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Abstract
Research has shown that independent groups often differ not only in their means, but also in their
variances. Comparing and testing variances is therefore of crucial importance to understand the effect of
a grouping variable on an outcome variable. Researchers may have specific expectations concerning the
relations between the variances of multiple groups. Such expectations can be translated into hypotheses
with inequality and/or equality constraints on the group variances. Currently, however, no methods are
available for testing (in)equality constrained hypotheses on variances. This article proposes a novel
Bayesian approach to this challenging testing problem. Our approach has the following useful properties:
First, it can be used to simultaneously test multiple (non)nested hypotheses with equality as well as
inequality constraints on the variances. Second, our approach is fully automatic in the sense that no
subjective prior specification is needed. Only the hypotheses need to be provided. Third, a user-friendly
software application is included that can be used to perform this Bayesian test in an easy manner.

Translational Abstract
Data analysis in the psychological sciences commonly focuses on averages. However, by disregarding
the variability of the observations one runs the risk of overlooking crucial information in the data. In fact,
there are often reasons to expect a certain structure of the variability across groups of different people.
For example, one would expect observations from a treatment group to be more variable than observa-
tions from a control group because subjects react differently to the treatment. Such an expectation can
be translated into the hypothesis “the treatment group is more variable than the control group.” To test
this hypothesis one needs to compare it to a competing hypothesis. A possible competitor is the
hypothesis “the treatment and the control group are equally variable.” In this article we use Bayesian
statistics to test such hypotheses about the structure of the variability across two or more groups. The
results of a simulation study indicate that our method is able to detect the correct hypothesis if the sample
size is large enough. We present a user-friendly software application that can be used to perform our
Bayesian test in a relatively easy manner. An application of our testing procedure to data from the Math
Garden online learning environment (https://www.mathsgarden.com/) shows that our method provides
valuable answers to research questions concerning the structure of the variability across groups.
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Data analysis in psychological research commonly focuses on
measures of central tendency such as means and regression coef-
ficients. Measures of dispersion like variances receive relatively
little attention. By disregarding the dispersion, however, research-
ers run the risk of overlooking vital information in the data. Carroll
(2003) distinguished two situations in which it is crucial to care-
fully consider the structure of variances. The first is the situation
in which the variability systematically depends on known factors.
An example is heteroscedasticity in ANOVA and regression. For
instance, it has been pointed out that in experimental studies
treatments often not only affect group means, but also group
variances (e.g., Bryk & Raudenbush, 1988; Grissom, 2000; Ruscio
& Roche, 2012). However, heterogeneity of variances is common
in existing groups as well (e.g., Grissom, 2000; Ruscio & Roche,
2012). For example, males have been found to be more variable
than females on a variety of measures (e.g., Lehre, Lehre, Laake,
& Danbolt, 2009). Furthermore, it is frequently observed that the
variability changes systematically with time (e.g., Aunola, Leski-
nen, Lerkkanen, & Nurmi, 2004; Hultsch, MacDonald, & Dixon,
2002). For example, a method that allows for the variability to
systematically depend on known factors is the beta regression
approach of Smithson and Verkuilen (2006). The authors model
the mean as well as the variance as a function of (possibly
different) predictors, thus treating the variance as a parameter of
interest rather than as a nuisance parameter. The second situation
in which variances play a crucial role is in multilevel modeling.
Here researchers need to carefully model the variability at multiple
levels, which results in multiple variance components. For exam-
ple, Verhagen and Fox (2013) proposed a test on variance com-
ponents in multilevel IRT models to check for measurement in-
variance in cross-national surveys. Furthermore, Kim and Seltzer
(2011) examined heterogeneity in residual variance in multilevel
models applied to (quasi-)experimental data in order to detect
differential response to treatments. In the present article the focus
is on heterogeneity of variances in one-way ANOVA designs with
independent groups in the first situation.

There are often reasons to expect a certain structure of the
variances of multiple independent groups. Typically one expects
that certain groups are more heterogeneous than others, less het-
erogeneous, or equally heterogeneous. Such expectations can be
translated into equality and inequality constrained hypotheses on
the group variances. For example, in experimental studies one
would expect treatment groups to have larger variances than con-
trol groups because participants respond differently to treatments
(e.g., Bryk & Raudenbush, 1988; Grissom, 2000). Suppose we
compare a control group with two treatment groups receiving a
mild and an intense treatment, respectively. A conceivable hypoth-
esis in this case would be H1 : �1

2 � �2
2 � �3

2, where �1
2 is the

variance of the control group and �2
2 and �3

2 are the variances of the
groups receiving the mild and the intense treatment, respectively.
Note that H1 states that the intense treatment produces larger
variance than the mild treatment. To see whether there is evidence
in favor of H1 we test it against one or more competing hypotheses.
Potential competitors are the null hypothesis H0 : �1

2 � �2
2 � �3

2

stating equality of variances and the complement of H1 given by
H2 : not �1

2 � �2
2 � �3

2. The complement H2 entails all possible
hypotheses except H1. Hence, testing an order constrained hypoth-
esis like H1 against its complement tells us whether there is
evidence in favor of our expected order or whether another hy-

pothesis is more likely. Note that the interest is solely on the group
variances, whereas the group means are treated as nuisance pa-
rameters.

Theoretical considerations often suggest (in)equality con-
strained hypotheses on the variances of existing groups as well.
For example, Aunola et al. (2004) hypothesized that the variance
of mathematical abilities either increases or decreases across
grades. For J � 2 grades this can be expressed in the two com-
peting hypotheses H1 : �1

2 � . . . � �J
2 and H2 : �J

2 � . . . � �1
2,

where �j
2 denotes the variance in grade j. The idea behind an

increase (H1) is that students who start out with high mathematical
potential develop their mathematical abilities faster than students
with low potential, which increases interindividual differences. A
decrease in the variability of mathematical abilities (H2) might
occur because systematic instruction at school helps students with
low mathematical potential catch up, so that interindividual dif-
ferences decrease. Another potential competing hypothesis would
be the null hypothesis H0 : �1

2 � . . . � �J
2. Note that H1 and H2

are in agreement with models of development over time. For
example, in the random slope model variances may increase over
time, decrease over time, or first decrease and then increase over
time (Snijders & Bosker, 2012). Constrained hypotheses on the
variances of existing groups are conceivable in a variety of psy-
chological research areas. For example, research on gender differ-
ences often finds males to be more variable in their intellectual
abilities and personality than females (e.g., Borkenau, Hřebíčková,
Kuppens, Realo, & Allik, 2013; Feingold, 1992). Gerontological
studies have found that the variability of reaction times increases
with age (e.g., Hultsch et al., 2002). Research on psychological
disorders has shown that ADHD patients tend to be more variable
in their attentional performances than groups of people who do not
suffer from ADHD (e.g., Silverstein, Como, Palumbo, West, &
Osborn, 1995). Furthermore, research on person-in-context behav-
ior suggests that the variability of people’s behavior may differ
across situations. For example, Van Mechelen (2009) argued that
in an aggression context the variability may depend on the amount
of social control in a situation, where high social control results in
homogeneous behavior and thus low variability.

The standard approach to testing variances is null hypothesis
significance testing (NHST). Classical NHST procedures like the
likelihood ratio test or Levene’s test (Levene, 1960) test the null
hypothesis stating that all J variances are equal, H0 : �1

2 � . . . �
�J

2, against the alternative hypothesis stating that the variances are
not all equal, Ha : not �1

2 � . . . � �J
2. In testing the order

constrained hypothesis H1 : �1
2 � . . . � �J

2 using classical NHST
procedures one would proceed as follows: First we test the null
against the alternative hypothesis. If we are able to reject the null
hypothesis, we check whether the sample variances follow the
order stated in the order constrained hypothesis. For more than two
groups this is done by pairwise comparisons. This approach entails
two problems: First, it suffers from Type I error inflation if we do
not adjust the significance level for multiple testing. If we do
adjust the significance level, then the procedure suffers from low
power (e.g., Cohen, 1992). Second, it is possible that the pairwise
comparisons produce contradictory results (e.g., H0 : �1

2 � �2
2 and

H0 : �1
2 � �3

2 are not rejected, but H0 : �2
2 � �3

2 is).
Motivated by these disadvantages, Gastwirth, Gel, and Miao

(2009) proposed an NHST procedure for testing the null hypoth-
esis against an order constrained hypothesis. The advantage of this
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test is that it has higher power to detect an order effect. However,
the method does not allow testing the null against an alternative
hypothesis with a combination of equality and inequality con-
straints on the variances. This is a serious limitation given the large
number of distinct hypotheses we can formulate. Using different
combinations of equality and inequality constraints, we can specify
dozens of distinct hypotheses on three variances. For more than
three groups there are well over 100 distinct hypotheses. Further-
more, the test by Gastwirth et al. (2009) does not solve the
problems inherent in all NHST procedures: First, NHST proce-
dures are not able to quantify evidence in favor of a hypothesis, no
matter whether it is a null, an order constrained, or an uncon-
strained hypothesis (e.g., Wagenmakers, 2007). Second, it often
happens that researchers have multiple competing hypotheses they
would like to compare. NHST procedures do not allow testing
these hypotheses against one another to determine which is most
supported by the data. All one can do is test each hypothesis
against the null, which does not answer the research question
which hypothesis receives strongest support.

Given the problems with NHST procedures, it seems natural to
use an information criterion like the Akaike information criterion
(AIC; Akaike, 1973) or the Bayesian information criterion (BIC;
Schwarz, 1978) to compare the hypotheses. However, these crite-
ria cannot be used to test inequality constrained hypotheses. Both
the AIC and the BIC involve a penalty term that measures the
complexity of a hypothesis by the number of parameters. How-
ever, under inequality constrained hypotheses the number of pa-
rameters is not a suitable measure of the complexity because each
inequality constraint effectively reduces the complexity. For ex-
ample, the order constrained hypothesis H1 : �1

2 � �2
2 � �3

2 is less
complex than the unconstrained hypothesis Hu : �1

2, �2
2, �3

2 because
under H1 the variances can take on fewer values (e.g., �1

2 cannot be
greater than �2

2). As a solution to this problem, Anraku (1999)
proposed the order-restricted information criterion (ORIC). How-
ever, the ORIC is designed for testing order constrained hypoth-
eses on means. At this point it is unclear whether this methodology
can be generalized to the case of testing equality and inequality
constrained hypotheses on variances. Note that the deviance infor-
mation criterion (DIC; Spiegelhalter, Best, Carlin, & van der
Linde, 2002) and the Watanabe-Akaike information criterion
(WAIC; Watanabe, 2010) do not provide a solution to this problem
because they do not properly take the parsimony introduced by
inequality constraints into account (Mulder et al., 2009; Gelman,
Hwang, & Vehtari, 2014). Under certain conditions the DIC and
the WAIC are asymptotically equal to leave-one-out cross-
validation (Gelman et al., 2014), which implies that the latter is not
suitable for testing inequality constrained hypotheses on variances
either.

In this article we adopt a Bayesian approach to testing equality
and inequality constrained hypotheses on variances using Bayes
factors (Jeffreys, 1961; Kass & Raftery, 1995). The Bayes factor is
a Bayesian hypothesis testing and model selection criterion. It
provides a solution to the aforementioned problems inherent in
NHST procedures and existing information criteria. In particular,
the Bayes factor quantifies the evidence in favor of a hypothesis.
This holds for all types of hypotheses: The Bayes factor allows
quantification of evidence in favor of a null hypothesis, order
constrained hypotheses, and hypotheses with a combination of
equality and inequality constraints. Furthermore, using the Bayes

factor it is straightforward to simultaneously test multiple hypoth-
eses against one another. In this case the Bayes factor tells us
which hypothesis is most supported by the data. Bayes factors have
a number of additional desirable properties: First, contrary to
NHST procedures, Bayes factors do not require the hypotheses
under consideration to be nested (e.g., Berger & Mortera, 1999).
Bayes factors are therefore able to directly test, for example, H1 :
�1

2 � �2
2 � �3

2 against H2 : �3
2 � �2

2 � �1
2. Second, Bayes factors

automatically function as Occam’s razor. This means that if two
hypotheses describe the data equally well, then the Bayes factor
automatically chooses the more parsimonious hypothesis. This is a
useful property of Bayes factors because it is frequently observed
that parsimonious hypotheses that describe the data well are more
likely to be correct than complex ones. Third, Bayes factors are
consistent. This means that the Bayes factor always chooses the
true hypothesis if we have enough data.

Bayes factors have been developed for various testing problems
frequently encountered in the psychological sciences. For instance,
Rouder, Speckman, Sun, Morey, and Iverson (2009) proposed a
Bayesian t test. Klugkist, Laudy, and Hoijtink (2005) discussed a
Bayes factor for testing hypotheses on mean parameters in analysis
of variance designs. Mulder, Hoijtink, and Klugkist (2010) pre-
sented methods for Bayesian testing of means and regression
coefficients in the multivariate normal linear model. Gu, Mulder,
Deković, and Hoijtink (2014) proposed an approximate Bayes
factor for evaluating hypotheses with inequality constraints on
means and regression parameters. In the present article we propose
a novel Bayes factor for testing equality and inequality constrained
hypotheses on variances of multiple independent groups. Our
methodology builds upon the fractional Bayes factor of O’Hagan
(1995) in combination with the prior adjustment of Mulder
(2014b) and Böing-Messing and Mulder (2016).

The remainder of this article is structured as follows. First, we
discuss the statistical model and options for formulating hypoth-
eses on the group variances. We then give a brief introduction to
the Math Garden (Klinkenberg, Straatemeier, & van der Maas,
2011; Straatemeier, 2014), which we use to illustrate the impor-
tance of testing (in)equality constrained hypotheses on variances.
Next, we discuss Bayes factors for testing hypotheses on vari-
ances. We first apply the fractional Bayes factor (O’Hagan, 1995)
to the testing problem and show that it may not function as
Occam’s razor when testing inequality constrained hypotheses. As
a novel solution to this problem we propose an adjusted fractional
Bayes factor. The performance of the new method is illustrated in
a simulation study. Following this, we continue the illustrative
example by applying the adjusted fractional Bayes factor to data
from the Math Garden. We then present a user-friendly software
application for computing the adjusted fractional Bayes factor. We
conclude the article with a discussion of our approach.

Model and Hypotheses

We consider the one-way ANOVA design with J � 2 indepen-
dent groups of size nj, j � 1, . . . , J. Each observation in group j
is assumed to be independent and normally distributed with mean
�j and variance �j

2. The unconstrained likelihood with no con-
straints on the group means and variances is given by
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fu�x | �, �2� � �
j�1

J

�
i�1

nj

N�xij | �j, �j
2�, (1)

where x are the data, xij is the ith observation from the jth group, � �
(�1, . . . , �J)= is the vector of group means, and �2 � (�1

2, . . . , �J
2)=

is the vector of group variances.
Hypotheses on the variances can be formulated using two basic

types of constraints: equality constraints and inequality constraints.
With equality constraints we can specify equalities of two or more
variances, for example H : �1

2 � �2
2 � �3

2. Inequality constraints are
used to formulate expectations regarding differences in magnitude
between variances, for example H : �1

2 � �2
2 � �3

2. If we do not
expect certain relations between variances, then we simply do not
impose constraints on them. We shall use the comma symbol (,) to
indicate that there are no constraints between variances, for exam-
ple Hu : �1

2, �2
2, �3

2. We refer to the hypothesis with no constraints
on the variances as the unconstrained hypothesis. In formulating
hypotheses we may combine equality constraints, inequality con-
straints, and no constraints between variances, for example H :
�1

2 � �2
2 � �3

2, �4
2. Another hypothesis that is often of interest is the

complement of an order constrained hypothesis. For example, the
complement of the order constrained hypothesis H1 : �1

2 � �2
2 � �3

2

is given by H2 : not �1
2 � �2

2 � �3
2, for which we also write H2 :

not H1 in short. The complement entails all possible hypotheses
except the order constrained hypothesis. We may also test the
complement of multiple orders. For example, Aunola et al. (2004)
expected the variance of mathematical abilities to either increase
or decrease across grades. This corresponds to the two order
constrained hypotheses H1 : �1

2 � . . . � �J
2 and H2 : �J

2 � . . . �
�1

2, for which the complement is given by H3 : not (H1 or H2). Note
that one may also perform the classical test of the null hypothesis
H0 : �1

2 � . . . � �J
2 against the unconstrained alternative hypoth-

esis Hu : �1
2, . . . , �J

2 if the interest is on whether the group
variances are equal or not. The likelihood under a constrained
hypothesis Ht is a truncation of the unconstrained likelihood in
Equation (1) in the parameter space that is admissible under Ht,
which we denote by �t:

ft�x | �, �2� � fu�x | �, �2�I�t
��2�, (2)

where I�t
��2� is an indicator function that equals 1 if the variances

�2 are in the admissible parameter space �t and 0 if the variances
are outside the admissible parameter space.

Illustrative Example: The Math Garden

The Math Garden (Klinkenberg et al., 2011; Straatemeier, 2014)
is an online adaptive learning environment for basic mathematics.
It is currently used by more than 300,000 children in primary
education, involving more than 4,000 schools. Next to providing
children and teachers with an online learning tool, the system
opens up a valuable database for researchers. In this article we
present an analysis of children’s abilities in four different games,
each covering one of the basic mathematical operations addition,
subtraction, multiplication, and division.

As mentioned in the introduction, Aunola et al. (2004) hypoth-
esized that the variance of mathematical abilities either increases
or decreases across grades. This suggests testing the following two
research hypotheses in the Math Garden:

H1 : �1
2 � · · · � �J

2,

H2 : �J
2 � · · · � �1

2,
(3)

where �j
2 is the variance of mathematical abilities in grade j and J

is the number of grades to be compared. Thus, H1 states an
increase in variance, whereas H2 states a decrease. We shall test
these two research hypotheses against two competing hypotheses:

H0 : �1
2 � · · · � �J

2,
H3 : not (H0 or H1 or H2). (4)

Here H0 is the classical null hypothesis stating equality of vari-
ances. Hypothesis H3 is the complement of H0, H1, and H2. We
include it to cover all possible hypotheses in case neither the
research hypotheses nor the null hypothesis is supported by the
data. In the Math Garden a player’s ability is estimated separately
for each of the four games addition, subtraction, multiplication,
and division. That is, each player has a separate ability estimate for
each game they play. We will therefore test the hypotheses in
Equations (3) and (4) for each game separately.

Bayes Factors for Testing Constrained Hypotheses
on Variances

The Bayes factor is a Bayesian testing criterion that can be used
to quantify the relative evidence in the data between two hypoth-
eses. The main ingredient of the Bayes factor is the marginal
likelihood of the data under each hypothesis. The marginal likeli-
hood of the data x under the constrained hypothesis Ht, denoted by
mt, is defined by the integral over the product of the likelihood,
denoted by ft, and the prior, denoted by �t, over the admissible
parameter space under Ht. The marginal likelihood can be ex-
pressed as

mt(x) � ��t
��J ft�x | �, �2��t��, �2�d� d�2, (5)

where the likelihood ft under the constrained hypothesis Ht was
given in Equation (2), the prior distribution �t contains the infor-
mation about the parameters � and �2 before observing the data,
which will be discussed below, and �t denotes the constrained
parameter space of the variances under Ht. For example, for H1 :
�1

2 � . . . � �J
2 the constrained space �1 corresponds to the

subspace of the variances that is in agreement with the ordering
�1

2 � . . . � �J
2. The marginal likelihood quantifies how well the

model and the prior under Ht were able to predict the observed data
(Jeffreys, 1961; Kass & Raftery, 1995).

In order to determine the evidence in the data in favor of a
hypothesis, say H1, relative to another hypothesis, say H2, the ratio
of the marginal likelihoods needs to be computed via

B12 �
m1(x)
m2(x) , (6)

which is known as the Bayes factor of hypothesis H1 against
hypothesis H2. If the Bayes factor B12 is larger (smaller) than 1,
this indicates that the evidence in the data in favor of H1 (H2) is
stronger than the evidence in favor of H2 (H1). For example, a
Bayes factor of B12 � 10 implies that the evidence in the data in
favor of H1 is 10 times as strong as the evidence in favor of H2.
Kass and Raftery (1995) provided interpretation guidelines for the
Bayes factor as stated in Table 1. We would like to emphasize,
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however, that these guidelines should not be used as strict rules
when interpreting Bayes factors. A researcher should decide for
himself or herself whether a Bayes factor of, say, B12 � 120 is
enough to completely rule out hypothesis H2 in comparison with
hypothesis H1.

Prior specification is an important step when computing the
marginal likelihood. First, it is important to note that priors should
not be specified in an ad hoc manner because the Bayes factor
strongly depends on the exact choice of the prior. For instance, the
Bayes factor for a null hypothesis against an unconstrained alter-
native hypothesis can be made arbitrarily large when specifying
the prior under the unconstrained alternative extremely vague. This
is known as Bartlett’s phenomenon (e.g., Bartlett, 1957; Jeffreys,
1961; Liang, Paulo, Molina, Clyde, & Berger, 2008; Lindley,
1957). Alternatively, one might consider using noninformative
improper priors, which are commonly used in objective Bayesian
estimation (Berger, 2006). When using Bayes factors, however, it
is not possible to work with noninformative improper priors be-
cause these contain undefined normalizing constants which do not
cancel out when computing the marginal likelihoods and Bayes
factors according to Equations (5) and (6).

Thus, in order to quantify the relative evidence in the data
between constrained hypotheses on variances using the Bayes
factor one needs to carefully formulate proper priors for the
unknown parameters under all hypotheses under consideration. For
instance, in the Math Garden example a proper prior needs to be
specified for the group variances under H1 satisfying the increas-
ing order, the group variances under H2 satisfying the decreasing
order, the common group variance under H0, and the group vari-
ances under the complement hypothesis H3. Because often precise
prior information about the degree of heterogeneity across popu-
lations is not available, specification of proper priors is a difficult
task for a researcher. This holds especially when testing hypoth-
eses with constraints on variances.

To avoid this limitation statisticians have developed automatic
(or default) marginal likelihoods and Bayes factors that enable
researchers to automatically quantify the relative evidence in the
data between the hypotheses. These default Bayes factors can be
computed in an automatic fashion without needing to specify
proper priors for the model parameters based on one’s subjective
prior beliefs. Well-known examples are the fractional Bayes factor
(O’Hagan, 1995), the intrinsic Bayes factor (Berger & Pericchi,
1996), and the Bayes factor based on expected-posterior priors
(Mulder et al., 2009; Pérez & Berger, 2002). Here we shall focus
on the fractional Bayes factor because it is computationally effi-
cient and has desirable theoretical properties (O’Hagan, 1995,
1997).

Fractional Bayes Factors

The fractional Bayes factor (FBF) was proposed by O’Hagan
(1995) to circumvent the need to specify a proper prior based on
external prior information. In the FBF, the marginal likelihood is
defined as

mt
F(x, b) �

��t
��J ft�x | �, �2��t

N��, �2�d� d�2

��t
��J ft�x | �, �2�b�t

N��, �2�d� d�2
, (7)

where �t
N denotes a noninformative improper prior and the

fraction b can take on values between 0 and 1. Thus, the
marginal likelihood in the FBF corresponds to the standard
marginal likelihood based on a noninformative improper prior
divided by the standard marginal likelihood where the likeli-
hood is raised to the power of the fraction b. O’Hagan (1995)
motivates this form of the marginal likelihood in the context of
partial Bayes factors. In particular, he argues that the fraction of
the likelihood (i.e., the likelihood to the power of b) contains a
part of the information in the full likelihood in the sense that the
fraction of the likelihood is approximately equal to the likeli-
hood based on a training sample if we set b � m/n, where both
the sample size n and the training sample size m are large. As
will be elaborated below, the fraction b controls the amount of
information in the implicit automatic proper prior.

The noninformative improper prior we use in Equation (7) is the
standard independence Jeffreys prior. For a constrained hypothe-
sis, this noninformative improper prior is proportional to the prod-
uct of the reciprocals of the unique variances truncated in the
inequality constrained parameter space (if there are inequality
constraints present). For example, under H0 : �1

2 � . . . � �J
2 with

one unique variance, say, �2, and H1 : �1
2 � . . . � �J

2 with J unique
variances that are inequality constrained, the noninformative im-
proper priors are given by

�0
N(�, �2) � C0 	 �
2 and

�1
N(�, �2) � C1 	 �1


2 	 · · · 	 �J

2 	 I��1

2 � · · · � �J
2�,

(8)

respectively, where I(�1
2 � . . . � �J

2) is an indicator function that
equals 1 if �1

2 � . . . � �J
2 and 0 otherwise, and C0 and C1 denote

the respective undefined normalizing constants. Because the non-
informative improper prior appears in the numerator as well as in
the denominator in the marginal likelihood in Equation (7), the
undefined constants in the improper prior cancel out in the FBF
approach. Note that the noninformative priors imply flat priors for
the group means.

The fraction b controls how much of the information in the data
is used to specify an automatic proper prior. This can be made
explicit by rewriting the marginal likelihood in Equation (7) fol-
lowing Gilks (1995):

mt
F(x, b)

���t
��J ft�x | �, �2�1
b ft�x | �, �2�b�t

N��, �2�

��t
��J ft�x | �, �2�b�t

N��, �2�d�d�2
d� d�2

���t
��J ft�x | �, �2�1
b�t��, �2 | xb�d� d�2, (9)

Table 1
Interpretation Guidelines for the Bayes Factor B12 Testing
Hypothesis H1 Against Hypothesis H2 (From Kass & Raftery,
1995)

B12 Evidence in favor of H1

1 to 3 Not worth more than a bare mention
3 to 20 Positive
20 to 150 Strong
�150 Very strong
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where

�t(�, �2 | xb) �
ft(x | �, �2)b�t

N(�, �2)

��t
��J ft(x | �, �2)b�t

N(�, �2)d� d�2
(10)

is the automatic proper prior that is obtained by updating the
noninformative improper prior with a fraction b of the likelihood.
Note that the symbol xb is used to illustrate that this prior contains
a fraction b of the information in the complete data x. As can be
seen from Equation (9), in computing the marginal likelihood the
fraction b of the likelihood is used to obtain a proper automatic
prior and the remaining fraction 1 – b is used for hypothesis
testing. It is generally recommendable to choose the fraction b
based on the minimal number of observations that is needed to
obtain a proper automatic prior when updating the improper Jef-
freys prior (e.g., Berger & Mortera, 1999; O’Hagan, 1995). In our
testing problem with 2J unknown parameters (i.e., J unknown
means and J unknown variances), we need at least 2J observations
to obtain a proper prior when updating the improper Jeffreys prior.
This implies setting b � 2J/N, where N � �j�1

J nj is the total
sample size. This choice ensures that the remaining fraction 1 – b that
is used for hypothesis testing is maximal. As was shown by O’Hagan
(1995), the FBF is consistent under very general settings, which
implies that as the sample size grows to infinity, the evidence in favor
of the true hypothesis goes to infinity. If we use a minimal fraction the
evidence in favor of the true hypothesis goes fastest to infinity, which
makes the minimal fraction the optimal choice.

Fractional Bayes Factors for an Inequality
Constrained Test

Next we apply the FBF to test the inequality constrained hy-
pothesis H1 : �1

2 � �2
2 � �3

2 against the unconstrained hypothesis
Hu : �1

2, �2
2, �3

2. The inequality constrained subspace under H1 can
be written as �1 � {�2 | �1

2 � �2
2 � �3

2}. As shown in Appendix
A, the FBF for H1 against Hu can be written as the posterior
probability that the constraints of H1 hold divided by the automatic
prior probability that the constraints of H1 hold:

B1u
F �

m1
F(x, b)

mu
F(x, b)

�
P��2 � �1 | x�
P��2 � �1 | xb�

�
P��1

2 � �2
2 � �3

2 | x�
P��1

2 � �2
2 � �3

2 | xb�
.

(11)

The unconstrained marginal automatic prior for the variances,
which is needed to compute the probability in the denominator in
Equation (11), can be obtained by integrating the group means out
of the joint automatic prior:

�u��2 | xb� � ��3 �u��, �2 | xb�d�

� �
j�1

3

Inv-�2��j
2 | bnj 
 1,

b(nj 
 1)sj
2

bnj 
 1 �, (12)

which is a product of scaled inverse-	2 distributions with degrees

of freedom of bnj 
 1 and scale hyperparameters of
b�nj
1�sj

2

bnj
1 , where
sj

2 � 1
nj
1�i�1

nj �xij 
 x�j�2 is the sample variance of group j. In this
setting the minimal fraction is given by b � 6/N, where N � n1 �
n2 � n3. The unconstrained marginal posterior can simply be
obtained by plugging b � 1 into Equation (12), which yields

�u��2 | x� � �
j�1

3

Inv-�2��j
2 | nj 
 1, sj

2�. (13)

The distributions above can be used to obtain a large sample of,
say, S � 100,000 draws from the unconstrained posterior and
unconstrained automatic prior (see Gelman, Carlin, Stern, & Ru-
bin, 2004, for information on how to sample from the scaled
inverse-	2 distribution). Subsequently, by taking the proportion of
unconstrained draws that satisfy the constraints of H1, the frac-
tional Bayes factor in Equation (11) can be computed as

B1u
F 	

S
1�s�1
S I��1,post

2(s) � �2,post
2(s) � �3,post

2(s) �
S
1�s�1

S I��1,prior
2(s) � �2,prior

2(s) � �3,prior
2(s) �

, (14)

where �post
2(s) � (�1,post

2(s) , �2,post
2(s) , �3,post

2(s) )= and �prior
2(s) � (�1,prior

2(s) , �2,prior
2(s) ,

�3,prior
2(s) )= are the sth draw from the unconstrained posterior and

automatic prior, respectively, for s � 1, . . . , S.
It is important to note that the use of a common fraction b for all

groups may be problematic in the case of unbalanced data with
unequal group sizes. For example, when n1 � 10, n2 � 20, and
n3 � 30, it holds that b � 6/60 � 0.1. This results in prior degrees
of freedom of 0, 1, and 2, for �1

2, �2
2, and �3

2, respectively.
However, the degrees of freedom must be larger than 0. This
shows that the standard FBF approach is not generally applicable
in the case of unequal group sizes. We come back to this issue in
the next section.

Another important consequence of using a fraction of the data
for constructing the automatic prior in Equation (12) is that the
scale hyperparameter of each variance �j

2 depends on the corre-
sponding sample variance sj

2. This implies that the automatic prior
is concentrated around the observed effect, which has undesirable
consequences when testing inequality constrained hypotheses on
variances. We illustrate this with an example. For the moment, let
us consider a balanced data set with equal group sizes of nj � n �
20, for j � 1, 2, and 3, and let the sample variances satisfy s1

2 � 1,
s2

2 � s, and s3
2 � s2. Thus, if s � 1, then there is evidence in favor

of H1 because the sample variances are in agreement with the
inequality constraints under H1. Similarly, if s � 1, then there is
evidence against H1 because the sample variances are not in
agreement with the inequality constraints. Note that the degrees of
freedom in the automatic prior equal 6/60 � 20 
 1 � 1, which
implies a distribution with minimal information.

Figure 1 shows the FBF for H1 against Hu (solid line) when letting
s2 increase from exp(
10)  0.00 to exp(10)  22,000. As s2

becomes large (which implies clear evidence in favor of H1), the FBF
goes to 1. This can be explained by the fact that as s2 increases, the
unconstrained posterior in Equation (13) as well as the unconstrained
automatic prior in Equation (12) become completely located in the
constrained space of H1. For example, in Figure 2a it can be seen that
a large portion of an isodensity surface of the automatic prior for s2 �
9 and nj � 20 is located in the inequality constrained space �1

2 � �2
2 �

�3
2 (marked with thick lines). The automatic prior probability that the

inequality constraints hold is equal to 0.38 in this case. As s2 in-
creases, both the posterior and the prior probability that the inequality
constraints hold go to 1 because the posterior and the automatic prior
become completely located in the inequality constrained space. There-
fore, the ratio of the two probabilities in Equation (11) also goes to 1.
Thus, in the FBF approach the parsimonious order constrained hy-
pothesis that is strongly supported by the data does not receive
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stronger support than the more complex unconstrained hypothesis.
This implies that the FBF does not function as Occam’s razor in this
situation. This undesirable property is a direct consequence of the fact
that the automatic prior for the group variances is concentrated around
the sample variances. For this reason we propose an adjustment of the

FBF that corrects for this undesirable behavior when testing inequality
constrained hypotheses on variances.

Adjusted Fractional Bayes Factors

In this section we present two novel extensions of the FBF
approach for testing hypotheses with equality and inequality con-
straints on variances. The resulting criterion will be referred to as
the adjusted fractional Bayes factor (aFBF).

In the aFBF the marginal likelihood is defined as

mt
aF(x, b) �

��t
��J fu�x | �, �2��u

N��, �2�d� d�2

��t
a ��J fu�x | �, �2�b�u

N��, �2�d� d�2
. (15)

This expression has three important differences in comparison to
the marginal likelihood in the FBF approach given in Equation (7).
First, in the denominator in Equation (15) we integrate over an
adjusted parameter space, which is denoted by �t

a. The adjusted
parameter space contains the same constraints as the unadjusted
space �t, except that each variance �j

2 is multiplied by a tuning
parameter aj. These tuning parameters are chosen such the auto-
matic prior probability that the inequality constraints hold is based
on prior distributions for the variances with equal scale hyperpa-
rameters (unlike in the FBF, as was observed in Equation 12).
Details on the choice of the tuning parameters will be discussed
below. This adjustment results in a criterion that always incorpo-
rates the parsimony of a hypothesis with inequality constraints on
the variances (Böing-Messing & Mulder, 2016; Mulder, 2014b).

Figure 1. Fractional Bayes factor B1u
F (solid line) and adjusted fractional

Bayes factor B1u
aF (dashed line) for testing H1 : �1

2 � �2
2 � �3

2 against Hu :
�1

2, �2
2, �3

2. The Bayes factors are plotted as a function of the sample
variances (s1

2, s2
2, s3

2)=� (1, s, s2)=, where s2 � [exp(
10), exp(10)], and for
equal sample sizes of n1 � n2 � n3 � 20.

Figure 2. An isodensity surface of the automatic prior in Equation (12) for sample variances of (s1
2, s2

2, s3
2)= �

(1, 3, 9)= and sample sizes of n1 � n2 � n3 � 20. In Figure (a) the unadjusted parameter subspace satisfying
�1

2 � �2
2 � �3

2 is marked with thick lines. The automatic prior probability that the inequality constraints hold
equals P(�1

2 � �2
2 � �3

2 | xb) � 0.38. Figure (b) shows the adjusted parameter subspace satisfying 0.53�1
2 �

0.18�2
2 � 0.06�3

2 (marked with thick lines). The adjusted automatic prior probability that the inequality
constraints hold equals P(0.53�1

2 � 0.18�2
2 � 0.06�3

2 | xb) � 1/6.
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Second, in the denominator in Equation (15) the fraction of the
likelihood is based on group-specific fractions b � (b1, . . . , bJ)=,
where the fraction of the likelihood of group j depends on the
group size according to bj � 2/nj, for j � 1, . . . , J. This
generalization ensures that the minimal amount of information
based on two observations per group is used for automatic prior
specification. This was suggested by Berger and Pericchi (2001)
and De Santis and Spezzaferri (2001) for testing equality con-
straints on group means. Here we extend the idea to testing
equality and inequality constrained hypotheses on variances. Fi-
nally, it is important to note that in the denominator in Equation
(15) the likelihood and noninformative improper prior under the
unconstrained hypothesis, fu and �u

N, are used instead of the like-
lihood and prior under the constrained hypothesis, ft and �t

N. This
ensures that we integrate over the complete adjusted parameter
space �t

a in the denominator. For completeness, the unconstrained
likelihood and prior are also used in the numerator of the marginal
likelihood in the aFBF approach in Equation (15).

After some algebra (see Appendix B for a proof) the marginal
likelihood in the aFBF can be expressed as

mt
aF(x, b) � m̃ t

aF(x, b)
P��2 � �t | x�

P��2 � �t
a | xb�

, (16)

where

m̃ t
aF(x, b) � ��

k�1

K

�
j�1

Jk

bkj

1
2��


�k�1
K �j�1

Jk (1
bkj
)nkj

2

�
k�1

K

����j�1
Jk nkj� 
 Jk

2
�����j�1

Jk bkj
nkj� 
 Jk

2
�
1

��
j�1

Jk

(nkj

 1)skj

2 �

��j�1

Jk nkj�
Jk

2 ��
j�1

Jk

bkj
(nkj


 1)skj

2 �
��j�1

Jk bkj
nkj�
Jk

2
.

(17)

In Equation (17) the expression �(·) is the gamma function, K
denotes the number of unique variances, and Jk denotes the number
of groups sharing the unique variance �k

2, for k � 1, . . . , K.
Furthermore, bkj

and nkj
are the fraction and the sample size of the

jth group sharing the unique variance �k
2, for j � 1, . . . , Jk. In

Equation (16) the adjusted parameter space �t
a is defined by

�t
a � 
�2 | �a1�1

2, . . . , aK�K
2�� � �t�, (18)

where the tuning parameters ak are given by

ak �
��j�1

Jk bkj
nkj� 
 Jk

��j�1
Jk bkj

nkj

 1�skj

2
, (19)

for k � 1, . . . , K. Furthermore, the expressions P(�2 � �t | x) and
P(�2 � �t

a | xb) are the posterior and the adjusted automatic prior
probability that the inequality constraints on the variances hold,
respectively. These can be computed by drawing a large sample of,
say, S � 100,000 draws from the unconstrained posterior and auto-
matic prior distribution of the variances given by

�u(�
2 | x) � �

k�1

K

Inv-�2��k
2 | ��j�1

Jk

nkj
�
 Jk,

�j�1
Jk �nkj


 1�skj

2

��j�1
Jk nkj� 
 Jk

�
(20)

and

�u(�
2 | xb) � �

k�1

K

Inv-�2��k
2 | ��j�1

Jk

bkj
nkj
� 
 Jk,

�j�1
Jk bkj�nkj


 1�skj

2

��j�1
Jk bkj

nkj� 
 Jk
�, (21)

respectively. The posterior probability that the inequality con-
straints hold is then given by the proportion of posterior draws that
satisfy the constraints, that is,

P��2 � �t | x� 	 1
S�

s�1

S

I�t
��post

2(s)�, (22)

where �post
2(s) is the sth draw from the posterior in Equation (20), for

s � 1, . . . , S. Similarly, the adjusted prior probability that the
inequality constraints hold is given by

P��2 � �t
a | xb� 	 1

S�
s�1

S

I�t
a��prior

2(s) �, (23)

where �prior
2(s) is the sth draw from the prior in Equation (21), for s �

1, . . . , S.
Finally, it is important to note that the aFBF is scale invariant,

that is, it does not depend on the scale of the outcome variable (a
proof is given in Appendix C). Note that scale invariance is of
crucial importance because in comparing educational perfor-
mances in different grades, for example, it should not matter
whether students’ performances are rated on a scale from 0 to 10
or from 0 to 100.

Adjusted Fractional Bayes Factors for an Inequality
Constrained Test

Now we apply the aFBF to the test of H1 : �1
2 � �2

2 � �3
2 against

Hu : �1
2, �2

2, �3
2. As noted above, the adjusted parameter space

contains the same constraints as the unadjusted space, except that
the variances are multiplied by tuning parameters aj which correct
for the differences between the observed sample variances. Thus,
the adjusted parameter space under H1 is given by �1

a � {�2 |
a1�1

2 � a2�2
2 � a3�3

2}, with aj � nj/(2(nj 
 1)sj
2). Furthermore, the

fractions are given by b � (b1, b2, b3)=, with bj � 2/nj, for j � 1,
2 and 3. The aFBF for H1 against Hu can then be written as

B1u
aF �

P��2 � �1 | x�
P��2 � �1

a | xb�
�

P��1
2 � �2

2 � �3
2 | x�

P�a1�1
2 � a2�2

2 � a3�3
2 | xb�

.

(24)

Note that the posterior probability in the numerator is identical to
that in the FBF in Equation (11). On the other hand, the automatic
prior probability of the adjusted ordering in the denominator is
computed using the automatic prior distribution
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�u��2 | xb� � �
j�1

3

Inv-�2��j
2 | bjnj 
 1,

bj(nj 
 1)sj
2

bjnj 
 1 �
� �

j�1

3

Inv-�2��j
2 | 1,

2(nj 
 1)sj
2

nj
�. (25)

First note that the prior degrees of freedom are equal to 1, which
implies minimal information for any group size nj. Regarding the
scale hyperparameter, standard mathematical statistics dictates that
multiplying a random variable having a scaled inverse-	2 distri-
bution by a constant, say a, results in a new random variable
having a scaled inverse-	2 distribution where the original scale
parameter is multiplied by a. For this reason, because �j

2 | xb �
Inv-	2(1, 2(nj 
 1)sj

2/nj), it automatically holds that

aj�j
2 | xb � Inv-�2�1, aj

2(nj 
 1)sj
2

nj
�� Inv-�2(1, 1), (26)

for j � 1, 2, and 3. Thus, the multiplication by the tuning param-
eters results in equal automatic prior distributions for a1�1

2, a2�2
2,

and a3�3
2. Because these distributions are equal, all six possible

adjusted orderings “a1�1
2 � a2�2

2 � a3�3
2”, . . . , “a3�3

2 � a2�2
2 �

a1�1
2” are equally likely under the automatic prior. Therefore, the

automatic prior probability of each adjusted ordering is equal to
1/6. Consequently, the Bayes factor in Equation (24) is equal to

B1u
aF � 6 	 P��1

2 � �2
2 � �3

2 | x�. (27)

Again, we consider data with nj � n � 20 observations in each
group with sample variances of s1

2 � 1, s2
2 � s, and s3

2 � s2, and we
compute the aFBF for H1 against Hu while letting s2 increase from
exp(
10)  0 to exp(10)  22,000. The results are shown in
Figure 1. It can be seen that the aFBF (dashed line) converges to
6 as s2 increases. This is a result of the posterior probability in
Equation (27), which goes to 1 as s2 increases, similar as in the
FBF. Unlike in the FBF, however, the prior probability of the
adjusted ordering is equal to 1/6. To give some more intuition,
Figure 2b displays the adjusted parameter space when the sample
variances are equal to s1

2 � 1, s2
2 � 3, and s3

2 � 9, and the group
sizes are equal to nj � n � 20, for j � 1, 2, and 3. The plot
illustrates how the adjusted parameter space adapts to the observed
sample variances to ensure that the automatic prior probability of
the adjusted ordering always equals 1/6. Because the aFBF for H1

against Hu converges to 6, it can be argued that the order con-
strained hypothesis H1 is 6 times more parsimonious than the
unconstrained hypothesis.

Finally, note that in practice we do not recommend testing an
inequality constrained hypothesis against the unconstrained hy-
pothesis as in the above example. The reason is that the aFBF (and
Bayes factors in general) is then bounded (e.g., by 6 in the case of
J � 3 groups). This implies that we can never get decisive
evidence in favor of H1, even when observing very large effects in
the direction of H1 with very large samples. The main reason for
testing H1 against Hu in the above example was to illustrate how
the parsimony of an inequality constrained hypothesis on variances
is incorporated in the FBF and the aFBF. Generally, we would
recommend testing an inequality constrained hypothesis H1

against its complement H2 : not H1 to avoid the issue of a bounded
Bayes factor. For this test the aFBF would be equal to

B12
aF �

B1u
aF

B2u
aF �

6 	 P��1
2 � �2

2 � �3
2 | x�

6 ⁄ 5 	 P�not �1
2 � �2

2 � �3
2 | x�

� 5 	
P��1

2 � �2
2 � �3

2 | x�
1 
 P��1

2 � �2
2 � �3

2 | x�
, (28)

which does not have an upper bound.

Posterior Probabilities of the Hypotheses

When there are more than two hypotheses under investiga-
tion, it is useful to transform Bayes factors to posterior proba-
bilities of the hypotheses. Here we show how to do this when
working with the aFBF. To compute the posterior probabilities
we first need to specify the prior probabilities of the hypothe-
ses, denoted by P(Ht), for t � 1, . . . , T, where T is the number
of hypotheses that are tested. These prior probabilities quantify
how plausible each hypothesis is before observing the data.
After observing the data, the prior probabilities can be updated
using the marginal likelihoods from the aFBF in Equation (16)
as follows:

PaF(Ht | x, b) �
mt

aF(x, b)P(Ht)

�t��1
T mt�

aF(x, b)P(Ht�)
. (29)

The resulting posterior probabilities PaF(Ht | x, b) quantify how plau-
sible each hypothesis is after observing the data, for t � 1, . . . , T.
Note that the superscript aF is added to make it explicit that the
posterior probabilities are computed using the marginal likelihoods
based on the aFBF approach (see Equation 16).

The default (or objective) choice in the literature is to set equal
prior probabilities for the hypotheses, that is, P(H1) � . . . �
P(HT) � 1/T, which implies that it is assumed that all hypotheses
are equally likely a priori (e.g., Berger & Mortera, 1999; Hoijtink,
2011; Mulder, Hoijtink, & de Leeuw, 2012). A consequence is that
the ratio of the posterior probabilities of a pair of hypotheses is
equal to the respective Bayes factor of these hypotheses. Because
the prior probabilities sum to 1 (as well as the posterior probabil-
ities), it is implicitly assumed that the true hypothesis is present in
the set of constrained hypotheses under investigation. To ensure
that this is the case it is recommended to always include the
complement hypothesis when testing a set of constrained hypoth-
esis on the variances. This was also done in the Math Garden
example by including the complement hypothesis H3 in Equation
(4). Note that it is not recommended to set the prior probability of
a hypothesis equal to the proportion of the unconstrained param-
eter space that it covers (e.g., 1/6 for H1 : �1

2 � �2
2 � �3

2). In that
case the posterior probability of an inequality constrained hypoth-
esis does not properly take the parsimony due to the inequality
constraints into account (for details see Mulder, 2014a). Further-
more, the proportion of the unconstrained parameter space that is
covered by a hypothesis involving at least one equality constraint
is 0 (e.g., H2 : �1

2 � �2
2 � �3

2 describes a plane in the unconstrained
space, which has a volume of 0). However, a prior probability of
0 results in a posterior probability of 0 (see Equation 29), which
means that there can never be evidence in favor of an equality
constrained hypothesis.
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Simulation Study: Performance of the Adjusted
Fractional Bayes Factor

The goal of our simulation study is to assess the performance of
the adjusted fractional Bayes factor when testing equality and
inequality constrained hypotheses on variances. Our focus is both
on consistency (i.e., does the aFBF select the true hypothesis when
the sample size is large) and small-sample performance.

Design

The performance of the aFBF is examined as a function of the
following four factors:

1. Number of groups: We compared variances of J � 3 and
J � 5 groups.

2. Population: For each of the two numbers of groups we
considered five populations differing in the structure of
the population variances. An overview is given in Table
2. The first was a null population in which all population
variances were equal, �1

2 � . . . � �J
2. The second

population was one in which the variances followed the
hypothesized order �1

2 � . . . � �J
2. We refer to this

population as the order population. The mixed population
featured equalities as well as inequalities among the
variances. For J � 3 groups the structure of the popula-
tion variances was �1

2 � �2
2 � �3

2, whereas for J � 5
groups it was �1

2 � �2
2 � �3

2 � �4
2 � �5

2. The near order
population was identical to the order population with the
exception that the order of the two groups with the largest
variances was reversed, �1

2 � . . . � �J
2 � �J
1

2 . Finally,
in the reverse order population the order of the population
variances was the opposite of that in the order population,
�J

2 � . . . � �1
2. Note that the reverse order is maximally

different from the hypothesized order. We included the
near order and the reverse order population to check how
much data is needed to detect that the hypothesized order
is slightly different from the true order (near order pop-
ulation) or very different from the true order (reverse
order population).

3. Effect size: In all populations except the null population
we considered three effect sizes: small, medium, and
large. The effect size is given by the ratio of the largest
population variance to the smallest population variance.
To our knowledge no guidelines exist as to what popu-
lation variance ratios constitute a small, medium, and

large effect. We therefore based our effect sizes on well-
known guidelines for testing equality of means of two
independent populations. These guidelines state that the
power to detect a small, medium, and large effect equals
0.8 for � � .05 and sample sizes of 310, 51, and 21 in
each group, respectively (Faul, Erdfelder, Buchner, &
Lang, 2009). We used these numbers to determine the
population variances in our simulation study in four
steps: First, we used the sample sizes of 310, 51, 21 to
determine the noncentrality parameter � of the noncentral
F-distribution such that the power for testing equality of
variances of two independent populations equals 0.8. For
a small, medium, and large effect, we obtain values of �
of 100.74, 49.94, and 38.80, respectively. Second, we
computed the population variance ratio as VR � (n 

1 � �)/(n 
 1), which equals the expected value of the
noncentral F-distribution. Here the common sample size
n equals 310, 51, and 21 if � equals 100.74, 49.94, and
38.80, respectively. The resulting ratios are 1.33, 2.00,
and 2.94 for a small, medium, and large effect, respec-
tively. Third, to determine �J

2/�1
2 for J � 3 and 5 groups,

we computed the (J 
 1)/J quantile of a uniform distri-
bution with minimum value 1 and maximum value 2 �
VR 
 1. This results in population variance ratios that
increase with the number of groups J, which is supported
by empirical findings (see, e.g., Ruscio & Roche, 2012).
In all populations we set �1

2 � 1, so that �J
2 is determined

by the population variance ratio. Fourth, we computed the
intermediate population variances as �j

2 � (�J
2)(j
1)/(J
1) for

j � 2, . . . , J 
 1. As a result, the ratio of adjacent
population variances is constant, that is, �2

2/�1
2 � . . . �

�J
2/�J
1

2 . Table 3 gives an overview of all population
variances used in the simulation study. Note that in the
mixed population with J � 3 groups we used the popu-
lation variance ratios from the J � 2 groups case, that is,
1.33, 2.00, and 2.94. We did so because, in fact, there are
only two distinct variances in this population (cf. Table
2). Similarly, in the mixed population with J � 5 groups
we used the population variance ratios from the J � 3
groups case.

4. Sample size: We used a balanced design with common
sample sizes of 5, 10, 20, 50, 100, 200, 500, 1,000, 2,000,
and 5,000.

Thus, in total there were 260 conditions, 2 (number of groups) �
10 (sample size) � 20 for the null population and 2 (number of
groups) � 4 (population) � 3 (effect size) � 10 (sample size) �
240 for the remaining four populations.

Hypotheses and Data Generation

In each of the five populations we tested three hypotheses. An
overview is given in Table 4. In the null population, the order
population, the near order population, and the reverse order pop-
ulation we tested the following three hypotheses: H0 : �1

2 � . . . �
�J

2, H1 : �1
2 � . . . � �J

2, and H2 : not �1
2 � . . . � �J

2. Note that
H2 : not �1

2 � . . . � �J
2 is equivalent to H2 : not (H0 or H1) because

the probability of the event that the variances are exactly equal is
0 under the unconstrained hypothesis. In Table 4 the true hypoth-

Table 2
Structure of Population Variances in Five Populations for J �
{3, 5} Groups

Population J � 3 J � 5

Null �1
2 � �2

2 � �3
2 �1

2 � . . . � �5
2

Order �1
2 � �2

2 � �3
2 �1

2 � . . . � �5
2

Mixed �1
2 � �2

2 � �3
2 �1

2 � �2
2 � �3

2 � �4
2 � �5

2

Near order �1
2 � �3

2 � �2
2 �1

2 � . . . � �5
2 � �4

2

Reverse order �3
2 � �2

2 � �1
2 �5

2 � . . . � �1
2
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esis (i.e., the hypothesis that correctly describes the structure of the
population variances) is flagged with an asterisk (H�). Note that for
the near order and the reverse order population the true hypothesis
is contained in the complement H2. In the mixed population with
J � 3 groups we tested H0 : �1

2 � �2
2 � �3

2, H1 : �1
2 � �2

2 � �3
2, and

H2 : �1
2 � (�2

2, �3
2). Here H2 states that the variances in Groups 2

and 3 are larger than in Group 1, but not necessarily equal. In the
mixed population with J � 5 groups we tested the corresponding
hypotheses H0 : �1

2 � . . . � �5
2, H1 : �1

2 � �2
2 � �3

2 � �4
2 � �5

2,
and H2 : �1

2 � (�2
2, �3

2) � (�4
2, �5

2).
In each of the 260 conditions we generated 1,000 data sets. The

population variances were specified according to Table 3. In all
conditions we set �1 � . . . � �J � 0. We may do so because the
aFBF is independent of the population means (in Equations 16 and
17 it can be seen that the marginal likelihood in the aFBF approach
does not depend on the sample means). For each of the 1,000 data
sets we computed the evidence in favor of the true hypothesis. We
used two measures of evidence: The first is the logarithm of the
Bayes factor in favor of the true hypothesis Ht, log�Btt�

aF�. The
second measure is the posterior probability of the true hypothesis,
PaF(Ht | x, b), which was computed assuming equal prior proba-
bilities of the hypotheses. The log Bayes factors and posterior
probabilities were computed using minimal fractions of bj � 2/nj,
for j � 1, . . . , J. Eventually, we computed the median of the 1,000
log Bayes factors and posterior probabilities.

Results

The results of the simulation study are shown in Figures 3 to 7.
Each figure shows the results for one of the five populations we
considered. The plots show the median log Bayes factors in favor
of the true hypothesis (left-hand column) and the median posterior
probability of the true hypothesis (flagged with an asterisk in Table
4; right-hand column) for J � 3 groups (top row) and J � 5 groups
(bottom row) as a function of the common sample size n1 � . . . �
nJ � n. For the null population the results for J � 3 and J � 5
groups are combined in one pair of plots, see Figure 3. Two
important general conclusions can be drawn from the figures. First,
the aFBF is consistent. For all numbers of groups, populations, and
effect sizes the posterior probability of the true hypothesis was
equal or close to 1 for a common sample size of 5,000. Second,
the performance of the aFBF was similar for J � 3 and J � 5
groups, with the relevant differences being that for J � 5 groups
the null hypothesis received stronger support and larger sample
sizes were needed to reject a false null hypothesis. We now
focus on small-sample performance of the aFBF for each pop-
ulation separately.

Null population. Figure 3 shows the simulation results for the
null population. The plots show that the evidence in favor of the
true hypothesis H0 increased with sample size. The log Bayes
factor log(B01

aF) was consistently larger than log(B02
aF) because under

Table 3
Population Variances in the Simulation Study

J � 3 J � 5

Population Effect �1
2 �2

2 �3
2 �1

2 �2
2 �3

2 �4
2 �5

2

Null No 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Order Small 1.00 1.20 1.43 1.00 1.11 1.23 1.37 1.52

Medium 1.00 1.53 2.33 1.00 1.27 1.61 2.05 2.60
Large 1.00 1.89 3.59 1.00 1.42 2.03 2.88 4.10

Mixed Small 1.00 1.33 1.33 1.00 1.20 1.20 1.43 1.43
Medium 1.00 2.00 2.00 1.00 1.53 1.53 2.33 2.33
Large 1.00 2.94 2.94 1.00 1.89 1.89 3.59 3.59

Near order Small 1.00 1.43 1.20 1.00 1.11 1.23 1.52 1.37
Medium 1.00 2.33 1.53 1.00 1.27 1.61 2.60 2.05
Large 1.00 3.59 1.89 1.00 1.42 2.03 4.10 2.88

Reverse order Small 1.43 1.20 1.00 1.52 1.37 1.23 1.11 1.00
Medium 2.33 1.53 1.00 2.60 2.05 1.61 1.27 1.00
Large 3.59 1.89 1.00 4.10 2.88 2.03 1.42 1.00

Table 4
Hypotheses Tested in the Simulation Study

Population Tested hypotheses

Null H0
* : �1

2 � · · · � �J
2 H1 : �1

2 � . . . � �J
2 H2 : not �1

2 � . . . � �J
2

Order H0 : �1
2 � . . . � �J

2 H1
* : �1

2 � · · · � �J
2 H2 : not �1

2 � . . . � �J
2

Mixed, J � 3 H0 : �1
2 � �2

2 � �3
2 H1

* : �1
2 � �2

2 � �3
2 H2 : �1

2 � (�2
2, �3

2)
Mixed, J � 5 H0 : �1

2 � . . . � �5
2 H1

* : �1
2 � �2

2 � �3
2 � �4

2 � �5
2 H2 : �1

2 � (�2
2, �3

2) � (�4
2, �5

2)
Near order H0 : �1

2 � . . . � �J
2 H1 : �1

2 � . . . � �J
2 H2

* : not �1
2 � · · · � �J

2

Reverse order H0 : �1
2 � . . . � �J

2 H1 : �1
2 � . . . � �J

2 H2
* : not �1

2 � · · · � �J
2

Note. In each population we tested three hypotheses. The true hypothesis is flagged with an asterisk (H�). Here
J � {3, 5} indicates the number of groups.
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H0 the order constrained hypotheses H1 fits worse than the com-
plement H2. This is because H1 is more restrictive than H2. In the
right-hand plot we see that for samples of size n � 5 the posterior
probability of H0 was greater than 0.6, and samples as small as n �
10 yielded a posterior probability of about 0.8. The probability is
so high even for small samples because neither H1 nor H2 are good
competitors to H0, particularly so for J � 5 groups.

Order population. Figure 4 shows the simulation results for
the order population. The plots illustrate that the evidence in favor
of the true hypothesis H1 did not increase with sample size when
the effect was small. This is a consequence of the fact that small
effects can be better explained by the null hypothesis than by the
order constrained hypothesis when the sample size is small. The
posterior probability of the true hypothesis H1 was at least 0.8 for
sample sizes of about 500 (small effect), 100 (medium effect), and
50 (large effect), respectively. Finally, note that the gray lines for
the log Bayes factor log(B12

aF) are discontinued at some point. This
is due to numerical reasons: In the computation of the discontinued
log Bayes factors we had to divide by the posterior probability that
the inequality constraints do not hold. This was estimated by the
proportion of draws from the unconstrained posterior distribution
for which these constraints do not hold. For large samples this
proportion was often 0, so that the corresponding log Bayes factor
was undefined. If this happened for the majority of the 1,000
replications in the simulation, then the median log Bayes factor
was undefined as well. Note that theoretically the discontinued log
Bayes factors keep increasing because the posterior probability
that the inequality constraints do not hold approaches 0 as the
sample size increases.

Mixed population. The results for the mixed population are
shown in Figure 5. Similar to the order population, the evidence in
favor of the true hypothesis did not increase with sample size when
the effect was small. For J � 3 groups and a small effect the
evidence only increased for sample sizes larger than 50. Actually,
in this case the log Bayes factor log(B10

aF) favored the null hypoth-

esis until the sample size surpassed the n � 200 mark. The reason
is the same as for the order population, namely, that small effects
can be better explained by the null hypothesis when the sample
size is small. The posterior probability was above 0.8 for samples
of size 500 (small effect), 50 to 100 (medium effect), and 50 (large
effect), respectively. Note that it approached 1 somewhat more
slowly than in the order population. This is due to the similarity of
H1 and H2. Finally, note that the log Bayes factor log(B12

aF) did not
depend on the effect size. It was approximately the same under all
effects, which can be seen from the three gray lines overlapping.
This is because H1 and H2 essentially state the same effect,
namely, that �1

2 is smaller than �2
2 and �3

2.
Near order population. Figure 6 shows the simulation results

for the near order population. Again, the evidence in favor of the
true hypothesis did not generally increase with sample size. For a
small effect it only increased for sample sizes larger than about
100. For J � 3 groups the posterior probability of the true hypoth-
esis reached values of at least 0.8 for samples of size 1,000 (small
effect), 100 (medium effect), and 50 (large effect), respectively.
For J � 5 groups substantially larger samples were required
(5,000, 1,000, and 200, respectively). This is mainly because the
ratio of adjacent population variances is smaller in the J � 5
groups case (see Table 3), which makes it more difficult to detect
that the two largest population variances are ordered as �J

2 � �J
1
2

instead of �J
1
2 � �J

2. Similar to the order population, the log Bayes
factor log(B21

aF) (gray lines) could not be computed for larger
sample sizes due to numerical reasons.

Reverse order population. The evidence in favor of the true
hypothesis did not generally increase with sample size, see Figure
7. For instance, for a small effect and J � 5 groups the evidence
only increased for sample sizes larger than 200. The evidence in
favor of the true hypothesis increased faster for the reverse order
than for the near order population because the reverse order
population is less in agreement with the order constrained hypoth-
esis H1 than the near order population. The posterior probability of

Figure 3. Simulation results for a null population in which all population variances were equal, �1
2 � . . . �

�J
2, for J � 3 groups (dashed lines) and J � 5 groups (solid lines). We tested the true hypothesis H0 : �1

2 � . . . �
�J

2 against the two competing hypotheses H1 : �1
2 � . . . � �J

2 and H2 : not �1
2 � . . . � �J

2. The plots show the
median log Bayes factors (left-hand plot) testing H0 against H1 (black lines) and H0 against H2 (gray lines) and
the median posterior probability of H0 (right-hand plot) as a function of the common sample size n1 � . . . �
nJ � n.
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the true hypothesis was greater than 0.8 for sample sizes of 500
(small effect), 100 (medium effect), and 50 (large effect), respec-
tively. Again, we see discontinued log Bayes factors due to nu-
merical reasons.

Conclusion

In conclusion, the results of the simulation show that the aFBF
performed well in all five populations we considered. In particular,
the results indicate that the aFBF is consistent in the sense that it
selects the true hypothesis if the sample size is large enough.
Naturally, for small effects we needed larger samples to detect the
true hypothesis than for large effects.

We also performed the simulation with unequal group sizes to
check for robustness of the results obtained with equal group
sizes. All settings except the sample sizes were identical to the
simulation with equal group sizes. We provide the sample sizes
and results of the simulation with unequal group sizes in the

supplemental material to this article. The results confirm the
findings from the simulation with equal group sizes discussed
above.

Illustrative Example: The Math Garden (Continued)

After logging into the Math Garden, children are directed to a
page showing a garden in which plants represent games covering
different domains of mathematics (see Figure 8a). In this illustra-
tive example we focus on the four most played games: addition,
subtraction, multiplication, and division. Each of these games
consists of over 700 items ranging from easy (e.g., 2 � 2) to
difficult (e.g., 340 � 87). Figure 8b shows an exemplary addition
item. By clicking on a plant the player starts a session of 15 items.
The items are adaptively selected based on a player’s ability. The
system takes both accuracy of responses and response times into
account to estimate a player’s ability. For details on the Math
Garden and the underlying IRT model we refer the interested

Figure 4. Simulation results for an order population in which the structure of the population variances was
�1

2 � . . . � �J
2, with J � {3, 5}. We considered three effect sizes: small (dotted lines), medium (dashed lines),

and large (solid lines). We tested the true hypothesis H1 : �1
2 � . . . � �J

2 against the two competing hypotheses
H0 : �1

2 � . . . � �J
2 and H2 : not �1

2 � . . . � �J
2. The plots show the median log Bayes factors (left-hand column)

testing H1 against H0 (black lines) and H1 against H2 (gray lines) and the median posterior probability of H1

(right-hand column) as a function of the common sample size n1 � . . . � nJ � n. In the log Bayes factors plots
the gray lines are discontinued due to numerical reasons (see text).
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reader to Klinkenberg et al. (2011) and Maris and van der Maas
(2012).

We used two criteria for extracting ability estimates from
the Math Garden database. The first criterion concerns the
grade a student is in. Aunola et al. (2004) hypothesize that
systematic instruction at school functions as a sort of treatment
that results in an increase or a decrease of the variability of
abilities across grades. It thus makes sense to only consider
grades in which the treatment is administered to the students. In
the Netherlands children are taught addition and subtraction at
school from Grade 1 through Grade 5. For the addition and the
subtraction domain we therefore extracted ability estimates of
students in Grades 1 through 5. Multiplication and division is
taught from Grade 3 through 6, which is why for these two
domains we extracted ability estimates of students in these
grades. The second criterion we used is that children have to
have played at least 45 items (i.e., three sessions) in the week

prior to extraction. The reason for this is twofold. First, the
more items a student plays the more precise their ability can be
estimated. Experience has shown that after 45 items ability
estimates are reasonably precise and stable. Second, we require
children to have played the items in one week in order to avoid
that there is too much learning going on due to treatment at
school.

Table 5 shows the sample size and sample variance for each
grade and mathematical domain. We use the symbols �, 
, �,
and � to refer to the corresponding game in the Math Garden.
Furthermore, the table shows the variance ratio, which is given by
the ratio of a sample variance to the smallest sample variance in
the corresponding domain. In the addition and the subtraction
domain it can be seen that the sample variances do not follow
an increasing order. The variance decreases from Grade 1 to
Grade 2, and subsequently increases from Grade 2 to Grade 5.
In the multiplication and the division domain, however, the

Figure 5. Simulation results for a mixed population. For J � 3 groups the structure of the population variances
was �1

2 � �2
2 � �3

2, whereas for J � 5 groups it was �1
2 � �2

2 � �3
2 � �4

2 � �5
2. We considered three effect sizes:

small (dotted lines), medium (dashed lines), and large (solid lines). For J � 3 groups we tested the true
hypothesis H1 : �1

2 � �2
2 � �3

2 against the two competing hypotheses H0 : �1
2 � �2

2 � �3
2 and H2 : �1

2 � (�2
2, �3

2).
For J � 5 groups we tested the true hypothesis H1 : �1

2 � �2
2 � �3

2 � �4
2 � �5

2 against H0 : �1
2 � . . . � �5

2 and
H2 : �1

2 � (�2
2, �3

2) � (�4
2, �5

2). The plots show the median log Bayes factors (left-hand column) testing H1 against
H0 (black lines) and H1 against H2 (gray lines) and the median posterior probability of H1 (right-hand column)
as a function of the common sample size n1 � . . . � nJ � n.
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sample variances follow an increasing order from Grade 3 to
Grade 6.

Table 6 shows the posterior probability of the hypotheses H0 :
�1

2 � . . . � �J
2, H1 : �1

2 � . . . � �J
2, H2 : �J

2 � . . . � �1
2, and H3 : not

(H0 or H1 or H2) for each domain. We computed the posterior
probabilities assuming equal prior probabilities of the hypotheses.
The posterior probabilities are (close to) 0.00 or 1.00 due to the
large sample sizes in combination with the considerable effect
sizes (cf. the results of the simulation study). One immediate
conclusion we can draw is that there is no evidence in favor of
either H0 or H2 in any of the domains, as can be seen from their
posterior probabilities being 0.00. The hypotheses of equality of
variances and decreasing variances can therefore safely be re-
jected. Furthermore, in the addition and the subtraction domain we
can rule out H1 given posterior probabilities of 0.00 and 0.03,
respectively. The decrease in variance from Grade 1 to Grade 2 in
combination with the large sample sizes makes an increasing order
of the variances highly unlikely. We conclude that in the addition

and the subtraction domain something other than H0, H1, and H2 is
going on, as is indicated by the posterior probabilities of the
complement H3 being 1.00 and 0.97, respectively. In the multipli-
cation and the division domain, however, there is very strong
evidence in favor of an increase in variance, with posterior prob-
abilities of H1 of 1.00. In these domains we can rule out H0, H2,
and H3, as is indicated by posterior probabilities of these hypoth-
eses of 0.00.

Software Application for Computing the Adjusted
Fractional Bayes Factor

We provide a Shiny application for computing the adjusted
fractional Bayes factor. Shiny (Chang, Cheng, Allaire, Xie, &
McPherson, 2015) is a framework for creating interactive appli-
cations using the R language for statistical computing (R Core
Team, 2015). The advantage of Shiny applications is that the user
does not need to read or write R code.

Figure 6. Simulation results for a near order population in which the structure of the population variances was
�1

2 � . . . � �J
2 � �J
1

2 , with J � {3, 5}. We considered three effect sizes: small (dotted lines), medium (dashed
lines), and large (solid lines). We tested three hypotheses: H0 : �1

2 � . . . � �J
2, H1 : �1

2 � . . . � �J
2, and H2 :

not �1
2 � . . . � �J

2. Note that the true hypothesis is the complement H2. The plots show the median log Bayes
factors (left-hand column) testing H2 against H0 (black lines) and H2 against H1 (gray lines) and the median
posterior probability of H2 (right-hand column) as a function of the common sample size n1 � . . . � nJ � n.
In the log Bayes factors plots the gray lines are discontinued due to numerical reasons (see text).
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Figure 9 shows two screenshots of our Shiny application. On the
left-hand side of Figure 9a one can see the “Mandatory input” tab
panel. Here the user needs to specify the sample variances, sample
sizes, and hypotheses. The screenshot shows the input for the
addition domain in the Math Garden example. As can be seen, the
hypotheses need to be specified using group numbers 1, . . . , J. For
example, the hypothesis H1 : �1

2 � . . . � �5
2 from the Math Garden

example is specified as “1�2�3�4�5”. Note that inequality
constraints need to be specified using the less-than symbol (�); the
greater-than symbol (�) is not supported. The complement of an
order constrained hypothesis can be specified using the string
“not” in the beginning (e.g., “not 1�2�3�4�5”). Note that the
complement of a hypothesis containing at least one equality con-
straint is equivalent to the unconstrained hypothesis. This is be-
cause the probability of the event that two or more variances are
exactly equal is 0 under the unconstrained hypothesis. For exam-
ple, the hypothesis H1 : �1

2 � �2
2 � �3

2 describes a plane in the
unconstrained space, which has a probability of 0 (in the sense that

the volume is 0). The complement H2 : not �1
2 � �2

2 � �3
2

comprises the entire space except the plane in H1, which is
mathematically equivalent to the unconstrained space. Hence, the
complement H2 is equivalent to the unconstrained hypothesis Hu :
�1

2, �2
2, �3

2. For the same reason the hypothesis H3 : not (�1
2 � . . . �

�5
2 or �1

2 � . . . � �5
2 or �5

2 � . . . � �1
2) from the Math Garden

example is specified as “not (1�2�3�4�5 or 5�4�3�2�1)” in
the application (see Figure 9a).

Figure 9b shows the “Optional input” tab panel. Here the user
may specify more advanced settings. Using the checkbox one can
control whether the application shows Bayes factors or log Bayes
factors (the latter is sometimes also referred to as the weight of
evidence). In the next field the user may specify prior probabilities
of the hypotheses. By default (i.e., if the field is empty) the
posterior probabilities of the hypotheses are computed assuming
equal prior probabilities. The “Fractions” field can be used to
specify custom fractions b1, . . . , bJ. If the field is empty, the
application uses the minimal information approach and sets bj �

Figure 7. Simulation results for a reverse order population in which the structure of the population variances
was �J

2 � . . . � �1
2, with J � {3, 5}. We considered three effect sizes: small (dotted lines), medium (dashed

lines), and large (solid lines). We tested three hypotheses: H0 : �1
2 � . . . � �J

2, H1 : �1
2 � . . . � �J

2, and
H2 : not �1

2 � . . . � �J
2. Note that the true hypothesis is the complement H2. The plots show the median log Bayes

factors (left-hand column) testing H2 against H0 (black lines) and H2 against H1 (gray lines) and the median posterior
probability of H2 (right-hand column) as a function of the common sample size n1 � . . . � nJ � n. In the log Bayes
factors plots the gray lines are discontinued due to numerical reasons (see text).
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2/nj by default. Computing the marginal likelihood under an in-
equality constrained hypothesis involves sampling from the pos-
terior and the prior distribution of the group variances. In the field
“Number of simulation draws” one may specify how often to draw
from the posterior and the prior. By default the application simu-
lates 100,000 draws. In the last field the user may specify a custom
seed in order to reproduce results exactly in the case of testing
inequality constrained hypotheses (which requires simulating from
the posterior and the prior). The “Help” tab panel contains detailed
instructions on how to use the application.

Once all input has been specified, clicking on the “Submit”
button initiates the computation of the results. Computation time
mostly depends on the number of simulation draws, the number of
hypotheses, and the number of inequality constraints. For example,
the analysis shown in the screenshots should be completed within
a few seconds. The results are shown in the output on the right-
hand side of Figure 9a. The output consists of two tables, one
showing the (log) Bayes factors and one showing the posterior
probabilities of the hypotheses. The screenshot shows the results
for the addition domain in the Math Garden example. In the
“Bayes factors” table, the cell in row t � {1, 2, 3, 4} and column
t= � {1, 2, 3, 4} contains the logarithm of the Bayes factor Btt�

aF

(because we ticked the “Show logarithm of Bayes factors”
checkbox in the optional input, see Figure 9b). For example, the
cell in row 4 and column 1 contains the logarithm of the Bayes
factor B41

aF testing H4 : not (�1
2 � . . . � �5

2 or �5
2 � . . . � �1

2)
against H1 : �1

2 � . . . � �5
2 (note that the hypotheses are

numbered consecutively starting with 1). The log Bayes factor

equals 251.33, which means that the evidence in the data in
favor of H4 is exp(251.33) times as strong as the evidence in
favor of H1. Some log Bayes factors are infinite because the
marginal likelihoods under H2 : �1

2 � . . . � �5
2 and H3 : �5

2 � . . . �
�1

2 are approximated as 0. As a result, the logarithms of the Bayes
factors B23

aF and B32
aF are undefined, which is why in the correspond-

ing cells in the table it says NA (for “not available”).
To run our Shiny application follow these six steps:

1. Download and install R from https://cran.r-project.org/.

2. Launch R.

3. Copy the following R code and paste it into the R
console:
install.packages("shiny")

Hit the Enter key and select a mirror. This will install the
Shiny package.

4. Copy the following R code and paste it into the R
console:

library(shiny)

Hit the Enter key. This will load the Shiny package.

5. Copy the following R code and paste it into the R
console:

runGitHub("BFtestvar", "fboeingmessing")

Table 5
Descriptive Statistics for the Math Garden Data

Grade

Sample size Sample variance Variance ratio

� 
 � � � 
 � � � 
 � �

1 4,336 1,471 — — 7.22 7.45 — — 1.25 1.17 — —
2 4,080 2,663 — — 5.76 6.35 — — 1.00 1.00 — —
3 2,396 1,763 3,567 1,434 7.26 9.76 4.69 24.20 1.26 1.54 1.00 1.00
4 1,551 1,123 2,968 1,907 9.86 13.83 8.04 27.10 1.71 2.18 1.71 1.12
5 1,239 756 2,197 1,815 14.57 16.69 12.99 33.99 2.53 2.63 2.77 1.40
6 — — 1,094 1,117 — — 20.64 45.65 — — 4.40 1.89

Note. The symbols �, 
, �, and � refer to the corresponding domain in the Math Garden. The variance ratio is the ratio of the sample variance to the
smallest sample variance in the corresponding domain.

Figure 8. Two screenshots of the Math Garden. Figure (a) shows the garden page where each plant represents
a game measuring a different aspect of mathematics. Figure (b) shows an exemplary addition item. See the online
article for the color version of this figure.
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Hit the Enter key. The Shiny application will open in your
browser.

6. When you have completed your analyses you need to stop the
application in order to be able to close R. To do so click on the
red “STOP” button in the R menu bar.

Note that Steps 1 and 3 only need to be performed the first time
you use the application. The R source code of the application is
available at https://github.com/fboeingmessing/BFtestvar.

Discussion

In this article we developed a Bayes factor for testing equality
and inequality constrained hypotheses on variances. Our method is
based on an adjustment of the fractional Bayes factor (O’Hagan,
1995) such that it properly incorporates the parsimony of inequal-
ity constrained hypotheses. Using our adjusted fractional Bayes
factor we can test any combination of equality and inequality
constraints on the variances. It is straightforward to simultaneously
test multiple hypotheses. The aFBF then indicates which hypoth-
esis receives strongest support from the data. In doing so it
functions as Occam’s razor by taking the parsimony of (in)equality

constrained hypotheses into account. The aFBF is fully automatic,
which means that the user does not need to specify a prior distri-
bution under every hypothesis to be tested. The results of the
simulation study indicate that the aFBF is consistent in the sense
that it selects the true hypothesis as the sample size increases. This
also holds for instances in which the true order of the population
variances is slightly different from the hypothesized order. In this
case the aFBF chooses the complement over the order constrained
hypothesis as the sample size increases. The aFBF can be com-
puted easily and quickly using our Shiny application.

In the multiplication and the division domain of the Math
Garden the variances increased monotonically across grades as
suggested by Aunola et al. (2004). In the addition and the subtrac-
tion domain, however, the variances first decreased from Grade 1
to Grade 2, followed by an increase over the years. Interestingly,
both patterns are in line with a random slope model of develop-
ment over time. Our approach can be used to test these and other
variance patterns implied by models of development over time
such as random slope and random quadratic models using cross-
sectional data.

Like many other statistical methods, the aFBF assumes that the
data are normally distributed. However, the normal distribution

Table 6
Results of the Analysis of the Math Garden Data

Result � 
 � �

PaF (H0 : �1
2 � . . . � �J

2 | x, b) .00 .00 .00 .00
PaF (H1 : �1

2 � . . . � �J
2 | x, b) .00 .03 1.00 1.00

PaF (H2 : �J
2 � . . . � �1

2 | x, b) .00 .00 .00 .00
PaF (H3 : not (H0 or H1 or H2) | x, b) 1.00 .97 .00 .00

Note. The symbols �, 
, �, and � refer to the corresponding domain in the Math Garden.

Figure 9. Two screenshots of the Shiny application for computing the adjusted fractional Bayes factor. Figure
(a) shows the “Mandatory input” tab panel and the output (Bayes factors and posterior probabilities of the
hypotheses). Figure (b) shows the “Optional input” tab panel. See the online article for the color version of this
figure.
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may not be an appropriate model for data that contain outliers or
depart in other ways from normality (e.g., skewness and/or kurto-
sis). The robustness of the aFBF to such violations of normality is
an important topic for future study. Furthermore, it would be
interesting to investigate how the aFBF behaves under conditions
that differ from those in our simulation study. For example, in the
simulation we assumed that the ratio of adjacent population vari-
ances is constant. Real-life psychological phenomena may involve
more complex variance patterns, which is why further research
investigating the behavior of the aFBF under different population
variance structures is indicated.

In this article we focused on testing variances of independent
groups. It appears natural to also consider the Bayes factor for
testing variances of dependent groups because these are frequently
encountered by psychologists. Such a method would be useful for
analyzing repeated measurement data and other types of data
where there is a relationship between the respondents of different
groups. Our approach can be extended to dependent observations
using a multivariate normal model N(�, �), where � is the
covariance matrix of the dependent measures. Constrained hypoth-
eses are then formulated on the diagonal elements of this covari-
ance matrix. The additional challenge in the dependent case is that
the constraints on the variances are added to the constraints that
ensure that the covariance matrix is positive definite. This is an
interesting topic for future research.
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Appendix A

Fractional Bayes Factor for an Inequality Constrained Hypothesis Test

We consider the test of an inequality constrained hypothesis Ht

on the variances of J groups against the unconstrained hypothesis
Hu : �1

2, . . . , �J
2. The inequality constrained hypothesis can be

formulated as Ht : Rt�
2 � 0, where the rows of Rt are permuta-

tions of (1, 
1, 0, . . . , 0). For example, under H1 : �1
2 � �2

2 � �3
2

the matrix is given by R1 � 
1 1 0

0 
1 1 �. The admissible parameter

space of the group variances under Ht and Hu can be written as
�t � {�2 | Rt�

2 � 0} and �u � ���J, respectively. Note that the
likelihood and the noninformative improper prior under Ht are
truncations of the unconstrained likelihood and prior:

ft�x | �, �2� � fu�x | �, �2�I�t
��2�, (A.1)

ft�x | �, �2�b � fu�x | �, �2�bI�t
��2�, and (A.2)

�t
N��, �2� � Ct�u

N��, �2�I�t
��2�, (A.3)

where I�t
��2� is an indicator function that equals 1 if �2 � �t and

0 otherwise, and Ct is a normalizing constant. The FBF for an
inequality constrained hypothesis Ht against the unconstrained
hypothesis Hu can then be written as

(Appendices continue)
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Btu
F �

mt
F(x, b)

mu
F(x, b)

�

��t
��J ft(x | �, �2)�t

N(�, �2)d� d�2

��t
��J ft(x | �, �2)b�t

N(�, �2)d� d�2

��u
��J fu(x | �, �2)�u

N(�, �2)d� d�2

��u
��J fu(x | �, �2)b�u

N(�, �2)d� d�2

�

��t
��J fu(x | �, �2)Ct�u

N(�, �2)I�t
(�2)d� d�2

��u
��J fu(x | �, �2)�u

N(�, �2)d� d�2

��t
��J fu(x | �, �2)bCt�u

N(�, �2)I�t
(�2)d� d�2

��u
��J fu(x | �, �2)b�u

N(�, �2)d� d�2

�

��t
��J

fu(x | �, �2)�u
N(�, �2)

��u
��J fu(x | �, �2)�u

N(�, �2)d� d�2
d� d�2

��t
��J

fu(x | �, �2)b�u
N(�, �2)

��u
��J fu(x | �, �2)b�u

N(�, �2)d� d�2
d� d�2

�
��t

��J �u(�, �2 | x)d� d�2

��t
��J �u(�, �2 | xb)d� d�2

�
��t

�u(�
2 | x)d�2

��t
�u(�

2 | xb)d�2
�

P(�2 � �t | x)

P(�2 � �t | xb)
.

(A.4)

Note that in the second line the indicator function I�t
��2� in the constrained likelihood and prior, ft and �t

N, respectively, can be omitted
because the integration region is already restricted to the constrained parameter space �t.

Appendix B

Computation of the Marginal Likelihood in the Adjusted Fractional Bayes Factor

We consider a hypothesis Ht with equality and inequality constraints on the variances. We have to introduce some additional notation
before deriving the marginal likelihood in the aFBF approach. Under Ht, let there be qE equality constraints and qI inequality constraints
on the variances, where we omitted the hypothesis index t on qE and qI to simplify the notation. Thus, there are K � J 
 qE unique
variances under Ht. We denote these K unique variances by �̃2 � ��̃1

2, . . . , �̃K
2 ��. The qI inequality constraints are formulated on these

unique variances. Furthermore let Jk be the number of groups that share the unique variance �̃k
2, and let xkj

, �kj
, and nkj

denote the data,
the mean, and the sample size of the jth group sharing the unique variance �̃k

2, respectively.
For example, consider the hypothesis H1 : �1

2 � �2
2 � �3

2 � �4
2 on the variances of J � 4 groups. Under H1 there are qE � 2 equality

constraints and qI � 1 inequality constraint, so that the number of unique variances is given by K � 4 – 2 � 2. We denote these variances
by �̃1

2 and �̃2
2. Then Groups 1 and 2 have unique variance �̃1

2 and Groups 3 and 4 have unique variance �̃2
2. Thus, hypothesis H1 can be

written as H1 : �̃1
2 � �̃2

2. Furthermore, we have �J1, J2�� � �2, 2��. In this notation, x11
, x12

, x21
, and x22

correspond to the data of Groups
1, 2, 3, and 4, respectively, �11

, �12
, �21

, and �22
are the means of Groups 1, 2, 3, and 4, and n11

, n12
, n21

, and n22
are the sample sizes

of Groups 1, 2, 3, and 4.
The marginal likelihood under a constrained hypothesis Ht in the adjusted fractional Bayes factor is defined by

mt
aF(x, b) �

��t
��J fu�x | �, �̃2��u

N��, �̃2�d� d�̃2

��t
a ��J fu�x | �, �̃2�b�u

N��, �̃2�d� d�̃2
�

mt
N(x)

mt
N(xb)

, (B.1)

where the likelihood and the noninformative prior are used without the inequality constraints on the unique variances �̃2, which is part
of the definition of the aFBF. The expressions are given by

(Appendices continue)
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fu�x | �, �̃2� � �
k�1

K

�
j�1

Jk

f�xkj | �kj
, �̃k

2�, (B.2)

fu�x | �, �̃2�b � �
k�1

K

�
j�1

Jk

f�xkj | �kj
, �̃k

2�bkj, and (B.3)

�u
N��, �̃2� � Ct�

k�1

K

�̃k

2, (B.4)

with

f�xkj | �kj
, �̃k

2� � ��̃k
22��


nkj

2 exp�
 1
2�̃k

2�(nkj

 1)skj

2  nkj
(x�kj


 �kj
)2�� and (B.5)

f�xkj | �kj
, �̃k

2�bkj � ��̃k
22��


bkj
nkj

2 exp�

bkj

2�̃k
2�(nkj


 1)skj

2  nkj
(x�kj


 �kj
)2��. (B.6)

Note that Equation (B.1) is identical to Equation (15) except that a tilde is used for the unique variances which are integrated out.
The constrained parameter space �t in the numerator in Equation (B.1) can be written as

�t � 
�̃2 | Rt��̃1
2, . . . , �̃K

2�� � 0�, (B.7)

where the rows of Rt are permutations of (1, 
1, 0, . . . , 0). For example, under H1 : �̃1
2 � �̃2

2 the matrix is given by R1 � �
1 1 �. The
adjusted constrained parameter space �t

a in the denominator in Equation (B.1), which is a crucial part of the aFBF approach, can be written
as

�t
a � 
�̃2 | Rt�a1�̃1

2, . . . , aK�̃K
2�� � 0�, (B.8)

where the tuning parameters are set to

ak �
��j�1

Jk bkj
nkj� 
 Jk

�j�1
Jk bkj�nkj


 1�skj

2
, (B.9)

for k � 1, . . . , K. This tuning results in equal scale hyperparameters in the automatic prior for the unique variances. This will be shown
after the derivation of the marginal likelihood.

We first derive the denominator mt
N(xb) of the marginal likelihood in Equation (B.1). Substituting the expressions for the fraction of the

likelihood and the Jeffreys prior in Equations (B.3) and (B.4) into the denominator of Equation (B.1) gives us

(Appendices continue)
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mt
N(xb) � ��t

a ��J ��
k�1

K

�
j�1

Jk

f�xkj | �kj
, �̃k

2�bkj�Ct�
k�1

K

�̃k

2d�d�̃2

� Ct��t
a �

k�1

K

�̃k

2�

j�1

Jk

��
��̃k

22��

bkj

nkj

2

exp�

bkj

2�̃k
2��nkj


 1�skj

2  nkj�x�kj

 �kj�2��d�kj

d�̃2

� Ct��t
a �

k�1

K

�̃k

2�

j�1

Jk

�bkj
nkj�


1
2��̃k

22��

bkj

nkj

1

2 exp�

bkj�nkj


 1�skj

2

2�̃k
2 �d�̃2

� Ct��
k�1

K

�
j�1

Jk

�bkj
nkj�


1
2�(2�)


�k�1
K ���j�1

Jk bkj
nkj�
Jk�

2

��t
a �

k�1

K

��̃k
2�
���j�1

Jk bkj
nkj�
Jk

2
1�exp�


�j�1
Jk bkj�nkj


 1�skj

2

2�̃k
2 �d�̃2

� Ct��
k�1

K

�
j�1

Jk

�bkj
nkj�


1
2��


�k�1
K ���j�1

Jk bkj
nkj�
Jk�

2

��
k�1

K

����j�1
Jk bkj

nkj� 
 Jk

2
���

j�1

Jk

bkj�nkj

 1�skj

2 �

��j�1

Jk bkj
nkj�
Jk

2 �
��t

a �
k�1

K

Inv-�2��̃k
2 | ��j�1

Jk

bkj
nkj
�
 Jk,

�j�1
Jk bkj�nkj


 1�skj

2

��j�1
Jk bkj

nkj� 
 Jk
�d�̃2

� Ct��
k�1

K

�
j�1

Jk

�bkj
nkj�


1
2��


�k�1
K ���j�1

Jk bkj
nkj�
Jk�

2

��
k�1

K

����j�1
Jk bkj

nkj� 
 Jk

2
���

j�1

Jk

bkj�nkj

 1�skj

2 �

��j�1

Jk bkj
nkj�
Jk

2 �
P��̃2 � �t

a | xb�.

(B.10)

In the second line we solved the integral with respect to �kj
by integrating exp�


bkj
nkj

2�̃k
2 ��kj


 x�kj
�2�, which is the kernel of a normal

distribution with mean x�kj
and variance �̃k

2 ⁄ �bkj
nkj

�. Hence the integral equals �2��̃k
2 ⁄ �bkj

nkj
��

1
2, which is the inverse of the normalizing

constant of this normal distribution. The integrand in the fourth line is a product of kernels of scaled inverse-	2 distributions with degrees

of freedom parameters �k � ��j�1
Jk bkj

nkj
� 
 Jk and scale parameters �k

2 �
�j�1

Jk bkj
�nkj


1�skj

2

��j�1
Jk bkj

nkj
�
Jk

, k � 1, . . . , K (Gelman et al., 2004). Finally,

the probability that the variances fall in the adjusted parameter space �t
a is based on independent automatic priors for the variances given

by

�̃k
2 | xb � Inv-�2���

j�1

Jk

bkj
nkj
�
 Jk,

�j�1
Jk bkj�nkj


 1�skj

2

��j�1
Jk bkj

nkj� 
 Jk
�, (B.11)

for k � 1, . . . , K.

(Appendices continue)
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The expression for the numerator mt
N(x) of the marginal likelihood in Equation (B.1) is identical to the final expression in Equation

(B.10) with all b’s set to 1 and �t
a replaced by �t:

mt
N(x) �Ct��

k�1

K

�
j�1

Jk

nkj



1
2��


�k�1
K ���j�1

Jk nkj�
Jk�
2

��
k�1

K

����j�1
Jk nkj� 
 Jk

2
���

j�1

Jk

�nkj

 1�skj

2 �

��j�1

Jk nkj�
Jk

2 �
P��̃2 � �t | x�.

(B.12)

Subsequently, the marginal likelihood in the aFBF is given by

mt
aF(x, b) �

mt
N(x)

mt
N(xb)

� m̃ t
aF(x, b)

P��̃2 � �t | x�
P��̃2 � �t

a | xb�
, (B.13)

where

m̃ t
aF(x, b)���

k�1

K

�
j�1

Jk

bkj

1
2��


�k�1
K �j�1

Jk �1
bkj�nkj

2

�
k�1

K

����j�1
Jk nkj� 
 Jk

2
�����j�1

Jk bkj
nkj� 
 Jk

2
�
1

��
j�1

Jk

�nkj

 1�skj

2 �

��j�1

Jk nkj�
Jk

2 ��
j�1

Jk

bkj�nkj

 1�skj

2 �
��j�1

Jk bkj
nkj�
Jk

2
. (B.14)

Note that if a constrained hypothesis does not contain any inequalities, the ratio of probabilities in Equation (B.13) is not present.
Finally, we provide a motivation for the specific choice of the tuning parameters. First we introduce new parameters �k � ak�̃k

2, for k �
1, . . . , K, which can be interpreted as adjusted variance parameters. In the automatic prior the adjusted variance is distributed
according to

�k � ak�̃k
2 | xb � Inv-�2���

j�1

Jk

bkj
nkj
�
 Jk, ak

�j�1
Jk bkj�nkj


 1�skj

2

��j�1
Jk bkj

nkj� 
 Jk
�

� Inv-�2���
j�1

Jk

bkj
nkj
�
 Jk, 1�,

(B.15)

for k � 1, . . . , K, which follows automatically from Equations (B.9) and (B.11). In the first line we used the mathematical result that
if �̃k

2 | xb � Inv-�2��k, �k
2�, then ak�̃k

2 | xb � Inv-�2��k, ak�k
2�. Note that the scale hyperparameters of the scaled inverse-	2 distributions are

equal for all k. Subsequently, the automatic prior probability that the variances fall in the adjusted constrained space �t
a can be written

as

P��̃2 � �t
a | xb� � P�Rt�a1�̃1

2, . . . , aK�̃K
2� � � 0 | xb� � P�Rt(�1, . . . , �K)� � 0 | xb�. (B.16)

To illustrate the effect of the adjustment we again consider the hypothesis H1 : �̃1
2 � �̃2

2 with R1 � �
1 1 �. If we set bkj
� 2 ⁄nkj

, the
automatic prior probability that the variances fall in the adjusted constrained space equals

P��̃2 � �t
a | xb� � P�a1�̃1

2 � a2�̃2
2 | xb� � P��1 � �2 | xb� � 1

2, (B.17)

because �1 and �2 are both distributed as Inv-	2(2, 1) due to Equation (B.15). This is desirable because it implies that in the aFBF
approach both possible orderings of the two adjusted variances are equally likely a priori.

(Appendices continue)
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Appendix C

Scale Invariance of the Adjusted Fractional Bayes Factor

In Appendix B the data and the sample variance of the jth group sharing the unique variance �̃k
2 were denoted by xkj

and skj

2 , respectively.
Multiplying all observations in xkj

by a constant w results in a sample variance of w2skj

2 , for j � 1, . . . , Jk and k � 1, . . . , K. We show
that the marginal likelihood of the scaled data wx under hypothesis Ht can be written as mt

aF(wx, b) � vmt
aF(x, b), where v is a constant

that is independent of Ht. As will be shown, v cancels out in the computation of the adjusted fractional Bayes factors and the corresponding
posterior probabilities of the hypotheses. We first consider m̃ t

aF�wx, b� in Equation (B.13) for the scaled data. Note that the marginal
likelihood only depends on the data through the sample variances. Thus, substituting skj

2 with w2skj

2 in Equation (B.14) gives us

m̃ t
aF(wx, b) � ��

k�1

K

�
j�1

Jk

bkj

1
2��


�k�1
K �j�1

Jk �1
bkj�nkj

2

�
k�1

K

����j�1
Jk nkj� 
 Jk

2
�����j�1

Jk bkj
nkj� 
 Jk

2
�
1

��
j�1

Jk

�nkj

 1�w2skj

2 �

��j�1

Jk nkj�
Jk

2 ��
j�1

Jk

bkj�nkj

 1�w2skj

2 �
��j�1

Jk bkj
nkj�
Jk

2

� �w2�

�k�1

K �j�1
Jk �1
bkj�nkj

2 ��
k�1

K

�
j�1

Jk

bkj

1
2��


�k�1
K �j�1

Jk �1
bkj�nkj

2

�
k�1

K

����j�1
Jk nkj� 
 Jk

2
�����j�1

Jk bkj
nkj� 
 Jk

2
�
1

��
j�1

Jk

�nkj

 1�skj

2 �

��j�1

Jk nkj�
Jk

2 ��
j�1

Jk

bkj�nkj

 1�skj

2 �
��j�1

Jk bkj
nkj�
Jk

2

��w2�

�k�1

K �j�1
Jk �1
bkj�nkj

2 m̃ t
aF(x, b) � vm̃ t

aF(x, b).

(C.1)

Next, we consider P��̃2��t � wx� and P��̃2��t
a � �wx�b� in Equation (B.13) for the scaled data. For the scaled data the variances are

distributed according to

�̃k
2 | (wx)b � Inv-�2���

j�1

Jk

bkj
nkj
�
 Jk, w2�j�1

Jk bkj�nkj

 1�skj

2

��j�1
Jk bkj

nkj� 
 Jk
� and (C.2)

�̃k
2 | wx � Inv-�2���

j�1

Jk

nkj
�
 Jk, w2�j�1

Jk �nkj

 1�skj

2

��j�1
Jk nkj� 
 Jk

�, (C.3)

for the automatic prior and posterior, respectively, for k � 1, . . . , K. Because the scale parameters in the above distributions only depend
on the scale w through the factor w2, it automatically follows that the automatic prior probability is invariant of the scale, that is,

P��̃2 � �t
a | (wx)b� � P�w2�̃2 � �t

a | xb� � P�Rt�w2a1�̃1
2, . . . , w2aK�̃K

2� � � 0 | xb�
� P�Rt�a1�̃1

2, . . . , aK�̃K
2� � � 0 | xb� � P��̃2 � �t

a | xb�.
(C.4)

(Appendices continue)
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By following the same steps it can be shown that the posterior probability is also invariant, that is, P��̃2 � �t �wx� � P��̃2 � �t �x�. Thus, the
marginal likelihood of the scaled data can be written as

mt
aF(wx, b) � m̃ t

aF(wx, b)
P��̃2 � �t | wx�

P��̃2 � �t
a | (wx)b�

� vm̃ t
aF(x, b)

P��̃2 � �t | x�
P��̃2 � �t

a | xb�
� vmt

aF(x, b).
(C.5)

Because the constant v is the same under all hypotheses, it cancels out in the computation of the adjusted fractional Bayes factors and the
corresponding posterior probabilities of the hypotheses:

Btt�
aF �

mt
aF(wx, b)

mt�
aF(wx, b)

�
vmt

aF(x, b)

vmt�
aF(x, b)

�
mt

aF(x, b)

mt�
aF(x, b)

(C.6)

and

PaF(Ht | wx, b) �
mt

aF(wx, b)P(Ht)

�t��1
T mt�

aF(wx, b)P(Ht�)
�

vmt
aF(x, b)P(Ht)

�t��1
T vmt�

aF(x, b)P(Ht�)

�
mt

aF(x, b)P(Ht)

�t��1
T mt�

aF(x, b)P(Ht�)
� PaF(Ht | x, b).

(C.7)
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