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COLORING JORDAN REGIONS AND CURVES∗

WOUTER CAMES VAN BATENBURG† , LOUIS ESPERET‡ , AND TOBIAS MÜLLER§

Abstract. A Jordan region is a subset of the plane that is homeomorphic to a closed disk.
Consider a family F of Jordan regions whose interiors are pairwise disjoint, and such that any two
Jordan regions intersect in at most one point. If any point of the plane is contained in at most k
elements of F (with k sufficiently large), then we show that the elements of F can be colored with
at most k + 1 colors so that intersecting Jordan regions are assigned distinct colors. This is best
possible and answers a question raised by Reed and Shepherd in 1996. As a simple corollary, we
also obtain a positive answer to a problem of Hliněný (1998) on the chromatic number of contact
systems of strings. We also investigate the chromatic number of families of touching Jordan curves.
This can be used to bound the ratio between the maximum number of vertex-disjoint directed cycles
in a planar digraph, and its fractional counterpart.
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1. Introduction. In this paper, a Jordan region is a subset of the plane that
is homeomorphic to a closed disk. A family F of Jordan regions is touching if their
interiors are pairwise disjoint. If any point of the plane is contained in at most k
Jordan regions of F , then we say that F is k-touching. If any two elements of F
intersect in at most one point, then F is said to be simple. All the families of Jordan
regions and curves we consider in this paper are assumed to have a finite number
of intersection points. The first part of this paper is concerned with the chromatic
number of simple k-touching families of Jordan regions, i.e., the minimum number of
colors needed to color the Jordan regions, so that intersecting Jordan regions receive
different colors. This can also be defined as the chromatic number of the intersection
graph G(F) of F , which is the graph with vertex set F in which two vertices are
adjacent if and only if the corresponding elements of F intersect. Recall that the
chromatic number of a graph G, denoted by χ(G), is the least number of colors
needed to color the vertices of G, so that adjacent vertices receive different colors.
The chromatic number of a graph G is at least the clique number of G, denoted
by ω(G), which is the maximum number of pairwise adjacent vertices in G, but the
difference between the two parameters can be arbitrarily large (see [8] for a survey on
the chromatic and clique numbers of geometric intersection graphs).

The following question was raised by Reed and Shepherd [10].

Problem 1.1 (see [10]). Is there a constant C such that for any simple touching
family F of Jordan regions, χ(G(F)) ≤ ω(G(F)) + C? Can we take C = 1?
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COLORING JORDAN REGIONS AND CURVES 1671

Our main result is the following (we made no real effort to optimize the constant
490, which is certainly far from optimal; our main concern was to give a proof that is
as simple as possible).

Theorem 1.2. For k ≥ 490, any simple k-touching family of Jordan regions is
(k + 1)-colorable.

Note that apart from the constant 490, Theorem 1.2 is best possible. Figure 1
depicts two examples of simple k-touching families of Jordan regions of chromatic
number k + 1.

k k − 1 k − 1

Fig. 1. Two simple k-touching families of Jordan regions with chromatic number k + 1.

It was proved in [2] that every simple k-touching family of Jordan regions is
3k-colorable (their result is actually stated for k-touching families of strings, but it
easily implies the result on Jordan regions). We obtain the next result as a simple
consequence.

Corollary 1.3. Any simple k-touching family of Jordan regions is (k + 327)-
colorable.

Proof. Let F be a simple k-touching family F of Jordan regions. If k ≤ 163, then
F can be colored with at most 3k ≤ k+327 colors by the result of [2] mentioned above.
If 164 ≤ k ≤ 489, then F is also 490-touching, and it follows from Theorem 1.2 that
F can be colored with at most 491 ≤ k+ 327 colors. Finally, if k ≥ 490, Theorem 1.2
implies that F can be colored with at most k + 1 ≤ k + 327 colors.

Observe that for a given simple touching family F of Jordan regions, if we denote
by k the least integer so that F is k-touching, then ω(G(F)) ≥ k, since k Jordan
regions intersecting some point p of the plane are pairwise intersecting. Therefore, we
obtain the following immediate corollary, which is a positive answer to the problem
raised by Reed and Shepherd.

Corollary 1.4. For any simple touching family F of Jordan regions, χ(G(F)) ≤
ω(G(F)) + 327 (and χ(G(F)) ≤ ω(G(F)) + 1 if ω(G(F)) ≥ 490).

Note that the bound χ(G(F)) ≤ ω(G(F)) + 1 is also best possible (as shown by
Figure 1, right).

It turns out that our main result also implies a positive answer to a question raised
by Hliněný in 1998 [6]. A string is the image of some continuous injective function
from [0, 1] to R2, and the interior of a string is the string minus its two endpoints. A
contact system of strings is a set of strings such that the interiors of any two strings
have empty intersection. In other words, if c is a contact point in the interior of a
string s, all the strings containing c distinct from s end at c. A contact system of
strings is said to be one-sided if for any contact point c as above, all the strings ending
at c leave from the same side of s (see Figure 2, left). Hliněný [6] raised the following
problem.
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1672 VAN BATENBURG, ESPERET, AND MÜLLER

Problem 1.5 (see [6]). Let S be a one-sided contact system of strings, such that
any point of the plane is in at most k strings, and any two strings intersect in at most
one point. Is it true that G(S) has chromatic number at most k+ o(k) (or even k+ c,
for some constant c)?

Fig. 2. Turning a one-sided contact system of strings into a simple touching family of Jordan
regions.

The following simple corollary of Theorem 1.2 gives a positive answer to Prob-
lem 1.5.

Corollary 1.6. Let S be a one-sided contact system of strings, such that any
point of the plane is in at most k strings, and any two strings intersect in at most
one point. Then G(S) has chromatic number at most k + 127 (and at most k + 1 if
k ≥ 490).

Proof. Assume first that k ≤ 363. It was proved in [2] that G(S) has chromatic
number at most

⌈
4
3k
⌉

+6, so in this case at most k+127, as desired. Assume now that
k ≥ 364. Let F be obtained from S by thickening each string s of S, turning s into
a (very thin) Jordan region (see Figure 2, from left to right). Since S is one-sided,
each intersection point contains precisely the same elements in S and F , and therefore
G(S) and G(F) are equal, while F is a simple k-touching family of Jordan regions.
If 364 ≤ k ≤ 489, then F is also 490-touching and it follows from Theorem 1.2 that
G(S) = G(F) has chromatic number at most 491 ≤ k+ 127. Finally, if k ≥ 490, then
by Theorem 1.2, G(S) = G(F) has chromatic number at most k + 1, as desired.

A Jordan curve is the boundary of some Jordan region of the plane. We say that
a family of Jordan curves is touching if for any two Jordan curves a, b, the curves a
and b do not cross (equivalently, either the interiors of the regions bounded by a and
b are disjoint, or one is contained in the other). Moreover, if any point of the plane is
on at most k Jordan curves, we say that the family is k-touching. Note that unlike
above, the families of Jordan curves we consider here are not required to be simple
(two Jordan curves may intersect in several points). Note that previous works on
intersection of Jordan curves have usually considered the opposite case, where every
two curves that intersect also cross (see, for instance, [7] and the references therein).

Let F be a k-touching family of Jordan curves. For any two intersecting Jordan
curves a, b ∈ F , let D(a, b) be the set of Jordan curves c distinct from a, b such that the
(closed) region bounded by c contains exactly one of a, b. The cardinality of D(a, b)
is called the distance between a and b and is denoted by d(a, b). Note that since F
is k-touching, any two intersecting Jordan curves are at distance at most k − 2 from
each other.

Given a k-touching family F , the average distance in F is the average of d(a, b),
over all pairs of intersecting Jordan curves a, b ∈ F . We conjecture the following.
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COLORING JORDAN REGIONS AND CURVES 1673

Conjecture 1.7. For any k-touching family F of Jordan curves, the average
distance in F is at most k

2 .

It was proved by Fox and Pach [4] that each k-touching family of strings is (6ek+
1)-colorable, which directly implies that each k-touching family of Jordan curves is
(6ek+1)-colorable (note that 6e ≈ 16.31). We show how to improve this bound when
the average distance is at most αk for some α ≤ 1.

Theorem 1.8. Let F be a k-touching family of Jordan curves, such that the
average distance in F is at most αk for some constant 0 ≤ α ≤ 1. Then the chromatic

number of F is at most 6eδ

δ+δ2(1−α) k, where δ = δ(α) = 1
2−2α (1−2α+

√
4α2 − 8α+ 5)

for α < 1 and δ(1) = 1.

Note that δ(1) = 1 = limα→1
1

2−2α (1 − 2α +
√

4α2 − 8α+ 5). Theorem 1.8 has
the following direct corollary.

Corollary 1.9. Let F be a k-touching family of Jordan curves, such that the
average distance in F is at most αk. Then F is β k-colorable, where

β =

 12.76 if α ≤ 3/4,
10.22 if α ≤ 1/2,
8.43 if α ≤ 1/4.

By Corollary 1.9, a direct consequence of Conjecture 1.7 would be that every
k-touching family of Jordan curves is 10.22 k-colorable.

For any k-touching family of Jordan curves, the average distance is at most k.
Theorem 1.8 implies that every family of Jordan curves is 6ek-colorable, which is
the bound of Fox and Pach [4] (without the +1). To understand the limitation of
Theorem 1.8 it is interesting to consider the case α = o(1). Then δ tends to 1

2 (1+
√

5),
and we obtain in this case that F is 7.14 k-colorable. A particular case is when α = 0.
This is equivalent to saying that any two intersecting Jordan curves are at distance
0 from each other, and therefore the family F of Jordan curves can be turned into
a k-touching family of Jordan regions (here and everywhere else in this manuscript,
it is crucial that the curves are pairwise noncrossing). Note that it was proved in [1]
(see also [2]) that k-touching families of Jordan regions are ( 3k

2 + o(k))-colorable.
We now prove the following weaker version of Conjecture 1.7.

Theorem 1.10. Let F be a family of k-touching Jordan curves. Then the average
distance in F is at most k/(1 + 1

16e ).

An immediate consequence of Theorems 1.8 and 1.10 is the following small im-
provement over the bound of Fox and Pach [4] in the case of Jordan curves.

Corollary 1.11. Any k-touching family of Jordan curves is 15.95k-colorable.

An interesting connection between the chromatic number of k-touching families
of Jordan curves and the packing number of directed cycles in directed planar graphs
was observed by Reed and Shepherd in [10]. In a planar digraph G, let ν(G) be the
maximum number of vertex-disjoint directed cycles. This quantity has a natural linear
relaxation, where we seek the maximum ν∗(G) for which there are weights in [0, 1] on
each directed cycle of G, summing up to ν∗(G), such that for each vertex v of G, the
sum of the weights of the directed cycles containing v is at most 1. It was observed by
Reed and Shepherd [10] that for any G there are integers n and k such that ν∗(G) = n

k
and G contains a collection of n pairwise noncrossing directed cycles (counted with
multiplicities) such that each vertex is in at most k of the directed cycles. If we replace
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1674 VAN BATENBURG, ESPERET, AND MÜLLER

each directed cycle of the collection by its image in the plane, we obtain a k-touching
family of Jordan curves. Assume that this family is β k-colorable for some constant
β. Then the family contains an independent set (a set of pairwise nonintersecting
Jordan curves) of size at least n/(β k). This independent set corresponds to a packing
of directed cycles in G. As a consequence, ν(G) ≥ n/(β k) = ν∗(G)/β, and then
ν∗(G) ≤ β ν(G). The following is therefore a direct consequence of Corollaries 1.9
and 1.11.

Theorem 1.12. For any planar directed graph G, ν∗(G) ≤ 15.95 · ν(G). More-
over, if Conjecture 1.7 holds, then ν∗(G) ≤ 10.22 · ν(G).

This improves a result of Reed and Shepherd [10], who proved that for any planar
directed graph G, ν∗(G) ≤ 28 · ν(G). The same result with a constant factor of
16.31 essentially followed from the result of Fox and Pach [4] (and the discussion
above). Using classical results of Goemans and Williamson [5], Theorem 1.12 also
gives improved bounds on the ratio between the maximum packing of directed cycles
in planar digraphs and the dual version of the problem, namely the minimum number
of vertices that need to be removed from a planar digraph in order to obtain an acyclic
digraph.

Organization of the paper. The proofs of Theorems 1.2, 1.8, and 1.10 are given in
sections 2, 3, and 4, respectively. Section 5 concludes the paper with some remarks
and open problems.

2. Proof of Theorem 1.2. In the proof below we will use the following parame-
ters instead of their numerical values (for the sake of readability): ε = 1

4 , b = 18
ε = 72,

and k ≥ 7b− 14 = 490.
The proof proceeds by contradiction. Assume that there exists a counterexample

F , and take it with a minimum number of Jordan regions.
We will construct a bipartite planar graph G from F as follows: for any Jordan

region d of F we add a vertex in the interior of d (such a vertex will be called a disk
vertex ), and for any contact point p (i.e., any point on at least two Jordan regions),
we add a new vertex at p (such a vertex will be called a contact vertex ). Now, for
every Jordan region d and contact point p on d, we add an edge between the disk
vertex corresponding to d and the contact vertex corresponding to p.

We now start with some remarks on the structure of G.

Claim 2.1. G is a connected bipartite planar graph.

Proof. The fact that G is planar and bipartite easily follows from the construction.
If G is disconnected, then G(F) itself is disconnected, and some connected component
contradicts the minimality of F .

Claim 2.2. All the faces of G have degree (number of edges in a boundary walk
counted with multiplicity) at least 6.

Proof. Note that by construction, the graph G is simple (i.e., there are no parallel
edges). Assume for the sake of contradiction that G has a face f of degree 4. Then
either f bounds three vertices (and F consists of two Jordan curves intersecting in a
single point, in which case the theorem trivially holds), or the face f corresponds to
two Jordan regions of F sharing two distinct points, which contradicts the fact that
F is simple. Since G is bipartite, it follows that each face has degree at least 6.

Two disk vertices having a common neighbor are said to be loose neighbors in G
(this corresponds to intersecting Jordan regions in F).
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COLORING JORDAN REGIONS AND CURVES 1675

Claim 2.3. Every disk vertex has at least k + 1 loose neighbors in G.

Proof. Assume that some disk vertex has at most k loose neighbors in G. Then
the corresponding Jordan region d of F intersects at most k other Jordan regions in
F . By minimality of F , the family F\{d} is (k+1)-colorable, and any (k+1)-coloring
easily extends to d, since d intersects at most k other Jordan regions. We obtain a
(k + 1)-coloring of F , which is a contradiction.

Claim 2.4. G has minimum degree at least 2, and each contact vertex has degree
at most k.

Proof. The fact that each contact vertex has degree at least 2 and at most k
directly follows from the definition of a k-touching family. If G contains a disk vertex
v of degree at most 1, then since contact vertices have degree at most k, v has at most
k − 1 loose neighbors in G, which contradicts Claim 2.3.

Claim 2.5. For any edge uv, at least one of u, v has degree at least 3.

Proof. Assume that a disk vertex u of degree 2 is adjacent to a contact vertex
of degree 2. Then u has at most 1 + k − 1 = k loose neighbors, which contradicts
Claim 2.3.

A d-vertex (resp., ≤ d-vertex, ≥ d-vertex) is a vertex of degree d (resp., at most
d, at least d). A ≥ b-vertex is also said to be a big vertex. A vertex that is not big is
said to be small.

Claim 2.6. Each disk vertex of degree at most 7 has at least one big neighbor.

Proof. Assume that some disk vertex v of degree at most 7 has no big neighbor.
It follows that all the neighbors of v have degree at most b− 1, and so v has at most
7(b− 2) ≤ k loose neighbors, which contradicts Claim 2.3.

We now assign to each vertex v of G a charge ω(v) = 2d(v)− 6, and to each face
f of G a charge ω(f) = d(f)− 6 (here the function d refers to the degree of a vertex
or a face). By Euler’s formula, the total charge assigned to the vertices and edges of
G is precisely −12. We now proceed by locally moving the charges (while preserving
the total charge) until all vertices and faces have nonnegative charge. In this case we
obtain that −12 ≥ 0, which is a contradiction. The charges are locally redistributed
according to the following rules (for rule (R2), we need the following definition: a bad
vertex is a disk 3-vertex v adjacent to two contact 2-vertices u,w, such that the three
faces incident to v have degree 6 and the neighbors of u and w have degree 3).
(R1) For each big contact vertex v and each sequence of three consecutive neighbors

u1, u2, u3 of v in clockwise order around v, we do the following. If u2 has a
unique big neighbor (namely, v), then v gives 2 − ε to u2. Otherwise v gives 1
to u2, and (1− ε)/2 to each of u1 and u3.

(R2) Each big contact vertex gives ε to each bad neighbor.
(R3) Each small contact vertex of degree at least 4 gives 1

2 to each neighbor.
(R4) Each contact 3-vertex adjacent to some ≥ 3-vertex gives ε to each neighbor of

degree 2.
(R5) Each disk vertex of degree at least 4 gives 1 + ε to each neighbor of degree at

most 3.
(R6) For each disk vertex v of degree 3 and each neighbor u of v with d(u) ≤ 3, we

do the following. If either u has degree 3, or u has degree 2 and the neighbor
of u distinct from v has degree at least 4, then v gives 1− ε to u. Otherwise, v
gives 1 to u.

(R7) Each face f of degree at least 8 gives 1
2 to each disk vertex incident with f .
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1676 VAN BATENBURG, ESPERET, AND MÜLLER

We now analyze the new charge of each vertex and face after all these rules have
been applied.

By Claim 2.2, all faces have degree at least 6. Since faces of degree 6 start with
a charge of 0, and do not give any charge, their new charge is still 0. Let f be a face
of degree d ≥ 8. Then f starts with a charge of d− 6 and gives at most d

2 · 12 by rule

(R7). The new charge is then at least d− 6− d
2 · 12 = 3d

4 − 6 ≥ 0, as desired.
We now consider disk vertices. Note that these vertices receive charge by rules

(R1)–(R4) and (R7) and give charge by rules (R5)–(R6). Consider first a disk vertex
v of degree d ≥ 8. Then v starts with a charge of 2d − 6 and gives at most d(1 + ε)
(by rule (R5)), so the new charge of v is at least 2d− 6− d(1 + ε) = d(1− ε)− 6 ≥ 0
(since ε = 1

4 ).
Assume now that v is a disk vertex of degree 4 ≤ d ≤ 7. Then by Claim 2.6, v

has at least one big neighbor. The vertex v starts with a charge of 2d − 6, receives
at least 2 − ε by rule (R1), and gives at most (d − 1)(1 + ε) by rule (R5). The new
charge of v is then at least 2d − 6 + 2 − ε − (d − 1)(1 + ε) = d(1 − ε) − 3 ≥ 0 (since
ε = 1

4 ).
We now consider a disk vertex v of degree 3. Again, it follows from Claim 2.6

that v has at least one big neighbor. The vertex v starts with a charge of 0, and since
v has at least one big neighbor, v receives at least 2 − ε from its big neighbors by
rule (R1). Let w be a big neighbor of v, and assume first that at least one of the two
neighbors of v distinct from w (call them u1, u2) is not a 2-vertex adjacent to two
3-vertices. Then by rule (R6), v gives at most 2−ε to u1, u2 (recall that by Claim 2.5,
no two vertices of degree 2 are adjacent in G). In this case the new charge of v is at
least 2− ε− (2− ε) ≥ 0, as desired. Assume now that u1, u2 both have degree 2 and
their neighbors all have degree 3. In this case v gives 1 to each of u1, u2 and the new
charge of v is at least 2 − ε − 2 ≥ −ε. If v is incident to a face of degree at least 8,
v receives at least 1

2 from such a face, and its new charge is at least −ε + 1
2 ≥ 0, as

desired. So we can assume that all the faces incident to v are faces of degree 6. In
other words, v is a bad vertex. Then w gives an additional charge of ε to v by rule
(R2), and the new charge of v in this last case is at least −ε+ ε ≥ 0, as desired.

Assume now that v is a disk vertex of degree 2. Then the vertex v starts with a
charge of −2. By Claim 2.6, v has a big neighbor; call it w. By Claim 2.5, the neighbor
of v distinct from w (call it u) has degree at least 3. If u is big, then v receives a
charge of 1 + 1 = 2 by rule (R1), and its new charge is thus at least −2 + 2 = 0, so
we can assume that u is small (in particular, v receives 2 − ε from w by rule (R1)).
If u has degree at least 4, then u gives a charge of 1

2 to v by rule (R3), and the new
charge of v is then at least −2 + 2 − ε + 1

2 ≥ 0. If v lies on a face of degree at least
8, then v receives 1

2 from this face by rule (R7), and its new charge is then at least
−2 + 2− ε+ 1

2 ≥ 0. So we can assume that u has degree 3 and all the faces containing
v have degree 6. If u is adjacent to some ≥ 3-vertex, then u gives ε to v by rule
(R4), and in this case the new charge of v is at least −2 + 2 − ε + ε ≥ 0. So we can
further assume that all the neighbors of u are 2-vertices. Call u1, u2 the neighbors
of u distinct from v, and for i = 1, 2 let vi be the neighbor of ui distinct from u.
Since u has degree 3, it follows from Claim 2.6 that v1 and v2 are big. Let v+ (resp.,
v−) be the neighbor of w immediately succeeding (resp., preceding) v in clockwise
order around w. The faces containing v have degree 6, and since G is bipartite with
minimum degree at least 2 (by Claims 2.1 and 2.4), each of these two faces is bounded
by six vertices. As a consequence, we can assume that v+ is adjacent to v1 and v−

is adjacent to v2 (see Figure 3). It follows that each of v+, v− has at least two big
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COLORING JORDAN REGIONS AND CURVES 1677

neighbors. Therefore, by rule (R1), v received from w (in addition to the 2 − ε that
were taken into account earlier) 2 · (1 − ε)/2 = 1 − ε. So the new charge of v is at
least −2 + 2− ε+ 1− ε = 1− 2ε ≥ 0, as desired.

u

w

u1

v

u2

v2v1

v+ v−

Fig. 3. Contact vertices are depicted with white squares, and disk vertices are depicted with
black dots.

We now study the new charge of contact vertices. Note that contact vertices give
charge by rules (R1)–(R4) and receive charge by rules (R5)–(R7). Consider a contact
vertex v of degree 2. Then v starts with a charge of −2. By Claim 2.5, the two
neighbors of v (call them u and w) have degree at least 3. If they both have degree
at least 4, then they both give 1 + ε to v by rule (R5), and the new charge of v is at
least −2+2(1+ε) ≥ ε. If one of u,w has degree at least 4 and the other has degree 3,
then v receives 1 + ε by rule (R5) and 1− ε by rule (R6). In this case the new charge
of v is at least −2 + 1 + ε + 1 − ε = 0. Finally, if u and w both have degree 3, then
they both give 1 to v by rule (R6), and the new charge of v is at least −2 + 1 + 1 = 0,
as desired.

Consider a contact vertex v of degree 3. Then v starts with a charge of 0 and only
gives charge if rule (R4) applies. In this case, v gives a charge of ε to at most two
of its neighbors. However, if rule (R4) applies, then, by definition, v has a neighbor
of degree at least 3. Then v receives at least 1 − ε from such a neighbor by rules
(R5)–(R6). In this case, the new charge of v is at least 0 − 2ε + 1 − ε ≥ 0 (since
ε = 1

4 ).
Assume now that v is a contact vertex of degree d ≥ 4. Then v starts with a

charge of 2d − 6. If v is small, then v gives at most d · 12 by rule (R3), and the new

charge of v is then at least 2d − 6 − d · 12 = 3d
2 − 6 ≥ 0. Assume now that v is big.

In this case, applications of rule (R1) cost v no more than d(2− ε) charge. We claim
the following.

Claim 2.7. For every big contact vertex v of degree d, applications of rule (R2)
cost v no more than 2d

3 · ε charge.

Proof. We will show that v never gives a charge of ε to three consecutive neighbors
of v, which implies the claim. Assume for the sake of contradiction that v gives a
charge of ε to three consecutive neighbors u,w, x of v (in clockwise order around
v). Assume that the neighbors of u are v, u1, u2 (in clockwise order around u), and
the neighbors of w are v, w1, w2 (in clockwise order around w). Recall that by the
definition of a bad vertex, each of u1, u2, w1, w2 has degree 2, and all the faces incident
to u or w have degree 6. Let u′1, u

′
2 be the neighbors of u1, u2 distinct from u, and let

w′1, w
′
2 be the neighbors of w1, w2 distinct from w. By the definition of a bad vertex,

each of u′1, u
′
2, w

′
1, w

′
2 has degree 3, and since all the faces incident to u or w have

degree 6, u′2 = w′1 and the vertices u′1, u
′
2, w

′
2 have a common neighbor, which we call
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1678 VAN BATENBURG, ESPERET, AND MÜLLER

u

w

x

w1

w2

u2

u1 u′
1

u′
2

w′
2

v
y

Fig. 4. Illustration of the proof of Claim 2.7. The four removed vertices are circled.

y. Again, by the definition of a bad vertex, the neighbor of w′2 distinct from y has
degree 2 and is adjacent to x (see Figure 4). Let F ′ be the family obtained from F
by removing the disks corresponding to u,w, u′2, w

′
2. By minimality of F , F ′ has a

(k+1)-coloring c, which we seek to extend to u,w, u′2, w
′
2 (by a slight abuse of notation

we identify a disk vertex of G with the corresponding disk of F). Note that u and
w′2 have at most k − 1 colored neighbors, while w and u′2 have at most k − 2 colored
neighbors. Since k + 1 colors are available, it follows that each of u,w′2 has a list of
at least two available colors, while each of w, u′2 has a list of at least three available
colors. We must choose a color in each of the four lists such that vertices in each
pair of vertices among u,w, u′2, w

′
2, except the pair uw′2, are assigned different colors.

This is equivalent to the following problem: take H to be the complete graph on four
vertices minus an edge, assign to each vertex z of H an arbitrary list of at least dH(z)
colors, and then choose a color in each list such that adjacent vertices are assigned
different colors. It follows from a classical result of Erdős, Rubin, and Taylor [3] that
this is possible for any 2-connected graph distinct from a complete graph and an odd
cycle (and in particular, this holds for H). Therefore, the (k+ 1)-coloring c of F ′ can
be extended to u,w, u′2, w

′
2 to obtain a (k+ 1)-coloring of F , which is a contradiction.

This proves Claim 2.7.

Hence, if v is a big contact vertex of degree d, then the new charge of v is at
least 2d − 6 − d(2 − ε) − 2d

3 · ε = d
3 · ε − 6. Since v is big, d ≥ b, and so the new

charge of v is at least bε/3− 6 = 0 (since b = 18/ε). It follows that the new charge of
all vertices and faces is nonnegative, and then the total charge (which equals −12) is
nonnegative, which is a contradiction. This concludes the proof of Theorem 1.2.

3. Proof of Theorem 1.8. We start with a simple lemma showing that in order
to bound the chromatic number of k-touching families of Jordan curves, it is enough
to asymptotically bound the number of edges in their intersection graphs.

Lemma 3.1. Assume that there is a constant a > 0 and a function f = o(1) such
that for any integers k, n and any k-touching family F of n Jordan curves, the graph
G(F) has at most ak(1+f(k))n edges. Then for any integer k, any k-touching family
of Jordan curves is 2ak-colorable.

Proof. Let F be a k-touching family of n Jordan curves, and let m denote the
number of edges of G(F). For some integer `, replace each element c ∈ F by `
concentric copies of c, without creating any new intersection point (i.e., any portion
of Jordan curve between two intersection points is replaced by ` parallel portions of
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COLORING JORDAN REGIONS AND CURVES 1679

Jordan curves). Let `F denote the resulting family. Note that `F is `k-touching
and contains `n elements, and G(`F) contains

(
`
2

)
n + `2m edges. Hence, we have(

`
2

)
n + `2m < a · `k(1 + f(`k)) · `n. Therefore, m < (ak(1 + f(`k)) − 1

2 + 1
2` )n, and

G(F) contains a vertex of degree at most 2ak(1 + f(`k))− 1 + 1
` . This holds for any

`, and since the degree of a vertex is an integer and f = o(1), G(F) indeed contains
a vertex of degree at most 2ak − 1. We proved that k-touching families of Jordan
curves are (2ak − 1)-degenerate and therefore 2ak-colorable.

We will also need the following two lemmas.

Lemma 3.2. For any integers `, k, d such that d+2 ≤ ` ≤ k, and for any p ∈ [0, 1),

(1− p)`−2 + p(1− p)`−3(`− d− 2) ≥ (1− p)k−2 + p(1− p)k−3(k − d− 2).

Proof. For fixed d ∈ R and p ∈ [0, 1) we write f(`) := (1 − p)`−2 + p(1 −
p)`−3(` − d − 2). Note that f(d + 2) = (1 − p)d = f(d + 3). Furthermore, for
all reals ` ≥ d + 3, d

d`f(`) = (1 − p)`−3 · (log(1− p) · (1 + p · (`− d− 3)) + p) ≤ (1 −
p)`−3 (−p · (1 + p · (`− d− 3)) + p) ≤ 0. So f(`) ≥ f(k) for all integers d+2 ≤ ` ≤ k.

Lemma 3.3. For any reals 1 ≤ δ < 2 and k ≥ 2, we have (1 − δ
k )k−3 ≥ (1 −

δ
k )k−2 ≥ e−δ.

Proof. We clearly have (1− δ
k )k−3 ≥ (1− δ

k )k−2. To see that the second part of
the inequality holds, observe first that for any real 0 ≤ x ≤ 2, we have e−x ≤ 1− x

3 ,
and thus the desired inequality holds for k = 2, 3.

Assume now that k ≥ 4. Note that for any real x ≥ 0, we have e−x ≤ 1− x+ x2

2 .
Thus,

exp(− δ
k−2 ) ≤ 1− δ

k−2 + δ2

2(k−2)2 = 1− δ
k + δ

2k(k−2)2 ((δ − 4)k + 8) ≤ 1− δ
k ,

with the rightmost inequality holding since (4 − δ)k ≥ 2k ≥ 8. It follows that
exp(−δ) ≤ (1− δ

k )k−2, as desired.

We are now ready to prove Theorem 1.8.
Proof of Theorem 1.8. Let F be a k-touching family of n Jordan curves, with

average distance at most αk, and let δ = δ(α) be as provided by Theorem 1.8. Note
that since 0 ≤ α ≤ 1, we have 1 ≤ δ ≤ 1

2 (1 +
√

5) < 2. We denote by E the edge-

set of G(F) and by m the cardinality of E. We will prove that m < 3eδ k

δ+δ2(1−α− 2
k )

.

Using Lemma 3.1, this implies that the chromatic number of any k-touching family

of Jordan curves with average distance at most αk is at most 6eδ k
δ+δ2(1−α) . Note that

the chosen value δ(α) of δ minimizes the value of 6eδ

δ+δ2(1−α) . In the remainder of the

proof, we will only use the fact that 1 ≤ δ < 2.
As observed in [2], we can assume without loss of generality that each Jordan

curve is a polygon (this is a simple consequence of the fact that any simple plane
graph can be drawn with straight-line edges).

We recall that for two intersecting Jordan curves a, b ∈ F , D(a, b) is the set of
Jordan curves c distinct from a, b such that the (closed) region bounded by c contains
exactly one of a, b, and the cardinality of D(a, b) (which is called the distance between
a and b) is denoted by d(a, b). For each edge ab ∈ E, we choose an arbitrary point
x(a, b) in the intersection of the Jordan curves corresponding to a and b. Observe
that since the curves are pairwise noncrossing, x(a, b) is contained in all the curves of
D(a, b). We now select each Jordan curve of F uniformly at random, with probability
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1680 VAN BATENBURG, ESPERET, AND MÜLLER

p = δ
k . Let F ′ be the obtained family. The expectation of the number of Jordan

curves in F ′ is pn. For any pair of intersecting Jordan curves a, b, we denote by Pab
the probability that the set S of Jordan curves of F ′ containing x(a, b) satisfies
(1) S has size at most 3,
(2) a, b ∈ S, and
(3) if |S| = 3, then the Jordan curve of S distinct from a and b is not an element of
D(a, b).
Observe that

Pab = p2(1− p)`−2 + p3(1− p)`−3(`− d(a, b)− 2),

where ` ∈ {d(a, b) + 2, . . . , k} denotes the number of Jordan curves containing x(a, b)
in F .

We say that an edge ab ∈ E is good if a, b satisfy (1), (2), and (3) above. It follows
from Lemmas 3.2 and 3.3 that the expectation of the number of good edges is∑

ab∈E
Pab ≥

∑
ab∈E

(
p2(1− p)k−2 + p3(1− p)k−3(k − d(a, b)− 2)

)
≥ p2e−δm+ p3e−δ

∑
ab∈E

(k − d(a, b)− 2)

= p2e−δm

(
1 + p

(
k − 2− 1

m

∑
ab∈E

d(a, b)

))
.

≥ p2e−δm
(
1 + δ(1− α− 2

k )
)
,

since
∑
ab∈E d(a, b) ≤ αkm.

a

b

c

a

b

c

a b

c

a

b

cc

a b

c

a

b

c
c

a b a b

c

Fig. 5. The point x(a, b) is depicted by a white dot, and the newly created points are depicted
by black dots.

Let F ′′ be obtained from F ′ by slightly modifying the Jordan curves around each
intersection point x as follows. If x = x(a, b) for some good edge ab, then we do the
following. Note that by (1) and (2), a, b ∈ F ′, and x = x(a, b) is contained in at
most one Jordan curve of F ′ distinct from a and b. Assume that such a Jordan curve
exists, and call it c. By (3), a and b are at distance 0 from each other in F ′. We then
slightly modify c in a small disk centered in x(a, b) so that for any d ∈ {a, b}, if c and
d are at distance 0 from each other in F ′, then they remain at distance 0 from each
other in F ′′. Moreover, the point x(a, b) and the newly created points are 2-touching
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COLORING JORDAN REGIONS AND CURVES 1681

in F ′′ (see Figure 5). If ac (resp., bc) is also a good edge with x(a, c) = x (resp.,
x(b, c) = x), then note that the conclusion above also holds with a, b replaced by a, c
(resp., b, c). Now, for any other intersection point y of Jordan curves of F ′ that is not
equal to x(a, b) for some good edge ab, we make the Jordan curves disjoint at y. It
follows from the definition of a good edge that the family F ′′ obtained from F ′ after
these modifications is 2-touching, and for any good edge ab, a and b are at distance
0 from each other in F ′′. Note that G(F ′′) is planar, since F ′′ is 2-touching, and its
expected number of edges is

∑
ab∈E Pab. Since the number of edges of a planar graph

is less than three times its number of vertices, we obtain

3pn >
∑
ab∈E

Pab ≥ p2e−δm
(
1 + δ(1− α− 2

k )
)
.

As a consequence,

m <
3eδ k

δ + δ2
(
1− α− 2

k

) n,
as desired. This concludes the proof of Theorem 1.8.

4. Proof of Theorem 1.10. The following is an easy variation of the main
result of Fox and Pach [4]. Consider three Jordan curves a, b, c such that a is outside
the region bounded by c, b is inside the region bounded by c, and a intersects b. Then
we say that the pair a, b is c-crossing.

Lemma 4.1. Let c be a Jordan curve, and let F be a family of n Jordan curves
such that F∪{c} is k-touching and all the elements of F intersect c. Then the number
of c-crossing pairs in F is at most 2ekn.

Proof. Let m be the number of c-crossing pairs in F . For each c-crossing pair a, b
in F , we consider an arbitrary point x(a, b) in a∩ b. We now select each Jordan curve
of F uniformly at random with probability p = 1

k . Let F ′ be the resulting family.
A c-crossing pair a, b in F is good if F ′ contains a and b, but does not contain any
other Jordan curve of F containing x(a, b). Note that the probability that a given
c-crossing pair a, b is good is at least p2(1 − p)k−3, and therefore the expectation of
the number of good c-crossing pairs is at least p2(1 − p)k−3m. For any intersection
point y of Jordan curves of F ′ that is not equal to x(a, b) for some good c-crossing
pair a, b, we make the Jordan curves disjoint at y (this is possible since the Jordan
curves are pairwise noncrossing). Let F ′′ be the obtained family. Observe that F ′′
is 2-touching and each intersection point contains one Jordan curve lying outside the
region bounded by c and one Jordan curve lying inside the region bounded by c. The
graph G(F ′′) is therefore planar and bipartite. The expectation of the number of
vertices of G(F ′′) is pn, and the expectation of the number of edges of G(F ′′) is at
least p2(1− p)k−3m. Since any planar bipartite graph on N vertices contains at most
2N edges, it follows that p2(1 − p)k−3m < 2pn. Since (1 − 1

k )k−3 > e−1, we obtain
that m < 2ekn, as desired.

Some planar quadrangulations can be represented as 2-touching families of Jordan
curves intersecting a given Jordan curve c (so that each edge of the quadrangulation
corresponds to a c-crossing pair of Jordan curves). Therefore, the bound 2N cannot
be decreased (by more than an additive constant) in the proof of Lemma 4.1. Fur-
thermore, the possibly near-extremal example in Figure 6 shows that the bound 2ekn
in Lemma 4.1 cannot be improved to less than (2k − 4)n.

We are now ready to prove Theorem 1.10.
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1682 VAN BATENBURG, ESPERET, AND MÜLLER

Fig. 6. A family F of n Jordan curves that all intersect a fixed Jordan curve c, such that F∪{c}
is k-touching. Each Jordan curve in the interior of c touches each Jordan curve in the exterior of c.
In the interior, there are only two sets of k− 2 concentric Jordan curves. The remaining n− 2k+ 4
Jordan curves are in the exterior of c. As n goes to infinity, the number of c-crossing pairs divided
by n converges to 2k − 4.

Proof of Theorem 1.10. Let E denote the edge-set of G(F), and let m = |E|. Let
α = 1

km

∑
ab∈E d(a, b). Note that the average distance in F is αk.

Fix some 0 < ε < 1, and set δ = 1
2 (1− ε). For any edge ab ∈ E with d(a, b) > 0,

we do the following. Note that there is a unique ordering c1, . . . , cd of the elements of
D(a, b), such that for any 1 ≤ i ≤ d, the distance between a and ci is i− 1. Then the
edge ab gives a charge of 1 to each of the elements cdδde, cdδde+1, . . . , cb(1−δ)dc+1. Let
T be the total charge given during this process. Note that

T =
∑
ab∈E

(b(1− δ)d(a, b)c+ 1− dδd(a, b)e+ 1)

≥
∑
ab∈E

(1− 2δ)d(a, b) = ε
∑
ab∈E

d(a, b).

We now analyze how much charge was received by an arbitrary Jordan curve
c. Let N(c) denote the neighborhood of c, and let N+(c) (resp., N−(c)) denote the
set of neighbors of c lying outside (resp., inside) the region bounded by c. Observe
that if c received a charge of 1 from some edge ab, then without loss of generality we
have a ∈ N+(c), b ∈ N−(c), and both a and b are at distance at most max(b(1 −
δ)d(a, b)c, d(a, b)− dδd(a, b)e) ≤ (1− δ)d(a, b) ≤ (1− δ)k from c. Let N1−δ(c) denote
the set of neighbors of c that are at distance at most (1−δ)k from c. Then the charge
received by c is at most the number of c-crossing pairs a, b in the subfamily of F
induced by N1−δ(c), which is at most 2ek|N1−δ(c)| by Lemma 4.1.

For any γ, let mγ denote the number of edges ab ∈ E such that a and b are at
distance at most γk. It follows from the analysis above that T ≤ 4ekm1−δ. Therefore,∑
ab∈E d(a, b) ≤ 4e

ε km1−δ. Since
∑
ab∈E d(a, b) = αkm, we have m(1+ε)/2 = m1−δ ≥

εα
4e m.

We now study the contribution of an arbitrary edge ab to the sum
∑
ab∈E d(a, b) =

αkm. Let t be some integer. If d(a, b) ≤ t+1
2t k, then ab contributes at most t+1

2t k to
αkm, and therefore at most t+1

2t to αm. Note that there are m(t+1)/2t such edges ab.

For each 2 ≤ i ≤ t− 1, each edge ab such that t+i−1
2t k < d(a, b) ≤ t+i

2t k contributes at

most t+i
2t to αm, and there are m(t+i)/2t −m(t+i−1)/2t such edges. Finally, each edge

ab with d(a, b) > 2t−1
2t k contributes at most 1 to αm, and there are m −m(2t−1)/2t
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COLORING JORDAN REGIONS AND CURVES 1683

such edges. As a consequence,

αm ≤ t+1
2t m(t+1)/2t +

t−1∑
i=2

(
t+i
2t (m(t+i)/2t −m(t+i−1)/2t)

)
+m−m(2t−1)/2t

=

t−1∑
i=1

(
m(t+i)/2t(

t+i
2t − t+i+1

2t )
)

+m

= m− 1
2t

t−1∑
i=1

m(t+i)/2t

≤ m− 1
2t

t−1∑
i=1

i
t
α
4e m,

since m(1+ε)/2 ≥ εα
4e m for every 0 < ε < 1. As a consequence, we obtain that

α ≤ 1− t−1
t

α
16e . Since this holds for any integer t, we have α ≤ 1− α

16e and therefore
α ≤ 1/(1 + 1

16e ), as desired.

5. Remarks and open questions. Most of the proof of Theorem 1.2 proceeds
by finding a Jordan region intersecting at most k other Jordan regions (see Claim 2.3).
On a single occasion, we use a different reduction (via a list-coloring argument). A
natural question is whether this could be avoided. Is it true that in any simple k-
touching family of Jordan regions, if k is large enough, then there is a Jordan region
which intersects at most k other Jordan regions? This turns out to be wrong, as
depicted in Figure 7. However, a proof along the lines of that of Theorem 1.2 (but
significantly simpler) shows that if k is large enough, then there is a Jordan region
which intersects at most k+1 other Jordan regions. It was pointed out to us by Patrice
Ossona de Mendez (after the original version of this manuscript was submitted) that
he also obtained this result in 1999 (see [9]). His result and its proof are stated with a
completely different terminology, but the ideas are essentially the same. In particular,
his result also implies (relatives of) our Corollaries 1.3 and 1.4.

k

Fig. 7. Every Jordan region intersects precisely k + 1 other Jordan regions.

This can be used to obtain a result on the chromatic number of simple families
of k-touching Jordan curves (families of k-touching Jordan curves such that any two
Jordan curves intersect in at most one point). Using the result mentioned above (that
if k is sufficiently large and the interiors are pairwise disjoint, then there is a Jordan
region that intersects at most k + 1 other Jordan regions), it is not difficult to show
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that the chromatic number of any simple family of k-touching Jordan curves is at
most 2k plus a constant. We believe that the answer should be much smaller.

Problem 5.1. Is it true that for some constant c, any simple family of k-touching
Jordan curves can be colored with at most k + c colors?

It was conjectured in [2] that if S is a family of pairwise noncrossing strings such
that (i) any two strings intersect in at most one point and (ii) any point of the plane
is on at most k strings, then S is (k + c)-colorable for some constant c. Note that, if
true, this conjecture would give a positive answer to Problem 5.1.
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