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We consider the following question: How many edge-disjoint plane spanning trees are 
contained in a complete geometric graph G Kn on any set S of n points in general position 
in the plane? We show that this number is in �(

√
n). Further, we consider variants of this 

problem by bounding the diameter and the degree of the trees (in particular considering 
spanning paths).

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

A geometric graph G = (S, E) consists of a set of ver-
tices S , which are points in general position in the plane, 
and a set of edges E which are straight-line connec-
tions between two of these points. A long-standing open 
question is the following: Does every complete geometric 
graph with 2n vertices have a partition of its edges into n
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plane spanning trees? For complete convex geometric graphs
(where all vertices lie in convex position), a positive an-
swer to this question follows from a result by Bernhart and 
Kainen [6] (see [7]). Bose et al. [7] gave a characterization 
of the solutions; for complete convex geometric graphs all 
spanning trees can, but do not have to, be spanning paths. 
They also described a sufficient condition generalizing the 
convex case and considered a relaxation where the trees 
are not required to be spanning.

We consider a closely related question: How many 
edge-disjoint plane spanning trees are contained in a com-
plete geometric graph G Kn on any set S of n points in gen-
eral position in the plane? In Section 2 we show how to 
combine a construction by Bose et al. [7] with a result by 
Aronov et al. [5] to prove that G Kn contains �(

√
n) edge-

disjoint plane spanning trees. Furthermore, if the convex 
hull of S contains h vertices then we can argue that G Kn

contains at least 
⌊

h
2

⌋
edge-disjoint plane spanning trees. 

We also show that G Kn contains at least 2 plane edge-
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disjoint spanning trees if n ≥ 4 and at least 3 edge-disjoint 
spanning trees if n ≥ 6.

In Section 3 we study the special case of spanning 
paths. In particular, we first consider the “regular wheel 
configuration”, that is, a set of points W2n which con-
sists of 2n − 1 points regularly spaced on a circle C and 
a point at the center of C . Let GW2n be the complete ge-
ometric graph on W2n . We can argue that GW2n can be 
partitioned into n spanning trees. But surprisingly, if n ≥ 3
then none of these trees can be paths. If the “hub” of 
the wheel is moved close to the convex hull, then all n
spanning trees can be paths. This raises the following in-
teresting open question: When does this transition happen 
and is it gradual? That is, does the number of spanning 
paths increase whenever the hub passes over certain di-
agonals? Note, though, that spanning paths can of course 
be used in packings which are not partitions. More specif-
ically, GW2n always contains n − 1 spanning paths. Only 
when we ask for a complete partition of the edges we can-
not use even a single spanning path.

On the positive side we argue that G Kn contains at 
least 2 edge-disjoint spanning paths if n ≥ 4. Obviously 
it would be desirable to extend our argument to 3 or 
more paths or to develop a different line of reasoning to 
prove that G Kn always contains many paths. Alternatively, 
it would be very interesting to find point sets which con-
tain only few edge-disjoint plane spanning paths.

We also study packings of edge-disjoint planar span-
ning trees that have bounded vertex degree and bounded 
diameter. In particular, in Section 4 we show that for any 
k ≤ √

n/12 any set of n points has k edge-disjoint plane 
spanning trees with maximum vertex degree O (k2) and di-
ameter O (log(n/k2)).

Related work. A classic related problem in extremal graph 
theory is the following. For general geometric graphs, what 
is the maximum number f (k, n) such that there exists a 
geometric graph G of n vertices and f (k, n) edges such 
that G contains no k disjoint edges? Erdős [11] showed 
that for all n ≥ 3, f (2, n) = n, i.e., any geometric graph 
with n + 1 edges contains a disjoint pair. For general k, 
Tóth and Valtr [21] gave the lower and upper bounds 
of 3/2(k − 1)n − 2k2 ≤ f (k + 1, n) ≤ k3(n + 1), and also 
showed that 4n − 9 ≤ f (4, n) ≤ 8.5n. Černý [8] proved 
f (3, n) ≤ �2.5n�. More specifically, the existence of certain 
plane subgraphs has been investigated. Károlyi, Pach, and 
Tóth [14] showed that any edge 2-coloring of a complete 
geometric graph G Kn admits a monochromatic plane span-
ning tree. Černý et al. [9] also considered the existence 
of plane spanning trees in geometric graphs. They showed 
that after removing any set of at most (1/2

√
2)

√
n edges 

from any G Kn , the resulting graph still contains a plane 
spanning path. Aichholzer et al. [4] considered perfect 
matchings, subtrees and triangulations as plane subgraphs; 
further references to similar results can be found in [4]. For 
any geometric graph G , Rivera-Campo [19] showed that if 
any subgraph of G induced by five vertices has a plane 
spanning tree, then G as well has a plane spanning tree. 
Keller et al. [15] gave a characterization of the smallest 
subgraphs of any G Kn that share at least one edge with 
any plane spanning tree of G Kn (so-called blockers). They 
showed that if a subgraph G is a blocker for all plane span-
ning trees of diameter at most four, then G blocks all plane 
spanning subgraphs; if the vertices of G Kn are in convex 
position, the result already holds for a diameter of at most 
three.

Also the number of plane spanning trees attracted in-
terest, analogously to classic results on the number of 
spanning trees (the tree density) in general graphs. Nash-
Williams [17] and Tutte [22] independently showed that a 
graph G has a tree density of k if |E P (G)| ≥ k(|P | − 1) for 
every partition P of V (G), where E P (G) denotes the set of 
edges between different members of P . This was used by 
Kundu [16] to relate the tree density in general graphs to 
their edge-connectivity: any k-edge-connected graph has 
at least �k − 1/2	 edge-disjoint spanning trees.

Our problem is also closely related to the concept of 
k-book embeddings of topological graphs, where, informally, 
the vertices are considered to be on the spine of a book 
and each edge of the graph is either on the spine or on ex-
actly one of the k pages, such that no two edges cross. The 
book thickness of a graph G is the smallest number k for 
which there exists a k-book embedding of G . Bernhart and 
Kainen [6, Theorem 3.4] showed that, for n ≥ 4 vertices, 
the book thickness of the complete graph is �n/2	. Their 
construction of �n/2� edge-disjoint paths directly carries 
over to packing the same amount of plane spanning paths 
in the complete convex geometric graph [7].

A concept between graph-theoretical thickness and 
book thickness was later developed by Dillencourt, Epp-
stein, and Hirschberg [10]: given an abstract graph G , the 
geometric thickness of G is the smallest number k such that 
there exists a straight-line drawing of the graph that can 
be partitioned into k plane subgraphs. They showed that 
the geometric thickness of the (abstract) complete graph is 
between �(n/5.646) + 0.342	 and �n/4	.

Since the initial presentation of this work, the prob-
lem has attracted further attention. Most prominently, the 
lower bound on the number of plane edge-disjoint span-
ning trees has been improved to �n/3� by García [12]. 
Schnider [20] considers the special case of double stars 
(i.e., trees with only two interior nodes), showing that a 
partition into such trees does not always exist, and pro-
vides necessary as well as sufficient conditions for its exis-
tence.

2. Packing spanning trees

Recall that G Kn is the complete geometric graph on any 
set S of n points in general position in the plane.

Theorem 1. G Kn contains �(
√

n) edge-disjoint plane spanning 
trees.

Proof. Let S be a set of n points in the plane, and let F
be a set of k edges (pairs of points of S) such that each 
pair of edges in F has an interior crossing. The set F is 
called a crossing family. We claim that there exists a set 
of k edge-disjoint plane spanning trees on S . We use a 
construction similar to the double stars by Bose et al. [7]. 
For each edge e = pq ∈ F , let �e be the supporting line 
of e. We connect all points to the left of �e to p, and all 
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Fig. 1. A set of 15 points with 4 pairwise crossing edges.

points to the right of �e to q. These edges together with e
form a tree Te (see Fig. 1).

To see that this yields k edge-disjoint trees, consider 
two trees T pq and Trs . Suppose some edge is in both trees. 
Then one of its endpoints must be p or q, and the other 
endpoint must be r or s. However, if r lies to the left of 
�pq , then pr and qs are in T pq and ps and qr are in Trs , 
and vice versa if r lies to the right of �pq .

Aronov et al. [5] showed that any set of n points con-
tains a crossing family of size 

√
n/12. The theorem follows 

immediately. �
In a set of h points in convex position, there is always 

a crossing family of size �h/2�. The proof of Theorem 1
therefore immediately implies the following.

Corollary 1. The complete graph of a set S of n points, of which 
h are in convex position, contains at least �h/2� edge-disjoint 
plane spanning trees.

Theorem 2. If n ≥ 4 then G Kn contains at least 2 edge-disjoint 
plane spanning trees.

Proof. Let S be a set of n points in the plane and let e = rb
be an edge spanned by S having exactly 2 points (p and q) 
of S on one side (i.e., on one side of the straight line sup-
porting e). The set {p, q, r, b} is either in convex position 
(Case 1; see Fig. 2 (left)) or forms a triangle with one inte-
rior point (Case 2; see Fig. 2 (right)). Note that e has to be 
an edge of the convex hull of {p, q, r, b}. W.l.o.g., let pqrb
be the convex polygon in Case 1 and let q be the point in-
side the triangle prb in Case 2. In both cases we construct 
two edge-disjoint spanning trees on {p, q, r, b}, 〈q, r, p, b〉
(blue) and 〈p, q, b, r〉 (red). To get two edge-disjoint span-
ning trees on S we connect all points of S \ {p, q, r, b}
with b (for the blue tree) and with r (for the red tree). �

Note that the proof of Theorem 1 also immediately im-
plies Theorem 2 for n ≥ 5, because then there always exists 
a pair of crossing edges in G Kn . For n = 4 the two cases for 
{p, q, r, b} shown in Fig. 2 serve as a proof.

Lemma 1. G K6 contains 3 edge-disjoint plane spanning trees.

Proof. For n = 6 there exist 16 combinatorially different 
point sets (order types) [3]. It is easy to check that each 
of these 16 cases allows for 3 edge-disjoint plane spanning 
trees packed on G K6 (see Fig. 8). �

Using the order type database for small point sets [2]
it can be easily checked that G K8 and G K9 each contain 4 
edge-disjoint plane spanning trees, and that G K10 contains 
5 edge-disjoint plane spanning trees. (The latter has been 
obtained by reducing the set of order types to so-called 
crossing-maximal ones, as characterized in [18].)

Theorem 3. If n ≥ 6 then G Kn contains at least 3 edge-disjoint 
plane spanning trees.

Proof. Let S be a set of n points in the plane and let e = rb
be an edge spanned by S having exactly 4 points of S on 
one side (i.e., on one side of the straight line �e supporting 
e). Let S ′ be the set of 6 points containing r, b, and the 
exactly 4 points on one side of e. By Lemma 1, S ′ contains 
3 edge-disjoint plane spanning trees. For simplicity we call 
them red, blue, and green. W.l.o.g., assume that e is part 
of the red tree. Note that each point of S ′ is incident to all 
three trees, and that r and b are extremal points for S \
(S ′ \ {r, b}). We construct a red and a blue plane spanning 
tree by connecting r and b, respectively, with all points in 
S \ S ′ .

Next we construct the third (green) plane spanning tree 
on S . Note that the green plane spanning tree on S ′ can 
be completed to a triangulation T . Let q be the point of 
S ′ \ {r, b} such that qrb is a triangle in T . Observe that any 
edge incident to q and crossing e does not cross a green 
edge.

Assume that there exists a point q′ ∈ (S \ S ′) such that 
the edge qq′ crosses e. Then we connect q and q′ with a 
green edge and complete the green plane spanning tree 
by connecting all points in S \ (S ′ ∪ {q′}) with q′ . See 
Fig. 3 (left).
Fig. 2. The two cases for constructing two edge-disjoint plane spanning trees on S . (For interpretation of the colors in this figure, the reader is referred to 
the web version of this article.)
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Fig. 3. Two examples depicting the construction of three edge-disjoint plane spanning trees on S . (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

Fig. 4. The graph GW2n cannot have plane spanning paths if it is partitioned into plane spanning trees. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)
If such a point q′ does not exist, then there has to exist 
an edge e′ of the convex hull of S , such that e′ crosses �e . 
Denote by p the endpoint of e′ in S \ S ′ . We color e′ green 
and complete the green plane spanning tree by connecting 
all points in S \ (S ′ ∪ {p}) with p. See Fig. 3 (right). �
3. Packing spanning paths

Let W2n be a set of 2n points in the “regular wheel 
configuration” in the plane. W2n consists of 2n − 1 points 
regularly spaced on a circle C and a point at the center 
of C . Let GW2n be the complete geometric graph on W2n .

Theorem 4. GW2n can be partitioned into n spanning trees. If 
n ≥ 3 then none of these trees can be a path.

Proof. In the following, we color the edges of GW2n that 
each class is plane and spanning. Let v0 be the cen-
tral vertex and let the other vertices be v1, . . . , v2n−1 in 
cyclic order. The complete graph has edges of varying 
length between the vertices v1, . . . , v2n−1, and we can use 
E1, . . . , En−1 to denote the length classes of the edges, 
from short to long. The edges involving v0 are called the 
radial edges. There are 2n − 1 edges in each length class 
and also 2n − 1 radial edges.

We first consider the length class En−1, then the radial 
edges, and then En−2, . . . , E1, and see how we must color 
these edges to produce plane spanning trees.

Given that there are 2n − 1 edges in En−1, to be di-
vided over n colors, and every non-adjacent pair of edges 
intersect, we will get these edges in n − 1 pairs and one 
singleton, see Fig. 4(a). Call the color of the singleton edge 
in En−1 red. The pairs must be two adjacent edges (they 
have a shared vertex), forming a wedge with point v0 in 
between and at least one point to each side of the wedge 
if there are at least six points. This immediately shows 
Fig. 5. GW2n contains n − 1 plane spanning paths. (For interpretation of 
the colors in this figure, the reader is referred to the web version of this 
article.)

that all spanning trees with non-red color are not paths. 
To show that a red spanning tree also cannot be a path, 
we observe that v0 can have at most one edge in each 
non-red color (otherwise we make a cycle or an intersec-
tion within that color). Therefore, it must have n incident 
red edges, showing that the red spanning tree is not a path 
either if n ≥ 3 (Fig. 4(b)).

We proceed to show that the geometric graph contains 
n plane spanning trees. We color the radial edges by us-
ing the red color n times. There are two options when we 
do not have crossings or cycles, and they are symmetric. 
The remaining radial edges get the other n − 1 colors, one 
for each, and such that a path of length 3 appears in each 
color. Then we assign the edges in En−2, . . . , E1 a color at 
once. We make 2n − 1 fans, one for each of v1, . . . , v2n−1, 
consisting of one edge of each length class (there are two 
choices: clockwise and counterclockwise), see Fig. 4(c) for 
the two fans of one color. Each fan can be assigned a color 
so that all spanning trees are isomorphic balanced dou-
ble stars, completing the partitioning into n plane spanning 
trees (Fig. 4(d)). �
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Fig. 6. Partition of S \ {p} and the two edge-disjoint spanning paths. Left: q �= bl . Right: q = bl . (For interpretation of the colors in this figure, the reader is 
referred to the web version of this article.)
Interestingly, GW2n contains n − 1 plane spanning 
paths, via the zigzag construction used for points in con-
vex position (as described in [7]). When the path passes 
the center point, it picks it up using two radial edges in-
stead of a long edge, see Fig. 5. But to get one more plane 
spanning tree in GW2n , all paths must be trees.

We now return to G Kn , the complete geometric graph 
on any set S of n points in general position in the plane.

Theorem 5. If n ≥ 4 then G Kn contains at least 2 edge-disjoint 
plane spanning paths.

Proof. Let S be a set of n points in the plane and let p be 
an extremal point of S . Order the points of S \ {p} clock-
wise around p. Partition S \ {p} into two (disjoint) sets A
and B , such that A ∪ B = S \ {p} and |B| − 1 ≤ |A| ≤ |B|. 
We denote by � a line through p (but no other point of S) 
that is separating A from B (see Fig. 6).

We will construct the two edge-disjoint paths, for 
simplicity call them red and blue. The red path (R =
G(V , E1)) we simply construct as a plane zigzag path start-
ing at p, with a point q in B as a second point, and with 
every edge of R, except pq, intersecting l. (An algorithm 
for constructing such a zigzag path is described by Hersh-
berger and Suri [13], see also Abellanas et al. [1].)

The blue path (B = G(V , E2)) consists of two subpaths, 
BA and BB , joined at p. Observe that no red edge (edge 
of R) connects two points of A ∪ {p} or two points of B . 
Thus, any (blue) path completely contained in A ∪ {p} is 
edge-disjoint to R. We choose the path starting at p and 
connecting the points of A in clockwise order around p
for BA .

Let b f and bl be the first and last, respectively, point of 
B in clockwise order around p. If q = bl then we connect p
with b f and continue on the points of B \{b f } in clockwise 
order around p for BB (see Fig. 6 (right)). Otherwise, we 
construct BB with pbl as the first edge and then finish 
the path by connecting the points of B \ {bl} in counter 
clockwise order around p (see Fig. 6 (left)).

Connecting BA and BB at p results in the plane span-
ning path B that is edge-disjoint to the plane spanning 
path R. �
4. Packing spanning trees with low degree

The edge-disjoint plane spanning trees we studied in 
the previous sections are somehow extreme in terms of 
vertex degree. The trees constructed in Section 2 always 
Fig. 7. The hierarchical clustering strategy.

contain at least one vertex of degree �(n), while in Sec-
tion 3 we consider spanning paths. Thus the question 
arises if intermediate results are possible. In the following, 
we obtain a trade-off between the number of edge-disjoint 
spanning trees and the maximum degree of each vertex.

Theorem 6. For any set S of n points and k ≤ √
n/12 there exist 

k edge-disjoint plane spanning trees T1, . . . , Tk on S such that 
the maximum degree of any tree is in O (k2). Also, the diameter 
of each tree is in O (log(n/k2)).

Proof. The general idea of the proof is to “peel off” small 
clusters of points and connect each of the clusters with 
k edge-disjoint spanning trees independently. Consider a 
(12k2 −2)-edge, i.e., an edge uv , u, v ∈ S , such that exactly 
12k2 − 2 points of S are strictly to the left of the directed 
line � through uv . Consider the set C1 of these 12k2 points 
and construct k edge-disjoint plane spanning trees of C1
using Theorem 1. Now consider the midpoint between u
and v . Let �′ be a line through that midpoint that splits 
the remaining point set S \ C1 into two subsets Su and S v , 
each containing at most 

⌈
(n − 12k2)/2

⌉
points.

Since the two subsets are separated by �′ , we can re-
cursively repeat a similar process in the two subsets inde-
pendently. That is, pick a (12k2 − 2)-edge u′v ′ of Su ∪ {u}
such that u is contained among the 12k2 points separated 
by u′v ′ but is not an endpoint of the edge (such an edge 
must always exist). We construct k plane spanning trees 
on this subset, which are connected to the spanning trees 
of C1 via u. We treat S v ∪ {v} analogously (see Fig. 7). The 
recursion stops when we are not able to partition the re-
maining points into two sets of size at least 12k2 −1; here, 
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Fig. 8. The 16 combinatorially different point sets for n = 6 [3,2], with 3 edge-disjoint plane spanning trees each.
we simply add the remaining points of the subset to the 
last cluster. Note that this cluster must have between 12k2

and 36k2 −3 points, thus we can still create k edge-disjoint 
spanning trees using Theorem 1.

We construct the k spanning trees of S by assigning 
one of the spanning trees of each cluster arbitrarily to each 
of the trees T1, . . . , Tk . We claim that the resulting trees 
are indeed spanning: By construction, each tree is span-
ning in the cluster; hence points of the same cluster will 
be connected in Ti (for all i ≤ k). Moreover, the hierarchi-
cal construction certifies that each cluster shares a point 
with the cluster constructed in the previous step of induc-
tion. Likewise, planarity of each tree is guaranteed.

We obtain at most N = ⌊
n/(12k2 − 1)

⌋
clusters which 

are arranged such that they form a balanced binary tree 
with C1 as root. Note that the spanning trees constructed 
in the proof of Theorem 1 have diameter 3. Thus, the di-
ameter of each spanning tree is at most 6 

⌈
log2 N

⌉
. The 

degree bound follows from the fact that any point of S can 
only belong to at most two clusters (and each cluster has 
�(k2) points). �
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