introduces the types of the corresponding basic

operations newSTRef , writeSTRef and readSTRef .

The function runST creates a new empty state, runs the compu-

tation starting with this new state, discards the �nal state when

done and returns the value resulting from the computation. Its type

(∀ a . ST s a) → a is interesting by itself because of its higher

order type: it takes a monad ST s a that is polymorphic in s. One

might think of this as giving the function runST the right to choose

a unique label for a new ‘named heap’ by instantiating the type s,
the choice of which is kept hidden from the rest of the program.

This label is then used to label the handed out references of type

STRef s a. Since there is no way to get hold of this unique label s
in the rest of the program, this guarantees that all STRef ’s created

by this call of runST indeed point into the ‘heap’ for which they

were handed out.

To show how to construct a state and how to read from it and

write to it we give a small example in Figure 16; two variables r1
and r2 are introduced and initialized. In the True branch of the

import Control.Monad.ST
import Data.STRef

example = do r1← newSTRef 2

v1← readSTRef r1
r2 ← newSTRef (show v1)
modifySTRef r1 (+3)
v2 ← readSTRef r2
if v2 ≡ "2" then do v1← readSTRef r1

r3← newSTRef v1
v3← readSTRef r3
return (v2, v1)

else return ("false", 7)
demo = runST example

Figure 16: An example of the ST monad

conditional expression we introduce another new variable. The

value of demo evaluates to ("2", 5). This demonstrates that in gen-

eral we will not be able to easily determine from the program text

how many variables will be created when running the code; we

actually have to mimic the execution. Note that the type of value

held by each variable is �xed upon creating the variable, but not all

variables hold a value of the same type.

We present our implementation of the functions introduced

above in two steps. In Section 4.1 we show how a state may be

extended with new variables and how it is made accessible. We

will however not be able yet to access the variables. In Section

4.2 we extend the code and show how we can create references

pointing into the state, and how to use these to read from and write

to variables.

4.1 Constructing a State
4.1.1 The type ST . As we have seen in our example our state can

accomodate many values of di�erent types, so one of the �rst types

which comes into mind to use for storing all these values is a nested

Cartesian product. Indeed it is easy to do so if we know beforehand

precisely which kind of values have to be stored and how many. If

however the state evolves as a result of running the computation,

and may even depend on values of variables introduced earlier this

approach fails. Furthermore one of the distinguishing features of

the ST monad is that the handed out references are labeled with

a type, which uniquely identi�es the state they point into; this is

a property we de�nitely want to maintain since it is an important

safety guarantee and we do not want to have dangling references

into a state which has been garbage collected.

In order to understand our solution it is helpful to try to forget

about a speci�c evaluation order (as a reader might be naturally

inclined to do), and to move to a data-�ow view of our computations.

The box in Figure 17 represents a piece of stateful computation,

i.e. a value of type ST s a, which is –for the time being– a function

type which:

• takes two arguments of type s and rest, represented by

incoming arrows

IFL 2016, August 31-September 2, 2016, Leuven, Belgium S. Doaitse Swierstra, Marcos Viera, and Atze Dijkstra

Figure 17: ST type Figure 18: Bind

• returns a result of type s and a result of type env, rep-

resented by outgoing arrows. These two results will be

represented by a tuple in our �nal code.

The Haskell type
3

that corresponds to such a box is:

data ST s a = ST (∀ trest . trest → s→ (a,∃ tenv . tenv , s))

The rôle of the various arrows is as follows:

• The input arrow rest represents the right-nested Cartesian

product of all the values that are possibly introduced by

succeeding computations. Since our computation is indi�er-

ent to this value its type is polymorphically quanti�ed over

this rest type. Keep in mind that we deal with a language

which has lazy evaluation, so by the time this ‘value’ is

passed it will not have been evaluated yet.

• The result of type tenv again is a right-nested Cartesian

product, which has a value of the incoming type rest as its

tail. This pre�x to this tail corresponds to �elds holding

to the new variables introduced by this ST value; hence

it is a (possibly) extended version of rest. Since only the

internals of our computation know how many variables

and of which types are added by this computation, we use

an existential result type. Although some tail of the nested

product type tenv will be of the type trest this fact is not

explicitly represented in the ST type.

• The remaining input and output arrows both carry a value

of some type s, which is the type of the �nal state of the

overall computation as ran by runST , eventually containing

all created variables. This value is threaded though the

computation, while the variables contained in it are being

read and written. Since this value has the shape of the �nal

state this shape (and thus its type) remains unchanged.

Whereas in the ST monad as built-in into GHC the type of

the state merely serves as a label indicating which ‘heap’

we are dealing with, here it is the actual heap in the form

of the nested Cartesian product that is being passed on.

• In our pictures we have not shown the type a, since it

does not play a role in our explanation of how the state is

constructed and represented.

Stateful computations can be composed into larger computa-

tions by connecting their arrows as shown in 18; boxes to the left

represent earlier computations and boxes to the right succeeding

computations.

4.1.2 runST . Before looking at the code of runST we take a

look at Figure 19. When running the computation with the function

runST , the initial empty state () is passed as trest argument at the

very end of the computation. It emerges as the lazily constructed

3
This is the type as accepted by UHC. For GHC is is necessary to introduce an extra

constructor when introducing the type env.

Figure 19: Run Figure 20: insert a

value of some type tenv at the far left of our composed boxes, con-

taining all the variables (to be) introduced. Now we decide upon

the type s and choose it to be the same as the returned type tenv ,

and feed the value of type tenv back into the computation as the s
parameter.

In the code below we have given two de�nitions of runST: the

�rst one unannotated, and the second one containing explicit type

annotations:

runST :: (∀ s . ST s a) → a
runST (ST st) = let (a, env,) = st () s

s = env
in a

runST :: (∀ s . ST s a) → a
runST st = let (ST st ′) = st [tenv]

(a,ltenv , envm,) = st ′ [()] () env
in a

Focusing on the second de�nition we see that we instantiate

the polymorphic type of the value st with two types: the �rst type

parameter is the type tenv returned as the existential type by this

computation describing the lazily constructed complete state, and

the second is the type of the empty state (), which we feed in from

the far right end of our composed sequence of boxes. We have

omitted the annotations for the type a, since they play no special

rôle here. Hence we do not only have a letrec at the value-level, but

also at the type level: the type tenv which is ‘returned’ as the type

of the existential env-part of the result is used as a type parameter

in a right hand side expression of the binding group!

Since the type of the �nal state s is universally quanti�ed when

the computation is run, the user of the ST monad cannot assume

anything about it. Although we can easily add operators like get
and put to read the ST state and to put it back we canot make any

other use of it; in particular we do not have access to the individual

elements making up the state.

get :: ST s s
get = ST (λenv s→ (s, env, s))

put :: s→ ST s ()
put s = ST (λenv → ((), env, s′))

4.1.3 Monad. Computations are monads and can thus be com-

posed with the monadic bind (>>=) operator. In Figure 18 we show

how the state is constructed from right to left and how this �nal

state is modi�ed in a left-to-right traversal of the individual steps

of the computation.

instance Monad (ST s) where
return = pure
(ST sta) >>= f

A Lazy Language Needs a Lazy Type System IFL 2016, August 31-September 2, 2016, Leuven, Belgium

= ST (λrest s→ let (a, env, s′) = sta rest ′ s)
(ST stb) = f a
(b, rest ′, s′′) = stb rest s′

in (b, env, s′′)
Again this binder cannot be implemented with System-F existential

types, because we pass rest ′ returned by the second computation

(stb) to sta, whereas the state of type s is passed in the other direc-

tion.

4.1.4 Functor and Applicative. In the last version of the Haskell

libraries it is required that Monad instances are also Functor and

Applicative instances, amongst others to support the applicative

do-notation. So we de�ne:

instance Functor (ST s) where
fmap f (ST st)

= ST (λrest s→ let (a, rest ′, s′) = st rest s
in (f a, rest ′, s′)

)
instance Applicative (ST s) where
pure a = ST (λrest s→ (a, rest, s))
(ST stb2a) <∗> ∼(ST stb)
= ST (λrest s→ let (b2a, rest ′′, s′) = stb2a rest ′ s

(b, rest ′, s′′) = stb rest s′

in (b2a b, rest ′′, s′′)
)

Note that we have used an irrefutable pattern for the right hand

side parameter of <∗>; the evaluation of the right hand side should

not be pushed any further than strictly necessary. It is important to

note how the �nal state s is passed in a forward direction, whereas

the future additions in rest are passed backwards through the com-

putation; again we are tying a knot here.

4.2 newSTRef
4.2.1 insert. As a �rst step in showing how a state is con-

structed, we de�ne the function insert, which takes a value of some

type a and extends the state with this value like a newSTRef , but it

returns the newly stored value instead of a reference to it. Again

we have given the code with and without type annotations.

insert :: a→ ST s a
insert a = ST (λrest → s→ (a, (a, rest), s))

insert = Λ ta → a→ ST (Λ ts trest
→ λ(rest :: trest) (s :: ts) → (a :: ta

, l (ta, trest), (a, rest)m
, s :: ts
))

Figure 20 shows its e�ect on the state being constructed. Notice

that the rest of the state needs no inspection in order to be able

to extend it. Thus, due to lazy evaluation, even in�nite states can

be constructed. Note furthermore that the function insert should

de�nitely not be made strict. The rest argument is likely to depend

on values read from a state of which the constructed (a, rest) pair is

a trailing component, and which is passed to it as the s parameter!

Figure 21: ST type with references

In the rest of this section we are going to extend our de�nitions

such that we can create and use references into the constructed

state.

4.2.2 STRef s a. Typed references over a nested Cartesian prod-

uct are represented by the STRef s a GADT [2, 13], indexed by the

type s of the Cartesian product representing our complete state and

a being the type of the value referred to. The constructor RZ refers

to the �rst element of the nested product, whereas RS constructs

the successor of an index STRef r a in a product of type r . The

type b in this case is thus the �rst element which has to be skipped

when indexing.

data STRef s a where
RZ :: STRef (a, b) a
RS :: STRef r a→ STRef (b, r) a

With such references, look-ups and modi�cations can be per-

formed safely. The type system makes sure that no pointers can

point outside of the structure and that the type pointed to is the

type we expect:

rlookup :: STRef s a→ s→ a
rlookup RZ (a,) = a
rlookup (RS r) (, b) = rlookup r b

rmodify :: (a→ a) → STRef s a→ s→ s
rmodify f RZ (a, r) = (f a, r)
rmodify f (RS r) (a, b) = (a, rmodify f r b)

4.2.3 Transforming STRef ’s. When adding a new location to

the state, with the function newSTRef , the reference to its position

in the �nal state is to be returned.

newSTRef :: a→ ST s (STRef s a)

If we look at the ST type de�ned in the previous subsection (and

represented in Figure 17), there is no way to relate the state env
constructed by this computation and the �nal state. Thus, we have

to extend the ST type so this relation becomes available.

For this purpose we de�ne a type T s1 s2 which represents a

transformation of a reference into a structure s1 to one in s2.

newtype T s1 s2

= T {unT :: ∀ a . STRef s1 a→ STRef s2 a}

4.2.4 Our extended version of ST . We now change the type

ST such that transformations from references in the rest state to

references in the �nal state are passed on from left to right, together

with the state of type s. One may think of it as a counter keeping

track of how many elements have thus far been added to the state.

The counter is indexed with the type which remains of the �nal state

provided the counted number of elements have been removed. Note

that because this type is indexed by the type of env it is actually

IFL 2016, August 31-September 2, 2016, Leuven, Belgium S. Doaitse Swierstra, Marcos Viera, and Atze Dijkstra

determined by the passed value rest together with the number and

types of the new variables added by this computation.

data ST s a
= ST (∀ trest . trest → s

→ ∃̄ tenv . T tenv s→ (a, tenv , s, T trest s))

Notice that we are using our new quanti�er ∃̄, which is to be

interpreted as follows: as before we think of the type env as being

determined by the call to the function and made available as part

of the result. Since we want to make use of this type in specifying

the type of one of the parameters we have somehow to extended

the scope ‘forward‘.

The instances given have now to be extended to pass these

transformations through the constituting computations. We do so

for the Monad instance. The others follow trivially.

instance Monad (ST s) where
return a = ST (λenv s trenv 7→s → (a, env, s, trenv 7→s))
(ST sta) >>= f
= ST $ λrest s trenv 7→s
→ let (a, env, s′, trr est ′ 7→s) = sta rest ′ s trenv 7→s

(ST stb) = f a
(b, rest ′, s′′, trr est 7→s) = stb rest s′ trr est ′ 7→s

in (b, env, s′′, trr est 7→s)

In Figure 21 we show the types involved when running a com-

position of computations. For the leftmost computation, the trans-

formation is just the identity function, since this is the type of the

�nal state (no more locations will be added). Note that because we

have again chosen the returned env to be the value to pass on as the

initial state s these have the same type, and thus T id :: T tenv tenv
has the correct type.

runST :: (∀ s . ST s a) → a
runST (ST st) =

let (a,ltenv , envm, ,) = st () env (T id) in a

When adding a new location, the reference to this new location in

the �nal state is obtained by applying the transformation trenv 7→s
(with type T env s) to a reference to the �rst position in the just

extended state. The transformation of references for the succeeding

computations is obtained by composing current transformation

with RS; i.e. references in the rest of the state point to locations in

the second component of the pair (a, rest).

newSTRef :: a→ ST s (STRef s a)
newSTRef a = ST $ λrest s trenv 7→s

→ ((unT trenv 7→s) RZ
, (a, rest)
, s
, T (unT trenv 7→s . RS)
)

Having a reference to an element in the �nal state, to obtain the

referred value is to perform an rlookup in the state s (traveling from

left-to-right).

readSTRef :: STRef s a→ ST s a
readSTRef r
= ST $ λenv s trenv 7→s → (rlookup r s, env, s, trenv 7→s)

Similarly, we can overwrite or modify stored values.

writeSTRef :: STRef s a→ a→ ST s ()
writeSTRef r a
= ST $ (λenv s trenv 7→s → (()

, env
, rmodify (const a) r s
, trenv 7→s
))

modifySTRef :: STRef s a→ (a→ a) → ST s ()
modifySTRef r f
= ST $ λenv s trenv 7→s → ((), env, rmodify f r s, trenv 7→s)

A nice property of our representation of pointers is that they

may be compared, and if two pointers are found to be equal then

the GADT-based type system returns a proof that the type of the

value pointed at is the same.

5 FINE TUNING
5.1 Do we need ∃ and ∃̄?
When we compare the type rules for ∃ and ∃̄ we see that they only

di�er for function types. One may argue that the case for having a

normal ∃ does not make much sense for a function type; so when

we decide to treat the ∃ for a function as an ∃̄ there is no need for

an extra symbol.

We do not loose expressivity, since if we really want to have the

classical existentially quanti�ed function, of which the unpacked

version can be called at multiple places we can easily tuple it with

a dummy value into an existential pair:

df :: ∃ x . (x, x → Bool → (x, Int) = (3, λv → (v + 1, v))
let l t, (, g)m = df -- unpacking

(i1, v1) = g i2 True
(i2, v2) = g i1 False

in v1 ...

Note that in df the choice for type x can no longer depend on

the passed Bool argument.

5.2 Extending the class system
An indispensable component of the Haskell type system is its class

system, which makes it possible to pass extra information about a

polymorphic value to a function. In a similar way we may want to

provide extra information to the calling context. Currently Haskell

only allows constructors to be constrained by classes if these classes

refer to existential types. We propose to generalise this: a constraint

on a constructor just packs an extra dictionary in the record, and

pattern matching on such a constructor brings the class instance

in scope. With this extension we can rewrite our solution for the

sorting tree to the code given in Figure 22.

Note how, just as in the case with polymorphic functions, the

class instances will be automatically constructed, passed around

and accessed.

A Lazy Language Needs a Lazy Type System IFL 2016, August 31-September 2, 2016, Leuven, Belgium

class Insertable cl where
insert :: Int → cl → (Int, cl)

instance Insertable cl ⇒ Insertable (Int, cl) where
insert w (x, xs) = if w < x then (w, (x, xs))

else (x, insert w xs))
instance Insertable () where
insert w () = (w, ())

data OrdList cl where
OrdList :: Insertable cl ⇒ cl → OrdList cl

sortTree′′ (Leaf v) (OrdList rest)∼(x, xs)
= (OrdList (insert v rest), xs, Leaf x)

sortTree′′ (Bin l r) rest xs
= let (vl, xsl, tl) = sortTree′′ l vr xs

(vr, xsr, tr) = sortTree′′ r rest xsl
in (vl, xsr,Bin tl tr)

Figure 22: Using classes

As a �nal extension we show how the new extension comes in

handy in the case of the use of guards. Suppose we want to change

our tree sorting algorithm such that we sort the sublists containing

the even and the odd leaf values separately. This can be done by

duplicating the parameters:

sortTree′′ (Leaf v) ((OrdList e, o) ∼((x, xs), ys)
| even v = ((OrdList (insert v e), o), (xs, ys), Leaf x)

sortTree′′ (Leaf v) ((e,Ordlist o) ∼((xs, (y, ys))
| odd v = ((e,OrdList (insert v o)), (xs, ys), Leaf x)

sortTree′′ (Bin l r) rest xs =
let (vl, xsl, tl) = sortTree′′ l vr xs
(vr, xsr, tr) = sortTree′′ r rest xsl

in (vl, xsr,Bin tl tr)

Note that again we can provide all parameters at once, and use

guards. We could have written this code in GHC style, computing

the types of the pair of Cartesian products by �rst inspecting not

only the shape of the tree but also the values stored in the tree. We

think however that our approach, in which we see the computed

existential type as part of the result, is a more natural one given

that we are dealing with a language which has lazy evaluation.

6 FUTUREWORK
With respect to the implementation of the ST monad, one may want

to remark that the presented implementation is very ine�cient,

since access to components of the state is done in linear time. It is

however possible to lazily convert the Cartesian product into a tree-

like structure, which gives us logarithmic lookup time. From this

tree we may compute a list of indices in the tree, which can then be

passed on from left-to-right through the computation. Whenever

we add an element to the state, we take the �rst index from this list,

since it is guaranteed to point to the position in the tree-shaped

state where the element currently being added will end up.

There is still work to be done to mechanically verify the sound-

ness of our type rules, in the sense that “no well-formed program

can go wrong”. It is clear from our description that the type rules

will depend on the user providing su�cient type annotations, since

the standard HM inference system is not able to infer neither the ∃
nor the ∃̄ quanti�ers.

7 DISCUSSION
We have completed our description. We think however that it is

desirable to spend some attention to why we managed to implement

our code, whereas it is not accepted by GHC. There are several

reasons.

In the �rst place the Utrecht Haskell Compiler allows to specify

an existential type without the introduction of an extra intervening

data type. This makes the code more concise, but is not essential.

In GHC we could have de�ned our ST type by introducing an extra

type ST ′:

data ST s a
= ST ∀ . trest → s→ ST ′ s trest a

data ST ′ s trest a
= ∀ tenv . ST ′ (T tenv s) → (a, tenv , T trest s)

A more serious problem is that pattern matching for existential

types in GHC is strict, and we thus cannot unpack [10] such a

value in the right hand side of a let. This restriction (probably)

�nds its roots in the fact that existential types naturally come with

GADT’s and that in the current GHC implementation non-strict

pattern matching for GADT’s may lead to unsafe code [16]. There

are two solutions for this. If the GADT does not introduce equality

constraints, as is the case in our code, the restriction could be

relieved. Another solution is to represent the equality constraints

implicitly in the generated code. This corresponds to the approach

taken in the pre-cursor of GADTs by Baars and Swierstra [1], where

equality constraints are represented as coercions which are called

when the proof that two types are equal is needed; failing to return

such a proof leads to non-termination. The current GHC approach is

thus more strict in requiring that it can be statically determined that

a proof exists, and thus does not have to be checked for dynamically.

This restriction makes it impossible to pass the value back into the

computation as demonstrated by a ‘rewrite’ of runST where the

passed parameter s has become unbound. Pairing s with the result

a in attempt to get hold of it, so we can feed it back, does not work

either since the existential type in that case ‘escapes’ [16].

runST (ST st) = case st () s (T id) of
(a, s, ,) → a

Note that the latter problem could be solved by using a more

�ne-grained description of the use of existentials [11].

But in all these cases the problem remains that conventional

System-F does not allow for a letrec construct at the type level: we

cannot use a type which we have gotten access to by unpacking

it, as a type parameter to a polymorphic function the call of which

produced that very type.

IFL 2016, August 31-September 2, 2016, Leuven, Belgium S. Doaitse Swierstra, Marcos Viera, and Atze Dijkstra

8 CONCLUSION
We have shown how to widen the use of existential types, such

that besides polymorphic functions we can also have polymorphic

contexts. As the main example of the usefulness of this approach

we have given an alternative implementation of the ST monad. A

similar version was developed in [2]. In that implementation a state

was constructed in a left-to-right fashion, with the constructed

state coming out at the right. This state had to be fed back in order

to be able to run the state. Unfortunately there the last added ele-

ments end up at the beginning of the Cartesian product, so handed

out references had to be updated. This makes a monadic interface

impossible, and instead an arrow-based interface was given. We

believe the implementation given here is the one to be preferred,

because of its more expressive interface. In the original implemen-

tation of the TTTAS (Typed Transformations of Typed Abstract

Syntax)[2, 3] library we had to make provisions for maintaining so-

called meta information during the transformation process. With

the monadic interface this extra provision is no longer needed, and

thus the library can be simpli�ed considerably.

Although the idTree example may seem to be quite arti�cial we

have encountered the pattern used there quite often. When pro-

gramming in an attribute-grammar based style (writing so-called

circular functions) one gets very accustomed to constructing values

from trees, which are later fed back into the computation. Although

many of these applications could be rewritten into multi-visit func-

tions, this implies the explicit construction of intermediate repre-

sentations and makes resulting programs much more di�cult to

develop and maintain.

Another example where a constructed value is passed back can

be found in the implementation of a pretty printer which has a

bounded look-ahead [15]. In this algorithm two processes walk over

a tree-like structure which we want to layout in a nice way. These

processes communicate with each other through streams, which

we represented as lists. One process produces a list of questions

to be answered by the second process, which communicates back

these answers through another list. The latter process produces

a list which is threaded backwards through the tree and which

is, when it emerges at the top, passed back into the tree and then

passed on in a left-to-right tree traversal. In the attribute grammar

based implementation [14] it is not enforced that the �rst process

adds exactly one element to the list of questions for each node of

interest, nor that the second process produces exactly one answer

for each question, and that the �rst process consumes exactly one

answer for each question asked. Using the techniques described in

this paper we may enforce these requirements.

We �nally want to remark that the code we have written is by

no means special once one gets used to the ‘data-�ow’ view of

lazy functional programming. Especially when trying to translate

the results of an attribute grammar based development –which

are of a data �ow view by nature– into Haskell it is that one runs

into the kind of problems we have addressed; information �owing

backwards and forwards is likely to occur in such developments

and we argue that a type system should not make it impossible to

express this in a type-safe way.

9 ACKNOWLEDGMENTS
We want to thank Andres Löh, Tom Schijvers and Andrea Vezzosi

for discussing System-F related issues with us.

REFERENCES
[1] Baars, A.I., Swierstra, S.D.: Typing dynamic typing. In: Peyton Jones, S. (ed.)

Proceedingsof the seventh ACM SIGPLAN international conference on

Functional programming. pp. 157–166. ACM Press (2002)

[2] Baars, A.I., Swierstra, S.D., Viera, M.: Typed Transformations of Typed Abstract

Syntax. In: TLDI ’09: fourth ACM SIGPLAN Workshop on Types in Language

Design and Implementation. pp. 15–26. ACM, New York, NY, USA (2009)

[3] Baars, A.I., Swierstra, S.D., Viera, M.: Typed Transformations of Typed

Grammars: The Left Corner Transform. In: Proceedingsof the 9th Workshop on

Language Descriptions Tools and Applications. pp. 18–33. ENTCS (2009)

[4] van Binsbergen, L.T., Bransen, J., Dijkstra, A.: Linearly ordered attribute

grammars: With automatic augmenting dependency selection. In: Proceedings

of the 2015 Workshop on Partial Evaluation and Program Manipulation. pp.

49–60. PEPM ’15, ACM, New York, NY, USA (2015),

http://doi.acm.org/10.1145/2678015.2682543

[5] Bird, R.S.: Using Circular Programs to Eliminate Multiple Traversals of Data.

Acta Informatica 21, 239–250 (1984)

[6] Engelfriet, J., Filé, G.: Simple multi-visit attribute grammars. Journal of

Computer and System Sciences 24(3), 283 – 314 (1982),

http://www.sciencedirect.com/science/article/\pii/0022000082900307

[7] Harper, P.R.: Practical Foundations for Programming Languages. Cambridge

University Press, New York, NY, USA (2012)

[8] Kastens, U.: Ordered Attribute Grammars. Acta Informatica 13, 229–256 (1980)

[9] Launchbury, J., Peyton Jones, S.L.: Lazy functional state threads. In: Proceedings

of the ACM SIGPLAN 1994 Conference on Programming Language Design and

Implementation. pp. 24–35. PLDI ’94, ACM, New York, NY, USA (1994),

http://doi.acm.org/10.1145/178243.178246

[10] Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Trans.

Program. Lang. Syst. 10(3), 470–502 (Jul 1988),

http://doi.acm.org/10.1145/44501.45065

[11] Montagu, B., Rémy, D.: Modeling abstract types in modules with open

existential types. In: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages. pp. 354–365. POPL ’09,

ACM, New York, NY, USA (2009), http://doi.acm.org/10.1145/1480881.1480926

[12] Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)

[13] Sheard, T., Pasalic, E.: Meta-programming with built-in type equality. Electron.

Notes Theor. Comput. Sci. 199, 49–65 (Feb 2008),

http://dx.doi.org/10.1016/j.entcs.2007.11.012

[14] Swierstra, S.D.: Linear, online, functional pretty printing (extended and

corrected version). Tech. Rep. UU-CS-2004-025a, Inst. of Information and Comp.

Science, Utrecht Univ. (2004)

[15] Swierstra, S.D., Chitil, O.: Linear, bounded, functional pretty-printing. Journal of

Functional Programming 19(01), 1–16 (2009)

[16] Vytiniotis, D., Peyton Jones, S., Schrijvers, T., Sulzmann, M.: Outsidein(x)

modular type inference with local assumptions. Journal of Functional

Programming 21, 333–412 (2011),

http://journals.cambridge.org/article_S0956796811000098

http://doi.acm.org/10.1145/2678015.2682543
http://www.sciencedirect.com/science/article/\pii/0022000082900307
http://doi.acm.org/10.1145/178243.178246
http://doi.acm.org/10.1145/44501.45065
http://doi.acm.org/10.1145/1480881.1480926
http://dx.doi.org/10.1016/j.entcs.2007.11.012
http://journals.cambridge.org/article_S0956796811000098

	Abstract
	1 Introduction
	2 Being less strict
	2.1 repmin
	2.2 idTree
	2.3
	2.4 sortTree

	3 Polymorphic Contexts
	3.1 The quantifier
	3.2 Type rules
	3.3 Safety

	4 The ST monad
	4.1 Constructing a State
	4.2 newSTRef

	5 Fine tuning
	5.1 Do we need and ?
	5.2 Extending the class system

	6 Future work
	7 Discussion
	8 Conclusion
	9 Acknowledgments
	References

