
44 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

The Crowd in
Requirements
Engineering
The Landscape
and Challenges

Eduard C. Groen, Fraunhofer Institute for Experimental
Software Engineering

Norbert Seyff, University of Applied Sciences and Arts
Northwestern Switzerland

Raian Ali, Bournemouth University

Fabiano Dalpiaz, Utrecht University

Joerg Doerr, Fraunhofer Institute for Experimental
Software Engineering

Emitza Guzman, University of Zurich

Mahmood Hosseini, Bournemouth University

Jordi Marco and Marc Oriol, Polytechnic University of Catalonia

Anna Perini, FBK Center for Information and Communication
Technology

Melanie Stade, University of Applied Sciences and Arts
Northwestern Switzerland

// Performing requirements engineering with

the crowd of stakeholders (CrowdRE) turns

it into a participatory effort supported by

automation, leading to better requirements and

software quality. Although any stakeholder can

contribute, CrowdRE emphasizes one group

whose role is often trivialized: users. //

ENGAGING A LARGE number of
users in requirements engineering
(RE) has always been a challenge
with traditional RE methods.1 This
is especially true when RE should
involve a large number of software
product users (a crowd) who are be-
yond an organization’s reach.2

Traditional RE approaches usu-
ally involve a limited number of rep-
resentatives in interviews or focus
groups. Advanced RE approaches
applied in market-driven RE3 en-
able companies to directly interact
with key stakeholders using ad hoc
feedback-gathering channels.4 How-
ever, these approaches miss the op-
portunity to continuously involve
large, heterogeneous groups of users
who express their feedback through
a variety of media.2,5,6 This means
developers can’t consider the di-
verse backgrounds of user subgroups
when they’re developing a product’s
next version.7,8 So, valuable re-
sources for RE remain unused, and
software products might not meet
users’ needs.

Crowd-based requirements engi-
neering (CrowdRE) is an umbrella
term for automated or semiauto-
mated approaches to gather and an-
alyze information from a crowd to
derive validated user requirements.9
Normally, the crowd is an unde� ned
group of people.10 But for CrowdRE,
the crowd is in most cases a large
group of current or potential users
of a software product who interact
among themselves or with represen-
tatives of a software company (for
example, the product owner or de-
velopment team).

CrowdRE strives to mobilize as
many crowd members as possible to
communicate and discuss their needs
regarding the evolution of existing
software products. We call the com-
munication from users “user feed-
back,” although such feedback can

FOCUS: CROWDSOURCING FOR SOFTWARE ENGINEERING

MARCH/APRIL 2017 | IEEE SOFTWARE 45

also come from other stakeholders.
In addition, our vision of CrowdRE
includes monitoring software ap-
plication context and usage. It also
strongly focuses on a participatory
approach in which intrinsically mo-
tivated users become crowd mem-
bers because they bene� t from soft-
ware products that meet their needs.

The CrowdRE Approach
Figure 1 presents our proposed
CrowdRE approach. We consider
the crowd the sender of the feedback
and a software company (repre-
sented in Figure 1 as a development
team) the receiver.

Pull feedback is when the soft-
ware company explicitly asks the
crowd for feedback. Push feedback
is when the crowd initiates feed-
back.2 For example, a crowd mem-
ber could send feedback to an app
store—“Hey, what’s wrong with the
video quality?”—and rate the app
with 2 out of 5 stars.

In this example, the feedback

consists of linguistic and nonlinguis-
tic documentation. Linguistic docu-
mentation includes natural-language
text and audio messages; nonlinguis-
tic documentation includes images,
emoticons, and star ratings.11 Multi-
modal feedback combines multiple
documentation formats, as in the
previous example.

Ideally, through linguistic analy-
sis, the feedback receiver will classify
this feedback as a negative statement
about an apparent performance issue
(the video quality). The monitoring
of context and usage data can gather
additional information to help devel-
opers better understand the problem
(for example, to identify low net-
work bandwidth as the cause). The
development team can use this infor-
mation to resolve the issue. Next, we
discuss in detail each key activity in
Figure 1.

Motivating Crowd Members
 To a considerable extent, CrowdRE
depends on a continuous � ow of

user feedback. An adequate rate of
� ow can be achieved through mo-
tivating crowd members such that
the amount and quality of their par-
ticipation is suf� cient. Motivation is
intrinsic when crowd members have
a genuine interest in contributing
to software evolution; it’s extrinsic
when it results from external inter-
ventions and incentives (for example,
monetary rewards such as vouchers
or nonmonetary rewards such as so-
cial recognition and playfulness).12

Gami� cation and persuasive tech-
nology are two digital-motivation
techniques for boosting task comple-
tion and in� uencing positive behav-
ioral changes.

Regarding attitude and motiva-
tion toward giving feedback, we can
categorize crowd members as these
types:5

• Privacy-tolerant and socially
ostentatious crowd members ex-
pect acknowledgment in return
for their feedback.

Development team

Analyze userMonitor context
and usage data

Derive
requirementsValidate

Crowd

Product

feedback

Implement

Motivate crowd
members to provide

user feedback

Elicit user feedback

LOG

FIGURE 1. The relationships among the aspects of crowd-based requirements engineering (CrowdRE). CrowdRE strives to mobilize

as many crowd members as possible to communicate and discuss their needs regarding the evolution of existing software products.

46	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CROWDSOURCING FOR SOFTWARE ENGINEERING

•	 Privacy-fanatical but generous
crowd members are motivated
by respect for privacy.

•	 Passive and stingy crowd mem­
bers are motivated by seeing oth­
ers’ feedback and contributing
minimally.

•	 Loyal and passionate crowd
members care about the soft­
ware’s sustainability and repu­
tation but give less objective
feedback.

•	 Incentive seekers care about
monetary incentives and pay
limited attention to feedback
quality.

•	 Perfectionists and complainers
are motivated by the self-satis­
faction achieved after discover­
ing and flagging a problem.

•	 Impact seekers are motivated by
seeing their suggested changes
implemented.

CrowdRE should cater to this di­
versity in backgrounds and expec­
tations and avoid a one-size-fits-all
motivation mind-set. For instance,
although leaderboards appeal greatly
to incentive seekers, privacy fanat­
ics might get discouraged by seeing
their names on one. One platform
that takes this into account is REfine,
which employs game elements to
motivate users to express require­
ments and refine them by comment­
ing, voting, and creating alternative
requirements or subrequirements.13

Eliciting Feedback
Crowd members report on a variety
of aspects, including software prob­
lems (for example, bugs), extension
ideas (for example, feature requests),
or new-product ideas. Although
many feedback approaches don’t
clearly distinguish between these as­
pects, RE requires this distinction,
which certain research prototypes

readily provide. Some feedback chan­
nels also go beyond eliciting feedback;
for instance, social networks such as
Facebook can be used to gather, pri­
oritize, and negotiate feedback.14

Crowd members must have easy
access to feedback channels. In prac­
tice, user feedback appears in chan­
nels such as app stores,5,15 product
forums, and social media platforms
such as Twitter.8 Software companies
also can build functionality into their
software that lets crowd members
give feedback in situ. Such function­
ality often focuses on (simple) linguis­
tic feedback. However, multimodal
approaches are available (for in­
stance, AppEcho16), and the SUPER­
SEDE project (see the sidebar) is de­
veloping more advanced approaches.
For example, a permanently visible
feedback button lets users start the
feedback process themselves. How­
ever, we also foresee that develop­
ment teams will explicitly ask users
for feedback.

Providing multiple feedback chan­
nels lets developers consider crowd
members’ individual backgrounds
and needs regarding feedback com­
munication. Ideally, this will lead
to a large number of users being in­
volved in requirements elicitation,
because crowd members can com­
municate feedback anytime, even
without a requirements engineer per­
forming the elicitation. This makes
it possible to gather requirements on
a much larger scale. Such feedback
can complement traditional require­
ments elicitation approaches such as
interviews or workshops in which a
limited number of users communi­
cate their needs, supported by a re­
quirements engineer.

Analyzing Feedback
The rise of Web 2.0 platforms such
as social media and app stores has

caused a surge in user feedback.
Manually analyzing large amounts
of feedback is time-consuming and
cognitively demanding, and poten­
tially suffers from bias (for example,
an analyst might unintentionally fo­
cus on specific topics). Techniques to
automatically analyze large amounts
of feedback are necessary to achieve
fast, iterative innovation cycles. A
good basis for this exists; RE ap­
proaches to process large amounts
of feedback through computational-
linguistics techniques have existed
since the early 2000s.4

To analyze the feedback gathered
from different channels, CrowdRE
predominantly uses linguistic analy­
sis techniques such as text mining2,15
or speech-act-based analysis.17 This
analysis filters out irrelevant data
(for example, statements not discuss­
ing the product under analysis) and
automatically classifies the remain­
ing statements. This classification
includes sentiment analysis, which
assesses how positive or negative
statements are, so that praise and
complaints about product features
and qualities can be identified.15

Furthermore, feedback can be
classified into categories such as bug
reports and feature requests,15,18
using predefined feedback taxono­
mies11 and topics, and similarities
among statements can be identi­
fied.19 Automated classification can
also help identify whether feedback
discusses certain product features
or qualities, leading to the identifi­
cation of functional and nonfunc­
tional requirements.9 Projects such
as PRO-OPT (see the sidebar) and
Opti4Apps (opti4apps.de) are devel­
oping such functionality. Research­
ers are also investigating how to
automatically generate models that
capture the key elements of natural-
language requirements.20

	 MARCH/APRIL 2017 | IEEE SOFTWARE� 47

Developers can apply further tex-
tual analyses to determine feedback
reliability. For example, a consid-
erable amount of feedback about
a particular issue might indicate a
problem’s existence and importance.

Metadata such as time stamps allow
for identifying trends over time—
for example, to determine whether
a newer version of the product has
resolved an issue that received many
complaints.15 Furthermore, feedback

can help companies compare their
products to others—for example, by
determining which product receives
more positive feedback.

Researchers are also investigating
automated analysis of nonlinguistic

EXAMPLES OF APPLICATION POTENTIAL
Crowd-based requirements engineering (CrowdRE) has ap-
plication potential in almost all domains in which software
products have many stakeholders from whom usage data
and user feedback are obtainable. For example, in the in-
formation systems domain, enterprise-resource-planning
systems have many users within organizational reach. Fur-
thermore, mass markets exist in which a software product’s
users are unknown to the software company (for example,
mobile apps). In the embedded-systems domain, vehicle
manufacturers can exploit monitoring and log data and ana-
lyze feedback provided by service personnel and car drivers.
In emerging smart domains (for example, smart cities, smart
health, and smart energy), the targeted group of stakehold-
ers is very large.

Here, we give examples of CrowdRE in practice and de-
scribe two projects that develop and use CrowdRE techniques.

In industry, one platform for gathering and discussing
feedback with the user crowd is the Requirements Bazaar
(requirements-bazaar.org). Another platform called Stake-
Source illustrates how stakeholder analysis can directly ben-
efit from crowdsourcing—for example, by predicting ratings
of requirements on the basis of similarities in crowd mem-
bers’ voting behavior.1 By using more classic crowdsourcing
instruments, CrowdRE provides the potential to

•	 obtain user feedback on features scheduled to be
incorporated into a new product and

•	 validate the user requirements derived from this feed-
back through the crowd’s social participation.2

The PRO-OPT (Big Data Production Opt imization in Smart
Ecosystems; pro-opt.org) project aims to enable companies
to effectively analyze large business datasets across com-
pany boundaries, thereby improving their current and future
products, including embedded systems. PRO-OPT uses

CrowdRE in a market-oriented setup with automotive manu-
facturers and suppliers. Reports of car drivers in user portals
are analyzed by natural-language analysis and compared to
diagnostic data (reflecting context and usage data) obtained
at automobile service stations. Through the aggregation of
these data, potential root causes of systematic problems (for
example, an engine problem occurring sooner in landscapes
that tax the engine’s performance) can be revealed or even
anticipated. The car manufacturer can then fix the problem
to prevent the failure, at least in other vehicles of the same
model. Also, the requirements derived from this analysis can
be used for later models, ultimately benefiting current and
future drivers.

The SUPERSEDE (Supporting Evolution and Adapta-
tion of Personalized Software by Exploiting Contextual Data
and End-User Feedback; supersede.eu) project is develop-
ing multimodal-feedback functionalities that will let a crowd
of users provide unobtrusive in situ feedback on software
products. Furthermore, the project is establishing compre-
hensive techniques to monitor software products and obtain
environmental and context data through sensors. The ob-
tained feedback and data will be analyzed to identify relevant
information to support decision making during software evo-
lution. Informed decisions based on the feedback and moni-
toring data will lead to products that better meet user needs
and improve the user experience.

References
1.	 S.-L. Lim and A. Finkelstein, “StakeRare: Using Social Networks

and Collaborative Filtering for Large-Scale Requirements Elicita-

tion,” IEEE Trans. Software Eng., vol. 38, no. 3, 2012, pp. 707–735.

2.	 R. Ali et al., “Social Adaptation: When Software Gives Users a

Voice,” Proc. 7th Int’l Conf. Evaluation of Novel Approaches to Soft-

ware Eng. (ENASE 12), 2012, pp. 75–84.

48	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CROWDSOURCING FOR SOFTWARE ENGINEERING

feedback, such as screenshots de-
scribing a problem context.

Monitoring Context and Usage Data
Future software-intensive systems
as proposed in ubiquitous comput-
ing (for example, the Internet of
Things) will deploy multiple sensors
in highly distributed environments.
This will allow for the comprehen-
sive monitoring of software prod-
ucts and their context and usage
data. This, in turn, will provide the
capability to gather feedback from
multiple sources, letting developers
better understand the context and
usage data. Such crowd-based moni-
toring6 can provide user feedback in
CrowdRE.

Crowd-based-monitoring systems
are extensible and can aggregate new
monitors from different providers
at runtime, whereas in traditional
monitoring, the monitored entities
are usually known and developed
at design time. New requirements
can be derived from context and us-
age data gathered at runtime. This
includes quantifying performance-
related requirements and detecting
context-​dependent requirements.
For instance, monitoring where a

software product is used could lead
to the requirement that a specific
functionality is disabled because of
local regulations on the storage of
private data regarding underage us-
ers. Crowd-based monitoring can
also help determine whether re-
quirements are met at runtime (for

example, whether a product’s per-
formance and reliability meet user
expectations in different scenarios).

The monitoring results can then
be aggregated with multimodal
feedback from users to quantify
and better understand similarities
and differences, and to prioritize
feedback.21

CrowdRE in Comparison
CrowdRE is similar to several other
approaches. Here, we compare it to
customer-specific RE (RE for tailor-
made software), market-driven RE
(RE for software products), and
crowdsourcing.

Customer-Specific RE
Depending on the context, CrowdRE
can complement or replace customer-
specific RE. In this context, Crowd
RE’s greatest benefits arise when
numerous users are involved. This
is because customer-specific RE has
difficulties considering the diverse
backgrounds of user subgroups when
the next version of a product is be-
ing developed.7,8 Conversely, in set-
tings with a limited number of users
(for example, software that’s tailor-
made for a small company with some

dozens of employees), traditional
customer-specific RE techniques are
sufficient because all the stakeholders
are easily reached.

Market-Driven RE
Market-driven RE goes beyond the
single-customer setting and enables

serving a large market of custom-
ers.3 This is typically the case with
companies creating products such
as office suites, operating systems,
or enterprise-resource-planning sys-
tems. In market-driven RE, develop-
ers obtain information from known
sets of stakeholders over longer peri-
ods of time through questionnaires,
focus groups, and beta tests, which
are scheduled at dedicated points in
time according to the software re-
lease roadmap.

In CrowdRE, feedback comes
from a crowd of users or their repre-
sentatives. This crowd has a weaker
bond with the software company,
and its feedback data can be ob-
tained using several unobtrusive
automated means, without explicit
interaction. So, CrowdRE allows
continuous collection of feedback
from a larger group of stakehold-
ers, which makes it a logical upscale
form of market-driven RE, just as
market-driven RE is an adapta-
tion that enables customer-specific
RE to transcend the organization’s
boundaries.

Crowdsourcing
Crowdsourcing distributes a work-
load by outsourcing activities in the
form of microtasks to an anonymous
crowd that isn’t necessarily intrinsi-
cally motivated to participate. The
motivation of crowd members is usu-
ally driven by extrinsic motivators
such as pay or the prospect of win-
ning a bounty. In contrast, CrowdRE
has a genuine interest in the personal
opinion of the users in the crowd. It
also aims to provide benefits for par-
ticipating crowd members in terms
of improved software products, in-
creasing user satisfaction.

By involving many crowd mem-
bers and collecting their opinions
and usage data, CrowdRE gives a

Digital-motivation techniques should be
adaptive to the context and adaptable by

crowd members.

	 MARCH/APRIL 2017 | IEEE SOFTWARE� 49

voice to users. This has been de-
scribed as a form of social partici-
pation,22 which goes beyond out-
sourcing simple problem-solving
tasks. Moreover, CrowdRE uses au-
tomation techniques such as text
analysis and monitoring, and applies
crowdsourcing strategically in se-
lect phases. This way, it can mitigate
several threats to crowdsourcing
scalability.10

Challenges
Although CrowdRE seems promis-
ing and practitioners can already use
CrowdRE solutions to obtain infor-
mation from users regarding feature
and quality improvements, certain
challenges exist, which we discuss
separately for each key activity in
Figure 1.

Motivating Crowd Members
There’s a fine line between motivat-
ing crowd members and trivializ-
ing their job. Ad hoc introduction
of digital motivation might be seen
as undermining the task and might
adversely affect feedback’s useful-
ness and truthfulness. Therefore,
to gather high-quality user feed-
back, digital-motivation techniques
should be adaptive to the context
and adaptable by crowd members.
Such adaptation and adaptability
seem promising to sustain crowd
members’ motivation and get them
to engage in demanding tasks such
as argumentation and negotiation of
requirements.

Eliciting Feedback
Key elicitation challenges are privacy
and personalization. For all feedback
channels, from existing platforms to
novel built-in feedback channels and
monitors, users should be able to in-
fluence their level of privacy. For ex-
ample, a user could allow other users

to read a review he or she wrote but
not explore the context data gath-
ered. Users should be supported in
their decisions regarding when (push
or pull), where (the feedback chan-
nel and device), and how (which
feedback functionalities and to what
level of structure) to give feedback.
Adaptive approaches addressing this
diversity seem promising5 but must
be established and evaluated more.

Analyzing Feedback
The input, processing, and output
of the feedback data all introduce
challenges to feedback analysis. Be-
cause feedback comes from online
platforms with anonymous users, it’s
hard to identify user subgroups (for
example, by age) and prevent minor-
ity groups from being overlooked.
Current techniques have difficulties
identifying all the relevant data, au-
tomatically analyzing multimodal
feedback, and estimating the quality
of the (text-based) analysis. Because
crowd interaction often isn’t aimed
at achieving consensus, the analysis
results require careful interpreta-
tion. In addition, exclusively focus-
ing on the frequency of, for example,
certain topics can cause important
results to be overlooked. Early com-
parisons with traditional RE and
crowdsourcing show promising re-
sults, although further analysis
must prove that users from minority
groups are being heard.

Monitoring Context and Usage Data
The adaptation of monitors to the
(changing) characteristics of the
crowd and software products con-
stitutes a main challenge. Monitors
and sensors must be reconfigurable at
runtime and automatically replaced
when failing, and the context can be
better understood through distrib-
uted pluggable sensors.23 Interpreting

contradictory monitoring data (for
example, only some users might
struggle with a feature) is difficult,
but a comprehensive understanding
can be obtained by aggregating the
data with user feedback from other
sources. If the users’ privacy is con-
sidered, crowd monitoring promises
benefits for the industry, including
the ability to gather feedback from a
large number of representative users.

Introducing CrowdRE in Practice
An overarching challenge is setting
CrowdRE up. Companies who plan
to apply CrowdRE must first tailor
and fine-tune it to their particular
usage context. Furthermore, little is
known about CrowdRE’s success-
ful application in industry. Through
user participation and automation,
CrowdRE could result in an early
return of investment, but unfore-
seeable issues might exist that pre-
vent its successful application in a
particular context. So, more em-
pirical research and case studies are
needed to validate CrowdRE and
show that it provides the promised
benefits.

W e expect to see more
elaborate solutions in
the coming years as

researchers and companies adopt
CrowdRE. We’re currently investing
in CrowdRE tools and techniques to
validate their potential in real-world
settings (see the sidebar).

References
1.	V. Dheepa, D.J. Aravindhar, and C.

Vijayalakshmi, “A Novel Method for

Large Scale Requirement Elicitation,”

Int’l J. Eng. and Innovative Technol-

ogy, vol. 2, no. 7, 2013, pp. 375–379.

2.	W. Maalej, H.-J. Happel, and A.

Rashid, “When Users Become

50 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CROWDSOURCING FOR SOFTWARE ENGINEERING

Collaborators: Towards Continu-

ous and Context-Aware User Input,”

Proc. 24th ACM SIGPLAN Conf.

Object-Oriented Programming Sys-

tems, Languages, and Applications

(OOPSLA 09), 2009, pp. 981–990.

3. B. Regnell and S. Brinkkemper,

“Market-Driven Requirements

Engineering for Software Products,”

Engineering and Managing Soft-

ware Requirements, Springer, 2005,

pp. 287–308.

4. J. Natt och Dag et al., “A Feasibil-

ity Study of Automated Natural

Language Requirements Analysis

in Market-Driven Development,”

Requirements Eng., vol. 7, no. 1,

2002, pp. 20–33.

5. M. Almaliki, C. Ncube, and R. Ali,

“Adaptive Software-Based Feedback

Acquisition: A Persona-Based De-

sign,” Proc. IEEE 9th Int’l Conf. Re-

search Challenges in Information Sci-

ence (RCIS 15), 2015, pp. 100–111.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

EDUARD C. GROEN is a researcher at

the Fraunhofer Institute for Experimen-

tal Software Engineering. His research

interests include deriving functional and

nonfunctional requirements from natural-

language texts and developing task-

oriented development practices. Groen

received a master’s in psychology with a

specialization in engineering psychology

from the University of Twente. Contact him

at eduard.groen@iese.fraunhofer.de.

FABIANO DALPIAZ is an assistant

professor of software systems at Utrecht

University. He’s the principal investigator at

the university’s Requirements Engineer-

ing Lab, and his research focuses on the

development and use of semiautomated

techniques that help stakeholders improve

software requirements. Dalpiaz received a

PhD in software engineering from the Uni-

versity of Trento. Contact him at f.dalpiaz@

uu.nl.

NORBERT SEYFF is a professor of

requirements engineering at the University

of Applied Sciences and Arts Northwestern

Switzerland and a senior research associ-

ate at the University of Zurich. His research

focuses on requirements engineering and

software modeling. Seyff received a PhD

in computer science from Johannes Kepler

University Linz. Contact him at norbert

.seyff@fhnw.ch.

JOERG DOERR is the head of the Informa-

tion Systems division at the Fraunhofer

Institute for Experimental Software

Engineering and a lecturer at the University

of Kaiserslautern. His research interest is

software engineering for information sys-

tems, focusing on requirements engineer-

ing, especially nonfunctional requirements.

Doerr received a PhD in computer science

from the University of Kaiserslautern. He’s

a member of the German Informatics Soci-

ety. Contact him at joerg.doerr@iese

.fraunhofer.de.

RAIAN ALI is an associate professor of

computing at Bournemouth University.

His research focuses on the engineer-

ing of social informatics. Ali received a

PhD in software engineering from the

University of Trento. Contact him at rali@

bournemouth.ac.uk.

EMITZA GUZMAN is a postdoctoral

researcher at the University of Zurich.

Her research focuses on increasing user

involvement during software evolution.

Guzman received a PhD in informatics from

Technische Universität München. Contact

her at guzman@i� .uzh.ch.

MARCH/APRIL 2017 | IEEE SOFTWARE 51

6. M. Arlitt et al., “Passive Crowd-

Based Monitoring of World Wide

Web Infrastructure and Its Perfor-

mance,” Proc. IEEE Int’l Conf.

Communications (ICC 12), 2012,

pp. 2689–2694.

7. E.C. Groen, “Crowd Out the

Competition: Gaining Market

Advantage through Crowd-Based

Requirements Engineering,” Proc.

1st Int’l Workshop Crowd-Based

Requirements Eng. (CrowdRE 15),

2015, article 3.

8. E. Guzman, R. Alkadhi, and N.

Seyff, “A Needle in a Haystack:

What Do Twitter Users Say about

Software?,” Proc. 24th IEEE Int’l

Requirements Eng. Conf. (RE 16),

2016, pp. 96–105.

9. E.C. Groen, J. Doerr, and S.

Adam, “Towards Crowd-Based

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

MAHMOOD HOSSEINI is a lecturer

in business computing at Bournemouth

University. His research interests include

crowdsourcing in requirements engineer-

ing and the analysis of transparency

requirements. Hosseini received a PhD

in engineering social informatics from

Bournemouth University. Contact him at

mhosseini@bournemouth.ac.uk.

ANNA PERINI is a researcher in the

Software Engineering research unit of the

Center for Information and Communication

Technology. Her research interests include

goal-oriented requirements engineering,

regulatory compliance, decision support

systems, and collaborative requirements

engineering. She’s the project coordinator

of the SUPERSEDE project. Perini received

her Dr. degree in physics from the Univer-

sity of Trento. Contact her at perini@fbk.eu.

JORDI MARCO is an associate professor

in the Computer Science Department at

the Polytechnic University of Catalonia

(UPC). His research interests include

service-oriented computing, quality of

service, cloud computing, and monitoring.

Marco received a PhD in informatics from

UPC. Contact him at jmarco@cs.upc.edu.

MELANIE STADE is a doctoral candidate

in the Cognitive Psychology and Cognitive

Ergonomics research group at Techni-

cal University Berlin and works in the

SUPERSEDE project at the University of

Applied Sciences and Arts Northwestern

Switzerland. Her research interests include

longitudinal usability and user experience

assessment, and user behavior during

feedback acquisition. Stade received a

Diplom in psychology from Humboldt

University Berlin. Contact her at melanie

.stade@fhnw.ch.

MARC ORIOL is a postdoctoral researcher

of the GESSI research group at the Poly-

technic University of Catalonia (UPC). His

research interests include service-oriented

computing, quality of service, cloud com-

puting, and monitoring. Oriol received a

PhD in computing from UPC. Contact him

at moriol@essi.upc.edu.

52 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: CROWDSOURCING FOR SOFTWARE ENGINEERING

Requirements Engineering: A Re-

search Preview,” Requirements En-

gineering: Foundation for Software

Quality, LNCS 9013, 2015, pp.

247–253.

10. K.-J. Stol and B. Fitzgerald, “Two’s

Company, Three’s a Crowd: A Case

Study of Crowdsourcing Software

Development,” Proc. 36th Int’l Conf.

Software Eng. (ICSE 14), 2014, pp.

187–198.

11. I. Morales-Ramirez, A. Perini, and

R.S.S. Guizzardi, “An Ontology of

Online User Feedback in Software

Engineering,” Applied Ontology, vol.

10, nos. 3–4, 2015, pp. 297–330.

12. M. Hosseini et al., “The Four Pil-

lars of Crowdsourcing: A Reference

Model,” Proc. IEEE 8th Int’l Conf.

Research Challenges in Information

Science (RCIS 14), 2014, pp. 1–12.

13. R. Snijders et al., “RE� ne: A Gami-

� ed Platform for Participatory Re-

quirements Engineering,” Proc.

1st Int’l Workshop Crowd-Based

Requirements Eng. (CrowdRE 15),

2015, pp. 1–6.

14. N. Seyff et al., “Using Popular Social

Network Sites to Support Require-

ments Elicitation, Prioritization and

Negotiation,” J. Internet Services

and Applications, vol. 6, no. 1, 2015;

jisajournal.springeropen.com/articles

/10.1186/s13174-015-0021-9.

15. W. Maalej and H. Nabil, “Bug Re-

port, Feature Request, or Simply

Praise? On Automatically Classifying

App Reviews,” Proc. 23rd IEEE Int’l

Requirements Eng. Conf. (RE 15),

2015, pp. 116–125.

16. N. Seyff, G. Ollmann, and M. Bor-

tenschlager, “AppEcho: A User-

Driven, In Situ Feedback Approach

for Mobile Platforms and Applica-

tions,” Proc. 1st IEEE/ACM Int’l

Conf. Mobile Software Eng. and

Systems (MOBILESoft 14), 2014,

pp. 99–108.

17. I. Morales-Ramirez, A. Perini, and

M. Ceccato, “Towards Supporting

the Analysis of Online Discussions

in OSS Communities: A Speech-

Act Based Approach,” Information

Systems Engineering in Complex

Environments, Springer, 2014,

pp. 215–232.

18. S. Panichella et al., “How Can I

Improve My App? Classifying User

Reviews for Software Maintenance

and Evolution,” Proc. 31st Int’l Conf.

Software Maintenance and Evolution

(ICSME 15), 2015, pp. 281–290.

19. L.V. Galvis Carreño and K. Win-

bladh, “Analysis of User Comments:

An Approach for Software Require-

ments Evolution,” Proc. 35th Int’l

Conf. Software Eng. (ICSE 13), 2013,

pp. 582–591.

20. M. Robeer et al., “Automated Extrac-

tion of Conceptual Models from User

Stories via NLP,” Proc. 24th IEEE

Int’l Requirements Eng. Conf. (RE

16), 2016, pp. 196–205.

21. D. Pagano, PORTNEUF: A Frame-

work for Continuous User Involve-

ment, Verlag Dr. Hut, 2013.

22. R. Ali et al., “Social Adaptation:

When Software Gives Users a Voice,”

Proc. 7th Int’l Conf. Evaluation of

Novel Approaches to Software Eng.

(ENASE 12), 2012, pp. 75–84.

23. A. Kumar, H. Kim, and G.P. Hancke,

“Environmental Monitoring Systems:

A Review,” IEEE Sensors J., vol. 13,

no. 4, 2013, pp. 1329–1339.

From the analytical engine to the
supercomputer, from Pascal to von
Neumann—the IEEE Annals of the History
of Computing covers the breadth of
computer history. The quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history
activities, and international conferences.

www.computer.org/annals

