
Articles
https://doi.org/10.1038/s41564-017-0062-x

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

1Netherlands Institute of Ecology, Wageningen, The Netherlands. 2Faculty of Science and Engineering, University of Manchester, Manchester, UK. 3School 
of Science and the Environment, Manchester Metropolitan University, Manchester, UK. 4Evolution and Genomic Sciences, School of Biological Sciences, 
University of Manchester, Manchester, UK. 5Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK. 6Environment Centre Wales, 
College of Natural Sciences, Bangor University, Bangor, UK. 7Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland. 8Department of Botany, 
Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia. 9Cooperative Institute for Research in Environmental Sciences, University of 
Colorado, Boulder, CO, USA. 10Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umeå University, Abisko, Sweden. 
11Environmental Sustainability Research Centre, University of Derby, Derby, UK. 12Centre for Ecology and Hydrology, Wallingford, UK. 13School of Life 
Sciences, University of Warwick, Coventry, UK. 14Division of Agroecology and Environment, Agroscope, Zürich, Switzerland. 15Faculty of Biology, Medicine 
and Health, University of Manchester, Manchester, UK. 16Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias 
Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain. 17Department of Biology, Institute of Ecology and Evolution, University 
of Oregon, Eugene, OR, USA. 18School of Science and Engineering, Teesside University, Middlesbrough, UK. 19Laboratory of Nematology, Wageningen 
University, Wageningen, The Netherlands. 20Centre for Ecology and Hydrology, Bangor, UK. 21Department of Biology, Duke University, Durham, NC, USA. 
22Natural England, Exeter, UK. 23Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia. 24Department 
of Biology, Boston University, Boston, MA, USA. 25Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK. 26Institute for 
Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland. 27Plant–Microbe Interactions, Institute of Environmental  
Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands. Kelly S. Ramirez and Christopher G. Knight contributed equally to this work.  
*e-mail: k.ramirez@nioo.knaw.nl

Soil microbial communities are more diverse and contain more 
individuals than any species groups on the planet1,2. Over the 
past decade, the use of high-throughput sequencing (HTS) 

methods has substantially advanced our understanding of the 
worldwide biogeography and ecology of soil bacterial and fun-
gal communities3–5. Recent work has further demonstrated that 
the inclusion of microbial composition and functional attributes 

improves Earth system models6, which is of paramount importance 
for predicting the effects of global change on ecosystem services, 
such as climate regulation or soil fertility7. However, contrary to 
the long-standing view that every organism may occur every-
where8, even at small scales, bacterial communities are more patchy 
than previously expected9,10, raising questions regarding dispersal 
constraints, temporal dynamics, and niche breadth at the global 
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The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bac-
terial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of 
sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diver-
sity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for dif-
ferences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 
soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abun-
dances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess 
bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, 
and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded 
across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynam-
ics, identify potential ‘indicator’ taxa with an important role in structuring communities, and propose hypotheses on the factors 
that shape bacterial biogeography that have been overlooked in the past.
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scale11–13. Owing to these knowledge gaps, combined with practical 
challenges of exhaustive sample collection and the massive diver-
sity of communities, global assessment of soil microbial diversity 
remains an ongoing research challenge14.

For plants and animals, the integration of data from independent 
studies has been a valuable option for generating an understand-
ing of global biogeography patterns, answering ecological questions 
(such as biodiversity–functioning relationships), and identify-
ing threats to biodiversity from global changes15–17. Similarly, our 
understanding of soil microbial diversity would greatly improve 
from such worldwide assessments. However, the integration of 
microbial community HTS data from different studies is similar to 
the merging of museum species records, in which information and 
data are constrained by variations in nomenclature over space and 
time, among many other challenges18,19. Similar to plant and animal 
records, molecular microbial community records and information 
can be incomplete, processing and naming varies greatly between 
studies and over time20, data storage is inconsistent, and there are 
few curated databases with high-quality data (especially for short 
read sequences)21,22. Furthermore, most microbial community data 
and metadata are still available only in independently published 
studies that have been carried out according to their own standards 
and procedures, and the extent of these confounding factors has 
never been quantified across studies.

Regardless of the challenges, as indicated by the many open-
access data initiatives23–25, merging microbial sequence data is a 
potential option to address global-scale questions, whether relat-
ing to the human microbiome26, marine systems27, or predicting the 
response of soil organisms to global environmental change28. For 
soil systems, the need to merge sequence data is supported by the 
emerging role of bacterial phyla and classes as indicators of particu-
lar soil conditions, such as soil pH and nutrient concentrations29,30. 
Until now, attempts to meta-analyse sequence data have been lim-
ited to assessing diversity measures or abundances of major taxa, 
because the merging of community data is constrained by meth-
odological differences between sequencing studies10,24,31,32. However, 
a recent systematic review found that measures of microbial com-
munity structure were more often linked to microbial process rates 
than diversity or presence/absence data33, and abundance ratios 
among phyla may be less important than previous believed34. Taken 
together, these findings indicate that information on variation in 
microbial community structure is potentially more ecologically rel-
evant than measures of diversity and abundances of major taxa.

Here, we show that, despite the outlined challenges, published 
microbial community data from independent studies can be anal-
ysed together to address questions about the global structuring of 
communities. Using a machine-learning approach, we take meth-
odological and technical biases into account, factor in interactions 
among taxa, and produce an improved assessment of the abiotic 
and biotic drivers of soil community structure. The objectives of 
this study were twofold: (1) to identify the biases and incompatibili-
ties of microbial community HTS studies (and confounding factors) 
and, thereby strengthen our ability to integrate data from disparate 
studies; and (2) to reveal worldwide soil microbial community pat-
terns by merging independent taxonomy-based data sets.

Results
Taxonomy-based merging of disparate amplicon sequence data. 
We identified 30 individual HTS bacterial studies from 21 coun-
tries for our analysis (Fig. 1a–c; Supplementary Table 1). Although 
we aimed to merge HTS data of both soil bacterial and soil fun-
gal data sets, our approach was only successful for bacterial data 
(Fig. 1d), highlighting the well-known dilemma of fungal databases, 
in which extremely high diversity combined with high endemism 
and mismatched taxonomy across continents make merging data 
by taxonomy difficult and unusable for downstream analyses4,35. For 

the bacterial studies, we were able to successfully merge 30 indi-
vidual  studies; using a taxonomy-based approach, data sets were 
merged using the taxonomic affiliations of individual operational 
taxonomic units (OTU)s. Once filtered, and singletons removed, 
the final ‘taxonomy-based’ community contained 1,998 individual 
soil samples, and 8,287 taxa. Here, ‘taxon’ is defined as a unique 
name in the classification; a name could be a specific phylum, 
genus, or other taxonomic level. For example, Acidovorax (genus) 
and Proteobacteria (the phylum containing Acidovorax) were both 
considered as taxa. To account for variation in sequencing depth 
between different studies, the relative abundances of OTUs were 
used per sample, rather than absolute read abundance. To test 
known biogeographical patterns, metadata (that is, information on 
geographical location, soil pH, and soil core measurements) were 
compiled for all studies. Technical and methodical information was 
also collected; all of these 30 studies used amplicon sequencing on 
hypervariable regions of the 16S rRNA gene in soil samples using 
either Illumina or Roche 454 pyrosequencing (with any primer 
pair) (Supplementary Table 1). For a validation step, we retrieved all 
available usable raw sequence data, resulting in 419 samples from 
locations worldwide (approximately one-fifth of all our samples) 
(Fig.  1a–c). Data not included in this sequence-matched analy-
sis either had an incompatible raw sequence format or simply no 
longer existed. Available raw sequence data were combined into a 
single ‘sequence-matched’ community comprising 44,106 OTUs 
(Supplementary Fig. 1).

Machine-learning assessment of bacterial community structure. 
Ordination of the taxonomy-based community reveals large amounts 
of structure both within and between studies (that is, structure that 
is removed by permuting taxa among samples (Supplementary 
Fig. 2), without greatly affecting diversity (Supplementary Table 3)), 
and the observation of the well-established negative relationship 
between relative abundance of Acidobacteria and soil pH36 (Fig. 1e) 
confirms our merging method. This visualization also suggests that 
some of the community variation (for example, the near absence 
of Acidobacteria in some studies, even at low pH) is due to tech-
nical factors, such as the particular primer sets chosen, the region 
sequenced, and the sequencing platform (Supplementary Table 2). 
However, we expect that some taxa are not correlated with techni-
cal factors, and are non-randomly distributed with respect to biotic 
and abiotic factors. Thus, using a machine-learning approach that is 
capable of accounting for complex interactions among taxa (random 
forests, see Methods), we determined the extent to which individual 
taxa could influence the community structure of merged indepen-
dent studies. Here, community structure is defined by the presence 
and relative abundances of individual taxa, as well as the co-occur-
rence relationships between those taxa. This was done in two ways: 
first, we constructed a model that classified the study from which 
a sample was taken based on the proportions of the 8,287 taxa it 
contained (1.5% (± 0.02%, 95%  confidence  interval) classification 
error, by internal cross-validation). Second, we determined the con-
tribution of each taxon to bacterial community structure by quan-
tifying its importance in a model that separated the observed data 
from synthetic data that was randomly drawn from the observed 
distributions of relative abundances for each taxon (see Methods, all 
resulting importances given in Supplementary Table 4).

Merging of disparate microbial sequence data is known to be 
plagued with potential biases including: lack of standardization of 
sample collection, methodological issues regarding DNA extraction 
and primer choice, incomplete metadata, the technical biases of dif-
ferent sequencing platforms, sequencing depth, PCR bias, different 
clustering methods, and the use of different taxonomic classification 
pipelines37–39. Thus, we took the step to quantify the importance of 
both technical and environmental factors alongside taxa in the ran-
dom forests models (Fig. 2). Of note, ‘owner’, which encompasses 
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the technical biases and uniqueness of a given data set, is very effec-
tive for differentiating between studies (that is, the owner is far to 
the right in Fig. 2) but is entirely uninformative about community 
structure (that is, the owner is at the far bottom in Fig. 2). In fact, 
all technical factors included are better than 98.5% of all taxa to dif-
ferentiate between studies, indicating that the observed differences 
among studies in taxon relative abundances are strongly confounded 
with technical factors. Independent of taxonomy, certain environ-
mental factors, such as country of origin, latitude and longitude, and 
soil pH, were highly important in differentiating studies but not in 
determining community structure. By contrast, minimum soil sam-
pling depth was not very important in separating studies, and was 
more associated with community structure. It is well known that 
bacterial diversity decreases with soil depth40, and our results show 
that, in a global assessment, soil depth remains a strong predictor of 
bacterial community composition. Perhaps most useful for future 
research, this result highlights that not all environmental factors are 
equally confounded by technical factors, and shows that by combin-
ing data from across many independent studies, we may identify 
previously overlooked taxa and factors that are relevant for structur-
ing communities.

Importance for structuring soil bacterial communities. Although 
all studies were confounded by technical and environmental covari-
ates, there remained many taxa that were non-randomly distributed 

and were not confounded with technical differences among studies 
(upper left in Fig. 2). When assessing the role of these different taxa 
in structuring the community, we found a trade-off between taxon 
abundance and importance in community structure, such that low-
abundance taxa are disproportionately important in the non-random 
structure of communities, where the most important taxa are rarer 
than expected compared with the randomly permuted data (Fig. 3). 
Thus, the importance of taxa in determining community structure 
is negatively correlated with the average abundance of those taxa, 
whereas taxon abundance is positively correlated with the impor-
tance for separating studies (ρ =  − 0.79 and ρ =  0.51, respectively, 
rank correlation, and compare null expectations of ρ =  − 0.62 and 
ρ =  − 0.12, respectively, in permuted data). The taxa that are most 
closely associated with differences between studies tend to be those 
present at or greater than 0.1% relative abundance, but those taxa 
that are most important in determining community structure tend 
to be present at or less than 0.0001% abundance (with a null expec-
tation of around 0.01–0.001% in each case; Fig. 3). This result is only 
found by considering the full set of studies and is neither apparent 
within single studies (Supplementary Fig. 4a,b) nor a subset of stud-
ies (whether matched by name or sequence; Supplementary Fig. 5). 
These taxa, important in determining community structure, corre-
spond to the long tail in frequency–abundance distributions of soil 
microbial communities41, where many taxa in the soil are known 
to occur at low abundance. Thus, if rarer taxa tend to be more  
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Fig. 1 | Merging of data from 30 independent studies. The wide geographical breadth and community variation of the data are displayed, and the well-
known importance of soil pH is confirmed. a–c, Map of locations from which samples were collected (a), with zoomed in panels of the United States (b) 
and western Europe (c). d, Average proportion of total bacterial abundance (top graph) and eukaryotic (fungi) abundance (bottom graph), represented by 
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green) are subsets of the data containing only taxa that are present in a minimum of 2–4 separate data sets. e, Correlation plot of the relative abundance of 
Acidobacteria to soil pH, in which each colour represents a different study (r =  − 0.42, P =  8.6 ×  10−87).
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important for distinguishing between communities, it is within this 
long tail that we might identify taxa that could indicate ecological or 
functional differences among soil communities42,43.

To be used as ecological indicators29,44, taxa need to vary in abun-
dance in response to environmental factors and have high occur-
rence across studies, as is the case for the phylum Acidobacteria36. 
However, Acidobacteria are typically abundant, and our analysis 
suggests that the most abundant taxa are not the most important in 
determining community structure. Although dominant taxa such 
as Acidobacteria do change with environmental factors such as pH 
(Fig. 1e), those changes are of lesser importance for the ‘non-ran-
domness’ of community structure, and are more confounded with 
technical effects, than changes in less-dominant, pH-responsive 
taxa (Supplementary Fig. 3a). Thus, we assessed which taxonomic 
ranks are more or less distinguished from the randomly permutated 
data. Although differences among domains and phyla are strongly 
associated with differences among studies (Fig. 4b), only taxa that 
rank lower than phyla are consistently better than random at identi-
fying community structure (Fig. 4a).

A very similar pattern was found for the sequence-matched 
community, emphasizing the importance of taxa at the level of Class 
and below (Supplementary Fig. 7a,b). However, this was not appar-
ent in individual studies (Supplementary Fig. 4c,d), in which phyla 
were relatively important. A subset of the taxonomy-matched stud-
ies showed a pattern that was intermediate between the single stud-
ies and the full data set (phyla with some importance, but less than 
class, order or family; Supplementary Fig. 7c). This, in addition to 
abundance analyses (Fig. 3; Supplementary Fig. 5), suggests that our 
name-matching approach is consistent with, but less powerful than, 
a full sequence-matched analysis. At the same time, the taxonomy 

matching is worthwhile because, as with the findings on abundance 
(Fig.  3), macroecological patterns (the importance of taxa below 
phyla and of relatively low abundance in community structure) are 
evident when we consider thousands of samples from tens of stud-
ies, which are not apparent from hundreds of samples from one or 
a handful of studies.

To be considered a good ecological indicator, a taxon should 
occur in most studies; thus, we looked explicitly at the relation-
ship between the importance of a taxon in community structure 
and its occurrence across studies. Low-abundance taxa and taxa 
of lower taxonomic rank are consistently important in determin-
ing community structure but tend to be detected in fewer studies 
(ρ =  0.59 and ρ =  0.31, respectively; Supplementary Fig. 3b,c). We 
discovered a relationship between taxon occurrence across stud-
ies and the importance for structuring communities for all taxa 
(Fig.  5). Comparison with the null expectation reveals a range of 
taxa, occurring in multiple samples from most studies, which are 
much more important in determining community structure than 
expected by chance. A similar pattern is apparent in the sequence-
matched data set (Supplementary Fig. 8a) and the same subset of 
studies when taxonomy matched (Supplementary Fig.  8b). Taken 
together, the analysis clearly illustrates the importance of taxonomic 
rank; for example, the class Gemmatimonadetes is relatively unim-
portant for community structure, but the genus Gemmatimonas is 
relatively important. The result also shows rarer taxa being more 
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important in structuring communities and suggests that rarer bac-
terial taxa have overlooked ecologically important roles for bacterial 
community dynamics43. This result is robust to artefacts caused by 
the rarest taxa (for example, differences between 0 and 1 reads in a 
sample could be statistically significant for a model, without being 
biologically relevant); a very similar pattern is seen when only taxa 
present at above 0.003% in any given sample were included in this 
analysis (typically removing the rarest 10% of taxa from any given 
sample; Supplementary Fig. 9). Conversely, many taxa of high taxo-
nomic rank with high occurrence across samples, such as the phyla 
Actinobacteria, Acidobacteria, Proteobacteria, and Bacteroidetes, 
were much less important for community structure than the null 
expectation. These taxa have been reported elsewhere as ‘core’ 
members of the soil community36,45, and have even been included 
in source tracking of microbial communities owing to their ubiqui-
tous presence in soil46. However, it is the consistent presence of the 
core taxa across samples and studies that makes them inadequate 
for assessing community structure.

Discussion
Our results demonstrate the power of combining global bacterial HTS 
data from multiple independent sources for the detection of biogeo-
graphical patterns and for the identification of community patterns 
that can be used to generate hypotheses on the roles of certain taxa. 
Although our assessment was on soil communities, our methods 
can be applied broadly to other microbial data sets and disciplines. 

Taxonomy-based merging gives results that are consistent with raw 
sequence data, and expands opportunities for extracting informa-
tion about microbial communities from the wealth of existing and 
future studies. Moreover, we find that rarer bacterial taxa are more 
important in differentiating communities than previously assumed, 
and hold potential as overlooked soil indicators or keystone species. 
Still, there are considerable challenges associated with merging large 
sequence data sets beyond the well-known biases that accompany any 
molecular HTS study. Perhaps the most concerning challenge was 
that so few raw sequence data sets could be retrieved. This highlights 
the need for wider community adoption of open and accessible short 
read sequence databases47, open reference clustering48, standardized 
databases49, and — as always — that metadata should be consistent 
and accessible. Regardless of these challenges, as HTS methods rap-
idly advance, we must find ways to simultaneously curate and carry 
our research knowledge forward. Only then, in combination with the 
many recently designed and classical approaches, can we uncover the 
full breadth of soil diversity and the roles that soil microorganisms 
have for ecosystem processes.

Methods
Description of data sets. Metadata from the 30 studies and 1,998 samples were 
collected and compiled into a summary data file. To do so, we standardized the 
metadata of each study using the dplyr package50 of the R statistical platform51. 
Samples were collected from 21 countries representing all continents except 
Antarctica. In addition to location and pH data (median =  6.1, quartile range =  5.3–
7.0), which were available from all studies, information on altitude (median =  10 m, 
quartile range =  10–860 m), soil moisture (median =  19.5%, quartile range =  14.1–
27.4%), and total soil nitrogen (median =  0.36 mg kg–1, quartile range =  0.23–
0.51 mg kg–1), carbon (median =  4.7%, quartile range =  1.9–7.5%) and phosphorus 
(median =  20.7 mg kg–1, quartile range =  7.0–223.0 mg kg–1) was noted where 
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available. Depth of sample collection was also noted and ranged from surface 
collections to a maximum depth of 70 cm, with 83% of samples originating from  
0 to 10 cm below the soil surface. Samples represented anthropogenically managed 
(59%) and natural (40%; remaining samples undefined) systems, and were taken 
from arable, grassland, peatland, forest, scrub (including tundra) and urban 
habitats. The majority of samples (71%) were described as non-experimental (that 
is, no treatments were applied), with the remainder described as experimental. 
Sequencing data were either produced using Roche 454 technology (22%) or one 
of the Illumina platforms (78%). Primer pairs were defined for 92% of the samples 
and nine different pairs were identified from the study metadata (27F:338R; 
341F:518R; 341F:806R; 341F:907R; 357F:926R; 515F:806R; 577F:926R; 799F:1193R; 
and 341F:805R), with the majority of samples (66%) using 515F and 806R to 
produce amplicons. Post-sequencing processing varied, but 81% of samples 
were run through the Quantitative Insights Into Microbial Ecology (QIIME) 
workflow at some point. An OTU table for one study comprising 43 samples was 
programmatically retrieved from the MG-RAST public metagenome repository52. 
Taxonomy for the different studies was mainly assigned using the Greengenes 
database (84%), but the Ribosomal Database Project (RDP) (6%)37 and the SILVA 
database (9%)53 were also used.

Primer biases. It has long been well understood that different primers vary in their 
biases for amplifying members of the bacterial community54,55. To demonstrate 
this bias, the likelihood of significant differences in primer biases for the ten pairs 
of primers used in the studies analysed were determined by in silico analysis. 
Sequences of primer pairs were compared to all 16S rRNA gene sequences in the 
SILVA non-redundant reference database (SSURef NR) release 128 (ref. 53) using 
TestPrime version 1.0 (as described in ref. 56). The percentages of sequences of each 
bacterial phyla that matched both primers (with a 1 base pair mismatch allowance 
at least 1 base pair from the 3′  end of the primers) were calculated to compare 
predicted differences in primer coverage of different bacterial taxa.

Merging OTU tables. For the OTU tables from the 30 individual studies to be 
merged, extensive data cleaning was carried out on the OTU and taxonomy files 
to maximize the possibility of matching taxa across data sets. This comprised 
several steps. (1) Most data sets contained a seven-level taxonomy, recorded in 
various ways, which was converted to a standardized format. (2) Individual taxon 
names were cleaned, to give a single name at each taxonomic level (for example, 
removing special characters and extra annotations, such as ‘candidate division’ 
or details of containing taxa). (3) For the many cases in which a taxon was not 
assigned at a particular taxonomic level, a unified ‘unassigned’ label was created. 
Repeating analyses with all these taxa removed made no qualitative difference 
to the results (Supplementary Fig. 10). Merging at the taxonomy-based level has 
the added benefit of lessening the affects of hypervariable regions. For example, 
the identification of an organism at a specific level in one sample also contributes 
to the identification of the containing genus for that sample, allowing direct 
comparison with a sample where, because a different region was sequenced, 
that same organism is only resolved to the genus level. Next, relative abundance 
data were, where necessary, re-scaled to sum to 1 for a sample, using original 
OTU count files where possible, and put into a format suitable for modelling 
(Supplementary Table 5). For some analyses (Figs. 3–5), a data set without 
community structure was created by randomly permuting the relative abundance 
of each taxon across all samples. Unless otherwise stated, the analyses performed 
on the permuted data set were identical to that performed on the observed data.

Merging raw sequence data and other validation data sets. While no data 
set can currently provide a ‘ground truth’ against which to judge our approach, 
we can at least validate it. The primary validation of our taxonomy-matching 
approach was to merge raw sequence data (‘sequence matched’) from 419 samples 
of the total 1,998 samples used. Per sample, FASTQ files were obtained for each 
individual data set. Read files were quality filtered with sickle57 for single-end 
reads, trimming bases below a Phred score of 36 and shorter than 100 base pairs. 
These stringent filtering criteria were applied to keep only high-quality reads and 
to make sure it was possible to map reads to full-length 16S rRNA gene sequences. 
Full-length 16S rRNA gene sequences from the SILVA 119 release53 were obtained 
in QIIME compatible format from the SILVA Download Archive. For each data 
set, all reads were mapped to the full-length 16S rRNA gene sequences using 
the usearch global algorithm implemented in VSEARCH version 1.9.6 (ref. 58). 
The alignment results in usearch table format (uc) were directly converted to 
Biological Observation Matrix (BIOM) format using BIOM version 2.1.5 (ref. 59). 
Consensus/majority taxonomy was added as metadata to the BIOM file. Finally, 
all BIOM files of each data set were merged using QIIME version 1.9.1 (ref. 60). All 
steps were implemented in a workflow made with Snakemake version 3.5.4 (ref. 61) 
(Supplementary Fig. 1) resulting in the sequence-matched dataset (Supplementary 
Table 6).

To use this sequence-matched data set to validate our taxonomy-matching 
approach across studies using different taxonomy databases (Supplementary 
Figs. 5,7,8), we created an equivalent taxonomy-matched data set from the same 
five studies. As with the full data set, only taxa occurring in at least two studies 
were included in either this or the sequence-matched data set. To test what is 

gained or lost by considering different numbers of studies simultaneously, we 
considered not only the full data set (30 studies) and the subset of five studies used 
in the sequence-matched data set but also two of the largest individual studies: 
Central Park, NY, USA, encompassing 594 samples (study no. 24), and a global 
data set encompassing 103 samples (study no. 30). In each case, a simple subset 
of the full data set was analysed (Supplementary Fig. 4). To address PCR biases 
(Supplementary Table 2) and biases associated with rare taxa, we created a filtered 
subset of the data where only taxa present at above 0.003% in any given sample 
were considered, meaning that all taxa that were deemed present are represented by 
multiple sequence reads (Supplementary Fig. 9). To address the issue of differential 
16S copy numbers skewing abundance estimates, we created a binary data set of the 
presence/absence of all taxa. The results for a model separating studies using this 
data set were very similar to the main data set using relative abundance; however, 
there was insufficient power to identify taxa that are important for community 
structure. Nonetheless, this analysis did agree with the main analysis that phyla 
were the most stable taxonomic level, with lower importance than on the permuted 
data (Supplementary Fig. 6). Finally, to test the effect of ‘unknown’ or ‘unclassified’ 
bacterial taxa, we created a reduced data set, in which all taxa classified as 
‘unassigned’ at any level were removed (Supplementary Fig. 10).

Random Forest models. To test for the importance of different taxa in the 
structuring of the data, we used Random Forest models62–64 with the relative 
abundances of the taxa as explanatory variables. Random Forest models have 
two principal advantages in this context: (1) they can deal easily with thousands 
of explanatory variables and quantify their relative importance, and (2) they 
can run equivalently in both supervised and unsupervised modes. When run 
in unsupervised mode, the importance of a variable describes how effective it 
is at separating the observed data from randomized synthetic data64. In both 
cases, a proximity matrix may be generated, which can be used for ordination 
(Supplementary Fig. 2). The importance of individual taxa in a Random Forest 
relate to traditional ecological measures. For instance, the importance in a 
supervised model, such as that used for separating studies (x axis in Fig. 2) is 
closely correlated with the sensitivity component of the indicator value of each 
taxon (ρ =  0.89)44 (Supplementary Fig. 3d). There are two key parameters that 
may be adjusted in a Random Forest model: ‘mtry’, which is the number of 
variables randomly sampled as candidates for a split in the constituent trees; 
and ‘ntree’, which is the number of trees in the forest. mtry was set at its default 
value (square root of the number of variables), and ntree was set to 100,000 for 
each forest. A large number of trees was found to be necessary to achieve stable 
importance across taxa, and was achieved by combining several forests, run in 
parallel without normalizing votes. Other parameters were left at default values, in 
particular, trees were grown to completion (that is, a minimum node size of 1). The 
unscaled permutation importance of variables is used throughout: each variable 
importance is the difference between the classification error rate of a tree on data 
not used to construct it (the ‘out of bag’ data) and the same error following random 
permutation of the variable in question, averaged over all trees.

We used permuted data (as previously mentioned) to create null distributions 
for taxa importance. For unsupervised random forests analyses, such as the 
community structure model, this amounts to calculating how important a taxon 
with a particular abundance distribution is for separating two randomized 
distributions. This can then be compared to its importance for separating the 
observed from a randomized distribution. This clarifies the fact that, even in null 
data without community structure (Supplementary Fig. 2), variable importance 
correlates with ecologically important factors, such as abundance. This makes 
intuitive sense considering that, even with randomized samples, it is easier to 
separate them on the basis of taxa that occur in only some of them than on the 
basis of ubiquitous taxa. This, for instance, results in the negative slope of the 
orange (permuted, null data) line in Fig. 5. All analyses were completed with 
RandomForest package for R version 4.6.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. The authors declare that the data supporting the findings of this 
study are available within the paper and its Supplementary Information files.
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Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used. 

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

No humans were involved. 
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