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Abstract: Conformal nets provide a mathematical formalism for conformal field the-
ory. Associated to a conformal net with finite index, we give a construction of the ‘bundle
of conformal blocks’, a representation of the mapping class groupoid of closed topolog-
ical surfaces into the category of finite-dimensional projective Hilbert spaces. We also
construct infinite-dimensional spaces of conformal blocks for topological surfaces with
smooth boundary. We prove that the conformal blocks satisfy a factorization formula for
gluing surfaces along circles, and an analogous formula for gluing surfaces along inter-
vals. We use this interval factorization property to give a new proof of the modularity of
the category of representations of a conformal net.
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Introduction

Conformal field theory and conformal blocks. Given a 2d conformal field theory (CFT),
its partition function Z assigns a number to every Riemann surface �.1 The correlation
functions generalize the partition function: they assign numbers to Riemann surfaces
with marked points (and local coordinates) labelled by fields of the CFT—the fields
form a vector space, also called the state space of the conformal field theory.

Conformal blocks were first introduced in the famous paper of Belavin, Polyakov,
and Zamolodchikov [11] for the special case of the Virasoro conformal field theory.
They are certain holomorphic functions Fa that enter in a formula for the correlation
and partition functions. In its simplest version, the formula reads

Z =
∑

habFaF̄b, (0.1)

where hab is a certain matrix that depends only on the genus of the surface, and on
the conformal field theory. These functions Fa were called conformal blocks “because
any correlation function is built up of these functions” [11]. Unlike the correlation and
partition functions which are single-valued functions on themoduli space, the conformal
blocks typically depend onmore data than just the surface andmarked points, for instance
on a pair-of-pants decomposition of the surface.

It was quickly realized [22,31] that the formula (0.1) can be rewritten inmultipleways

(related by what Moore–Seiberg [31] call “duality”, that is, the move ↔ )

and that the only object that is truly invariant is the vector space spanned by all the
conformal blocks for a given Riemann surface. This is the so-called space of conformal
blocks.

The structure of the spaces of conformal blocks. As it turns out, the spaces of conformal
blocks only depend on an object that contains somewhat less information (but is more
delicate to define) than a conformal field theory. That object goes by the name chiral
conformal field theory. To emphasize the difference between chiral conformal field
theories and conformal field theories, the latter are also often called full conformal field
theories. One may think very roughly of a chiral conformal field theory as being some
kind of algebra. For example (unlike for conformal field theories), there exists a notion
of representation, also called sector, of a chiral conformal field theory.

The space of conformal blocks associated to a Riemann surface � is denoted V (�);
the choice of chiral conformal field theory is suppressed from the notation. There is also

1 In fact, a non-trivial CFT always has an anomaly and, despite the terminology, the partition function
depends not only on a conformal structure on the surface but also on a metric. However, the partition function
transforms in a specified way under changes within a given conformal equivalence class, see [22, Sec. 3].
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a generalization where the Riemann surface is equipped with a finite collection of points
pi (along with first order coordinates at those points), labelled by representations λi of
the chiral conformal field theory. The space of conformal blocks is then denoted

V (�, p1, . . . , pn; λ1, . . . , λn). (0.2)

The expected algebraic and differential geometric structures of the spaces of con-
formal blocks were described in [22] and [31]. They should form holomorphic bundles
over the moduli spaces of Riemann surfaces of genus g with n marked points (with
first order coordinates). Conformal blocks should certainly be functorial with respect
to isomorphisms between Riemann surfaces, but they should also be functorial with
respect to orientation reversing isomorphisms [32]: an antiholomorphic isomorphism
f : �1 → �2 between Riemann surfaces should induce an antiunitary isomorphism

f∗ : V
(
�1, p1, . . . , pn; λ1, . . . , λn

) → V
(
�2, f (p1), . . . , f (pn); λ̄1, . . . , λ̄n

)
,

where λ̄ stands for the representation dual to λ. These bundles should also be equipped
with a hermitian inner product and a projectively flat connection, compatible with both
the holomorphic and the unitary structure.

Most importantly, the behavior of these bundles under degeneration should be gov-
erned by the so-called factorization formula. Informally, the factorization formula says
that

lim
ε→0

V

(

neck of
size ε

μ1 μ2 ν2ν1 )
=
⊕

λ

V

( μ1 μ2

λ
)
⊗ V

( ν2ν1

λ̄
)

, (0.3)

where the direct sum runs over all the irreducible representationsλof the chiral conformal
field theory.

Constructions of spaces of conformal blocks. If one interprets “chiral conformal field
theory” to mean “vertex algebra”, then a construction of the spaces of conformal blocks
can be found [21, Chapter 10]. However, as far as we know, there is no general proof of,
for instance, the factorization property. The literature is somewhat confusing, and we
refer the reader to the review paper [25] for a detailed history (restricted to genus zero
and one) of what has been proved and when, along with an indication of various false
claims in the literature and later retractions.

The first mathematical constructions of the spaces of conformal blocks are due to
Tsuchiya–Ueno–Yamada [41] and Hitchin [24], both restricted to the case of WZW
models (the WZW models are a certain class of chiral conformal field theories that
depend on a choice of compact, simple, connected, simply connected Lie group G,
and a positive integer k). An isomorphism between these two constructions was later
constructed in [10], [20], and [27], and the projectively flat connections present on both
sides were identified in [28]. Factorization for those models was proved in [41].

The unitarity of the spaces of conformal blocks has turned out to be more difficult
than the other properties. It is believable that one could combine the unitarity of the
modular tensor categories coming fromquantumgroups ([43], [37, Sec. 4] and references
therein), the fact that modular functors are determined by their genus zero data ([3]),
and the equivalence of the braided tensor categories associated to quantum groups and
to affine Lie algebras ([25, Sec. 3] and references therein) to prove the unitarity of the
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spaces of conformal blocks for most WZW models. However, at the moment, the only
statement that is clearly available in the literature is the one for the SU (n)WZWmodels,
due to work of Andersen and Ueno [1,2,4] (see [35] and [30] for an alternative proof
for the SU (2) WZW models in genus zero). In an early paper, Axelrod, Della Pietra,
and Witten made an attempt at defining the hermitian inner product on the spaces of
conformal blocks of the WZWmodels by writing down a formal expression in terms of
functional integrals [5]. They explained how to give a meaning to their formula in genus
one, but were unable to deal with the case of higher genus Riemann surfaces.

Formalisms for weak CFT. Positive energy conformal nets [8, Def. 4.5] (which is what
people typically mean by the term “conformal net” in the literature, see e.g. [29]) form,
along with vertex algebras and Segal’s chiral weak CFTs [39, Def. 5.2], one of the three
existing mathematical formalizations of the notion of a chiral conformal field theory.
(The extent to which these formalisms are equivalent is not completely understood,
but note the important advance by Carpi–Kawahigashi–Longo–Weiner constructing a
bijection between strongly local unitary vertex algebras and a corresponding class of
conformal nets [17].) Given the prominent role that the spaces of conformal blocks
play in conformal field theory, it is surprising that nobody has defined them within the
formalism of conformal nets. Our paper aims to fill this gap.

The notion of conformal net that we will be using here (introduced in [8], see Defini-
tion 1.1 below) is more general than the one commonly used in the literature. Our notion
is closely related to that of a conformally covariant net on 2-dimensional Minkowski
space [15]. We believe that given such a 2-dimensional net (not necessarily modular
invariant), one can obtain a conformal net in our sense by the procedure of time-zero
restriction [26, Sec. 4]. It is even plausible that the above procedure provides an equiv-
alence between these two kinds of nets.

Unitary spaces of conformal blocks. As explained above, it is expected that the spaces of
conformal blocks form a finite-dimensional vector bundle with hermitian inner product
and projectively flat unitary connection over the moduli space of Riemann surfaces. (In
the vertex algebra context, this would be under the assumption that the vertex algebra is
unitary [19] and subject to appropriate finiteness conditions.) Passing to the associated
bundle of projective spaces, the connection becomes genuinely flat and its monodromy
yields a projective representation of the fundamental group of the moduli space, a.k.a.
the mapping class group.

In the present article, we will be working with conformal nets instead of vertex
algebras, and with topological instead of Riemann surfaces. The price to pay for working
with topological surfaces instead ofRiemann surfaces is thatwe can only expect the space
of conformal blocks V (�) to form a projective space, not a vector space. (One way to
still get a vector space would be to pick a Lagrangian in H1(�;R), as explained in [6].
We shall not pursue that approach here.)

We first describe the result of our construction in the case of surfaces without bound-
ary. The object that plays the role of the moduli spaces of Riemann surfaces is the
following groupoid. Its objects are connected oriented topological surfaces and its mor-
phisms are isotopy classes of homeomorphisms. We allow orientation reversing maps:
the automorphism group of a surface in that groupoid is thus an index two overgroup of
the mapping class group. The simplest form of our main construction is:

Theorem 1 (preliminary version: no boundary). LetA be a conformal net of finite index
(Definition 1.15), and let � be a closed connected oriented topological surface. We can
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associate to A and � a finite dimensional projective Hilbert space PV (�) called the
projective space of conformal blocks of �.

For every isotopy class of homeomorphism f : �1 → �2 we have an induced map
f∗ : PV (�1) → PV (�2) which is projective unitary if f is orientation preserving and
projective antiunitary otherwise. These maps satisfy ( f ◦ g)∗ = f∗ ◦ g∗.
Remark 0.4. Among the conformal nets corresponding to WZW models, only the ones
with gauge group SU (n) are known to have finite index (this was proven by Xu [44],
based on the work of Wassermann [42]). For the other WZW conformal nets, the finite
index property is also expected to be true but has not yet been proven.

Remark 0.5. We emphasize that every step of our construction is visibly unitary. This is
in stark contrastwith thework ofAndersen andUeno [1,2,4],whose proof of unitarity for
the SU (n) WZW spaces of conformal blocks relies on a rather non-trivial identification
(in [4]) of the SU (n) WZWmodular functor with a certain modular functor constructed
by Blanchet [14] using skein theory.

Dealing with projective spaces tends to be notationally cumbersome. We therefore
prefer to state the above result by saying that for every topological surface �, we have a
finite dimensional Hilbert space V (�) that is “well defined up to a phase” (see Sect. 2.A
for a detailed discussion of this notion), and that the maps f∗ : V (�1) → V (�2) are
well defined up to phase.

Conformal nets. In our setup [8], a conformal net is a functor A from a certain cate-
gory of intervals (that is, 1-manifolds diffeomorphic to [0, 1]) to the category of von
Neumann algebras. It sends orientation preserving embeddings to homomorphisms and
orientation reversing embeddings to antihomomorphisms. We show in Theorem 1.3 that
every conformal net admits a canonical extension to the larger category of all compact
1-manifolds. In particular, given a closed 1-manifold S (a disjoint union of circles), there
is an associated von Neumann algebra A(S). If the conformal net has finite index, then
A(S) is a finite direct sum of type I factors. Moreover, if S1 is the standard circle then,
by Theorem 1.20, there is a canonical isomorphism

A(S1) ∼=
⊕

λ

B(Hλ), (0.6)

where Hλ are the irreducible representations (also called sectors) of the conformal net.
(Note that this isomorphism is similar to the decomposition of the reduced universal
C∗-algebra in Carpi–Conti–Heillier–Weiner [16].) For a disjoint union of circles S =
S1 � · · · � Sn , we have A(S) ∼= A(S1) ⊗̄ · · · ⊗̄A(Sn). The irreducible summands of
A(S) are indexed by the set of labelings of π0(S) by isomorphism classes of irreducible
representations of A.

Topological surfaces with smooth boundary. If � is a compact oriented topological
surface with boundary, and ∂� is equipped with a smooth structure, then our construc-
tion produces an infinite dimensional Hilbert-space-well-defined-up-to-phase V (�),
equipped with an action of the von Neumann algebraA(∂�). The relationship between
V (�) and the finite dimensional vector spaces (0.2) is as follows, at least conjecturally.
Pick a complex structure on � and a parametrization of each boundary component by
the standard circle. By gluing a copy of the standard disk on each boundary component
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of �, we obtain a closed Riemann surface denoted �̂. Let pi be the centers of the discs.
Then we expect a unitary isomorphism

V (�) ∼=
⊕

labelings λ1, . . . , λm
of π0(∂�) by irreps ofA

V
(
�̂, p1, . . . , pn; λ1, . . . , λn

)⊗ Hλ1 ⊗ · · · ⊗ Hλn ,

(0.7)
canonical up to phase. Note that the above Hilbert space V (�) is quite natural from the
point of view of conformal field theory. For the chiral WZW models with target G, the
right hand side of (0.7) is the geometric quantization of the moduli space of holomorphic
GC-bundles over � trivialized over ∂�. That statement was proved by Posthuma [34,
eq. just below (3.2)] in the caseG is a torus, and its algebro-geometric analog was shown
by Teleman [40, Thm. 4] for G semi-simple.

Remark 0.8. If one interprets V
(
�̂, p1, . . . , pn; λ1, . . . , λn

)
to be the vertex-algebra-

theoretic spaces of conformal blocks, then the above equation is of course conjec-
tural, as the correspondence between conformal nets and vertex algebras has not yet
been worked out to any satisfactory level of detail. On the other hand, if one defines
V
(
�̂, p1, . . . , pn; λ1, . . . , λn

)
via conformal nets, as in (0.9) below, then Eq. (0.7)

becomes trivially true.

We can now state our main result for the case of surfaces with boundary. The con-
struction, which is the same as the one for surfaces without boundary, is outlined in
Sect. 2.B:

Theorem 1. Let A be a conformal net with finite index. If � is a topological surface
whose boundary is equipped with a smooth structure, then there is an associatedHilbert-
space-well-defined-up-to-phase V (�) equipped with an action of A(∂�). Each irre-
ducible representation of A(∂�) appears with finite multiplicity in V (�).

A homeomorphism f : �1 → �2 that is smooth on the boundary induces a map, well
defined up to phase f∗ : V (�1) → V (�2) that is unitary if f is orientation preserving
and antiunitary otherwise.2 These maps are compatible with the algebra actions, and
satisfy ( f ◦ g)∗ = f∗ ◦ g∗ up to phase.

Furthermore, if two maps from �1 to �2 are isotopic by an isotopy that is constant
on ∂�, then the induced maps from V (�1) to V (�2) are equal up to phase.

The spaces V (�) that we assign to a surface � are constrained by the existence of
gluing isomorphisms, discussed below in Theorem 2.

Example. The Hilbert space associated to a pair-of-pants is given by

V
( )

=
⊕

λ,μ,ν

Nλμν
0 Hλ ⊗ Hμ ⊗ Hν

as a representation of A(∂ ) = A(S1) ⊗̄A(S1) ⊗̄A(S1), see Proposition 2.42.
Here, the direct sum runs over all triples of irreducible representations, and Nλμν

0 denotes
the multiplicity of the unit object inside the fusion product of Hλ, Hμ, and Hν .

2 If f is neither orientation preserving nor orientation reversing (which can happen if the surfaces are
disconnected), then V ( f ) is not defined.



Conformal Nets II: Conformal Blocks 399

As a consequence of the functoriality of the construction � 	→ V (�), for every
surface� and every conformal netAwith finite index, there is a projective (anti)unitary
representations of the following infinite dimensional topological group:

G(�) := { f ∈ Homeo+(�) ∪ Homeo−(�) : f |∂� is smooth
}/

isotopy rel ∂�.

If � is connected, then the group G(�) fits into a short exact sequence

1 → �(�) → G(�) → D → 1,

where D = Diff+(∂�) ∪ Diff−(∂�), and �(�) is the mapping class group of � rel-
ative to its boundary. Here, the subscripts +/− refer to orientation preserving/reversing
maps, respectively. The above action of G(�) on V (�) has already been pointed out by
Posthuma in the case of the chiral CFTs associated to lattices [34, Thm. 2.11].

Given the above theorem,we can turn (0.7) around and define the spaces of conformal
blocks V

(
�; λ1, . . . , λn

)
to be the multiplicity space of Hλ1 ⊗ · · · ⊗ Hλn in the Hilbert

space V (�), that is

V (�; λ1, . . . , λn) := homA(∂�)

(
Hλ1 ⊗ · · · ⊗ Hλn , V (�)

)
. (0.9)

Note that for this definition, � must have parametrized boundary, since otherwise it is
not clear how to let A(∂�) act on Hλ1 ⊗ · · · ⊗ Hλn .

Factorization along circles and along intervals. Themost notable property of the spaces
of conformal blocks is factorization (0.3):

Theorem 2 (preliminary version: gluing along closed manifolds). LetA be a conformal
net with finite index. Let �1 and �2 be topological surfaces with smooth boundary, and
let S be a closed 1-manifold (a disjoint union of circles) equipped with an orientation
reversing embedding S ↪→ ∂�1 and an orientation preserving embedding S ↪→ ∂�2.
Then there is a unitary isomorphism

V (�1 ∪S �2) ∼= V (�1)⊗A(S) V (�2)

well defined up to phase and compatible with the actions of A(∂�i \S).
Moreover, the above isomorphisms satisfy an obvious associativity diagram.

Here is an example illustrating the above result:

V

( )
∼= V

( )
⊗A
( ) V

( )
.

Given the above result, the factorization formula

V
(
�1 ∪S �2;μ1, . . . μm , ν1, . . . νn

) ∼=
⊕

λ
V
(
�1;μ1, . . . μm , λ

)⊗ V
(
�2; λ̄, ν1, . . . νn

)

follows easily from the definition of the spaces of conformal blocks (0.9) and from the
computation (0.6) of the algebra A(S).

The most novel aspect of our work, impossible to even formulate in the vertex alge-
braic setup, is a variant of factorization where circles are replaced by intervals. Namely,
in the above theorem, we can relax the condition that S be a closed manifold, and allow
it to be a manifold with boundary. The algebras associated to 1-manifolds with boundary
are no longer type I von Neumann algebras, and so the formulation of our result requires
the use of a more elaborate notion of tensor product: the so-called relative tensor product
or Connes fusion ([9,13,18,38,42]), denoted by the symbol �.
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Theorem 2. Let A be a conformal net with finite index. Let �1 and �2 be topological
surfaces with smooth boundary. Let M be a compact 1-manifold (possibly disconnected)
with boundary, equipped with two embeddings M ↪→ ∂�1 and M ↪→ ∂�2, the first
one orientation reversing and the second orientation preserving. Equip the boundary of
�3 := �1 ∪M �2 with a smooth structure such that the smooth structures on ∂�i , i ∈
{1, 2, 3} assemble to a “smooth structure” on ∂�1∪M ∂�2 in the sense of Definition 1.4.

Then there is a unitary isomorphism

V (�1 ∪M �2) ∼= V (�1) �A(M) V (�2), (0.10)

canonical up to phase and compatible with actions of A(∂�1\ ◦
M) and A(∂�2 \ ◦

M),
where

◦
M denotes the interior of M.Moreover, the above isomorphisms satisfy an obvious

notion of associativity.
Finally, the assignment � 	→ V (�) from Theorem 1 is determined by the existence

of the gluing law (0.10), and by the requirement that the Hilbert space associated to a
disc should be the vacuum sector of A.

For example, the following is an instance of the above isomorphism:

V

( )
∼= V

( )
�A
( ) V
( )

.

Note that for von Neumann algebras that are direct sums of type I factors, Connes
fusion agrees with (the Hilbert space completion of) the usual algebraic tensor product.
The previous theorem, about gluing along closed 1-manifolds, is therefore a special case
of this last result.

Modularity. In the last sectionof our paper,weuse our technology to revisit someaspects
of the representation theory of conformal nets. We reinterpret the monoidal structure on
Rep(A) as the operation of tensoring overA( )with the Hilbert space V

( )
;

we also define the braiding of two representations via the action of the homeomorphism
β : → that exchanges the two legs of the pair of pants: the braiding of H
and K is given by

(
H ⊗ K

)⊗A( ) V
( )

τ ⊗β∗−−−−→ (K ⊗ H
)⊗A( ) V

( )
,

where τ is the permutation operator.
Finally, we provide an alternative proof of a famous result of Kawahigashi–Longo–

Müger [26] about the modularity of the representation category of conformal nets:

Theorem. IfA is a conformal net with finite index, then its category of representations
is a modular tensor category.

Our proof is based on the property of factorization along intervals. Here, the definition
of modularity that we use to verify the above statement is that there are no transparent
objects in Rep(A) aside from the unit object and its multiples (that is, no objects T such

that
X T

=
X T

for every X in the category).
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1. Conformal Nets

In this paper, all 1-manifolds are compact, smooth, and oriented. The standard circle
S1 := {z ∈ C : |z| = 1} is the set of complex numbers of modulus one, equipped with
the counter-clockwise orientation. By a circle, we shall mean a manifold that is diffeo-
morphic to the standard circle. Similarly, by an interval, we shall mean a manifold that
is diffeomorphic to the standard interval [0, 1]. For a 1-manifold I , we denote by Ī the
same manifold equipped with the opposite orientation. We denote by Diff(I ) the group
of diffeomorphisms of I , and by Diff+(I ) the subgroup of orientation preserving diffeo-
morphisms. Given an interval I , we also let Diff0(I ) be the group of diffeomorphisms
that restrict to the identity near the boundary of I . We let INT denote the category whose
objects are intervals and whose morphisms are embeddings, not necessarily orientation-
preserving.

Let VN be the category whose objects are von Neumann algebras with separa-
ble preduals, and whose morphisms are C-linear ∗-homomorphisms, and C-linear ∗-
antihomomorphisms. A net is a covariant functor A : INT → VN taking orientation-
preserving embeddings to injective homomorphisms and orientation-reversing embed-
dings to injective antihomomorphisms. It is said to be continuous if the natural map
HomINT(I, J ) → HomVN(A(I ),A(J )) is continuous for the C∞ topology on the source
and Haagerup’s u-topology on the target. Given a subinterval I ⊆ K , we will often not
distinguish between A(I ) and its image in A(K ).

Definition 1.1. A conformal net is a continuous net subject to the following conditions.
Here, I and J are subintervals of some interval K .

(i) Locality: If I, J ⊂ K have disjoint interiors, thenA(I ) andA(J ) are commuting
subalgebras of A(K ).

(ii) Strong additivity: If K = I ∪ J , then A(K ) = A(I ) ∨A(J ).
(iii) Split property: If I, J ⊂ K are disjoint, then the map from the algebraic tensor

product A(I )⊗algA(J ) → A(K ) extends to the spatial tensor product

A(I ) ⊗̄A(J )→ A(K ).

(iv) Inner covariance: If ϕ ∈ Diff0(I ), then A(ϕ) is an inner automorphism.
(v) Vacuum sector: Suppose that J � I contains the boundary point p ∈ ∂ I . The

algebra A(J ) acts on L2(A(I )) via the left action of A(I ), and A( J̄ ) ∼= A(J )op

acts on L2(A(I )) via the right action of A(I ). In that case, we require that the
action of A(J )⊗algA( J̄ ) on L2(A(I )) extends to A(J ∪p J̄ ),

A(J )⊗algA( J̄ ) B(L2A(I ))

A(J ∪p J̄ )

(1.2)

where J ∪p J̄ is equipped with any smooth structure that is compatible with the
one on J , and for which the involution that exchanges J and J̄ is smooth. Here,
one should picture the interval J ∪p J̄ as a submanifold of the double I ∪∂ I Ī of I :

I
p
J

J̄
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Throughout this paper, we shall assume that our conformal nets are irreducible, i.e., that
the algebras A(I ) are factors.

Recall from [8, Section 1.B] that if S is a circle, a Hilbert space is called an S-sector of
A if it has compatible actions ofA(I ) for every interval I ⊂ S. The category of S-sectors
is denoted SectS(A). It is equipped with a distinguished object H0(S) = H0(S,A),
well defined up to non-canonical isomorphism, called the vacuum sector ofA on S. The
vacuumsector is defined as follows. If j ∈ Diff−(S) is an orientation reversing involution
that fixes the boundary of some interval I ⊂ S, then we set H0(S) := L2(A(I )). It is
equipped with:

• for all J ⊂ I , an action A(J ) ↪→ A(I )
left action−−−−−→ B(L2(A(I ))),

• for all J ⊂ j (I ), an action A(J ) ↪→ A( j (I ))
A( j)−−→ A(I )op

right action−−−−−→ B(L2(A(I ))),

and those extend uniquely to the structure of an S-sector. When we need to be specific,
we will refer to the above construction of H0(S) as the vacuum sector of A associated
to S, I , and j .

More generally [8, Section 3.C], given a closed 1-manifoldM , we call a Hilbert space
an M-sector ofA if it comes with compatible actions ofA(I ) for every interval I ⊂ M .
The category of M-sectors is denoted SectM (A).

1.A. Extending conformal nets to arbitrary 1-manifolds. Let 1MAN be the category
whose objects are compact oriented 1-manifolds, possibly disconnected, and whose
morphisms are embeddings that are either orientation preserving, or orientation revers-
ing. The goal of this section is to show that every conformal net has a canonical extension
to the larger category 1MAN.

Theorem 1.3. Every conformal net A : INT → VN has a canonical extension Â :
1MAN→ VN. That extension is symmetric monoidal3 in the sense that it takes disjoint
unions of 1-manifolds to spatial tensor products of von Neumann algebras.

The proof of this result will occupy this section. We first present some useful technical
definitions.

By a Y -graph we mean any topological space that is homeomorphic to {z ∈ C :
z3 ∈ [0, 1]}, and by a trivalent graph any compact Hausdorff space that is locally
homeomorphic to a Y -graph.

Definition 1.4. A smooth structure on a trivalent graph� is the data of a smooth structure
on every interval I ⊂ �, subject to the conditions:

(i) Whenever I1 ⊂ I2 ⊂ �, the smooth structure on I1 is the one inherited from I2.
(ii) For every Y -graph Y ⊂ �, there exists a faithful action of the symmetric group

S3 → Homeo(Y ), such that for all g ∈ S3 and I ⊂ Y , the corresponding map
I → gI is smooth.

3 Note that the symmetric monoidal structure on 1MAN is only partially defined as one cannot take the
disjoint union of an orientation preserving map with an orientation reversing one. One way of making precise
the sense in which Â is symmetric monoidal is to let BZ/2 be the category with one object and Z/2 as
automorphisms, then note that both 1MAN and VN are equipped with a functor to BZ/2 and that they are
symmetric monoidal as categories over BZ/2. The functor Â is then symmetric monoidal over BZ/2.
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Locally around a trivalent point, a smooth structure on is given by compatible
smooth structures on , , and . The compatibility condition says that there
should exist a faithful action of S3 that induces smooth maps when restricted to each
one of the above pieces.

Recall that given a smooth trivalent graph like this: , with circle subgraphs

S1 , S2 , S3

there is a corresponding functor [8, Section 1.C]

�I : SectS1(A)× SectS2(A) → SectS3(A)

given by fusing along A(I ), where I = S1 ∩ S2. Moreover, there is a non-canonical
isomorphism of S3-sectors

H0(S1) �I H0(S2) ∼= H0(S3). (1.5)

Given a 1-manifold M and a conformal net A, we now describe the algebra Â(M).
Pick a cover I = {I1, . . . , In} of M consisting of intervals with disjoint interiors. This
induces a cover of the 2-manifold � := M × [0, 1] by rectangles Ii × [0, 1]. Orient
the circles Si := ∂(Ii × [0, 1]) so that their orientation agrees with that of M × {0} on
Ii × {0}. Set � :=⋃ Si .

M : � : � :

Let us pick local coordinates on M around every point of the finite set
⋃

j ∂ I j . Using
those local coordinates (and the standard coordinates on the copies of [0, 1]), the trivalent
graph � can then be endowed with a smooth structure in the sense of Definition 1.4.
In particular, the circles Si have smooth structures and we can talk about their vacuum
sectors H0(Si ).

Let p1, . . . , pm ∈ M be the points where two of the intervals Ii touch each other.
If pi ∈ I j ∩ Ik , then the algebra Ai := A({pi } × [0, 1]) acts on the left on H0(S j )

and on the right on H0(Sk) or the other way around, depending on orientations. We can
therefore form the fusion

H� := �{Ai }
{
H0(S j )

}
1≤i≤m, 1≤ j≤n (1.6)

of all the sectors H0(S j ) along all the algebras Ai , as explained in Definition A.1 in
the appendix; this Hilbert space H� can in fact be well defined up to canonical unitary
isomorphism, as established in Theorem B.13, also in the appendix. The result is a
∂�-sector by [8, Cor. 3.31]. We then define

Â(M) :=
∨

intervals
I⊂M

A(I × {0}) (1.7)

as a subalgebra of B(H�).
In the next two lemmas, we will see that the Hilbert space (1.6) and the algebra

(1.7) are independent of the cover I, and of the choice of local coordinates. For the
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moment, we shall write H (I)
� and Â(M)(I) to stress the dependence on the cover (the

dependence on the local coordinates is also there, but left implicit in the notation). Let
us first introduce some terminology to refer to the above structures:

Definition 1.8. A c-cover of a compact 1-manifoldM consists of a coverI = {I1, . . . , In}
by intervals with disjoint interiors, along with germs of local coordinates at every point
of the set

⋃
j ∂ I j .

Given two c-covers I = {I1, . . . , In} and J = {J1, . . . , Jm} of M , we shall say that
J refines I, and write itJ ≺ I if the underlying cover {J1, . . . , Jm} refines {I1, . . . , In}
and the local coordinates of I agree with those of J at every point of

⋃
j ∂ I j .

Lemma 1.9. Let M be a compact 1-manifold equipped with germs of local coordinates
at each point of ∂M, and let I and J be c-covers of M that are compatible with the
given local coordinates. Then there is a non-canonical isomorphism of ∂�-sectors

H (I)
� → H (J )

� .

Proof. We first treat the case when J refines I. The c-cover J can be obtained from
I by successively subdividing intervals, and so we may as well assume that I =
{I1, I2, . . . , In} and J = {I ′1, I ′′1 , I2, . . . , In} with I ′1 ∪ I ′′1 = I1. Let

S′1 := ∂(I ′1 × [0, 1]) S′′1 := ∂(I ′′1 × [0, 1]) S j := ∂(I j × [0, 1])
p0 := I ′1 ∩ I ′′1 A0 := A({p0} × [0, 1]).

By (1.5), there is an isomorphism of S1-sectors

H0(S
′
1) �A0 H0(S

′′
1 ) ∼= H0(S1). (1.10)

It follows that

H (J )
� = �{Ai }

{
H0(S

′
1), H0(S

′′
1 ), H0(S2), . . . , H0(Sn)

}

0≤i≤m
∼= �{Ai }

{
H0(S

′
1) �A0 H0(S

′′
1 ), H0(S2), . . . , H0(Sn)

}

1≤i≤m
∼= �{Ai }

{
H0(S1), H0(S2), . . . , H0(Sn)

}

1≤i≤m = H (I)
� .

(1.11)

The general case follows from the above special case by the following observation.
For any two c-covers I, I ′ of M , there exist c-covers J , I ′′, J ′ of M such I � J ≺
I ′′ � J ′ ≺ I ′. ��

We then have the following result.

Lemma 1.12. Given two c-covers I, J of M that induce the same local coordinates at
the points of ∂M, there is a canonical algebra isomorphism

Â(M)(I) → Â(M)(J ).
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Proof. Consider the colimit A := colim I⊂MA(I ) in the category of ∗-algebras, indexed
by the poset of subintervals of M . By definition, A(M)(I) is the von Neumann algebra
generated by (the image of) A in B

(
H (I)

�

)
and, similarly, A(M)(J ) is generated by

A in B
(
H (J )

�

)
. By Lemma 1.9, the Hilbert spaces H (I)

� and H (J )
� are isomorphic as

representations of A. The two vonNeumann algebras are therefore isomorphic, and there
is a unique arrow that makes this diagram commute:

A

Â(M)(I) Â(M)(J ) ��

As a corollary, we have:

Corollary 1.13. Given two c-covers I and J of M (without any conditions on the local
coordinates at the endpoints of M), there is a canonical algebra isomorphism

Â(M)(I) → Â(M)(J ).

Proof. Write M as a disjoint union of connected component M = M1 � · · · � Mk .
We then have canonical isomorphisms Â(M)(I) ∼= Â(M1)

(I1) ⊗̄ · · · ⊗̄ Â(Mk)
(Ik ) and

Â(M)(J ) ∼= Â(M1)
(J1) ⊗̄ · · · ⊗̄ Â(Mk)

(Jk ), where Ii and Ji are the restrictions of
the c-covers I and J to the components Mi of M . It is therefore enough to treat the
case when M is connected. If M is a circle, then Lemma 1.12 yields the result. Let us
therefore assume that M is an interval.

Let I0 = {M} be the c-cover consisting of just M , along with the local coordi-
nates at ∂M induced by I. Define J0 similarly. Then we have canonical isomorphisms
Â(M)(I) ∼= Â(M)(I0) ∼= A(M) ∼= Â(M)(J0) ∼= Â(M)(J ). ��

By the above results, we can see that Â defines a functor 1MAN → VN, that its
restriction to the subcategory INT recovers A, and that it is symmetric monoidal in the
sense that Â(M � N ) ∼= Â(M) ⊗̄ Â(N ). This completes the proof of Theorem 1.3.

Remark 1.14. Given a natural transformation τ : A → B, it is natural to ask whether
it extends to a natural transformation between functors 1MAN → VN. We only know
how to prove that it does if the conformal netA has finite index (Definition 1.15), using
Proposition 1.25.

From now on, since there is no risk of confusion, we will drop the hat notation and
denote the extension of a conformal net A to 1MAN simply by A:

INT VN

1MAN

A

A
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1.B. The algebra associated to a circle. Given a circle S, note that an S-sector of A is
not the same thing as an A(S)-module. Every A(S)-module admits the structure of an
S-sector of A, but the converse does not always hold. However, we will see later that
for conformal nets with finite index those two notions do agree. The same will also hold
for any closed 1-manifold M .

Definition 1.15. Let S be a circle, and let I1, I2, I3, I4 ⊂ S be intervals that are arranged
so that each Ii ∩ Ii+1 (cyclic numbering) is a single point. A conformal net has finite
index if the bimodule

A(I1∪I3)H0(S)A(I2∪I4)op

is dualizable.

For the definition of dualizability of bimodules see [7, Sec. 4].

Lemma 1.16. [8, Lem. 3.5] Let S, I1, I2, . . . , I4 be as above, and let S̄, Ī1, . . . , Ī4 be
the same manifolds with the reverse orientation. Let A be a conformal net with finite
index. Then the dual of the bimodule A(I1∪I3)H0(S)A(I2∪I4)op is

A( Ī2∪ Ī4)H0(S̄)A( Ī1∪ Ī3)op .

Here, we have used the canonical identificationsA( Ī1 ∪ Ī3) ∼= A(I1 ∪ I3)op andA( Ī2 ∪
Ī4) ∼= A(I2 ∪ I4)op.

Let us call a tensor category a fusion category if its underlying linear category is
equivalent to Hilbn (the category whose objects are n-tuples of Hilbert spaces) for some
finite n, and if all its irreducible objects are dualizable. We have seen in [8, Thm. 3.14]
that if A is a conformal net with finite index, then SectS(A) is a fusion category. Let

 be the set of isomorphism classes of simple sectors, and let 
 → 
 : λ 	→ λ̄ be
the involution that corresponds to taking the dual sector. Note that the finite set 
 is
independent, up to canonical isomorphism, of the choice of circle S.

Lemma 1.17 [8, Lem. 3.17]. Let S be a circle, decomposed into two subintervals I1
and I2. Then the dual of the bimodule A(I1)Hλ(S)A(I2)op is

A( Ī2)Hλ̄(S̄)A( Ī1)op

under the canonical identifications A( Ī1) ∼= A(I1)op and A( Ī2) ∼= A(I2)op.

For each λ ∈ 
 and circle S, pick a representative Hλ(S) ∈ SectS(A) of the iso-
morphism class. Let � := S × [0, 1], and let H� be as in (1.6). Writing ∂� as S � S̄,
then (provided the net A is finite index) there is a non-canonical unitary isomorphism
of S � S̄-sectors [8, Thm. 3.24]

H�
∼=
⊕

λ∈


Hλ

(
S
)⊗ Hλ̄

(
S̄
)
. (1.18)

In fact, this isomorphism can be chosen canonically, as established in Theorem B.17 in
the appendix. In light of the next theorem, that isomorphism can be reexpressed as

H�
∼= L2A(S). (1.19)
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Theorem 1.20. Let A be a finite irreducible conformal net, and let S be a circle. Then
there is a canonical isomorphism

A(S) ∼=
⊕

λ∈


B(Hλ(S)). (1.21)

Proof. The von Neumann algebra A(S) is the completion in B(H�) of the algebra
generated by all the A(I ) for I ⊂ S. By (1.18), an operator commutes with all those
algebras if and only if it is contained in

⊕

λ∈


C⊗ B(Hλ(S̄)) ⊂ B(H�).

Taking the commutant, it follows that

A(S) =
∨

I⊂S

A(I ) =
⊕

λ∈


B(Hλ(S))⊗ C ⊂ B(H�). (1.22)

The isomorphism (1.18) is a priori non-canonical: it is only well defined up to a
phase factor on each direct summand. Those phase factors, however, do not affect the
isomorphism (1.21), and the latter is therefore canonical. ��
Corollary 1.23. IfA is a conformal net with finite index, then the forgetful functor from
A(S)-modules to S-sectors of A is an equivalence of categories.

Proof. The functor is clearly fully faithful. To show essential surjectivity, we need to
argue that every S-sector of A induces an A(S)-module structure on the same Hilbert
space.

SinceA has finite index, the category of S-sectors is semisimple [8, Thm. 3.14], and
any sector H can be decomposed as

H ∼=
⊕

λ∈


Hλ(S)⊗ Mλ, (1.24)

where the multiplicity spaces Mλ = homSectS(A)(Hλ(S), H) are Hilbert spaces, and the
tensor product is the completed tensor product of Hilbert spaces. It then follows from
(1.21) that H is a module for A(S). ��

The category of von Neumann algebras is cocomplete. Given a diagram {Ai } of von
Neumann algebras, its colimit is computed as follows. Let A0 := colim∗-algAi be the
colimit in the category of ∗-algebras, and let U be a Grothendieck universe that contains
A0. Then colimvN-algAi is the ultraweak closure of A0 inside B(

⊕
H∈Rep(A0)∩U H),

where the direct sum is taken over all representations of A0 that are elements of U.

Proposition 1.25. LetA be a conformal net with finite index and let S be a circle. Then

A(S) = colim
I⊂S

A(I ),

where the colimit is taken in the category of von Neumann algebras, and is indexed by
the poset of subintervals of S.
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Proof. Let A0 := colim∗-algA(I ), and letU be aGrothendieck universe that contains A0.
The Hilbert space

⊕
H∈Rep(A0)∩U H is an S-sector of A and is therefore of the form

(1.24). The same argument as in the proof of Theorem 1.20 then applies, from which
it follows that A := colimvN-algA(I ) ∼= ⊕λ∈
 B(Hλ(S)), and that the natural map
A→ A(S) is an isomorphism. ��

The following result generalizes Corollary 1.23.

Proposition 1.26. If A is a conformal net with finite index, then the forgetful functor
from A(M)-modules to M-sectors of A is an equivalence of categories.

Proof. Let us write M = S1 � · · · � Sn as a disjoint union of circles, and let H be an
M-sector. By applying (1.24) to H viewed as an S1-sector, we get a decomposition

H ∼=
⊕

λ∈


Hλ(S1)⊗ Kλ.

The multiplicity spaces Kλ are equipped with residual actions of the algebras A(I )
for I ⊂ S2 � · · · � Sn , and are therefore S2 � · · · � Sn-sectors. Applying (1.24) to the
Kλ viewed as S2-sectors, we get a further decomposition H ∼= ⊕λ1,λ2∈
 Hλ1(S1) ⊗
Hλ2(S2)⊗ Kλ1,λ2 , where Kλ1,λ2 are now S3 � · · · � Sn-sectors. After n steps, this yields
a decomposition

H ∼=
⊕

λ1,λ2,...,λn∈


Hλ1(S1)⊗ Hλ2(S2)⊗ · · · ⊗ Hλn (Sn) ⊗ Kλ1,λ2,...,λn ,

where the multiplicity spaces Kλ1,λ2,...,λn are mere Hilbert spaces. The space H is now
visibly an A(S1) ⊗̄ . . . ⊗̄A(Sn) module by Theorem 1.20, that is, an A(M)

module. ��

2. The Hilbert Space Associated to a Surface

2.A. Canonical up to phase. The reader is probably familiar with what it means for a
Hilbert space to be well defined up to canonical unitary isomorphism, and what it means
for one to be well defined up to non-canonical unitary isomorphism. In this paper, we
shall also need an intermediate notion: the notion of a Hilbert space that is well defined
up to canonical-up-to-phase unitary isomorphism. An equivalent way of saying that a
Hilbert space H is well defined up to canonical-up-to-phase unitary isomorphism, is to
say that the associated projective space PH is well defined up to canonical projective
unitary isomorphism. Given that the difference between all those notions is rather subtle,
we take the time to spell them out in detail.

One says that a Hilbert space H is well defined up to canonical unitary isomorphism
if, even though its construction depends on some choices, there is a given coherent way
of identifying all the Hilbert spaces constructed. More precisely, letting X be the set that
parametrizes the choices, then for every x ∈ X there should be a Hilbert space Hx , for
every x, y ∈ X , there should be a given unitary isomorphism uxy : Hx → Hy , and for
every x, y, z ∈ X , the diagram



Conformal Nets II: Conformal Blocks 409

Hx

Hy

Hz

uxy uyz
uxz

should commute.
By contrast, a Hilbert space H is said to be well defined up to non-canonical (uni-

tary) isomorphism if its construction depends on some choices, any two choices yield
isomorphic results, but there are no preferred isomorphisms.

Definition 2.1. We shall say that a Hilbert space H is well defined up to canonical-up-
to-phase unitary isomorphism if:

• The construction of H depends on some set of choices; say X is the set that
parametrizes those choices. For every x ∈ X , we therefore have a Hilbert space
Hx .

• For any two choices x, x ′ ∈ X , there exists a unitary isomorphism � : Hx →
Hx ′ . Once again, the construction of � depends on some set of choices, let us call
Y (x, x ′) the set that parametrizes those choices: given y ∈ Y (x, x ′), we have a given
isomorphism �y : Hx → Hx ′ .

• Given two choices y, y′ ∈ Y (x, x ′), the isomorphisms �y and �y′ are equal up to a
scalar.

• Finally, for any y ∈ Y (x, x ′), y′ ∈ Y (x ′, x ′′), y′′ ∈ Y (x, x ′′), there exists a scalar λ

such that �y′ ◦�y = λ �y′′ .

Note that the above concepts apply not only to Hilbert spaces, but also to modules over
von Neumann algebras, bimodules, sectors, etc. They also apply to functors with values
in a category such as Hilb, A-modules, etc.

When the mathematical object under consideration is a number, a linear map, or a
natural transformation between functors, then the story is somewhat simpler: such an
object is either canonical, canonical up to phase, or not canonical (here, “canonical” is
a synonym of “well defined”).

For example, ifA is an irreducible conformal net, then by Schur’s lemma, the vacuum
sector H0(S) ∈ SectS(A) is well defined up to canonical-up-to-phase unitary isomor-
phism. By the same reasoning, the isomorphism H0(S1) �A(I ) H0(S2) ∼= H0(S3) in
(1.5) is canonical up to phase.

In practice, a convenient way of showing that a Hilbert space H is well defined
up to canonical-up-to-phase unitary isomorphism is to exhibit a simply connected 2-
dimensional CW-compex X, and do the following:

• For every vertex x of X, construct a Hilbert space Hx .
• For every edge y of X between vertices x, x ′ ∈ X, construct a unitary isomorphism

�y : Hx → Hx ′ .
• For every 2-cell of X with boundary y1y2 . . . yn , check that the automorphism �y1 ◦

�y2 ◦ · · · ◦�yn is a scalar.

We call such a CW-complex a definition complex for H .
The relation to Definition 2.1 is as follows. The set X is the set of vertices of X.

Given x, x ′ ∈ X , the set Y (x, x ′) that parametrizes isomorphisms between Hx and Hx ′
is the set of all sequences of edges inX that altogether go from x ′ to x . The isomorphism
�p : Hx → Hx ′ that corresponds to a path p = y1 · · · yn is the composite�y1 ◦· · ·◦�yn .
In order to check the two conditions in Definition 2.1, we need to show that, given a
loop γ based at a vertex x ∈ X, the corresponding automorphism �γ ∈ U(Hx ) is a
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scalar. Because the definition complex is simply connected, one can write γ as a product∏
piwi p

−1
i where the pi are paths, and thewi are loops alongwhich 2-cells are attached.

Since �wi ∈ U(1) is central, we conclude that �γ =∏�pi �wi �
−1
pi is also a scalar, as

desired.

2.B. The construction. In this section, we give a construction of a Hilbert space V (�) ∈
Sect∂�(A) associated to a topological surface�with smooth (possibly empty) boundary.
The construction depends on the auxiliary choice of a certain kind of cell decomposition
of �. We will show later, in Sect. 2.D, that it is actually independent of that choice.

Let us call a cell decomposition regular if for every 2-cell D the corresponding map
S1 ∼= ∂D → � is injective, and trivalent if each vertex is incident to exactly three edges.
We call a cell decomposition � = D1 ∪ · · · ∪ Dn ordered if the set {D1, . . . , Dn} of
2-cells is ordered. Finally, a cell decomposition is smooth if the 1-skeleton is equipped
with a smooth structure in the sense of Definition 1.4, and this smooth structure restricts
to the given smooth structure on ∂�. Our construction of V (�) will depend, a priori,
on an ordered regular trivalent smooth cell decomposition of �.

The idea of the construction is to associate to each 2-cell D ⊂ � the vacuum sector
H0(∂D), and to then glue them using Connes fusion.

Let �i be the 2-manifold D1 ∪ · · · ∪ Di , including the case �0 = ∅. Let us give the
1-manifolds Mi := �i ∩ Di+1 the orientations coming from ∂Di+1 (the orientation of
∂Di+1 is itself induced from that of Di+1). We define V (�i ) ∈ Sect∂�i (A) inductively
by {

V (∅) := C

V (�i+1) := V (�i ) �A(Mi ) H0(∂Di+1).
(2.2)

To give a meaning to the above construction, we need to explain how the algebraA(Mi )

acts on theHilbert spaces V (�i ) and H0(∂Di+1). The left action on H0(∂Di+1) is obvious
when Mi � ∂Di+1, and follows from Theorem 1.20 for Mi = ∂Di+1. Assuming by
induction that V (�i ) is a ∂�i -sector, the right action of A(Mi ) on V (�i ) follows from
Proposition 1.26. To finish the inductive definition, we still need to show that V (�i+1)

is a ∂�i+1-sector. This is obvious for Mi = ∂Di+1, and follows from [8, Lem. 3.30] for
Mi � ∂Di+1.

2.C. The Hilbert space associated to a disk. The goal of this section is to show that if�
is a disk, then regardless of the choice of cell decomposition of �, the resulting sector
V (�) ∈ Sect∂�(A) is the vacuum H0(∂�).

In order to compute the sector associated to a disc, we will need to address the
seemingly more difficult problem of computing the isomorphism type of the sector
associated to a sphere with n holes. Given Hλ1 , . . . , Hλn ∈ Sect(A), let Nλ1,...,λn

0 denote
the multiplicity of H0 inside Hλ1 � · · ·� Hλn .

Recall from [8, Sec. 1B] that given a sector Hλ ∈ Sect(A) and given a circle S, we
write Hλ(S) ∈ SectS(A) for the associated S-sector of A. It is given by ϕ∗Hλ for some
ϕ ∈ Diff+(S, S1), and is only well defined up to non-canonical isomorphism.

Lemma 2.3. Let A be a conformal net with finite index and let � be a genus zero
surface (a sphere with holes). Equip � with an ordered regular trivalent smooth cell
decomposition � = D1 ∪ · · · ∪ Dn and let V (�) be the corresponding Hilbert space.
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Decompose the boundary of � as a union of circles ∂� = S1 ∪ · · · ∪ Sm. Then for
every choice of λ1, . . . , λm ∈ 
, the vector space

homSect∂�(A)

(
Hλ1(S1)⊗ · · · ⊗ Hλm (Sm), V (�)

)

has dimension Nλ1,...,λm
0 .

Proof. Letting �′ := D1 ∪ · · · ∪ Dn−1 and M := ∂Dn ∩�′, we have by definition

V (�) = V (�′) �A(M) H0(∂Dn).

The 1-manifold M is either a circle or a union of intervals. If M is a circle, then �′ is
connected and we can write its boundary ∂�′ as S0 ∪ S1∪ · · ·∪ Sm with M = S̄0. Using
that for any right A(M)-module K , there is a canonical isomorphism

K �A(M) H0(M) ∼= homA(S0)(H0(S0), K ),

we see by induction on n that

homSect∂�(A)

(
Hλ1(S1)⊗ · · · ⊗ Hλm (Sm), V (�)

)

∼= homSect∂�(A)

(
Hλ1(S1)⊗ · · · ⊗ Hλm (Sm), V (�′) �A(M) H0(M)

)

∼= homSect∂�′ (A)

(
H0(S0)⊗ Hλ1(S1)⊗ · · · ⊗ Hλm (Sm), V (�′)

)

has dimension N 0,λ1,...,λm
0 = Nλ1,...,λm

0 , as desired.
We now assume that M is a union of intervals. Decompose �′ as a disjoint union of

connected surfaces �′ = �′1 ∪ · · · ∪�′l , and write ∂�′i = S′i1 ∪ S′i2 ∪ · · · ∪ S′iki . Up to
homeomorphism, the surface � appears as follows:

. . . . . . . . .

�′1

. . .

�′2

. . .

. . . �′l

. . .

Dn

�′
{

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

�

(2.4)
Indeed, since � has genus zero, the manifold M can only intersect one boundary com-
ponent of each �′i . By renumbering the components of ∂�′i , we may assume that
M ∩ S′i1 �= ∅ and M ∩ S′i j = ∅ for j ≥ 2.

Recall that we are trying to show that

dim homSect∂�(A)

(
Hλ1(S1)⊗ · · · ⊗ Hλm (Sm), V (�)

) = Nλ1,...,λm
0 . (2.5)

By induction on n, we know that for every i

dim homSect∂�′i (A)

(
Hλi1(S

′
i1)⊗ · · · ⊗ Hλiki

(S′iki ), V (�′i )
) = N

λi1,...,λiki
0 .

Let bi be the number of connected components of ∂Dn ∩�′i . Before treating the general
case, we prove it for certain small values of l and b1, . . . , bl .
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If l = 1 and b1 = 2 then, up to homeomorphism, � = �′ ∪ Dn appears as follows:

Dn

. . .

�′
(2.6)

By Lemma 2.8 below and induction on n, V (�′) is isomorphic to the ∂�′-sector asso-
ciated to this cellular decomposition: ... . It follows that V (�) is isomorphic
to the ∂�-sector associated to the following decomposition of �:

. . .

That decomposition is of the form covered by Lemma 2.8, and so (2.5) follows.
We now treat the case l = 2, b1 = b2 = 1, where � appears as follows:

Dn

�′1

. . .

�′2

. . .
. (2.7)

Let M1 = ∂Dn ∩ �′1 and M2 = ∂Dn ∩ �′2. Once again, by Lemma 2.8 and induction
on n, we know that V (�′i ) is isomorphic to the ∂�′i -sector constructed from the cellular

decomposition ... . It follows that

V (�) = (V (�′1)⊗ V (�′2)
)

�
A(M)

H0(∂Dn) ∼= V (�′1) �
A(M̄1)

H0(∂Dn) �
A(M2)

V (�′2)

is isomorphic to the ∂�-sector associated to the following decomposition of �:

. . . . . .

D̃1 D̃2
. . .

D̃k

D̃k+1

D̃k+2 D̃k+3
. . .

D̃r

.

As H0(∂D̃k) �A(M̄1)
H0(∂D̃k+1) �A(M2) H0(∂D̃k) ∼= H0(∂(Dk ∪ Dk+1 ∪ Dk+2)), the

sector V (�) is also isomorphic to the one associated to the following decomposition:

. . . . . . .

That decomposition is of the form covered by Lemma 2.8, and (2.5) follows.
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We now treat the general case. We assume by induction that V (�′) satisfies (2.5).
Consider the refinement � = D̃1 ∪ · · · ∪ D̃s of (2.4) given by D̃i := Di for i < n, and
where Dn is subdivided into cells D̃n , D̃n+1, . . . , D̃s as follows:

. . . . . . . . .

. . . . . . . . . . . .

D̃n

D̃n+1, D̃n+2, . . . , D̃s

Recall that by definition, the sector V (�) is associated to the original cell decomposition
� = D1 ∪ . . . ∪ Dn . Letting Ii := ∂D̃n+i ∩ D̃n and Mi := ∂D̃n+i ∩�′, we see that

V (�) = V (�′) �A(M) H0(∂Dn)

= V (�′) �A(M1∪···∪Ms ) H0(∂Dn)

∼= V (�′) �A(M1∪···∪Ms )

(
H0(∂D̃n) �A(I1∪···∪Is )

⊗

i≥1
H0(∂D̃n+i )

)

∼=
((

V (�′)⊗ H0(∂D̃n)
)

�A(M1∪I1) H0(∂D̃n+1)
)
· · ·�A(Ms∪Is ) H0(∂D̃n+s)

is isomorphic to the sector associated to the refined cell decomposition D̃1 ∪ · · · ∪ D̃s
of �.

For each i ≤ s, let �̃i := D̃1∪· · ·∪D̃i . Recall that by assumption V (�̃n−1) = V (�′)
satisfies the Eq. (2.5). Clearly, V (�̃n) ∼= V (�̃n−1)⊗ H0(∂D̃n) then also satisfies (2.5).
We now proceed by induction on i , and assume that V (�̃i−1) satisfies (2.5) for some
i ≤ s. By construction, the intersection ∂D̃i ∩ �̃i−1 = Mi ∪ Ii is the union of exactly
two intervals. If these two intervals belong to the same connected component of �̃i−1,
then the situation is as in (2.6); if they belong to different connected component of �̃i−1,
then the situation is as in (2.7). In both cases, we can apply our intermediate results and
conclude that V (�̃i ) satisfies (2.5). ��

The following lemma was used in the previous proof:

Lemma 2.8. Let� be a sphere with n holes. Equip its boundary components S1, S2, . . . ,
Sn with the orientation induced from �. LetA be a conformal net with finite index, and
let V (�) be the Hilbert space constructed from the following cellular decomposition of
�:

� :

D1 D2 D3 . . . Dn

.

Then the vector space

homSect∂�(A)

(
Hλ1(S1)⊗ · · · ⊗ Hλn (Sn), V (�)

)

has dimension Nλ1,...,λn
0 .
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Proof. Let us number the boundary components of � as follows:

S1 S2 S3 ··· Sn−1
Sn .

Let �′ := D1 ∪ · · · ∪ Dn−1, and let S′ be the component of ∂�′ that touches Dn . Let
also J1 := S′ ∩ Sn−1 and J2 := S′ ∩ Sn :

S1 S2 ··· Sn−2 S′
J1J2 .

By induction we may assume that

dim hom
(
Hλ1(S1)⊗ · · · ⊗ Hλn−2(Sn−2)⊗ Hν(S

′), V (�′)
) = Nλ1,...,λn−2,ν

0 .

Applying (1.24) with respect to the circle S′ we obtain a decomposition

V (�′) ∼=
⊕

ν∈


Mν ⊗ Hν(S
′)

where the Mν are S1 � · · · � Sn−2-sectors. Thus

hom(Hλ1(S1)⊗ . . .⊗Hλn−2(Sn−2), Mν)

∼= hom(Hλ1(S1)⊗ . . .⊗Hλn−2(Sn−2)⊗Hν(S
′), V (�′))

is of dimension Nλ1,...,λn−2,ν
0 . Let M := Dn−1 ∩ Dn , so that V (�) = V (�′) �A(M)

H0(∂Dn). We then have

hom
(
Hλ1(S1)⊗ · · · ⊗ Hλn (Sn), V (�)

)

∼= hom
(
Hλ1(S1)⊗ · · · ⊗ Hλn (Sn), V (�′) �A(M) H0(∂Dn)

)

∼= hom
(
Hλ1(S1)⊗ · · · ⊗ Hλn (Sn),

⊕

ν∈


Mν ⊗ Hν(S
′) �A(M) H0(∂Dn)

)

∼=
⊕

ν∈


Nλ1,...,λn−2,ν
0 hom

(
Hλn−1(Sn−1)⊗ Hλn (Sn), Hν(S

′) �A(M) H0(∂Dn)
)
.

By Frobenius reciprocity,

hom
(
Hλn−1(Sn−1)⊗ Hλn (Sn), Hν(S

′) �A(M) H0(∂Dn)
)

∼= hom
(
H0(∂Dn) ,

(
Hλn−1(Sn−1)⊗ Hλn (Sn)

)
�A(J1) ⊗̄A(J2) Hν(S

′)
)

∼= hom
(
H0(∂Dn) , Hλn−1(Sn−1) �A(J1) Hν(S

′) �A( J̄2) Hλn (Sn)
)

∼= hom
(
H0( ¯∂Dn) , Hλ̄n−1(S̄n−1) �A(J1) Hν(S

′) �A( J̄2) Hλ̄n
(S̄n)
)

is of dimension N λ̄n−1,ν,λ̄n
0 = N ν̄,λn−1,λn

0 , where we have used Lemmas 1.16 and 1.17
in order to identify the duals of H0(∂Dn), Hλn−1(Sn−1), and Hλn (Sn). It follows that
hom(Hλ1(S1)⊗ · · · ⊗ Hλn (Sn), V (�)) has dimension

∑
ν∈
 Nλ1,...,λn−2,ν

0 N ν̄,λn−1,λn
0 = Nλ1,...,λn−1,λn

0 . ��
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Note that while Lemma 2.3 pins down the isomorphism type of V (�), it does not
say anything about how well defined the Hilbert space is. If the surface � is a disk, then
we can get a little bit more:

Corollary 2.9. Let A be a conformal net with finite index and let D be a disc. Then the
Hilbert space V (D) associated to an ordered regular trivalent smooth cell decomposition
of D is given by the vacuum sector H0(∂D). It is independent of the cell decomposition,
and well defined up to canonical-up-to-phase unitary isomorphism.

Proof. The isomorphism V (D) ∼= H0(∂D) is immediate fromLemma 2.3.Moreover, by
Schur’s lemma, since V (D) is irreducible, it is well defined up to canonical-up-to-phase
unitary isomorphism. ��

2.D. Independence of the cell decomposition. We have seen in (2.2) that it is possible
to define a sector V (�) ∈ Sect∂�(A) for every ordered regular trivalent smooth cell
decomposition of �. For technical reasons, it is convenient to replace the ordering of
the set of 2-cells by a slightly different structure:

Definition 2.10. Let � be a topological surface with smooth boundary. A soccer ball
decomposition is a regular trivalent smooth cell decomposition (see Sect. 2.B), equipped
with a partition of the set of 2-cells into subsets Xwhite and Xblack, such that every interior
vertex is adjacent to two white cells and one back cell, and every boundary vertex is
adjacent to two white cells.

We illustrate the above
definition with an example:

Such decompositions exist in great abundance: starting with any regular cell decompo-
sition, we can get a soccer ball decomposition by replacing each internal vertex by a
little black disc. Here is an illustration of the above procedure:

�

Given a soccer ball decomposition Xwhite = {D1, . . . , Dn}, Xblack = {B1, . . . , Bm}
of our surface�, we can pick an order on those two sets, and apply the construction (2.2)
to get

V (�)

=
(((

· · ·
(
H0(∂D1) �

A(∂D2∩D1)
H0(∂D2)

)
�

A(∂D3∩(D1∪D2))
· · ·
)

�
A(∂Dn∩ ...)

H0(∂Dn)

)

�
A(∂B1)

H0(∂B1)

)
�

A(∂B2)
H0(∂B2) · · ·

)
�

A(∂Bm )
H0(∂Bm).

The advantage of soccer ball decompositions is that, given choices of vacuum sec-
tors H0(∂Di ) and H0(∂Bj ), the sector V (�) ∈ Sect∂�(A) is visibly invariant (up
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to canonical unitary isomorphism) under permutations of the sets {D1, . . . , Dn} and
{B1, . . . , Bm}—this is seen as follows. The iterated fusion
((
···
(
H0(∂D1)�A(∂D2∩D1) H0(∂D2)

)
�A(∂D3∩ ...) · · ·

)
�A(∂Dn∩ ...) H0(∂Dn)

)
(2.11)

can be identified with the graph fusion �{A(Di∩D j )}{H0(∂Di )} of the Hilbert spaces
H0(∂Di ) along the algebras A(Di ∩ D j ) (see Appendix A regarding graph fusion).
Here, the manifolds Di ∩ D j are equipped with the orientation induced from ∂D j for
j > i , the graph that indexes the graph fusion is the adjacency graph � of the white
cells of X , and the orientations on � are induced by the ordering of its set of vertices.
Renumbering the cells D1, . . . , Dn affects both the orientations of the Di ∩D j , and the
orientations of the edges of �. It follows from (A.2) that those permutations leave (2.11)
invariant. Altogether, V (�) is canonically isomorphic to
(
�{A(Di∩D j )}

{
H0(∂Di )

})
�A(∂B1∪···∪ ∂Bm )

(
H0(∂B1)⊗ · · · ⊗ H0(∂Bm)

)
, (2.12)

and is therefore also invariant under the permutations of the cells B1, . . . , Bm .
By the above discussion, given a topological surface � with smooth boundary, and a

soccer ball decomposition X = (Xwhite, Xblack) of that surface, one can associate to it,
canonically up to canonical-up-to-phase unitary isomorphism, a ∂�-sector V (�). We
denote the result

V (�; X) = V (�; Xwhite, Xblack) ∈ Sect∂�(A) (2.13)

to emphasize the dependence on the soccer ball decomposition. The Hilbert space
V (�; X) is only well defined up to canonical-up-to-phase unitary, because so were
the vacuum sectors H0(Di ) and H0(Bj ) that entered its definition.

Our next goal is to show that V (�; X) does not depend on the soccer ball decompo-
sition X .

Definition 2.14. Let � be a surface with smooth boundary, and let X and Y be soccer

ball decompositions. We write X
D≺ Y with D ∈ Ywhite if D is a union of cells of X , the

decompositions X and Y agree outside of D, and the inclusion of the 1-skeleton of Y
into the 1-skeleton of X is smooth. If there exists another soccer ball decomposition Z

and a cell D ∈ Zwhite such that X
D≺ Z

D� Y , then we write X
D∼ Y . For example, we

have

D≺ and
D≺

for the same disk D, from which it follows that

D∼ with D = .
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Given a set S = {D0, . . . , Dn} of discs with disjoint interiors, we also write X
S∼ Y ,

or simply X ∼ Y , if there exist soccer ball decompositions Z1, . . . , Zn such that

X
D0∼ Z1

D1∼ . . .
Dn−1∼ Zn

Dn∼ Y. (2.15)

Finally, we write X
S≺ Y , or simply X ≺ Y , if S = {D0, . . . , Dn} is a collection of white

cells of Y and X
D0≺ Z1

D1≺ . . .
Dn−1≺ Zn

Dn≺ Y for some choice Z1, . . . , Zn of soccer ball
decompositions. Note that ≺ is a transitive relation.

If X
D≺ Y , we can construct a unitary isomorphism

φXY : V (�; X) → V (�; Y ), (2.16)

well defined up to phase. Let us number the set Xwhite = {D1, . . . , Dn} of white cells
of X in such a way that Di ∈ Ywhite for i ≤ p and Di ⊂ D for i > p. Similarly, we
number the set Xblack = {B1, . . . , Bm} so as to have Bj ∈ Yblack for j ≤ q and Bj ⊂ D

for j > q. Letting M := ∂D ∩ (D1 ∪ · · · ∪ Dp), the map φXY is then defined as the
composite

φXY : V (�; X) =
(
� {A(Di∩D j )}

{
H0(∂Di )

}
i, j≤n

)
�A(
⋃

k≤m ∂Bk )

(⊗
k≤m

H0(∂Bk)
)

∼=−→
((

� {A(Di∩D j )}
{
H0(∂Di )

}
i, j≤p

)
�

A(M)

(
� {A(Di∩D j )}

{
H0(∂Di )

}
p<i, j≤n

)

�A(
⋃

q<k≤m ∂Bk )

( ⊗
q<k≤m

H0(∂Bk)
))

�A(
⋃

k≤q ∂Bk )

(⊗
k≤q

H0(∂Bk)
)

∼=−→
((

� {A(Di∩D j )}
{
H0(∂Di )

}
i, j≤p

)
�

A(M)
H0(∂D)

)
�A(
⋃

k≤q ∂Bk )

(⊗
k≤q

H0(∂Bk)
)

= V (�; Y ),

where the first isomorphism is an instance of (A.3), and the second one follows from

Corollary 2.9. If X , Y , Z are soccer ball decompositions such that X
D≺ Y

D
′≺ Z and

X
D
′≺ Z , then it follows from Corollary 2.9 that

φY Z ◦ φXY = φXZ

up to phase. If two soccer ball decompositions are related by X ≺ Y then, by com-
posing suitable instances of (2.16), we obtain an induced unitary isomorphism φXY :
V (�; X) → V (�; Y ), well defined up to phase. As before, whenever X ≺ Y ≺ Z ,
those isomorphisms satisfy φY Z ◦ φXY = φXZ up to phase.

If X and Y are soccer ball decompositions related by X
D∼ Y , then we also define

�D : V (�; X) → V (�; Y ) (2.17)

to be the composite φ−1Y Z ◦ φXZ , where Z is such that X
D≺ Z

D� Y . The map �D is well
defined up to phase but, a priori, it depends on the choice of disk D.
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Main Theorem 2.18. Given a conformal netAwith finite index, there exists a construc-
tion

� 	→ V (�) ∈ Sect∂�(A), (2.19)

that assigns, to every compact oriented topological surface � with smooth boundary,
a sector V (�) = V (�;A), well defined up to canonical-up-to-phase unitary isomor-
phism.Moreover, if the surface� is a disc, there exists a unitary isomorphism, canonical
up to phase, between V (�) and the vacuum sector H0(∂�).

Given surfaces �1, �2 as above, and a homeomorphism f : �1 → �2 that is either
orientation preserving or orientation reversing (which is automatic if �1 is connected),
and smooth on the boundary, there is an induced map

V ( f ) : V (�1) → V (�2),

well defined up to phase. The map V ( f ) = V ( f,A) is complex linear if f is orientation
preserving and complex antilinear if f is orientation reversing. The above construction
satisfies V ( f ◦ g) = V ( f ) ◦ V (g) up to phase for composable f and g. Moreover, if
f1, f2 : �1 → �2 are isotopic relative to ∂�1, then V ( f1) = V ( f2), up to phase.

Given an interval I ⊂ ∂�1 and an element a ∈ A(I ), the map V ( f ) satisfies
V ( f )a = A( f |I )(a)V ( f ) if f is orientationpreservingand V ( f )a = A( f |I )(a∗)V ( f )
if f is orientation reversing.

Finally, the map f 	→ V ( f ) is continuous for the natural topology on the set of
homeomorphisms f : �1 → �2 that are smooth on the boundary modulo isotopy rel
boundary,4 and the strong topology on PU±(V (�)).

Part of the content of the above theorem can be understood as follows. Let 2MAN be
the following groupoid:

2MAN :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Objects:
Compact oriented topological surfaces equipped with a smooth structure
on their boundary.

Morphisms:
Isotopy classes of homeomorphisms that are either orientation preserving
or orientation reversing, and that are smooth on the boundary, where the
isotopies are taken relative to the boundary.

(2.20)
and let pHILB be the groupoid whose objects are complex Hilbert space, and whose
morphisms are the projective unitary and the projective antiunitary maps. Then there is
a symmetric monoidal continuous functor5

V : 2MAN→ pHILB. (2.21)

It is interesting to note that in the groupoid 2MAN, the automorphism group of the unit
disk isDiff(S1), and so V recovers the projective action ofDiff(S1) on the vacuum sector
ofA. At another extreme, the automorphism group of a closed surface � is its mapping
class group. We will see in Sect. 2.F that in the case of a closed surface the Hilbert space
V (�) is finite dimensional. We conjecture that it agrees with the spaces of conformal
blocks, as defined in conformal field theory. By applying the functor V , one therefore
recovers the projective action of the mapping class group on the spaces of conformal

4 The topology here is the quotient topology on Pullback (Homeo(�1, �2) → Homeo(∂�1, ∂�2) ←
Diff(∂�1, ∂�2))/ ∼ where Homeo is equipped with the C0 topology, and Diff is equipped with the C∞
topology.

5 The comments in Footnote 3 also apply to the functor V .
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blocks. For a general surface, the automorphism group G(�) := Aut2MAN(�) fits into
a short exact sequence

1 → �(�) → G(�) → D → 1 (2.22)

of topological groups, where D is the finite index subgroup of diffeomorphisms of ∂�

that admit an extension to all of �, and �(�) is the mapping class group of � relative
to its boundary, equipped with the discrete topology. This group G(�) was already
considered in [34, Thm. 2.11]; we call it the extended mapping class group of �. As
a corollary of the above theorem, the extended mapping class group G(�) admits a
continuous projective (anti)unitary action on the Hilbert space V (�).

Proof of Theorem 2.18. We apply the strategy outlined in Sect. 2.A, and first construct
the definition complex X� associated to V (�). The vertices of X� are the soccer ball
decompositions of �. The edges between two vertices X and Y are the discs D ⊂ �

such that X
D∼ Y . Finally, there is a 2-cell of X� attached to the loop

X1 X2 X3 Xn···D1 D2 Dn

(2.23)

if there exists a soccer ball decomposition Z such that Xi ≺ Z for all i , and such that
every Di is contained in some white cell of Z .

We have seen in (2.13) how to construct a sector V (�; X) ∈ Sect∂�(A) for every
vertex X of X� , and we have seen in (2.17) how to construct a unitary isomorphism
�D : V (�; X) → V (�; Y ) for every edge D of X� . Given a 2-cell (2.23), let Yi and

Z be soccer ball decompositions such that Xi
Di≺ Yi

Di� Xi+1 and Yi ≺ Z . The above
relations induce diagrams

V (�; Xi ) V (�; Yi )

V (�; Z)

φXi ,Yi

φXi ,Z φYi ,Z
and

V (�; Yi ) V (�; Xi+1)

V (�; Z)

φYi ,Xi+1

φYi ,Z φXi+1,Z

that commute up to phase. When assembled together, they show that the composite

V (�; X1)
�D1−−−−→ V (�; X2)

�D2−−−−→ · · · �Dn−1−−−→ V (�; Xn)
�Dn−−−→ V (�; X1)

is a scalar multiple of the identity, as desired.
To finish showing that V (�) is well defined up to canonical-up-to-phase unitary

isomorphism, we need to prove that X� is simply connected: this is the content of
Lemma 2.25. Finally, if� is a disc, there is a unitary isomorphism canonical up to phase
V (�) ∼= H0(∂�) by Corollary 2.9.

Given a homeomorphism f : �1 → �2 that is smooth on the boundary, a soccer ball
decomposition X of�1 induces a corresponding soccer ball decomposition f∗X of�2. If
D is a cell of X , then the identity map from H0(∂D) ∈ Sect∂D(A) to ( f −1)∗(H0(∂D)) ∈
Sect f (∂D)(A) is complex linear if f is orientation preserving, and complex antilinear
otherwise. The sector ( f −1)∗(H0(∂D)) is isomorphic to H0( f (∂D)), and so we get a
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map H0( f ) : H0(∂D) → H0( f (∂D)), canonical up to phase. By construction, these
maps satisfy

{
H0( f )a = A( f |I )(a)H0( f ) if f is orientation preserving
H0( f )a = A( f |I )(a∗)H0( f ) if f is orientation reversing

(2.24)

for every interval I ⊂ ∂D and a ∈ A(I ).
Applying the maps H0( f ) to every occurrence of a vacuum sector in (2.12), we

get an induced map V ( f ; X) : V (�1; X) → V (�2; f∗X) which satisfies the same
equivariance properties (2.24) as the maps H0( f ) used in its construction, but now for

I ⊂ ∂�. For every edge X
D∼ Y of the definition complex X�1 , there is a corresponding

edge f∗X
f (D)∼ f∗Y of X�2 . The diagrams

V (�1; X) V (�2; f∗X)

V (�1; Y ) V (�2; f∗Y )

�D � f (D)

V ( f ;X)

V ( f ;Y )

are commutative, and so the maps V ( f ; X) induce a map V ( f ) : V (�1) → V (�2),
well defined up to phase. The relation V ( f ◦ g) = V ( f ) ◦ V (g) is immediate from the
definition.

Next, we need to show that if f is isotopic to the identity, then V ( f ) = IdV (�).
Write f as a composition of homeomorphisms f1 ◦ · · · ◦ fn such that for each i there
is a disk Di ⊂ � that contains the support of fi . Since V ( f ) = V ( f1) ◦ · · · ◦ V ( fn),
it is enough to show that each V ( fi ) is the identity. Pick a soccer ball decomposition
Xi whose 1-skeleton does not intersect Di . The definition of V (�; Xi ) only uses the
1-skeleton of Xi , and so, clearly, V ( fi ; Xi ) : V (�; Xi ) → V (�; Xi ) is the identity. If
follows that V ( fi ) : V (�) → V (�) is the identity, and therefore so is V ( f ).

Finally, we show that the assignment f 	→ V ( f ) is continuous, which is equivalent
to showing that for every surface �, the homomorphism

G(�)→ PU±(V (�))

is continuous, where G(�) is the group defined in (2.22). Let S1, . . . , Sn be the bound-
ary components of �, and let D̃iff+(Si ) denote the universal cover of Diff+(Si ). Then∏

D̃iff+(Si ) admits a natural homomorphism to G(�), which is a homeomorphism
on a neighborhood of the identity. It is therefore enough to check the continuity of
the map

∏
D̃iff+(Si ) → PU±(V (�)). Equivalently, we have to show that each map

D̃iff+(Si ) → PU±(V (�)) is continuous. For every choice of intervals K ⊂ I ⊂ Si , let
us write Diff0,K (I ) for the group of diffeomorphisms of I that fix the complement of
K pointwise. The topology on D̃iff+(Si ) is the finest one for which all the inclusions
Diff0,K (I ) ↪→ Diff(Si ) are continuous. It is therefore sufficient to show that the homo-
morphisms Diff0,K (I ) → PU(V (�)) are continuous. To finish the argument, we note
that the above homomorphisms can be factored as

Diff0,K (I )→ PU(A(I )) → PU(V (�)),

where the first map is continuous by [8, Lemma 2.11], and the second one is continuous
because V (�) is a ∂�-sector. ��
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Lemma 2.25. The cell complex X� is connected and simply connected.

Proof. We will show that given a finite graph � in the 1-skeleton of X� , the inclusion
map ι : � ↪→ X� extends to the cone on �:

� X�

Cone(�)

ι

ι̃
. (2.26)

The case when � consists of just two points shows that X� is connected, and the case
when � is a loop shows that X� is simply connected.

In order to construct the extension ι̃, we need to: (1) pick a vertex Y ofX� , (2) provide

a path γX from X to Y for every vertex X ∈ �, and (3) for every edge X1
D∼ X2 of �,

construct a map δD : D2 → X� that bounds the triangle

X1

X2

Y.D

γX1

γX2

(2.27)

(1)We first construct a soccer ball decomposition Y as follows. Start by picking a cell
decomposition Y1 (no soccer ball structure) that is transverse to all the decompositions
Xi ∈ �.6 It is taken fine enough so that it contains vertices in each face of each Xi , and
so that it has at least one edge intersecting every edge of every Xi . Add extra edges and
vertices if necessary so that the intersection of the 1-skeleton of Y1 with every 2-cell of
every Xi remains connected.7 Now double every edge and call the result Y2. The cell
decomposition Y2 has the same vertices as Y1, but it has a new bigon face in the place of
every edge of Y1. Finally, replace the vertices by little black disks, and equip the result
with a smooth structure, so as to get a soccer ball decomposition. The black disks are
chosen small enough, so as to not intersect the edges of the Xi .

We give an illustration of the above process. The soccer ball decomposition denoted X
below represents one of the vertices of �, and the cell decomposition Y1 is the beginning
point of our construction:

X : Y1 : .

6 See http://mathoverflow.net/questions/176227/topological-transversality for a proof that this always
exists.

7 Caveat: Even though we believe that this is possible, we don’t actually know how to construct Y1 with
this last property. What we can achieve instead by adding edges to Y1 is that for each 2-cell of each Xi , the
intersection of the 2-cell with the 1-skeleton of Y1 has one ‘big’ connected component, that touches every
edge of the cell. In order not to overcomplicate our argument, we will proceed assuming the intersection of
the 1-skeleton of Y1 with every 2-cell of every Xi is actually connected. At the end of the proof, in footnote 8,
we address the issue by indicating the necessary modification to the argument in case those intersections are
not connected.

http://mathoverflow.net/questions/176227/topological-transversality
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It is convenient to draw Y1 on top of X in order to check that they satisfy the desired
properties:

The cell decomposition Y1 is transverse to X , it intersects every edge of X , and its 1-
skeleton remains connected when intersected with every 2-cell of X . It is therefore a
valid beginning point for our construction (as far as X is concerned). The next steps are
then as follows:

Y1

�

Y2

�

Y

By superimposing the soccer ball decompositions X and Y we obtain:

(2.28)

(2) For every X ∈ �, we now describe two related soccer ball decompositions X ′
and X ′′ that satisfy

X ∼ X ′ ∼ X ′′ ∼ Y.

Each one of the three ∼’s above corresponds, as in (2.15), to a path in X� and we call
their concatenation γX .

Let A be the set of edges of X that separate two white cells, and let B be the set of
edges of Y that intersect edges in A. The first soccer ball decomposition X ′ is defined as
follows. Its 1-skeleton is the union of the 1-skeleton of X and of the edges e∩D, where
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D is a white cell of X , and e is an edge of Y , e �∈ B. The soccer ball structure on X ′
is inherited from that of Y , and the smooth structure around the new trivalent vertices
(at the intersection of the 1-skeletons of X and of Y ) is chosen arbitrarily. The second
soccer ball decomposition X ′′ is then obtained from X ′ by removing all the edges in A,
and adding all those in B.

In the example when X and Y are as in (2.28), then the intermediate soccer ball
decompositions X ′ and X ′′ appear as follows:

X

∼

X ′

∼

X ′′

∼

Y

(3) Finally, given an edge X1
D∼ X2 of �, we construct the map δD : D2 → X� that

bounds the triangle (2.27). That triangle can be decomposed as follows

X1 X ′1 X ′′1

X2 X ′2 X ′′2
YD D D̃1 2 3

and we claim that each one of the above cycles 1 , 2 , 3 bounds a 2-cell of X� . The
union of those three 2-cells provides the desired filler δD.

By the definition of X1
D∼ X2, there is a soccer ball decomposition Z such that

X1
D≺ Z

D� X2. The first loop 1 bounds a 2-cell because

X1 ≺ Z , X2 ≺ Z , X ′1 ≺ Z , and X ′2 ≺ Z .

Let D̃ ⊂ � be the union of all the cells of X ′′1 (equivalently X ′′2 ) whose interior intersects
D. It follows from the construction of Y that D̃ is a disc. Let Z ′ be the soccer ball
decomposition obtained from X ′1 (equivalently X ′2) by removing all the edges e ∈ A,
and all the edges and vertices that are in the interior of D. Note that D̃ is one of the cells
of Z ′. We then have

X ′1 ≺ Z ′, X ′2 ≺ Z ′, X ′′1 ≺ Z ′, and X ′′2 ≺ Z ′,

and so the second loop 2 also bounds a 2-cell. To finish the argument, we need to
construct a soccer ball decomposition Z ′′ such that

X ′′1 ≺ Z ′′, X ′′2 ≺ Z ′′, and Y ≺ Z ′′.

This will then show that the third loop 3 bounds a 2-cell.
Let B1, . . . , Bn be the set of black cells of X ′′1 (equivalently X ′′2 ) that are not contained

in D. For each one of them, let B̃i be the union of all the cells of Y that intersect Bi .
It follows from the construction of Y that B̃i is a disc. Let U ⊂ D be the union of all
the cells of Y that intersect some black cell B ⊂ D of X1 or X2 and let U1, . . . ,Uk be
the connected components of U . Finally, let Dj be the smallest disk that is contained
in D and that contains Uj . It follows from the construction of Y that the set S :=
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{B̃1, . . . , B̃n, D1, . . . , Dk} consists of pairwise disjoint discs. Moreover, it defines a

unique soccer ball decomposition Z ′′ such that X ′′1
S≺ Z ′′, X ′′2

S≺ Z ′′, and Y
S≺ Z ′′.

This finishes the proof that X� is simply connected.8 ��

2.E. Factorization along circles and along intervals. From now on, all surfaces will be
assumed to be compact oriented topological surfaces with smooth boundary.

Let �1 and �2 be two surfaces, pick an orientation-reversing diffeomorphism ϕ :
M1 → M between submanifolds M1 ⊂ ∂�1 and M ⊂ ∂�2, and equip the trivalent
graph � := ∂�1 ∪M ∂�2 with a smooth structure (Definition 1.4), compatibly with the
existing smooth structures on ∂�1 and ∂�2. The smooth structure on � restricts to a
smooth structure on the boundary of �1 ∪M �2, and so we can define V (�1 ∪M �2) by
Theorem 2.18.

Main Theorem 2.29. Let �1, �2, M1, M, ϕ be as above. Then there is a unitary iso-
morphism

g : V (�1 ∪M �2)→ V (�1) �A(M) V (�2), (2.30)

well defined up to phase.

Before embarking on the proof of the theorem, we will need the following variation
of the notion of soccer ball decomposition:

Definition 2.31. Let � be surface, and let S ⊂ ∂� be a submanifold of its boundary
diffeomorphic to a disjoint unionof circles.A regular trivalent smooth cell decomposition
X of � (see Sect. 2.B), equipped with a partition of the set of 2-cells into subsets Xwhite
and Xblack is called an S-open soccer ball decomposition of � if every interior vertex is
adjacent to two white cells and one back cell, every boundary vertex not in S is adjacent
to two white cells, and every boundary vertex in S is adjacent to a white and a black cell.

We shall sometimes abbreviate the above terminology by “open soccer ball decom-
position” when the manifold S is obvious from the context.

An example of an open
soccer ball decomposition:

Note that open soccer ball decompositions are not soccer ball decompositions, unless
S = ∅. Indeed, in a soccer ball decomposition, the cells along the boundary are all
white, whereas is an open soccer ball decomposition, the cells along the submanifold S
alternate between black and white.

8 Caveat resolution: If one follows the definition of X ′ presented above, using a cell decomposition Y1
whose 1-skeleton has a disconnected intersection with some 2-cell of some Xi , then one may encounter the
following problem. Let D be a white cell of X , and let e be an edge that separates it from some other white
cell of X . If there exists a small component of the intersection of the 1-skeleton of Y1 with D that only touches
e, then the 1-skeleton of X ′ will be disconnected and X ′ won’t be a soccer ball decomposition. However, we
may simply redefine X ′ by removing those small components; this yields a new soccer ball decomposition
which one uses in place of X ′. The rest of the argument is unaffected by this modification.
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Remark 2.32. Let � be a surface, and let S ⊂ ∂� be a disjoint union of circles. Let

 = D1∪· · ·∪Dk be a union of discs, and let�+ := �∪ϕ 
 for some diffeomorphism
ϕ : S → ∂
. Then a regular trivalent smooth cell decomposition X of�, with a partition
of the set of 2-cells into Xwhite and Xblack is an S-open soccer ball decomposition if and
only if (Xwhite ∪ {D1, . . . , Dk}, Xblack) is a soccer ball decomposition of �+.

Let � and �′ be surfaces, let S be a closed 1-manifold equipped with orientation
preserving embeddings S̄ → ∂� and S → ∂�′, where S̄ denotes S with the opposite
orientation, and let �+ = � ∪S �′ be the result of gluing � and �′ along S. Given a
soccer ball decomposition X of � and an S-open soccer ball decomposition Y of �′,
we say that X and Y are compatible if X ∪ Y is a soccer ball decomposition of �+. If
we write the boundary of �′ as ∂�′ = S � T , and we denote the elements of our open
soccer ball decomposition by Ywhite = {D1, . . . , Dn} and Yblack = {B1, . . . , Bm}, then
we may consider the functor

Sect S̄(A)→ SectT (A)

H 	→ H � Y
given by

H � Y :=
(
H �A(S∩(D1∪···∪Dn))

(
�{A(Di∩D j )}

{
H0(∂Di )

}))

�A(∂B1∪···∪ ∂Bm )

(
H0(∂B1)⊗ · · ·⊗ H0(∂Bm)

)
.

Note that if X is a soccer ball decomposition that is compatible with Y , then we have a
canonical unitary isomorphism

V (�+; X ∪ Y ) ∼= V (�; X) � Y. (2.33)

Similarly, for �+ = � ∪S �′ as above, if X is an S-open soccer ball decomposition
of � and Y a compatible soccer ball decomposition of �′, then

V (�+; X ∪ Y ) ∼= X � V (�′; Y )

for an analogously defined functor X � −.
Lemma 2.34. Let �+ = � ∪S �′ be as above. Then for any S-open soccer ball decom-
position Y of �′, the maps (2.33) induce unitary isomorphisms

λY : V (�+) → V (�) � Y, (2.35)

canonical up to phase.

Proof. Recall the definition complex X� from the proof of Theorem 2.18, and let X̃� ⊂
X� be the subcomplex whose vertices are the soccer ball decompositions of � that are
compatible with Y . For such a soccer ball decomposition X ∈ X̃� , we may consider the
composite

λX,Y : V (�+)→ V (�+; X ∪ Y ) → V (�; X) � Y → V (�) � Y,

where the middle map is the isomorphism (2.33), and the two outer ones are constructed
in the proof of Theorem 2.18.
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We now show that λX,Y is independent of X , up to phase. Recall the maps �D from

(2.17). If X1 ∈ X̃� is another compatible soccer ball decomposition related by X1
D∼ X ,

then it is clear by construction that the diagram

V (�+)

V (�+; X ∪ Y )

V (�+; X1 ∪ Y )

V (�; X) � Y

V (�; X1) � Y

V (�) � Y�D �D �Y

commutes up to phase, and so λX,Y = λX1,Y up to phase. The result follows because
X̃� is connected. ��

The isomorphisms (2.35) satisfy the following version of associativity.Given surfaces
�,�′,�′′ and closed 1-manifolds S and T alongwith orientation preserving embeddings
S̄ → ∂�, S � T̄ → �′, and T → ∂�′′, then for every open soccer ball decompositions
X of � and Y of �′′, the diagram

V
(
� ∪S �′ ∪T �′′

)
X � V (�′ ∪T �′′)

V (� ∪S �′) � Y X � V (�′) � Y

λX

λY
λX�Y X�λY

λX�Y
(2.36)

commutes up to phase.

Proof of Theorem 2.29. We first deal with two special cases: the first when M consists
solely of intervals, and the second when M consists solely of circles.

If M is a union of intervals, consider the following subset � ⊂ X� of the 1-skeleton
of the definition complex of � := �1 ∪M �2. The vertices of � are the soccer ball
decompositions X with the property that each connected component of M ⊂ � is a

single edge of X , and an edge X
D∼ Y is in � if either D ⊂ �1 or D ⊂ �2. Note that �

is a connected graph. Note also that if a soccer ball decomposition X belongs to �, then
all the 2-cells of X , that are adjacent to M , are white. Given X ∈ �, let us write X |�1

and X |�2 for the restrictions of the soccer ball decomposition X to �1 and to �2. For
every X ∈ �, there is then an obvious isomorphism

gX : V (�; X) → V (�1; X |�1) �A(M) V (�2; X |�2),

well defined up to phase. Moreover, for every edge X
D∼ Y of �, the diagram

V (�; X) V (�1; X |�1) �A(M) V (�2; X |�2)

V (�; Y ) V (�1; Y |�1) �A(M) V (�2; Y |�2)

�D �D�1 or 1��D

gX

gY

(2.37)

commutes up to phase, where �D are as in (2.17). Since � is connected, it follows from
(2.37) that the maps gX for X ∈ � descend to a unitary isomorphism
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g : V (�)→ V (�1) �A(M) V (�2),

well defined up to phase.
If M is a union of circles, let us define the auxiliary surfaces

�+
1 := �1 ∪M (M × [0, 1]), �+

2 := (M × [0, 1]) ∪M �2,

�+ := �1 ∪M (M × [0, 1]) ∪M �2.

Recall the definition of 2MAN from (2.20), and note that there are canonical isomor-
phisms �+

1
∼= �1, �+

2
∼= �2, �+ ∼= � in that groupoid (even though there are no canon-

ical homeomorphisms). By Theorem 2.18, we therefore have unitary isomorphisms
V (�+

1 ) ∼= V (�1), V (�+
2 ) ∼= V (�2), V (�+) ∼= V (�), well defined up to phase. There-

fore, instead of (2.30), we may as well construct an isomorphism

g : V (�+)→ V (�+
1 ) �A(M) V (�+

2 ). (2.38)

Given open soccer ball decompositions X of �1 and Y of �2, we let (2.38) be the
composite

V (�+) → X � V (M × [0, 1]) � Y
→ X � L2A(M) � Y
→ X � L2A(M) �A(M) L

2A(M) � Y
→ X � V (M × [0, 1]) �A(M) V (M × [0, 1]) � Y
→ V (�+

1 ) �A(M) V (�+
2 )

where the first map is λX�Y from (2.36), the second and fourth maps are provided by
(1.19), established in Theorem B.17, and the last map is the inverse of λX �λY . We need
to show that the above map does not depend on X and on Y . The following diagram is
easily seen to commutate up to phase:

V (�+)

X � V (M × [0, 1]) � Y

X � L2A(M) � Y

X � L2A(M) �A(M) L2A(M) � Y

X � V (M × [0, 1]) �A(M) V (M × [0, 1]) � Y

V (�+
1 ) �A(M) V (�+

2 )

X � V (�+
2 )

X � L2A(M) �A(M) V (M × [0, 1]) � Y

X � L2A(M) �A(M) V (�+
2 )

X � V (M × [0, 1]) �A(M) V (�+
2 )

(2.39)
The vertical map from V (�+) to V (�+

1 ) �A(M) V (�+
2 ) is our definition of the map g

(2.38), and it is equal to the rightmost composition, up to phase. The map g therefore
does not depend on Y , up to phase. Since X and Y enter symmetrically in the definition
of g, the map is also independent of X .

We now treat the general case. Write M = M1 � M2 as a disjoint union, where M1
consists only of intervals, and M2 consists only of circles. Since A(M2) is a direct sum
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of type I factors, L2A(M2) is an A(M2) ⊗̄A(M2)
op-module and we have canonical

isomorphisms

V (�1) �A(M) V (�2) ∼= V (�1) �A(M1) ⊗̄A(M2)
V (�2)

∼=
(
V (�1) �A(M1) V (�2)

)
�A(M2) ⊗̄A(M2)op

L2A(M2)

∼=
(
V (�1) �A(M1) V (�2)

)
�A(M2) ⊗̄A(M2)op

V (M2 × [0, 1]),

where the last equality follows from (1.19), that is Theorem B.17.
By the two special cases that we treated earlier, we have further isomorphisms

∼= V
(
�1 ∪M1 �2

)
�A(M2) ⊗̄A(M2)op

V (M2 × [0, 1])
∼= V
(
(�1 ∪M1 �2) ∪M2�M̄2

(M2 × [0, 1])
)
.

There is a canonical isomorphism in 2MAN between�+ := (�1∪M1 �2)∪M2�M̄2
(M2×

[0, 1]) and� := �1∪M �2, which by Theorem 2.18 translates to a unitary isomorphism
V (�+) ∼= V (�), canonical up to phase. Composing all the above maps, we obtain our
desired unitary isomorphism g : V (�) → V (�1) �A(M) V (�2), canonically up to
phase. ��

The gluing isomorphisms (2.30) satisfy the following version of associativity. Let
�1, �2, �3 be surfaces, M1 ⊂ ∂�1, M ⊂ ∂�2, N2 ⊂ ∂�2, N ⊂ ∂�3 submanifolds
with M and N2 disjoint, and let M1 → M and N2 → N be orientation reversing
diffeomorphisms. Pick a smooth structure on the trivalent graph ∂�1 ∪M ∂�2 ∪N ∂�3,
compatibly with those of ∂�i . Then the following diagram commutes up to phase:

V (�1 ∪M �2 ∪N �3) V (�1) �A(M) V (�2 ∪N �3)

V (�1 ∪M �2) �A(N ) V (�3) V (�1) �A(M) V (�2) �A(N ) V (�3).

g

g�1

g 1�g (2.40)

Indeed, our definition of the gluing isomorphism is local, and two gluings that happen
far away do not interfere with each other.

Remark 2.41. As a consequence of Theorem 2.29, the definition of V (�) presented in
Sect. 2.B agrees with the more canonical one provided by Theorem 2.18 (which is based
on (2.12) and (2.17)).

2.F. Conformal blocks. Recall that a “pair-of-pants” is just another name for a sphere
with three holes, and that a pair-of-pants decomposition of a surface � consists in a
collection of circles in its interior that decompose it into pairs-of-pants P1, . . . , Pk (we
allow the situation where two legs of the same pair-of-pants get glued to each other).

With Theorem 2.29 in hand, it is now easy to compute the value of V (�) for any
surface �. Recall that we always assume our conformal net A has finite index, and
the set 
 of isomorphism classes of irreducible A-sectors is finite. Recall also that for
λ,μ, ν ∈ 
, the multiplicity of H0 inside Hλ � Hμ � Hν is denoted Nλμν

0 .
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Proposition 2.42. Let � be a surface, with boundary components S1, . . . , Sn. Let Sn+1,
. . . , Sm be oriented circles in the interior of � that form a pairs-of-pants decomposition
P1, . . . , Pk. Then the multiplicity of Hλ1(S1)⊗ · · · ⊗ Hλn (Sn) in V (�) is finite, and is
given by

∑

labelings λn+1, . . . , λm
of Sn+1, . . . , Sm
by elements of 


∏

pairs-of-pants Pi
in the decomposition

of �

N
μi
1μ

i
2μ

i
3

0 , (2.43)

where μi
1, μ

i
2, μ

i
3 ∈ 
 are computed in the following way: letting S j1 , S j2 , S j3 be the

three boundary component of Pi , then we set μi
a := λ ja if the orientation S ja is the one

induced by Pi , and μi
a := λ̄ ja otherwise.

Proof. For a manifold M , a Hilbert space H , and an isomorphism class of sector λ ∈ 
,
let us write

Mε :=
{
M for ε = +1
M for ε = −1 where the bar denotes orientation reversal,

H ε :=
{
H for ε = +1
H for ε = −1 where the bar denotes complex conjugate,

λε :=
{

λ for ε = +1
λ̄ for ε = −1 where the bar denotes dual sector.

Let �+ be the surface that is obtained by gluing A := P1 � · · · � Pk to B := (Sn+1 �
· · · � Sm) × [0, 1] along ∂B in the obvious manner. There is a canonical isomorphism
in 2MAN between � and �+, and so by Theorem 2.18 the spaces V (�) and V (�+) are
isomorphic as ∂�-sectors.

For each pair-of-pants Pi in the decomposition, let ji1, ji2, ji3 ∈ {1, . . . ,m} and
εi1, εi2, εi3 ∈ {±1} be such that ∂Pi = Sεi1

ji1
�Sεi2

ji2
�Sεi3

ji3
as orientedmanifolds. Recall that

by Lemma 2.3 the Hilbert space associated to a pair-of-pants with boundary components
S1, S2, S3 is given by

V

( )
=
⊕

λ,μ,ν∈


Nλμν
0 Hλ(S1)⊗ Hμ(S2)⊗ Hν(S3).

We therefore have

V (A) ∼=
k⊗

i=1
V (Pi ) ∼=

k⊗

i=1

( ⊕

λ,μ,ν∈


Nλμν
0 Hλ(S

εi1
ji1

)⊗ Hμ(Sεi2
ji2

)⊗ Hν(S
εi3
ji3

)

)

∼=
k⊗

i=1

( ⊕

λ,μ,ν∈


Nλμν
0

(
Hλεi1 (S ji1)

)εi1⊗ (Hμεi2 (S ji2)
)εi2⊗ (Hνεi3 (S ji3)

)εi3
)

∼=
k⊗

i=1

( ⊕

λ,μ,ν∈


Nλεi1μεi2νεi3

0

(
Hλ(S ji1)

)εi1⊗ (Hμ(S ji2)
)εi2⊗ (Hν(S ji3)

)εi3
)

,
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where the middle isomorphism follows from [8, Lem. 3.17]. The multiplicity of
(
Hλ1(S1)⊗ · · · ⊗ Hλn (Sn)

)
⊗
(
Hλn+1(Sn+1)⊗ · · · ⊗ Hλm (Sm)

)

⊗
(
Hλ′n+1(Sn+1)⊗ · · · ⊗ Hλ′m (Sm)

)

inside V (A) is thus given by

mλ1,...,λn ,λn+1,...,λm ,λ′n+1,...,λ′m :=
k∏

i=1
N

νi1ν
i
2ν

i
3

0

where νia is defined to be λ jia if the orientation of S jia is the one induced by Pi , and λ̄′jia
otherwise.

We have V (B) ∼= L2A(Sn+1) ⊗ · · · ⊗ L2A(Sm) by (1.19), that is Theorem B.17,
and so the operation − �A(∂B) V (B) amounts to contracting the indices λi with λ′i
for i ∈ {n + 1, . . . ,m}. The multiplicity of Hλ1(S1) ⊗ · · · ⊗ Hλn (Sn) inside V (�) ∼=
V (�+) ∼= V (A) �A(∂B) V (B) is therefore given by

∑

(λn+1,...,λm )∈
m−n
mλ1,...,λn ,λn+1,...,λm ,λn+1,...,λm ,

which is precisely (2.43). ��
Note that for ∂� = ∅, the above result implies that V (�) is a finite dimensional:

Corollary 2.44. Let � be a closed surface and let S1, . . . , Sm be oriented circles in �

that form a pair-of-pants decomposition P1, . . . , Pk. Then V (�) is finite dimensional,
and its dimension is given by

∑

labelings λ1, . . . , λm
of S1, . . . , Sm

by elements of 


∏

pairs-of-pants Pi
in the decomposition

of �

N
μi
1μ

i
2μ

i
3

0 (2.45)

where μi
1, μ

i
2, μ

i
3 are as defined in Proposition 2.42. �

Given the formula (2.45), it now seems reasonable that for a closed surface �, our
vector space V (�) agrees with the notion of “space of conformal blocks” in conformal
field theory [22,31]. Moreover, for a surface � with boundary components S1, . . . , Sn ,
the vector space

V (�; λ1, . . . , λn) := hom
(
Hλ1(S1)⊗ · · · ⊗ Hλn (Sn), V (�)

)
(2.46)

corresponds to the notion of “space of conformal blocks with field insertions”. Note that
those statements, relating our space of conformal blocks to the CFT notion of space of
conformal blocks, are really only conjectures because, for example, there is no theorem
that identifies the representation theory of a conformal net with that of the corresponding
chiral conformal field theory.

For every choice of labels λ1, . . . , λn ∈ 
, there is a projective action of �(�) :=
ker(G(�)→ Diff(∂�)) on V (�; λ1, . . . , λn). Note however that the projective action
of G(�) on V (�) contains strictly more information than the collection of all the
projective actions of �(�) on the spaces V (�; λ1, . . . , λn).
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Remark 2.47. If one only considers surfaces whose boundary components are
parametrized by S1, and if one restricts attention to those gluings that are along full
boundary components and that are compatible with the parametrizations, then Theorems
2.18 and 2.29 provide a projective version of a modular functor (as in [6, Def. 5.7.10],
but without any control over the central cocycle).

3. Modularity

In this section, we will use the constructions from the previous sections to analyze the
structure of the category of sectors of a conformal net with finite index.

3.A. Fusion of sectors. Let us define the standard pair-of-pants to be the surface

P := (S1 × [0, 1]) � (S1 × [0, 1])/ ∼ ,

where the equivalence relation identifies the point (z, 1) in thefirst copyof S1×[0, 1]with
the point (−z̄, 1) in the second copy of S1×[0, 1], for every z ∈ S1� = {z ∈ S1|�e(z) ≤
0}. As mentioned at (1.6) and (1.19), and proven in Theorems B.13 and B.17, the Hilbert
space V (S1×[0, 1]) ∼= L2A(S1) associated to S1×[0, 1] is well defined up to canonical
unitary isomorphism, as opposed to being merely well defined up to canonical-up-to-
phase unitary isomorphism. We may therefore declare

HP := L2A(S1) �A(S1�) L
2A(S1) (3.1)

to be the Hilbert space associated to P . This is a lift of V (P) from a Hilbert space well
defined up to canonical-up-to-phase isomorphism to an honest Hilbert space.

Let us call S1, S2, S3 the three boundary components of P , and orient themas indicated
in the following picture:

P :

S1 S2

S3

,

so that ∂P = S1 � S2 � S̄3. Below, we will use the picture for that same manifold
P .

Recall from [8, Sec. 1.E] that there is a monoidal structure

H, K 	→ H �h K := H �A(S1�) K

on the category Sect(A), called horizontal fusion. The S1-S2-S̄3-sector HP is constructed
in such a way that there are canonical unitary isomorphisms

H �h K = H �A(S1�) K

∼= (H �A(S1) L
2A(S1)

)
�A(S1�)

(
K �A(S2) L

2A(S2)
)

∼= (H ⊗ K ) �A(S1∪S2)
(
L2A(S1) �A(S1�) L

2A(S2)
)

= (H ⊗ K ) �A(S1∪S2) HP .
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In other words, HP represents the operation of horizontal fusion.
We will be interested in various ways of fusing copies of HP to each other. For

a, b ∈ {1, 2, 3}, we shall write HP a�b HP for the fusion HP �A(S1) HP , where the
algebra A(S1) acts on first copy of HP via its isomorphism to A(Sa) (or its opposite),
and on the second HP via its isomorphism to A(Sb) (or its opposite). For example, the
Hilbert spaces HP 3�1 HP and HP 2�3 HP correspond to the following two surfaces:

HP 3�1 HP : HP 2�3 HP :

Note that the associator for �h corresponds to a particular unitary isomorphism

α : HP 3�1 HP → HP 2�3 HP ,

namely the one given by

HP 3�1 HP =
(
L2A(S1) �A(S1�) L

2A(S1)
)
3�1

(
L2A(S1) �A(S1�) L

2A(S1)
)

=
(
L2A(S1) �A(S1�) L

2A(S1)
)

�A(S1) L
2A(S1) �A(S1�) L

2A(S1)

→ L2A(S1) �A(S1�) L
2A(S1) �A(S1�) L

2A(S1)

→ L2A(S1) �A(S1�) L
2A(S1) �A(S1)op

(
L2A(S1) �A(S1�) L

2A(S1)
)

=
(
L2A(S1) �A(S1�) L

2A(S1)
)
2�3

(
L2A(S1) �A(S1�) L

2A(S1)
)

= HP 2�3 HP .

This definition immediately raises a question. Since HP is a representative of the
“up-to-phase equivalence class” V (P), how does the above map α compare to the geo-
metrically defined associator αgeo : V (P) 3�1 V (P) → V (P) 2�3 V (P)

αgeo :
V
( )

V
( )� A( )

g−1−−→ V
( ) V (α)−−−→ V

( )
g−→

V
( )

V
( )� A( )

obtained by composing two gluing isomorphisms (2.30) and the image V (α) of the

obvious diffeomorphism α :  −→ under the functor V ? Since αgeo is only
well defined up to phase, the best we can hope for is that the equation αgeo = α holds
up to phase:

Proposition 3.2. The two maps α, αgeo : HP 3�1 HP → HP 2�3 HP are equal up to
a phase.

Before embarking on the proof, we introduce the following graphical notation (and,
implicitly, obvious variations thereof):
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L2 := L2A(S1)

V := V
( ) = V (S1 × [0, 1])

L2 L2 := L2 �A(S1�) L2 = HP

V V := V �A(S1�) V

V := V
( ∪S1�

) = V (P)

L2 L2

L2 L2
:=

L2 L2

L2 L2

�A( )

V V

V V
:=

V V

V V

�A( )

V

V
:=

V

V

�A( )

V := V
( )

= V
(
P 3∪1 P

)

L2 L2 L2 := L2 �A(S1�) L2 �A(S1�) L2

V V V := V �A(S1�) V �A(S1�) V

V := V
( ∪S1�

∪S1�
)

Proof of Proposition 3.2. Keeping inmind that the identification between HP and V (P)

is given by

L2 L2
(B.18)−−−→ V V

g−1−−→ V ,
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our task is to prove the commutativity of this diagram:

L2 L2

L2 L2 L2 L2 L2
L2L2

L2L2

V V

V V

VV

VV

V

V
V V

V

V

cancel
− �A(S1) L

2A(S1)
un-cancel

− �A(S1) L
2A(S1)

(B.18) (B.18)

g−1 g−1

g−1 V (α) g

Note that the top composite is α and that the bottom composite is αgeo.
We can split this square into two mirror-image sub-diagrams by inserting

L2 L2 L2

(B.18)−−−→ V V V
g−1−−→ V → V

down the middle (where the last map is induced by the obvious diffeomorphism and
there is an analogous map to the target of V (α)). It is therefore enough to prove the
commutativity of the following 7-gon:

L2 L2

L2 L2

L2 L2 L2

V V

V V

V

V
V

VV V V

(3.3)

Let X be an (S1×{0})-open soccer ball decomposition of S1×[0, 1]. We will prove
that (3.3) is commutative after applying the invertible functor X � −. Namely, we will
prove the commutativity of this diagram:

X

L2 L2

L2 L2

X

L2 L2 L2

X

V V

V V

X

V

V

X

V

X

V

X

V V V

(3.4)
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Note that the above pictures are somewhat misleading: these constructions involve not
just a single Connes fusion over the bottom circle of the annulus labeled X , but rather
many fusions, each one of which uses at most an interval in this circle.

By choosing X carefully, we can arrange that the union of X and of a soccer ball
decomposition of S1×[0, 1] (which again needs to be picked carefully, namely so that the
left half of the top S1 is covered by a single edge) is an open soccer ball decomposition,
call it Y , of the manifold

= (S1 × [0, 1]) � (S1 × [0, 1])/ ∼,

where the equivalence relation identifies (z, 0) in the first copy of S1×[0, 1]with (z, 1)
in the second copy of S1 × [0, 1], for every z ∈ S1!.

With these preliminaries in place, the commutativity of (3.4) follows from this com-
mutative diagram:

X

L2 L2

L2 L2

X

L2 L2 L2

X

V

V V

L2

X

V V

V V

X

L2 V

V

X

V V V

X

V V

V

Y

V

V

Y

L2

V
Y

V

X

V V

X

V

V

V

V V

X

V

V

X

V

( )

g

g

Here, the central hexagon (�) commutes because the gluing isomorphism g is equal to the

rightmost composition in (2.39), precomposed by the diffeormorphism V
∼= V .

��
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3.B. The braiding. The extended mapping class group of the standard pair-of-pants
contains a special element β : P → P , called the braiding, that exchanges the two
boundary circles S1 and S2, and fixes S3. Using a flat depiction of P , we illustrate the
homeomorphismβ by means of what it does to some internal lines:

P : S1 S2

S3

β : 	→ (3.5)

By Theorem 2.18, there is an associated unitary

β := V (β) : HP → HP ,

well defined up to phase. Moreover, letting τ : H0⊗H0 → H0⊗H0 be the switch map,
we can fix the phase of β by requiring that the composite

H0 ∼= H0 �h H0 ∼= (H0 ⊗ H0) �A(S1∪S2) HP

τ�β−−→ (H0 ⊗ H0) �A(S1∪S2) HP ∼= H0 �h H0 ∼= H0

(3.6)

be the identity on H0.

Theorem 3.7. The transformation

βH,K : H �h K ∼= (H ⊗ K ) �A(S1∪S2) HP

τ�β−−→ (K ⊗ H) �A(S1∪S2) HP ∼= K �h H

equips the category (Sect(A),�h) with the structure of a braided tensor category.

Proof. We need to show that the isomorphisms βH,K are natural in H and K , and that
they satisfy the two hexagon axioms. Naturality is obvious from the definition. The two
hexagon axioms are

H �h (K �h L) (K �h L) �h H

(H �h K ) �h L K �h (L �h H)

(K �h H) �h L K �h (H �h L)

βH,K�L

α

βH,K�L

α

α

K�βH,L

and

(H �h K ) �h L L �h (H �h K )

H �h (K �h L) (L �h H) �h K

H �h (L �h K ) (H �h L) �h K

βH�K ,L

α−1

H�βK ,L

α−1

α−1

βH,L�K
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and we shall only treat the first one here.
The following diagram is commutative in the groupoid 2MAN

β
∪
1

α

β ∪1
α

α

1∪β

By Theorem 2.18 and Proposition 3.2, the corresponding diagram of Hilbert spaces

HP 2�3 HP HP 1�3 HP

τ∼= HP 3�1 HP

HP 3�1 HP HP 2�3 HP

HP 3�1 HP HP 2�3 HP

β�1

α

β�1

α

α

1�β

(3.8)

therefore commutes up to phase. If we fuse H0⊗ H0⊗ H0 onto (3.8), then the resulting
diagram

(H0 ⊗ H0 ⊗ H0) �A(S1�S1�S1) (HP 2�3 HP ) (H0 ⊗ H0 ⊗ H0) �A(S1�S1�S1) (HP 3�1 HP )

(H0 ⊗ H0 ⊗ H0) �A(S1�S1�S1) (HP 3�1 HP ) (H0 ⊗ H0 ⊗ H0) �A(S1�S1�S1) (HP 2�3 HP )

(H0 ⊗ H0 ⊗ H0) �A(S1�S1�S1) (HP 3�1 HP ) (H0 ⊗ H0 ⊗ H0) �A(S1�S1�S1) (HP 2�3 HP )

is simply

H0 �h (H0 �h H0) (H0 �h H0) �h H0

(H0 �h H0) �h H0 H0 �h (H0 �h H0)

(H0 �h H0) �h H0 H0 �h (H0 �h H0)

β

α

β�1

α

α

1�β

and it follows from (3.6) that it is commutative, not just up to phase. The diagram (3.8)
was therefore also commutative, not just up to phase. ��

It would be interesting to compare the braiding β defined above with the one intro-
duced in [23]. We conjecture that those two braidings are equal.
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3.C. Modularity of the category of sectors. Based on the technology that we devel-
oped in the previous sections, we will now present a new proof of a famous result of
Kawahigashi–Longo–Müger [26, Cor. 37] about the modularity of the representation
category of conformal nets.

Recall that an object T in a braided tensor category is called transparent if the equality

βX,T = β−1T,X : X � T → T � X

holds for every object X in the category. By Müger’s theorem (first proven by Rehren
in [36] in the language of low-dimensional algebraic quantum field theory and then by
Müger in an abstract categorical setup [33, Cor. 7.11]—see also [12] for a proof that does
not require unitarity), one of the equivalent definitions of a modular tensor category is
a braided fusion category in which the only transparent objects are the multiples of the
identity.

Theorem 3.9. Let A be a conformal net with finite index. Then the braided tensor cat-
egory Sect(A) is modular.

Remark 3.10. As explained in Remark 2.47, the system of spaces of conformal blocks
we have constructed together with the factorization property has as a special case the
data of the projective version of a modular functor. If we knew that the central extension
of the bordism 2-category of surfaces with parametrized boundary (objects=unions of
circles, morphisms=cobordisms, 2-morphisms=homeomorphisms modulo isotopy rel
boundary) described in [6, Def. 5.7.6] is a universal central extension, then we could
deduce that we have a modular functor in the sense of [6, Def. 5.7.10]. The results of
Bakalov–Kirillov [6, Thm. 5.7.11] would then provide yet another proof of the above
modularity theorem.

Proof. Given an irreducible transparent object T ∈ Sect(A), we need to show that T is
isomorphic to H0.

We shall draw the standard pair of pants P as in (3.5). Consider the following sub-
manifolds of P

A : B : C : D :

and let i A : A ↪→ P, . . . , iD : D ↪→ P be the inclusion maps.
Let us also consider the manifolds

E : F :

along with embeddings f, g : E → P and h, k : F → P

f (E)= g(E)= h(F)= k(F)=
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whose images in P are such that

A ∪ f (F) ∪ B ∪ h(E) = P and C ∪ g(E) ∪ D ∪ k(F) = P.

Recall from Theorem 2.18 that V (A), . . . , V (F) are only well defined up to canonical-
up-to-phase unitary isomorphism. Let us fix, by means of some arbitrary choice, Hilbert
spaces V (A), . . . , V (F) within their “up-to-phase isomorphism class”.

Let us write V
( )

for the Hilbert space HP defined in (3.1). By Theorem 2.29,

there are unitary isomorphisms

κl : V (A) � V (F) � V (B) � V (E)� → V

( )

κr : V (C) � V (E) � V (D) � V (F)� → V

( )

that correspond to the homeomorphisms

i A ∪ h ∪ iB ∪ f : A ∪ F ∪ B ∪ E → P

iC ∪ g ∪ iD ∪ k : C ∪ E ∪ D ∪ F → P,

(the algebras over which the fusion product are taken are omitted from the notation),
and that are well defined up to phase. Fix choices of κl and κr within their equivalence
classes.

Recall the definition ofβ : P → P from (3.5), and let

γ : → δ : →

be homeomorphisms such that γ ∪ (h ◦ k−1) = β and δ ∪ ( f ◦ g−1) = β−1 in the
groupoid 2MAN (assume that f , g, h, k are chosen so that this is possible). Let then

γ : V (C) � V (E) � V (D) → V (B) � V (E) � V (A)

δ : V (D) � V (F) � V (C) → V (A) � V (F) � V (B)
(3.11)

be the unique representatives γ ∈ V (γ ), δ ∈ V (δ ) for which

γ � 1V (F) � = κ−1l ◦ β ◦ κr and δ � 1V (E) � = κ−1l ◦ β−1 ◦ κr .

Let us agree that V
( )

, V
( )

, V
( )

, V
( )

stand for the Hilbert spaces

V (C) � V (E) � V (D), V (B) � V (E) � V (A), V (D) � V (F) � V (C), and V (A) �
V (F) � V (B), so we can rewrite (3.11) as

γ : V
( )

→ V

( )
, δ : V

( )
→ V

( )
.

Let now T ∈ Sect(A) be irreducible and transparent. By definition of transparent,
the two natural transformations βT,− and β−1−,T from T �h − to − �h T are equal to
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each other. Equivalently, the two maps 1T � β and 1T � β−1 from T �A(S1) HP to
T �A(S2) HP are equal to each other. Let us define

βT := 1T � β = 1T � β−1 : T �A(S1)V
( )

→ T �A(S2)V
( )

γT := 1T � γ : T �A(S1)V
( )

→ T �A(S2)V
( )

δT := 1T � δ : T �A(S1)V
( )

→ T �A(S2)V
( )

.

From now on, we will simplify our notation even further, and denote the maps βT , γT ,
δT in the following way:

βT : T → T , γT : T → T , δT : T → T .

At this point, it becomes convenient to name some of the submanifolds of ∂E and of
∂F :

M : M ′ : N : N ′ :

The maps βT , γT , δT , then satisfy the relations

γT �A(N ) V (F) = δT �A(M) V (E) = βT .

Applying the functor−�A(M ′)⊗̄A(N ′) (V (E)⊗ V (F)) to the above equality, we get an
equation in the space of maps from

T := T �A(S1)V
( )

�A(M ′)⊗̄A(N ′) (V (E)⊗ V (F))

∼= T �A(M)

(
V (E) �A(M ′) V (E)

)
�A(N )

(
V (F) �A(N ′) V (F)

)

to

T := T�A(S2)V
( )

�A(M ′)⊗̄A(N ′) (V (E)⊗ V (F))

∼= T �A(M)

(
V (E) �A(M ′) V (E)

)
�A(N )

(
V (F) �A(N ′) V (F)

)
.
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More specifically, we learn that the two maps

� :=
(
γT �A(N ) V (F)

)
�A(M ′) ⊗̄A(N ′) V (E)⊗ V (F)

=
(
γT �A(M ′) V (E)

)
�A(N )

(
V (F) �A(N ′) V (F)

)

and


 :=
(
δT �A(M) V (E)

)
�A(M ′) ⊗̄A(N ′) V (E)⊗ V (F)

=
(
δT �A(N ′) V (F)

)
�A(N )

(
V (E) �A(M ′) V (E)

)

are both equal to

B := βT �A(M ′) ⊗̄A(N ′) V (E)⊗ V (F).

Summarizing, we have three equal maps (actually isomorphisms)

� = 
 = B : T → T , (3.12)

equivariant for A( )
(where the actions of that algebra come from appropriate dif-

feomorphisms with the boundaries of the two 2-manifolds in (3.12)).
SinceA(M)V (E)A(M ′) andA(N )V (F)A(N ′) are dualizable bimodules, we have inclu-

sions L2A(M) ⊂ V (E) �A(M ′) V (E) and L2A(N ) ⊂ V (F) �A(N ′) V (F). It follows
that there is a diagram of inclusions

T

T

T

T

(3.13)

and that

T ∩ T = T (3.14)

Note that the inclusions (3.13) are all compatible with the actions of A( )
(where

again the actions come from appropriate diffeomorphisms with the boundaries of the
above 2-manifolds).
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Let us now look at the image of T ⊂ T under themap B.

Since B = � is the result of applying − �A(N ) (V (F) �A(N ′) V (F)) to some map, it
follows that

B

(
T

)
⊂ B

(
T

)
= T (3.15)

Similarly, since B = 
 is the result of applying−�A(M) (V (E) �A(M ′) V (E)) to some
map, it follows that

B

(
T

)
⊂ B

(
T

)
= T (3.16)

Combining (3.15), (3.16) and (3.14), we learn that the map B sends T to T .

Recall that B intertwines the actions ofA( )
.The representations T⊗H0 and H0⊗T

of that algebra are irreducible; B therefore induces an isomorphism T ⊗ H0 ∼= H0⊗ T .
It follows that T ∼= H0 (and H0 ∼= T ). ��

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A. Cyclic Fusion and Fusion Along Graphs

Let � be a finite oriented graph9 for which the two vertices of each edge are distinct.
Suppose that we are given, for every edge e ∈ �1 a von Neumann algebra Ae, and for
every vertex v ∈ �0 a Hilbert space Hv . Assume furthermore that each Hv is equipped
with a left action of Ae for every incoming edge e, and a right action of Ae for every
outgoing edge. Moreover, the actions on Hv are required to be split, meaning that they
extend to an action of the spatial tensor product

( ⊗̄

incoming
edges e

Ae

)
⊗̄
( ⊗̄

outgoing
edges e

Aop
e

)
.

The graph fusion, denoted�{Ae}{Hv}e,v∈� (or simply� {Hv}v∈� , when the algebras
Ae are obvious from the context), is the Connes fusion of all the Hilbert spaces Hv along
all the algebras Ae.

Let us write e � v to denote that e in an incoming edge for v, and e � v to denote that
e is an outgoing edge for v.

9 Here, by a graph we mean combinatorial graph, unlike the prevalent usage of the word graph in the body
of the article, where it refers to a particular kind of topological space.

http://creativecommons.org/licenses/by/4.0/
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Definition A.1. Let �, {Hv}v∈�0 , {Ae}e∈�1 be as above. The graph fusion

�{Ae}{Hv}e,v∈�

of the Hilbert spaces Hv over the algebras Ae is the completion of the vector space

⊗

v∈�0

hom(⊗̄
e�v

Ae ⊗̄ ⊗̄
e�v

Aop
e

)
(
⊗̄

e�v
L2Ae ⊗̄

⊗̄

e�v
L2Ae , Hv

)
⊗
⊗

e∈�1

L2Ae

with respect to the pre-inner product

〈
⊗

v∈�0

ϕv ⊗ ⊗
e∈�1

ξe ,
⊗

v∈�0

ψv ⊗ ⊗
e∈�1

ηe

〉
:=
〈( ∏

v∈�0

(ψ∗v ϕv)
)( ⊗

e∈�1

ξe

)
,
⊗
e∈�1

ηe

〉

⊗
e∈�1

L2Ae

Note that it is important for � not to have any loops since, otherwise, the action of the
element ψ∗v ϕv ∈ ⊗̄e�v Ae ⊗̄ ⊗̄e�v Aop

e on the Hilbert space
⊗

e∈�1
L2Ae is ill-defined,

as the left and right actions of an algebra A on its L2-space are typically not split. This
is essentially the same issue as in Warning A.6 below.

Given a subset S ⊂ �1 of edges, consider the graph �̃ obtained by reversing the
orientations of all the edges in S. Given algebras Ae indexed by e ∈ �1, we can form
new ones Ãe by letting Ãe := Aop

e if e ∈ S and Ãe := Ae if e �∈ S. It is then immediate
from the definition that

�{ Ãe}{Hv}e,v∈�̃ = �{Ae}{Hv}e,v∈� (A.2)

Now consider an equivalence relationR on the set �0 of vertices of �. The quotient
graph �/R is defined as

(�/R)0 := �0/R and (�/R)1 :=
{
e ∈ �1

∣∣∣ e connects vertices from
different equivalence classes

}
.

For each equivalence class V ∈ �0/R, let �V denote the corresponding full subgraph
of �. Given algebras {Ae}e∈�1 and Hilbert spaces {Hv}v∈�0 , the graph fusion satisfies
the following version of associativity:

�{AE }
{
�{Ae}

{
Hv

}
e,v∈�V

}

E,V∈�/R = �{Ae}
{
Hv

}
v∈�

(A.3)

The following result is the simplest special case of the above equation:

Lemma A.4. Let A1 and A2 be von Neuman algebras. Let Ki be left Ai -modules, and
let H be a right A1⊗̄A2-module. Then there is a canonical isomorphism

H �A1⊗̄A2
(K1 ⊗ K2) ∼= K1 �Aop

1
H �A2

K2.
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There is an important special case of graph fusion, called cyclic fusion, which is the
case when the graph � is a cycle. Let n ≥ 2 be some number. For each i ∈ {1, . . . , n}, let
Ai be a von Neumann algebra, and let Hi be an Ai⊗̄ Aop

i+1-module (cyclic numbering).
Then for each i, j ∈ {1, . . . , n}, we can form the fusion of Hi �Ai+1 . . . �A j−1 Hj−1
(cyclic numbering) with Hj �A j+1 . . . �Ai−1 Hi−1 over the algebra Aop

i ⊗̄ A j. Under the
above conditions, the Hilbert space

(
Hi �Ai+1 . . . �A j−1 Hj−1

)
�

Aop
i ⊗̄ A j

(
Hj �A j+1 . . . �Ai−1 Hi−1

)

is isomorphic to the graph fusion of the Hi ’s and therefore independent, up to canonical
unitary isomorphism, of the choices of i and j . We call the above Hilbert space the cyclic
fusion of the Hi ’s, and denote it by

H1 �A2 · · · �An Hn �A1 (A.5)

Warning A.6. For the space (A.5) to be well defined, it is crucial to have n ≥ 2. In other
words, given an A ⊗̄ Aop module H , the expression H �A is ill-defined. This can

be seen by analyzing the example H := AL2A⊗C L2AA. In that case, one might expect
to find H �A = L2A. However, there is in general no meaningful way of letting

EndA ⊗̄ Aop(H) act on that Hilbert space.
There is one exception to this warning: if A is a direct sum of type I factors, then
H �A still makes sense. It can be defined as H �A ⊗̄ Aop L2(A), which is now

meaningful because A ⊗̄ Aop does act on L2(A).

Appendix B. The Hilbert Space Associated to an Annulus

Let S be circle, and let � = S × [0, 1]. We have seen in (1.6) how to associate,
non-canonically, a Hilbert space H� ∈ SectS�S̄(A) to this annulus. Later, in (1.18),
we learned that there is a non-canonical unitary isomorphism of S � S̄-sectors

H�
∼=
⊕

λ∈


Hλ

(
S
)⊗ Hλ̄

(
S̄
)
.

Note that, by (1.21), this can be reinterpreted as an isomorphism

H�
∼= L2A(S). (B.1)

The goal of this section is to redefine H� in such a way that it becomes well defined up
to canonical unitary isomorphism, and to upgrade (B.1) to a canonical unitary isomor-
phism.

Let I = {I1, . . . , In} be a c-cover of S. The intervals I j are arranged so that each
intersection pi := Ii−1∩ Ii (cyclic numbering) is a single point (or two points if n = 2).
By definition, H� is then the fusion of all the vacuum sectors Hi := H0(∂ Ii × [0, 1])
along all the algebras Ai := A({pi } × [0, 1]).

The first reason H� isn’t canonically defined is that the Hilbert spaces Hi themselves
are only well defined up to non-canonical unitary isomorphism. One can fix that issue by
being more specific: from now on, Hi will denote the vacuum sector of A associated to
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the circle Si := ∂ Ii ×[0, 1], its upper half S"i := Si ∩ (Ii ×[1/2, 1]), and the involution
j : Si → Si , j (x, t) = (x, 1− t), as described near the beginning of Sect. 1.

Our next task is to show that H� is independent of the c-cover I. In order to do so,
it is useful to introduce a notation that stresses the dependence:

H (I)
� := H1 �A2 · · · �An Hn �A1 (B.2)

The dashed line denotes the operation of cyclic fusion, described in Appendix A.
Given two c-coversI andJ of S, we need to construct a unitary isomorphismbetween

H (I)
� and H (J )

� . As in the proof of Lemma 1.9, note that one can go from any cover to
any other one by subdividing and recombining intervals. It is therefore enough to treat
the case when I = {I1, I2, . . . , In} and J = {I ′1, I ′′1 , I2, . . . , In}with I ′1∪ I ′′1 = I1. Our
first goal is therefore to upgrade the non-canonical isomorphism (1.10) to a canonical
unitary isomorphism. This will be the content of Lemma B.4.

Let I be an interval and let {I1, I2} be a c-cover of I . Let {p, q, r} = ∂ I1 ∪ ∂ I2, with
∂ I1 = {p, q}, ∂ I2 = {q, r}, ∂ I = {p, r}, and let S1 = ∂(I1×[0, 1]), S2 = ∂(I2×[0, 1]),
S3 = ∂(I ×[0, 1]). Write j for the involution j (x, t) = (x, 1− t) on I ×[0, 1]. Finally,
let S"a = Sa ∩ (I × [ 12 , 1]) for a ∈ {1, 2, 3}, and let K = q × [0, 1]. We orient S1, S2,
S3, S"1 , S"2 , S"3 , K as follows:

I : p q r

I1 :
I2 : S1 S2 S3

j

S"1 S"2 S"3 K

(B.3)

Lemma B.4. With S1, S2, S3, j , S"1 , S"2 , S"3 , K as above, let us define

Ha := L2A(S"a ) ∈ SectSa (A), a ∈ {1, 2, 3}

to be the vacuum sector of A associated to Sa, S"a , and j . Then there is a canonical
unitary isomorphism of S3-sectors

u : H1 �K H2
∼=−→ H3. (B.5)

Proof. Let S1 be the standard circle, let

S1" := {z ∈ S1|#m(z) ≥ 0}, S1� := {z ∈ S1|�e(z) ≤ 0}, S1! := {z ∈ S1|�e(z) ≥ 0},

and let ψ� : [0, 1] → S1� and ψ! : [0, 1] → S1! be the diffeomorphisms given by
ψ�(t) = − sin(π t)− i cos(π t) and ψ!(t) = sin(π t)− i cos(π t).
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Let p, q, r ∈ I be as above, and let us pick diffeomorphisms f1 : S1 → S1,
f2 : S2 → S1 so that

∃ ε > 0 : ∀t ∈ [ 12 − ε, 1
2 + ε] : f1(p, t) = ψ�(t), f2(r, t) = ψ!(t),

∀t ∈ [0, 1] : f1(q, t) = ψ!(t), f2(q, t) = ψ�(t),

and fa( j (x)) = fa(x). Finally, let f3 := f1|S1∩S3 ∪ f2|S2∩S3 : S3 → S1.
Recall from [8, Thm. 2.13] that there is an A-sector H0 = H0(S1,A) that is canon-

ically associated to the standard circle S1. It is equipped, among others, with isomor-
phisms of S1-sectors v" : H0 → L2(A(S1")) and v� : H0 → L2(A(S1�)). The isomor-
phism (B.5) is then the composite

u : H1 �K H2 = L2A(S"1 ) �K L2A(S"2 )
L2A( f1)�L2A( f2)−−−−−−−−−−−→

→ L2A(S1") �K L2A(S1")
1�v−1"−−−−→ L2A(S1") �K H0

= L2A(S1") �A(S1�) H0
1�v�−−−→ L2A(S1") �A(S1�) L

2A(S1�)

∼= L2A(S1")
L2A( f3)−1−−−−−−→ L2A(S"3 ) = H3.

(B.6)

We still need to show that u is independent of the choices made. For that, we pick
new diffeomorphisms f̃a : Sa → S1 with the same properties as the maps fa , and define

ũ :=
(
L2A( f̃3)

−1) ◦
(
1 � v�v−1"

)
◦
(
L2A( f̃1) � L2A( f̃2)

)

as in (B.6). Let ga := ( f̃a ◦ f −1a )|S1" , and note that g3 = g1 ◦ g2. By the inner covariance
axiom, there exist unitaries wa ∈ A(S1") so that A(ga) = Ad(wa). Moreover, we can
chose w3 = w1w2. Let j0 : S1 → S1 denote complex conjugation, and let Wa be the
operator given by multiplication by w1 followed by multiplication by A( j0)(w∗1). To
show that ũ = u, we need to argue that following diagrams are commutative:

L2A(S"1 ) �K L2A(S"2 ) L2A(S1") �A(S1�) L
2A(S1")

L2A(S"1 ) �K L2A(S"2 ) L2A(S1") �A(S1�) L
2A(S1")

L2A( f1) � L2A( f2)

L2A( f̃1) � L2A( f̃2)

W1 �W2
1

L2A(S1") �A(S1�) L
2A(S1") L2A(S1") �A(S1�) L

2A(S1�)

L2A(S1") �A(S1�) L
2A(S1") L2A(S1") �A(S1�) L

2A(S1�)

1�v�v−1"

1�v�v−1"

W1 �W2 W1 �W2
2
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L2A(S1") �A(S1�) L
2A(S1�) L2A(S1") L2A(S"3 )

L2A(S1") �A(S1�) L
2A(S1�) L2A(S1") L2A(S"3 )

W1 �W2

L2A( f3)−1

L2A( f̃3)−1

W3

∼=

∼=

3 4

The commutativity of 2 and 3 is obvious. Finally, the commutativity of 1 and 4 follows
from the following general fact: given a von Neumann algebra A, a unitary u ∈ U(A)

and a vector ξ ∈ L2(A), one always has L2(Ad(u))(ξ) = uξu∗. ��
Note that despite its apparent asymmetry, the definition (B.6) is left-right symmetric.
Indeed, we could have used

L2A(S1") �A(S1�) L
2A(S1")

v�v−1" �1−−−−−→ L2A(S1�) �A(S1�) L
2A(S1") ∼= L2A(S1")

instead of

L2A(S1") �A(S1�) L
2A(S1")

1�v�v−1"−−−−−→ L2A(S1") �A(S1�) L
2A(S1�) ∼= L2A(S1")

in the middle of (B.6) as both are equal to

L2A(S1") �A(S1�) L
2A(S1")

v�v−1" �v�v−1"−−−−−−−−→ L2A(S1�) �A(S1�) L
2A(S1�) ∼=

∼= L2A(S1�)
v"v−1�−−−→ L2A(S1").

Let S1, S2, S3, H1, H2, H3 be as in Lemma B.4. Letting Ja denote the modular
conjugation on Ha = L2(A(S"a )), a ∈ {1, 2, 3}, we expect the isomorphism (B.5) to
satisfy

u ◦ (J1 �α J2) = J3 ◦ u,

where α : A(K )→ A(K ) is the anti-linear homomorphism given by α(x) = A( j)(x∗).
We only know how to prove the above equation up to sign:

Lemma B.7. Let u, Ja, and α be as above. Then we have

u ◦ (J1 �α J2) = ±J3 ◦ u. (B.8)

Proof. Recall from [8, Thm. 2.13] that ϕ 	→ H0(ϕ) is a representation of the group of
Möbius transformations of S1 on the vacuum sector H0 = H0(S1). The operator H0(ϕ)

is unitary for ϕ orientation preserving, and antiunitary for ϕ orientation reversing. Let
j0 : S1 → S1 denote complex conjugation, and let β : A(S1�) → A(S1�) be given by
β(x) = A( j0)(x∗). Recall the definition (B.6) of the isomorphism u. In order to prove
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(B.8), it is enough to show that the following squares labelled 1 , 2 , 3 , 4 commute up
to sign

L2(A(S"1 )) �A(K ) L2(A(S"2 )) H0 �A(S1�) H0

L2(A(S"1 )) �A(K ) L2(A(S"2 )) H0 �A(S1�) H0

J1�α J2 H0( j0)�β H0( j0)

v−1" L2(A( f1)) � v−1" L2(A( f2))

v−1" L2(A( f1)) � v−1" L2(A( f2))

1

H0 �A(S1�) H0 H0 �A(S1�) L
2(A(S1�)) H0 L2(A(S"3 ))

H0 �A(S1�) H0 H0 �A(S1�) L
2(A(S1�)) H0 L2(A(S"3 ))

1� v� ∼=

1� v� ∼=

H0( j0)�β H0( j0) H0( j0)�β L2(β) H0( j0) J3

L2(A( f3))−1v"

L2(A( f3))
−1

v"

2 3 4

where f1, f2, f3 are as in the proof of Lemma B.4. The squares 1 and 4 commute by [8,
Thm. 2.13 (iv)], and 3 is easily seen to be commutative. So the only square that remains
is 2 , which is equivalent to

H0 L2(A(S1�))

H0 L2(A(S1�))

v�

v�

H0( j0) L2(β) (B.9)

Note that by [8, Thm. 2.13 (ii)] (see also [8, Prop. 2.10]) and [8, Lem. 2.9] respectively,
both H0( j0) and L2(β) = L2(A( j0)) ◦ J implement j0 ([8, Def. 2.1]). Since both of
them are antilinear involutions that implement j0, by Schur’s lemma, they are equal up
to sign. ��

The isomorphism u : H1 �K H2 ∼= H3 from (B.5) satisfies a certain version of
associativity, which we now describe. Let {I1, I2, I3} be a c-cover of I . We call the
boundary points p, q, r , s and assume that they are arranged as follows:

I : p I1 q I2 r I3 s

Consider the circles

S1 := ∂(I1 × [0, 1]), S2 := ∂(I2 × [0, 1]), S3 := ∂(I3 × [0, 1]),
S12 := ∂((I1 ∪ I2)× [0, 1]), S23 := ∂((I2 ∪ I3)× [0, 1]), S123 := ∂(I × [0, 1]),
and let

H1 := H0(S1), H2 := H0(S2), H3 := H0(S3),

H12 := H0(S12), H23 := H0(S23), H123 := H0(S123)
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be the vacuum sectors associated the upper halves and to the involutions j : (x, t) 	→
(x, 1− t). Let also K := {q}× [0, 1] and L := {r}× [0, 1]. We then have the following
four instances of the isomorphism (B.5):

u12 : H1 �K H2 ∼= H12, u23 : H2 �L H3 ∼= H23,

u12,3 : H12 �L H3 ∼= H123, u1,23 : H1 �K H23 ∼= H123.

Lemma B.10. The above maps fit into a commutative diagram

H1 �K H2 �L H3 H12 �L H3

H1 �K H23 H123

1�u23 u12,3

u12� 1

u1,23

Proof. Lettingψ� : [0, 1] → S1� andψ! : [0, 1] → S1! be as in the proof of LemmaB.4,
and given diffeomorphisms f : S1 → S1, g : S3 → S1 subject to

∃ ε > 0 : ∀t ∈ [ 12 − ε, 1
2 + ε] : f (p, t) = ψ�(t), g(s, t) = ψ!(t),

∀t ∈ [0, 1] : f (q, t) = ψ!(t), g(r, t) = ψ�(t),

one can write u12,3 ◦ (u12 � 1) as

H1 �K H2 �L H3
v�v−1" L2A( f ) � 1� 1−−−−−−−−−−−−−→ L2A(S1�) �A(S1�) H2 �L H3

∼= H2 �L H3
L2A(( f −1◦ψ�)∪ id) � 1−−−−−−−−−−−−−−→ H12 �L H3

1� v�v−1" L2A(g)−−−−−−−−−−→
→ H12 �A(S1�) L

2A(S1�) ∼= H12
L2A(id∪(g−1◦ψ!))−−−−−−−−−−−−→ H123

and u1,23 ◦ (1 � u23) as

H1 �K H2 �L H3
1� 1� v�v−1" L2A(g)−−−−−−−−−−−−−→ H1 �K H2 �A(S1�) L

2A(S1�)

∼= H1 �K H2
1� L2A(id∪(g−1◦ψ!))−−−−−−−−−−−−−−→ H1 �K H23

v�v−1" L2A( f ) � 1−−−−−−−−−−→
→ L2A(S1�) �A(S1�) H23 ∼= H23

L2A(( f −1◦ψ�)∪ id)−−−−−−−−−−−−→ H123.

Both composites are equal to

H1 �K H2 �L H3
v�v−1" L2A( f ) � 1� v�v−1" L2A(g)−−−−−−−−−−−−−−−−−−−−→

L2A(S1�) �A(S1�) H2 �A(S1�) L
2A(S1�) ∼= H2

L2A(( f −1◦ψ�)∪ id∪(g−1◦ψ!))−−−−−−−−−−−−−−−−−−−→ H123 ��
We can now prove that the Hilbert space associated to � = S×[0, 1] is well defined

up to unique unitary isomorphism. Given a c-cover I of S, let

H (I)
� := H1 �A2 · · · �An Hn �A1 ∈ SectS�S̄(A)

be the Hilbert space defined in (B.2).
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Proposition B.11. Given two c-covers I1 and I2 of a circle S, there is a canonical
unitary isomorphism of S � S̄-sectors

u(I1,I2) : H (I1)
� −→ H (I2)

� .

Moreover, given three c-covers I1, I2, I3 of S, the following diagram commutes:

H (I1)
�

H (I2)
�

H (I3)
� .

u(I1,I2) u(I2,I3)

u(I1,I3)

(B.12)

Proof. Let I1 and I2 be two c-covers of S. If I1 is a refinement of I2, then we may
pick a sequence of c-covers I1 = J1 ≺ J2 ≺ · · · ≺ Jn = I2 such that each Jn is
obtained from the next one Jn+1 by subdividing some interval in two. Using (B.5) in
(1.11) produces a canonical isomorphisms of S � S̄-sectors vi : H (Ji )

� → H (Ji+1)
� . By

Lemma B.10, the composite

v(I1,I2) := vn−1 ◦ · · · ◦ v2 ◦ v1 : H (I1)
� −→ H (I2)

�

is independent of the choice of intermediate c-covers and it is straightforward to check
that the above isomorphisms satisfy v(I2,I3) ◦ v(I1,I2) = v(I1,I3).

Now given two arbitrary c-covers I1 and I2, we proceed as in Lemma 1.9. Chose
c-covers J , I ′, J ′ so that I1 � J ≺ I ′ � J ′ ≺ I2 and set

u(I1,I2) := v(J ′,I2)(v(J ′,I ′))−1v(J ,I ′)(v(J ,I1))−1 : H (I1)
� −→ H (I2)

� .

It is then fairly easy to verify that u(I1,I2) is independent of the choice of intermediate
c-covers J , I ′, J ′, and that it satisfies u(I2,I3) ◦ u(I1,I2) = u(I1,I3). ��

Given an interval I with local coordinates around its endpoints, let us denote by
∂(I × [0, 1])" := (I × [ 12 , 1]) ∩ ∂(I × [0, 1]), the upper half of ∂(I × [0, 1]). As a
corollary, we have the following result:

Theorem B.13. Let S be a circle. Then the Hilbert space H� ∈ SectS�S̄(A) associated
to the annulus � = S × [0, 1] is well defined up to canonical unitary isomorphism.

For every c-coverI = {I1, . . . , In} (Definition 1.8) of the circle S, there is a canonical
unitary isomorphism of S � S̄-sectors

u(I) : H� −→ H (I)
� = H1 �A2 · · · �An Hn �A1 (B.14)

where

Hi = L2A(∂(Ii × [0, 1])"
) ∈ Sect∂ Ii×[0,1](A)

and Ai = A((Ii−1 ∩ Ii )× [0, 1])
are as in (B.2).

Moreover, given two c-covers I1, I2, the composite u(I2) ◦ (u(I1))−1 is the map
u(I1,I2) from Proposition B.11.
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Proof. Let us define an element ξ ∈ H� to be a family of vectors {ξ (I) ∈ H (I)
� }I

indexed by all c-covers I of S, subject to the condition

u(I1,I2)(ξ (I1)) = ξ (I2) ∀ I1, I2. (B.15)

Addition and scalar multiplication are defined pointwise. The inner product is given
by 〈{ξ (I)}, {η(I)}〉 := 〈ξ (I0), η(I0)〉 for any c-cover I0, and is well defined because
the maps u(I1,I2) are unitary. Finally, the map u(J ) sends a family {ξ (I)}I to its J -th
element ξ (J ), and the inverse map sends η ∈ H (J )

� to the family {u(J ,I)(η)}I . The
latter sign satisfies (B.15) by (B.12). ��

As a consequence of Lemma B.7, the Hilbert space H� is equipped with an antilinear
involution J� : H� → H� given by

J� : H�
u(I)−−→ H1 �A2 · · · �An Hn �A1

εn ·J1�···�Jn−−−−−−−−→ H1 �A2 · · · �An Hn �A1
(u(I))∗−−−−→ H�,

(B.16)

where Ji is the modular conjugation on Hi = L2(A(S"i )), and ε ∈ {±1} is the sign
that appears in Lemma B.7 (the latter only depends on the conformal net A, and is
conjecturally equal to 1).

Our next task is to construct a canonical isomorphism (B.1) between H� and L2A(S).
This will occupy us for the remainder of this appendix. Recall that � = S × [0, 1], and
that H� is the associated Hilbert space, constructed in B.13.

Theorem B.17. There is a canonical isomorphism of S � S̄-sectors

w : L2A(S) → H� (B.18)

that intertwines the modular conjugation on L2A(S) and the involution J� on H� .

Proof. Recall from Theorem 1.20 that there is a canonical isomorphism
A(S) ∼=⊕λ∈
 B(Hλ(S)). After applying the functor L2, this becomes an isomorphism

L2A(S) ∼=
⊕

λ

HS(Hλ(S)) ∼=
⊕

λ

Hλ(S)⊗ Hλ(S),

where HS stands for the Hilbert space of Hilbert-Schmidt operators. Note that, by
Lemma 1.17, the right hand side is non-canonically isomorphic to

⊕
λ Hλ(S)⊗ Hλ̄(S̄).

Let us simplify the notation and write Hλ instead of Hλ(S). We therefore have a
canonical isomorphism L2A(S) ∼=⊕λ Hλ ⊗ Hλ. We know from (1.18) that the S � S̄-
sectors H� and L2A(S) are isomorphic. Therefore, in order to make the isomorphism
canonical, it is enough to identify hom(Hλ ⊗ Hλ, H�) and C for every λ ∈ 
. Once
canonical isomorphisms

�λ : hom
(
Hλ ⊗ Hλ, H�

) → C (B.19)

are constructed, we may consider the isometries

wλ := �−1
λ (1)

‖�−1
λ (1)‖ : Hλ ⊗ Hλ → H�.
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Taking the sum over λ will then give us the desired unitary isomorphism

w := ⊕λwλ : L2A(S) ∼=
⊕

λ

Hλ ⊗ Hλ −→ H�. (B.20)

As a first step towards (B.19), we construct an isomorphism

�I = �λ,I : hom
(
Hλ ⊗ Hλ, H�

) → C (B.21)

that depends on the choice of an interval I ⊂ S and on the choice of local coordinates
at the two endpoints of I . We will show later that this map is in fact independent of the
choice of interval and of local coordinates. Let I ′ be the closure of S \ I , and let

SI := ∂(I × [0, 1]) SI ′ := ∂(I ′ × [0, 1]) S+I := ∂(I × [ 12 , 1]) S−I := ∂(I × [0, 1
2 ])

be as in the following picture:

I :

I ′ :

S+I

S−I

SI ′

SI

Recall that ∂(I × [0, 1])" denotes the upper half of SI , and let us write ∂(I × [0, 1])⊥
for the corresponding lower half.

Let also HI := H0(SI ), H ′I := H0(SI ′), H+
I := H0(S+I ), H

−
I := H0(S

−
I ) be the

correspdonding vacuum sectors. More precisely, we take HI to be the vacuum sector
associated to the circle SI , its upper half ∂(I × [0, 1])", and the involution j : (x, t) 	→
(x, 1− t). Similarly, we let H ′I be the vacuum sector associated to SI ′ , its upper half, and
j . The vacuum sector H+

I ∈ SectS+I (A) is chosen arbitrarily in its isomorphism class.

Finally, we take H−I := j∗(H+
I ).10 Let also

A := A(I ′ × {0, 1}), B := A(I × {0, 1}), C := A(∂ I × [0, 1]),
B0 := A(I × {0}), B1 := A(I × {1}), B1/2 := A(I × {1/2}),

D0 := A(∂(I × [0, 1])⊥
)
, D1 := A(∂(I × [0, 1])"

)

with orientations as indicated here:

A : B : C :

B0 : B1 : B1/2 :

D0 : D1 : .

10 The functor j∗ : SectS+I (A) → SectS−I
(A) is defined in [8, Eq. (1.12)].
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Finally, let us denote by D the algebra A([0, 1
2 ] ∪ I ′ ∪ [0, 1

2 ]
)
, which we identify with

D1 in the obvious way. With all those preliminaries in place, we can now define the map
(B.21) as the composite of the following isomorphisms:

�I : hom
(
Hλ ⊗ Hλ, H�

)→ homA∨B
(
Hλ ⊗ Hλ, HI �C H ′I

)

→ homA∨C
(
(Hλ ⊗ Hλ) �B HI , H

′
I

)

→ homA∨C
(
(Hλ ⊗ Hλ) �B HI , H

′
I

)

→ homA∨C
(
Hλ �B0 HI �B1 Hλ, H

′
I

)

→ homA∨C
(
Hλ �B0 H−I �B1/2 H+

I �B1 Hλ, H
′
I

)

= homD0∨D1

(
Hλ �B0 H−I �B1/2 H+

I �B1 Hλ, H
′
I

)

= homD,D
(
Hλ �B0 H−I �B1/2 H+

I �B1 Hλ, L
2(D)
)

→ C.

(B.22)

The firstmap is the isomorphism (B.14) associated to the c-cover {I, I ′} of S. The second
map is a duality isomorphism, using thatA has finite index. The third map is the modular
conjugation of HI = L2A(∂(I × [0, 1])"). The fourth map is an instance Lemma A.4.
The fifth map is the counit of the duality between H−I and H+

I . Finally, the sixth and last
map sends the counit of the duality between Hλ �B0 H

−
I and H+

I �B1 Hλ to the complex
number 1 ∈ C.

At this point, we can check that (B.20) intertwines the modular conjugation J on
L2A(S) and the involution J� on H� . Note that the restriction of J to Hλ ⊗ Hλ is the
map that exchanges the two factors. We need to show that �−1

λ (1) : Hλ ⊗ Hλ → H�

intertwines that involution with J� . In other words, we need to show that �−1
λ (1) is

invariant under the natural involution on hom(Hλ ⊗ Hλ, H�). All the spaces in (B.22)
are equipped with their own antilinear involution, and all the maps are compatible with
the involutions. The invariance of �−1

λ (1) then follows from the invariance of 1 ∈ C

under complex conjugation.

Given two intervals I1, I2 ⊂ S, each one with local coordinates at their boundary,
we still need to show that �I1 = �I2 . Without loss of generality, we may assume that
I1 ⊂ I2, that the two intervals share a common boundary point p, and that the local
coordinates agree at that point. Let ϕ ∈ Diff+(S) be a diffeomorphism that sends I1 to I2
and that is compatible with the local coordinates. In particular, ϕ fixes a neighborhood of
the point p. Pick an interval J that contains supp(ϕ) in its interior and thatmisses the point
p, and let v ∈ A(J ) be a unitary that implements ϕ, that is, such that Ad(v) = A(ϕ).

Let H1 := HI1 , H
′
1 := H ′I1 , H

+
1 := H+

I1
, H−1 := H−I1 be the Hilbert spaces that enter

in the definition of �I1 , and let H2, H ′2, H+
2 , H

−
2 be the corresponding Hilbert spaces

for �I2 . By evaluating L2(A(−)) on the diffeomorphisms that ϕ induces between the
upper halves of the appropriate circles, we get unitary isomorphisms a : H1 → H2 and
a′ : H ′1 → H ′2. Let b+ : H+

1 → ϕ∗(H+
2 ) be an arbitrary S+I1 -sector isomorphism, and let

b− := j∗(b+) : H−1 → ϕ∗(H−2 ). Finally, let c : Hλ → Hλ and c̄ : Hλ → Hλ be the
maps induced by multiplication by v. We then get a diagram
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hom
(
Hλ ⊗ Hλ, H�

)

hom
(
Hλ ⊗ Hλ, H1 � H ′1

)

hom
(
(Hλ ⊗ Hλ) � H1, H ′1

)

hom
(
(Hλ ⊗ Hλ) � H1, H ′1

)

hom
(
Hλ � H1 � Hλ, H ′1

)

hom
(
Hλ � H−1 � H+

1 � Hλ, H ′1
)

C

hom
(
Hλ ⊗ Hλ, H�

)

hom
(
Hλ ⊗ Hλ, H2 � H ′2

)

hom
(
(Hλ ⊗ Hλ) � H2, H ′2

)

hom
(
(Hλ ⊗ Hλ) � H2, H ′2

)

hom
(
Hλ � H2 � Hλ, H ′2

)

hom
(
Hλ � H−2 � H+

2 � Hλ, H ′2
)

C

1

2

3

4

5

6

where various subscripts are left implicit, the vertical arrows compose to �I1 and
�I2 , and the horizontal arrows are induced bya,a

′, b+, b−, c, c̄. The squares 2 , 3 , . . . , 6

are easily seen to commute. Finally, the commutativity of 1 is the content of
Lemma B.23. ��

Recall that H1 = HI1 , H2 = HI2 , H
′
1 = H ′I1 , H

′
2 = H ′I2 are the vacuum sectors

associated to the boundaries of I1 × [0, 1], I2 × [0, 1], I ′1 × [0, 1], and I ′2 × [0, 1].
Lemma B.23. Let Hλ, H� , HI1 , H

′
I1
, HI2 , H

′
I2
, a, a′, c, c̄ be as above, and let u1 :

H� → HI1 � H ′I1� and u2 : H� → HI2 � H ′I2� be instances of (B.14). Then
the triangle

u1◦− u2◦−
(a�a′)◦−◦(c⊗c̄)∗

hom
(
Hλ ⊗ Hλ, H�

)

hom
(
Hλ ⊗ Hλ, HI1 � H ′I1�

)
hom
(
Hλ ⊗ Hλ, HI2 � H ′I2�

)

is commutative, where the hom are taken in the category of S � S̄-sectors.

Proof. Given a morphism of S � S̄-sectors f : Hλ ⊗ Hλ → H� , we need to show that
(a � a′) ◦ u1 ◦ f ◦ (c⊗ c̄)∗ = u2 ◦ f . Recall that c is the operator of multiplication by
the unitary v, defined above. The operator

c ⊗ c̄ : Hλ ⊗ Hλ → Hλ ⊗ Hλ

is therefore given by multiplication by v⊗ v̄. Since u1 ◦ f commutes with the action of
that element, we have

(a � a′) ◦ u1 ◦ f ◦ (c ⊗ c̄)∗ = (a � a′) ◦ (v ⊗ v̄)∗ ◦ u1 ◦ f,

and so it is enough to show that (a � a′)(v ⊗ v̄)∗u1 = u2. In other words, we need to
show that the following triangle commutes:

u1 u2

(a�a′)(v⊗v̄)∗

H�

HI1 � H ′I1� HI2 � H ′I2�
(B.24)
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Recall that I1 is contained in I2, and that p is their common boundary point. Recall
that ϕ is a diffeomorphism that satisfies ϕ(I1) = I2, and that it is the identity in a
neighborhood of p. Finally, recall that Ad(v) = A(ϕ). Let q ∈ I ′2 be such that the
interval K := [q, p] ⊂ S is disjoint from supp(ϕ), and let J1 and J2 be the closures of
I ′1 \ K and I ′2 \ K .

p

I1 :
p

I2 : I ′1 : I ′2 :

J1 : J2 :
p q

K : supp(ϕ) :

Chose a local coordinate at the point q, and let HJ1 , HJ2 , HK be the vacuum sectors
associated to the boundaries of J1 × [0, 1], J2 × [0, 1], K × [0, 1], their upper halves,
and the involution j . We then have the following two commutative triangles

H� H�

k1 k2HI1 � HJ1 � HK� HI1 � H ′I1� , HI2 � HJ2 � HK� HI2 � H ′I2�
(B.25)

where the horizontal maps k1 and k2 are induced by (B.5), and the maps from H� are
instances of (B.14). There is also a commutative square

HI1 � H ′I1� HI2 � H ′I2�

HI1 � HJ1 � HK� HI2 � HJ2 � HK�
k−11 k−12

(a�a′)(v⊗v̄)∗

(a�a′′�1)(v⊗v̄)∗
(B.26)

where a′′ : HJ1 → HJ2 is the value of L
2(A(−)) on the diffeomorphism that ϕ induces

from the upper half of ∂(J1×[0, 1]) to the upper half of ∂(J2×[0, 1]). In view of (B.25)
and (B.26), the commutativity of (B.24) is equivalent to that of

(a�a′′�1)(v⊗v̄)∗

H�

HI1 � HJ1 � HK HI2 � HJ2 � HK

(B.27)

where themaps down from H� are again instances of (B.14). Consider now the following
two commutative triangles

H�

HI1 � HJ1 � HK�

HK ′ � HK�

HI2 � HJ2 � HK�

ω1�1 ω2�1

(B.28)
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where ω1 : HI1 � HJ1 → HK ′ and ω2 : HI2 � HJ2 → HK ′ are instances of (B.5), and
the maps from H� are as in (B.14). Using (B.28), we can further reduce (B.27) to the
commutativity of this triangle:

ω1�1 ω2�1

(a�a′′�1)(v⊗v̄)∗

HK ′ � HK�

HI1 � HJ1 � HK HI2 � HJ2 � HK

(B.29)

Recall that the support of ϕ is disjoint from K . It follows that v ∈ A(K ′), and that the
operator v ⊗ v̄ only acts on HI1 � HJ1 . The commutativity of (B.29) therefore boils
down to the commutativity of this diagram:

ω1 ω2

(a�a′′)(v⊗v̄)∗

HK ′

HI1 � HJ1 HI2 � HJ2

(B.30)

Write

ϕI : ∂(I1 × [0, 1])" → ∂(I2 × [0, 1])" ϕJ : ∂(J1 × [0, 1])" → ∂(J2 × [0, 1])"
ϕK : ∂(K ′ × [0, 1])" → ∂(K ′ × [0, 1])"

for the maps induced by ϕ, and recall that a = L2A(ϕI ) and a′′ = L2A(ϕJ ). Pick

f I : ∂(I1×[0, 1])" → S1" f J : ∂(J1×[0, 1])" → S1" fK : ∂(K ′×[0, 1])" → S1"
with the same properties as the maps f1, f2, f3 that enter (B.6), and let

gI : ∂(I2×[0, 1])" → S1" gJ : ∂(J2×[0, 1])" → S1" gK : ∂(K ′×[0, 1])" → S1"
be given by gα = fα ◦ ϕ−1α , α ∈ {I, J, K }. By definition, we have

ω1 =
(
L2A( fK )−1

)(
1 � v�v−1"

)(
L2A( f I ) � L2A( f J )

)

ω2 =
(
L2A(gK )−1

)(
1 � v�v−1"

)(
L2A(gI ) � L2A(gJ )

)
.

For w := A( fK )(v), it follows from Ad(v) = A(ϕK ) that Ad(w) = A( fK ◦ g−1K ).
Writing H0 for L2A(S1"), the triangle (B.30) can then be decomposed as

HK ′

HI1 � HJ1 HI2 � HJ2HI1 � HJ1

H0 � H0

H0

H0 � H0

H0

L2A( f I )�L2A( f J )

1�v!v−1"

L2A( fK )−1

L2A(gI )�L2A(gJ )

1�v!v−1"

L2A(gK )−1

w⊗w̄

w⊗w̄

L2A( f I )�L2A( f J )

v⊗v̄
L2A(ϕI )�L2A(ϕJ )

and it is now clear that each one of the pieces commutes. ��
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